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Intertwiners are the building blocks of spin-network states. The space of intertwiners is the quantization

of a classical symplectic manifold introduced by Kapovich and Millson. Here we show that a theorem by

Minkowski allows us to interpret generic configurations in this space as bounded convex polyhedra in R3:

A polyhedron is uniquely described by the areas and normals to its faces. We provide a reconstruction of

the geometry of the polyhedron: We give formulas for the edge lengths, the volume, and the adjacency of

its faces. At the quantum level, this correspondence allows us to identify an intertwiner with the state of a

quantum polyhedron, thus generalizing the notion of the quantum tetrahedron familiar in the loop

quantum gravity literature. Moreover, coherent intertwiners result to be peaked on the classical geometry

of polyhedra. We discuss the relevance of this result for loop quantum gravity. In particular, coherent spin-

network states with nodes of arbitrary valence represent a collection of semiclassical polyhedra.

Furthermore, we introduce an operator that measures the volume of a quantum polyhedron and examine

its relation with the standard volume operator of loop quantum gravity. We also comment on the

semiclassical limit of spin foams with nonsimplicial graphs.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a continuous theory,
whose Hilbert space is the direct sum of spaces associated
to graphs � embedded in a three-dimensional hypersur-
face, H ¼ ��H �. It is often convenient to consider a
single graph � and the associated Hilbert space H �. The
truncation captures only a finite number of degrees of
freedom of the theory. An important question for us is
whether these degrees of freedom can be ‘‘packaged’’ as
to provide some approximate description of smooth 3D
geometries [1,2]. We specifically think that it would be
useful to have a picture of the classical degrees of freedom
captured by H � in terms of discrete geometries. Such
knowledge is, for instance, relevant for the interpretation
of semiclassical states restricted on H �.

As it turns out, useful insights can be gained looking at
the structure of H �. It decomposes in terms of
SUð2Þ-invariant spaces H F associated to each node of
valence F. For a 4-valent node, it has been known for quite
some time that an intertwiner represents the state of a
‘‘quantum tetrahedron’’ [3,4], namely, the quantization of
the space of shapes of a flat tetrahedron in R3 with fixed
areas. For a generic valence F, a natural expectation would
be a relation to polyhedra with F faces, as mentioned in
[1,5]. In this paper we clarify the details of this
correspondence.

There are two keys to our result. The first one is the fact
that H F is the quantization of a certain classical phase

space SF, introduced by Kapovich and Millson in [6]. The
second is the fact that there is a unique bounded convex
polyhedron with F faces of given areas associated to each
point of SF. This is guaranteed by an old theorem by
Minkowski [7]. The correspondence is up to a measure-
zero subset of ‘‘degenerate’’ configurations, present also in
the 4-valent case. Accordingly, we have the following
relations:

polyhedra with F faces $ classical phase space SF

$ intertwiner space H F:

An immediate consequence of these results is a com-
plete characterization of coherent states at a fixed graph:
They uniquely define a collection of polyhedra associated
to each node of the graph. This provides a simple and
compelling picture of the degrees of freedom of H � in
terms of discrete geometries, which are associated with a
parametrization of the classical holonomy-flux variables in
terms of the twisted geometries introduced in [1].
The paper is divided into two parts, concerning, respec-

tively, the classical geometry of polyhedra and the notion
of the quantum polyhedron together with its relevance to
loop gravity. The motivation for the first part comes from
the fact that polyhedra have a rich classical geometry. One
of the reasons why the notion of the quantum tetrahedron
has been so fruitful in the development of loop gravity and
spin foams is the fact that everybody understands the
geometry of a classical tetrahedron. To make the extension
to higher valence as fruitful, we need first of all to clarify a
number of aspects of the geometry of polyhedra.
Minkowski’s theorem guarantees that a polyhedron can

be reconstructed out of the areas and normals to its faces,
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just as it happens for the tetrahedron. The new feature here
is that there are many possible polyhedra with the same
number of faces which differ in their combinatorial struc-
ture, i.e. in the adjacency relations of the faces. In the first
part of the paper (Secs. II and III) we focus entirely on the
classical geometry of polyhedra and collect and in some
cases adapt various results known in the mathematical
literature. We discuss the combinatorial classes of polyhe-
dra and how the phase space of shapes at given areas can
be divided into regions of different classes. We show
explicitly how a given configuration of areas and normals
can be used to reconstruct the polyhedron geometry, in-
cluding its edge lengths, volume, and combinatorial class.
Furthermore, we discuss certain shape-matching condi-
tions which effectively restrict a collection of polyhedra
to (a generalization of) Regge geometries.

In the second part of the paper (Secs. IV, V, and VI) we
discuss the quantum theory. We first review the construc-
tion of the quantization map between the phase space SF

and the Hilbert space of intertwinersH F. This leads to the
interpretation of an intertwiner state as the state of a
quantum polyhedron and of coherent intertwiners [8,9] as
states describing semiclassical polyhedra. The relevance of
polyhedra extends to the whole graph Hilbert space H �,
via the twisted geometries variables. The result provides an
interpretation of coherent spin-network states in H � as a
collection of semiclassical polyhedra.

Furthermore, we introduce a new operator which mea-
sures the volume of a quantum polyhedron. Its definition is
based on the knowledge of the classical system behind the
intertwiner spaceH F and has the right semiclassical limit
on nodes of any valence. We discuss its relation with the
standard volume operator of loop quantum gravity. Finally,
we make some brief remarks on the polyhedral picture,
Regge calculus, and covariant spin foam models.

II. THE PHASE SPACE OF POLYHEDRA

A. Convex polyhedra and Minkowski theorem

A convex polyhedron is the convex hull of a finite set of
points in 3D Euclidean space. It can be represented as the
intersection of finitely many half-spaces as

P ¼ fx 2 R3jni � x � hi; i ¼ 1; . . . ; mg; (1)

where ni are arbitrary vectors and hi are real numbers. The
abstract description (1) is nonunique and redundant: The
minimal set of half-spaces needed to describe a polyhedron
corresponds to taking their number m equal to the number
of faces F of the polyhedron. In this paper we are interested
in the description of a convex polyhedron with F faces in
terms of variables that have an immediate geometric inter-
pretation: the areas of the faces of the polyhedron and the
unit normals to the planes that support such faces.

Let us consider a set of unit vectors ni 2 R3 and a set of
positive real numbers Ai such that they satisfy the closure
condition

C � XF
i¼1

Aini ¼ 0: (2)

In the following, we will refer to this set as ‘‘closed
normals.’’ A convex polyhedron with F faces having areas
Ai and normals ni can be obtained in the following way.
For each vector ni consider the plane orthogonal it. Then
translate this plane to a distance hi from the origin of R3.
The intersection of the half-spaces bounded by the planes
defines the polyhedron, ni � x � hi. We can then adjust the
heights so that hi ¼ hiðAÞ so that the faces have areas Ai.
Remarkably, a convex polyhedron with such areas and

normals always exists. Moreover, it is unique, up to rota-
tions and translations. This result is established by the
following theorem due to Minkowski [7,10]:
Theorem (Minkowski, 1897)
(i) If n1; . . . ; nF are noncoplanar unit vectors and

A1; . . . ; AF are positive numbers such that the closure
condition (2) holds, then there exists a convex poly-
hedron whose faces have outwards normals ni and
areas Ai.

(ii) If each face of a convex polyhedron is equal in area
to the corresponding face with the parallel external
normal of a second convex polyhedron and con-
versely, then the two polyhedra are congruent by
translation.

This unicity will play an important role in the following.
Throughout the rest of the paper, we use simply polyhedra
to refer to bounded convex polyhedra.

B. Kapovich-Millson phase space as the
space of shapes of polyhedra

Let us consider F vectors in R3 that have given norms
A1; . . . ; AF and such that they sum up to zero. The space of
such vectors modulo rotations has the structure of a sym-
plectic manifold [6] and is known as the Kapovich-Millson
phase space1 SF:

S F ¼
�
ni 2 ðS2ÞF

��������XF
i¼1

Aini ¼ 0

�
=SOð3Þ: (3)

The Poisson structure on this 2ðF� 3Þ-dimensional space
is the one that descends via symplectic reduction from the
natural SO(3)-invariant Poisson structure on each of the F
spheres S2.
Action-angle variables for (3) are ðF� 3Þ pairs ð�i; �iÞ

with canonical Poisson brackets, f�i; �jg ¼ �ij. Here �i is

the length of the vector ~�i ¼ A1n1 þ � � � þ Aiþ1niþ1

1In [6] it is also called the space of shapes of (bended)
polygons. To be precise, it is a symplectic manifold up to a
finite number of points, corresponding to configurations with one
or more consecutive vectors collinear.
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(see Fig. 1), and its conjugate variable �i is the angle
between the plane identified by the vectors ~�i�1 and ~�i

and the plane identified by the vectors ~�i and ~�iþ1. At
fixed areas, the range of each �i is finite.

Thanks to Minkowski’s theorem, a point in SF with
noncoplanar normals identifies a unique polyhedron.
Accordingly, we refer to (3) as the space of shapes of
polyhedra at fixed areas. Notice that (3) contains also
configurations with coplanar normals: They can be thought
of as degenerate polyhedra, obtained as limiting cases. The
fact that the polyhedra with faces of given areas form a
phase space will be important in Sec. IVA, where we
discuss the Hilbert space of the quantum polyhedron.

C. Classes of polyhedra with F faces

The phase space SF has a rich structure: As we vary the
normals of a polyhedron keeping its areas fixed, not only
the geometry but in general also the combinatorial struc-
ture of the polyhedron changes; that is, the number of
edges and the adjacency of faces. We refer to the combi-
natorial structure as the class of the polyhedron. In other
words, there are two components to the shape of a poly-
hedron: Its class and its geometry (up to rotations) once the
combinatorial structure are fixed. The different classes of
polyhedra correspond to the different tessellations of a
sphere having F faces. Which class is realized depends
on the specific value of the normals. This is a point we
would like to stress: One is not free to choose a class and
then assign the data. It is on the contrary the choice of data
that selects the class. This is an immediate consequence of
Minkowski’s theorem. Accordingly, the phase space SF

can be divided into regions corresponding to the different
classes of polytopes with F faces.

To visualize the class of a polyhedron it is convenient to
use Schlegel diagrams [10,11]. The Schlegel diagram of a
polyhedron is a planar graph obtained choosing a face f
and projecting all the other faces on f as viewed from
above. See Fig. 2 for examples.

To understand the division of SF into regions of different
class, let us first give some examples and postpone general

comments to the end of the section. In the most familiar
F ¼ 4 case, there is no partitioning of S4: There is a unique
tessellation of the sphere, the tetrahedron, and it is well
known that there is always a unique tetrahedron associated
with four closed normals. The first nontrivial case is
F ¼ 5, where there are two possible classes: a triangular
prism and a pyramid (see Fig. 3). Consider then the phase
space S5. Minkowski’s theorem guarantees that the same
set ðAi; niÞ cannot be associated to both classes, and thus
each point in S5 corresponds to a unique class. One might
at first think that S5 can be more or less equally divided
between the two classes, but this is not the case. In fact,
notice that the pyramid is just a special case of the prism,
obtained by collapsing to a point one of the edges connect-
ing two triangular faces. The existence of a pyramid then
requires a nontrivial condition, i.e. the presence of a
4-valent vertex. A moment of reflection shows that this
condition can be imposed via an algebraic equation on the
variables. Hence the shapes corresponding to pyramids
span a codimension one surface in S5. Generic configura-
tions of areas and normals describe triangular prisms, and
the pyramids are measure-zero special cases. We call
dominant the class of maximal dimensionality, e.g. the
triangular prism here.
Let us move to F ¼ 6, a case of particular interest since

regular graphs in R3 are six-valent. There are seven differ-
ent classes of polyhedra; see Fig. 4. The most familiar one
is the cuboid (top left of Fig. 4), with its six quadrilateral
faces. Remarkably, there is a further dominant class: It is a
‘‘pentagonal wedge,’’ i.e. a polyhedron with two triangles,
two quadrilaterals, and two pentagons as faces (to visualize
it, imagine a triangular prism planed down on a corner, so
that a vertex is replaced by a triangle). The remaining five
classes are subdominant, because nontrivial conditions are
required for their existence. Subdominant classes have

FIG. 2 (color online). Some examples of Schlegel diagrams.
From left to right, a tetrahedron, a pyramid, a cube, and a
dodecahedron.

FIG. 3 (color online). Polyhedra with 5 faces: The two pos-
sible classes are the triangular prism (left panel) and the pyramid
(right panel). The two classes differ in the polygonal faces and in
the number of vertices.

FIG. 1 (color online). A polygon with side vectors Aini and the
(F� 3) independent diagonals. The space of possible polygons
in R3 up to rotations is a (2F� 6)-dimensional phase space, with
action-angle variables the pairs ð�i; �iÞ of the diagonal lengths
and dihedral angles. For noncoplanar normals, the same data
define also a unique polyhedron thanks to Minkowski’s theorem.

POLYHEDRA IN LOOP QUANTUM GRAVITY PHYSICAL REVIEW D 83, 044035 (2011)

044035-3



fewer vertices and thus can be seen as special cases with
certain edges of zero length.2

From the above analysis, we expect that the phase space
S6 can then be divided into regions corresponding to the
two dominant classes, separated by the subdominant ones.
This is qualitatively illustrated in Fig. 5. To confirm this
picture, we performed some numerical investigations.
Using the reconstruction algorithm, which we introduce
in the next section, we can assign a class to each point in
S6. In Fig. 6 we give an explicit example of a 2D and a 3D
slice of the 6D space S6, which shows the subdivision into
the two dominant classes.

After this brief survey of some specific examples, let us
make some general statements.

(i) The phase space SF can be divided into regions
corresponding to different classes. The dominant
classes, generically more than one, cover it densely,
whereas the subdominant ones span measure-zero

subspaces. The dominant classes in phase space
correspond to polyhedra with all vertices three-
valent, that is, the dual to the tessellation is a trian-
gulation. This condition maximizes both the number
of vertices V ¼ 3ðF� 2Þ and edges E ¼ 2ðF� 2Þ.
Subdominant classes are special configurations with
some edges of zero lengths and thus fewer vertices.

(ii) Since all classes correspond to tessellations of the
sphere with F faces, they are connected by Pachner
moves [12]. The reader can easily find a sequence of
moves connecting all seven classes of Fig. 4. To
start, apply a 2-2 move to the upper edge of the inner
square of the cuboid to obtain the pentagonal
wedge.

FIG. 4 (color online). The seven classes of polyhedra with 6 faces, grouped according to the dimensionality of their configurations.

FIG. 5. Pictorial representation of the phase space: It can be
mapped into regions corresponding to the various dominant
classes (two in the example). The subdominant classes separate
the dominant ones and span measure-zero subspaces.

3

3

FIG. 6 (color online). Mappings of subspaces of S6 realized by
using the reconstruction algorithm of Sec. III and Wolfram’s
MATHEMATICA. We subdivided the phase space into a regular

grid and had MATHEMATICA computing the adjacency matrix of
the area-normal configurations lying at the center of the cells.
This associates a unique class to each cell of the phase space.
The information is color-coded: cuboids in blue, pentagonal
wedges in red. With this mapping of finite resolution we have
measure-zero probability of hitting a subdominant class; thus,
the latter are absent in the figures. The holes are configurations
for which our numerical algorithm failed. Concerning the spe-
cific values of the example, the areas are taken to be (9, 10, 11,
12, 13, 13). In the left panel, we fixed �1 ¼ 15, �1 ¼ 7

10�,

�2 ¼ 13, and �2 ¼ 13
10� and plotted the remaining pair ð�3; �3Þ.

In the right panel, we fixed �i ¼ ð15; 13; 17Þ and plotted the
three angles �i.

2Among these, notice the class of codimension 3. It has six
triangular faces and three four-valent vertices. This class is
interesting in that it can be seen as two tetrahedra glued along
a common triangle. Two arbitrary tetrahedra are defined by 12
independent numbers. In order for them to glue consistently and
generate this polyhedron, the shape of the shared triangle has to
match. This shape matching requires three conditions (for in-
stance, matching of the edge lengths), thus we obtain a nine-
dimensional space of shapes. For fixed external areas, this is
precisely the codimension 3 subspace in S6. Hence this class is a
special case of two tetrahedra where conditions are imposed for
them to glue consistently.
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(iii) The lowest-dimensional class corresponds to a
maximal number of triangular faces, a condition
which minimizes the number of vertices. When all
the faces are triangular, the polyhedron can be seen
as a collection of tetrahedra glued together and with
matching conditions imposed along all shared in-
ternal triangles.

Large F and the hexagonal dominance

The number of classes grows very fast with F (see, for
instance, [13] for a tabulation). In the examples above with
small F, we have been able to characterize the class look-
ing just at how many faces have a certain valence.
However, as we increase F we find classes with the same
valence distribution but which differ in the way the faces
are connected. To distinguish the classes one needs to
identify the complete combinatorial structure of the poly-
hedron. This information is captured by the adjacency
matrix, which codes the connectivity of the faces of the
polyhedron. Below in Sec. III C we will show how this
matrix can be explicitly built as a function of areas and
normals and give some explicit examples.

An interesting question concerns the average valence of
a face, defined as hpi ¼ 2E=F. A simple estimate can be
given by using the fact that the boundary of any polyhedron
is a tessellation of the two-sphere, and therefore by the
Euler formula F� Eþ V ¼ 2. For the dominant classes,
which are dual to triangulations, the additional relation
2E ¼ 3V holds, hence E ¼ 3ðF� 2Þ, and we get hpi ¼
6ð1� 2=FÞ. For large F, we expect the polyhedron to be
dominated by hexagonal faces. This expectation is imme-
diately confirmed by a simple numerical experiment.
The specimen in Fig. 7, for instance, has F ¼ 100 and
hpi � 5:88. Notice also from the image that there are no
triangular faces, consistently with the fact that they tend to
minimize the number of vertices and are thus highly non-
generic configurations.

III. POLYHEDRA FROM AREAS AND NORMALS:
RECONSTRUCTION PROCEDURE

So far we have discussed how a point in SF specifies a
unique polyhedron and the existence of different combi-
natorial structures. We now describe how the polyhedron
can be explicitly reconstructed from areas and normals.
The reconstruction will allow us to evaluate completely its
geometry, including the lengths of the edges and the
volume, and to identify its class through the adjacency
matrix, thus being able to associate a class with each point
of SF.
The main difficulty in developing a reconstruction algo-

rithm is that, given the areas and the normals, it is not
known a prioriwhich faces of the polyhedron are adjacent.
The adjacency relations of the faces (and the combinatorial
class of the polyhedron) are to be derived together with its
geometry. This can be done in two steps. The first step uses
an algorithm due to Lasserre [14] that permits one to
algebraically compute the lengths ‘ijðh; nÞ of all the edges
of the polyhedron as defined by hi and ni, as in (1). The
second step consists of solving a certain quadratic system
to obtain the values of the heights hi for given areas.

A. Lasserre’s reconstruction algorithm

We now review Lasserre’s procedure and adapt it to the
three-dimensional case of interest here. The basic idea of
the reconstruction algorithm is to compute the length of an
edge as the length of an interval in coordinates adapted to
the edge. Consider the ith face. From the defining inequal-
ities (1), we know that points x 2 R3 on this face satisfy

ni � x ¼ hi; (4a)

nj � x � hj; i � j: (4b)

We consider the generic case in which ni � nj � �18 i; j

(these special configurations can be obtained as limiting
cases). We introduce coordinates yi adapted to the face,
that is,

ni � yi ¼ 0; yi ¼ x� ðx � niÞni: (5)

Using (4a) we get x ¼ hini þ yi, which inserted in (4b)
gives

yi � nj � rij; i � j; (6)

where we have defined

rij � hj � ðni � njÞhi: (7)

Hence, the ith face can be characterized in terms of either
the x or the yi coordinates:

�x �ni ¼ hi

nj � x� hj; i� j
!

�
yi �ni ¼ 0
yi �nj � rijðh;nÞ; i� j:

(8)

FIG. 7 (color online). A polyhedron with F ¼ 100 drawn with
Wolfram’s MATHEMATICA, by using the reconstruction algorithm.
The example has all areas equal and normals uniformly distrib-
uted on a sphere. Notice that most faces have valence 6 and that
triangles are nowhere to be seen.
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Notice that rij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðni � njÞ2

q
is the distance of the edge ij

from the projection of the origin on the ith face.
The next step is to iterate this process and describe an

edge in terms of its adapted coordinates. We start from the
ith face again and assume that it is connected to the face j,
so that the two faces share an edge. Points on the edge ij
between the ith and the jth face satisfy

yi � ni ¼ 0; (9)

yi � nj ¼ rij; (10)

yi � nk � rik; k � i; j: (11)

As before, we introduce coordinates zij, adapted to the

edge,

ni � zij ¼ nj � zij ¼ 0;

zij ¼ yi � ½nj � ðni � njÞni�
yi � nj

1� ðni � njÞ2
:

(12)

Using (10) we get that for a point in the edge

yi ¼ ½nj � ðni � njÞni�
hj � hiðni � njÞ
1� ðni � njÞ2

þ zij: (13)

Plugging this in (11) gives

zij � nk � bij;k; (14)

where we have defined

bij;k � hk � ðni � nkÞhi �
ðnj � nkÞ � ðni � njÞðni � nkÞ

1� ðni � njÞ2
	 ½hj � hiðni � njÞ�: (15)

Summarizing as before, going to adapted coordinates
the edge is defined by8><

>:
yi � ni ¼ 0

yi � nj ¼ rijðh; nÞ
yi � nk � rikðh; nÞ; k � i; j:

!
8><
>:
zij � ni ¼ 0

zij � nj ¼ 0

zij � nk � bij;kðh; nÞ; i � j � k:

(16)

At this point we are ready to evaluate the length of each
edge. To that end, we parametrize the zij coordinate vector

in terms of its norm, say, �, and its direction which is given
by the wedge product of the two normals

zij ¼ �
ni ^ njffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðni � njÞ2
q : (17)

If we define

aij;k �
ni ^ nj � nkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðni � njÞ2

q ; (18)

we can rewrite the inequalities in (16) as

�aij;k � bij;k: (19)

Finally, the length of the edge is the length of the interval
determined by the tightest set of inequalities, i.e.

min
kjaij;k>0

�
bij;k
aij;k

�
� max

kjaij;k<0

�
bij;k
aij;k

�
: (20)

Here the minimum is taken over all the k’s such that aij;k is

positive, and the maximum over all the k’s such that aij;k is

negative. This quantity is symmetric [14] and satisfies a
key property: It can be defined for any pair of faces ij, not
only if their intersection defines an edge in the boundary of
the polyhedron, and it is negative every time the edge does
not belong to the polyhedron [14]. Thanks to this property,
we can consistently define the edge lengths for any pair of
faces ij as

‘ijðh;nÞ¼max
k

�
0; min

kjaij;k>0

�
bij;k
aij;k

�
� max

kjaij;k<0

�
bij;k
aij;k

��
: (21)

The result is a matrix whose entries are the edge lengths (as
functions of the normals and the heights) if the intersection
is part of the boundary of the polyhedron and zero if the
intersection is outside the polyhedron.
This formula completes Lasserre’s algorithm and per-

mits one to reconstruct the polyhedron from the set ðhi; niÞ.
To achieve a description in terms of areas and normals, we
need one more step, that is an expression for the heights in
terms of the areas. This can be done by using (21) to
compute the areas of the faces. We consider the projection
of the origin on the face and use it to divide the face into
triangles. Recall that the Lasserre’s procedure has provided
us with the distance between an edge and the projected
origin; see (8). We thus can write

Ai ¼ 1

2

XF
j¼1
j�i

rijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðni � njÞ2

q ‘ij: (22)

Notice that both rijðh; nÞ from (7) and ‘ijðh; nÞ from (21)

are linear in the heights. Hence, the area is a quadratic
function

Aiðh; nÞ ¼
XF
j;k¼1

Mjk
i ðn1; . . . ; nFÞhjhk; (23)

where Mi is a matrix depending only on the normals. This
homogeneous quadratic system can be solved for hiðA; nÞ.
The existence of a solution with hi > 08 i is guaranteed
by Minkowski’s theorem. However, the solution is not
unique: In fact, we have the freedom of moving the origin
around inside the polyhedron, thus changing the value of
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the heights without changing the shape of the polyhedron.
A method which we found convenient to use is to deter-
mine a solution minimizing the function

fðhiÞ �
X
i

ðAiðh; nÞ � AiÞ2 (24)

at areas and normals fixed, with Aiðh; nÞ given by (23). This
is the method used in the numerical investigations of
Figs. 6 and 7.3

Finally, from the inverse we derive the lengths as func-
tions of areas and normals, which with a slight abuse of
notation we still denote in the same way:

‘ijðA; nÞ ¼ ‘ijðhðA; nÞ; nÞ: (25)

These expressions are well-defined and can be computed
explicitly.

B. Volume of a polyhedron in terms of
areas and normals

Let us callP ðAi; niÞ the convex subset ofR3 correspond-
ing to the polyhedron. Its volume is simply the integral on
this region of the Euclidean volume density:

VðAi; niÞ ¼
Z
P ðAi;niÞ

d3x: (26)

An interesting question is how to compute efficiently the
volume integral (26). The simplest way is to use
the algorithm described in the previous section: We chop
the region P ðAi; niÞ into pyramids with a common vertex
in its interior and bases given by the faces of the polyhe-
dron. In this way the volume is just the sum of the volumes
of the pyramids, i.e.

VðAi; niÞ ¼ 1

3

XF
i¼1

hiAi: (27)

Here hi ¼ hiðA; nÞ are the heights of the pyramids ex-
pressed in terms of the areas and normals via Lasserre’s
algorithm.

The volume can be used to define a volume function on
the phase space SF. To that end, notice that (27) is not
defined for configurations with coplanar normals, which on
the other hand do enter SF. However, it can be straightfor-
wardly extended to a function on the whole SF by defining
it to be zero for coplanar configurations. Furthermore, the
resulting phase-space function is continuous.4 Since the

volume is manifestly invariant under rotations, it can also
be written as a function of the reduced phase-space varia-
bles only, that is, VðAi; �k; �kÞ. To do so explicitly, one
uses the relation ni ¼ nið�k; �kÞ, which is straightforward
to derive once a reference frame is chosen.
The volume of the polyhedron as a function of areas and

normals has a number of interesting properties:
C1 Non-negative phase-space function.—The volume

is by construction non-negative, and at given areas, it
vanishes only when the normals ni lie in a plane. This, in
particular, implies that the volume vanishes for F ¼ 2
and 3.
C2 Boundedness.—For fixed areas Ai, the volume is a

bounded function of the normals. We call VmaxðAiÞ the
volume of the polyhedron with maximum volume5:

VmaxðAiÞ � sup
ni

fVðAi; niÞg: (28)

In particular, VmaxðAiÞ is smaller than the volume of the
sphere that has the same surface area as the polyhedron.
Therefore we have the bound

0 � VðAi; niÞ<
ðP
i
AiÞ3=2

3
ffiffiffiffiffiffiffi
4�

p : (29)

C3 Face-consistency.—If we set to zero one of the areas
such that the result is still a nondegenerate polyhedron, the
function (27) automatically measures the volume of the
reduced polyhedron with F� 1 faces.
In conclusion, a point in SF determines uniquely the

whole geometry of a polyhedron and, in particular, its edge
lengths ‘ij (21) and its volume (27).6 Now we show how

these data can be used to identify the class of the
polyhedron.

3Concerning Fig. 6, we can also give now more details on the
holes: These are configurations for which the numerical algo-
rithm to solve (23) failed. This limitation can be easily improved
with a better inversion algorithm or by choosing a configuration
slightly off the center of the cell.

4In order to see this, one shows that the limit of coplanar
normals exists and the volume tends to zero in this limit. From
property (C3)—see below—a general F-valent coplanar con-
figuration can be obtained from a Fþ 1 configuration in the
limit of zero base’s area.

5Notice that there can be more than one polyhedron that attains
maximum volume. For instance, in the case F ¼ 4, there are two
parity-related tetrahedra with maximal volume.

6It is worth adding that the problem of computing the volume
of a given polyhedron is a complex and well studied topic in
computational mathematics [15,16]; hence, better procedures
than the one used here could in principle be found. However,
the usual starting point for common algorithms is the knowledge
of the coordinates of vertices or the system of inequalities (1).
Therefore the methods need to be adapted to obtain formulas in
terms of areas and normals. The main difficulty is clearly that the
adjacency relations of the faces are to be derived together with
the geometry. We found Lasserre’s algorithm to be the most
compatible with these necessities, thanks to the fact that the
lengths are reconstructed algebraically. Numerical algorithms
for the volume and shape reconstruction from areas and normals
are developed in the study of extended Gaussian images in
informatics [17]; however, there are no analytical results.
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C. Adjacency matrix and the class of the polyhedron

The adjacency matrix A of the polyhedron is defined as

Aij ¼
�
1 if the faces i and j are adjacent;

0 otherwise;

i; j ¼ 1; . . . ; F (30)

Notice that Aij coincides with the matrix ‘ij in (21) with all

the nonzero entries normalized to 1: The reconstruction
algorithm gives us the adjacency matrix for free.

The symmetric matrix Aij contains information on the

connectivity of the faces as well as on the valence of each
face; thus, the class of the polyhedron can be identified
uniquely from it. The valence pi of the face i can be
extracted by taking the sum of the columns for each row:

pi ¼
XF
j¼1

Aij: (31)

For example, for the two classes with F ¼ 5 of Fig. 3 we
have

From graph theory [18], we know that (30) has a number
of interesting properties that can be related to the geomet-
rical parameters of the polyhedron. For instance, the num-
ber of walks from the face i to the face j of length r is given
by the matrix elements of the rth power ðArÞij. From this

property we deduce that the number E of edges of the
polyhedron is

E ¼ 1

2
TrA2 ¼ 1

2

X
i

pi: (32)

This expression generalizes the value E ¼ 3ðF� 2Þ valid
for the dominant classes.

Higher traces are related to the number of loops of a
given length. For instance, the number of closed loops of
length 3 is given by ð1=6ÞTrA3.

Through the adjacency matrix, obtained via the recon-
struction procedure, areas and normals identify a unique
class and thus permit the division of SF.

D. Shape-matching conditions

Knowing the complete geometry of the polyhedra allows
us also to address the following situation. Suppose that we
are given two polyhedra in terms of their areas and normals
and that we want to glue them by a common face. Even if
we choose the area of the common face to be the same,
there is no guarantee that the shape of the face will match:
The two sets of data will in general induce different shapes
of the face. That is, the face has the same area but it can be

two different polygons altogether. In order to glue the
polyhedra nicely, one needs shape-matching conditions
guaranteeing that the shared face has the same geometry
in both polyhedra.
If both polyhedra are tetrahedra, the problem has been

solved in [19]. One uses the fact that the shape of the
common triangle matches if two lengths, or two internal
angles, are the same. The internal angles � can be ex-
pressed in terms of the 3D dihedral angles of the tetrahe-
dron as follows:

cos�i
jk ¼

cos�ij þ cos�ik cos�jk

sin�ik sin�jk

: (33)

Here the faces i, j, and k all share a vertex, and �i
jk is the

angle between the edge ij and the edge ik inside the
triangle i. Consider now the adjacent tetrahedron. Its ge-
ometry induces for the same angle the value

cos�i
j0k0 ¼

cos�0
ij0 þ cos�0

ik0 cos�
0
j0k0

sin�0
ik0 sin�

0
jk0

: (34)

Hence, for the shape to match it is sufficient to require

C kl;ijð�Þ � cos�i
jk � cos�i

j0k0 ¼ 0 (35)

for two of the three angles of the triangle. These shape-
matching conditions are conditions on the normals of the
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two tetrahedra. See the left panel of Fig. 8 for an illustra-
tion of these relations.

The simplicity of the conditions (35) is a consequence of
the fact that two triangles with the same area are congruent
if two angles match. For the general case, the face to glue is
now a polygon and the number of conditions greater. One
needs to make sure that the valence p of the polygon is the
same. Then, the number of independent parameters of a
polygon on the plane is 2p� 3; hence, giving the edge
lengths is not enough, and p� 2 additional conditions are
needed. A convenient procedure is the following. Identify
the faces of the two polyhedra that, having the same area,
we want to match. From the reconstruction algorithm, we
know the edge lengths ‘ij of the face viewed from one

polyhedron. Then, for all j such that ‘ij � 0, we consider

the face normals nj projected on the plane of the ith face:

~nj ¼
nj � ðni � njÞni
jnj � ðni � njÞnij ¼

nj � cos�ijni
sin�ij

: (36)

The set ð‘j; ~njÞ defines a unique polygon in the plane

identified by ni, thanks to a two-dimensional version of
Minkowski’s theorem. Then, we do the same with the
second polyhedron, obtaining a second set ð‘0j; ~n0jÞ living
in the plane identified by n0i. Finally, the shape-matching
conditions consist of imposing the equivalence of these
two flat polygons up to rotations in three-dimensional
space. Notice that the shape-matching conditions are now
on both the normals and the areas of the two polyhedra.

IV. RELATION TO LOOP QUANTUM GRAVITY

Thus far we have been discussing classical properties of
polyhedra. In the rest of the paper, we discuss the relevance
of polyhedra for loop quantum gravity. The relation comes
from the following two key results:

(i) Intertwiners are the building blocks of spin-network
states, an orthonormal basis of the Hilbert space of
loop quantum gravity [20,21]

(ii) Intertwiners are the quantization of the phase
space of Kapovich and Millson [9,22,23] (see
also [24,25]), i.e. of the space of shapes of polyhe-
dra with fixed areas discussed in the previous
sections.

Therefore an intertwiner can be understood as the state of a
quantum polyhedron and spin-network states as a collec-
tion of quantum polyhedra associated with each vertex.
In this section we review how (ii) and the notion of

quantum polyhedron are established, observe that coherent
intertwiners are peaked on the geometry of a classical
polyhedron, and discuss the relevance of this fact for the
relation between semiclassical states of loop quantum
gravity and twisted geometries.

A. The quantum polyhedron

Let us consider the space of vectors in 3D Euclidean
space with norm j. This is a phase space, the Poisson
structure being the rotationally invariant one proper of
the 2-sphere S2j of radius j. As is well known, its quantiza-

tion7 is the representation space VðjÞ of SUð2Þ. We are
interested in the phase space SF, that is, the space of F
vectors that sum to zero, up to rotations. The Poisson
structure on SF is obtained via the symplectic reduction
of the Poisson structure on the product of F spheres of
given radius. Thanks to Guillemin-Sternberg’s theorem
that quantization commutes with reduction,8 we can quan-
tize first the unconstrained phase space 	iS

2
ji

and then

reduce it at the quantum level, extracting the subspace of


iV
ðjiÞ that is invariant under rotations. This gives pre-

cisely the intertwiner space H F ¼ Inv½
F
i¼1V

ðjiÞ�. The
situation is summarized by the commutativity of the
following diagram:

The correspondence between classical quantities and
their quantization is the following: Up to a dimensionful

constant, the generators ~Ji of SUð2Þ acting on each repre-

sentation space VðjiÞ are understood as the quantization of
the vectors Aini. In LQG the dimensionful constant is
chosen to be the Immirzi parameter � times Planck’s
area 8�L2

P:

FIG. 8. The geometric meaning of Eq. (35): The 2D angle
�ij;kl belonging to the shaded triangle can be expressed in terms

of 3D angles associated the thick edges of the tetrahedron k or,
equivalently, of the tetrahedron l.

7Notice that, as usual, the quantum theory requires the quan-
tization of some classical quantities. In this case the norm of the
vector has to be a half-integer j, the spin.

8For the general theory see [26]; for details on the application
to the current system see [4] and, in particular, [9].
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Aini ! Êi ¼ 8��L2
P
~Ji: (37)

The closure condition (2) on the normals of the polyhedron
is promoted to an operator equation:

XF
i¼1

~Ji ¼ 0: (38)

This condition defines the space of intertwiners and corre-
sponds to the Gauss constraint of classical general relativ-
ity in Ashtekar-Barbero variables.

One can then proceed to associate operators to geomet-
ric observables through the quantization map (37). The
area of a face of the quantum polyhedron is

Âi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Êi � Êi

q
¼ 8��L2

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiðji þ 1Þ

q
(39)

and produces an equispaced quantization of the area
Ai � ji for large spins, i.e. up to quantum corrections.
Notice that an ordering can be chosen so that the area is

exactly Âi ¼ 8��L2
Pji. This ordering will be considered

below to simplify the construction of the volume operator.
The scalar product between the generators of SUð2Þ

associated to two faces of the polyhedron measures the
angle �ij between them [27]:

�̂ij ¼ arccos
~Ji � ~Jjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jiðji þ 1Þjjðjj þ 1Þ
q : (40)

Notice that the angle operators do not commute among
themselves, and therefore it is not possible to find a state
for a quantum polyhedron that has a definite value of all the
angles between its faces. Moreover, the adjacency relations

of the faces is not prescribed a priori, and thus �̂ij might

not even be a true dihedral angle of the polygon. Therefore
an eigenstate of a maximal commuting set of angles is far
from the state of a classical polyhedron: It is an infinite
superposition of polyhedra of different shapes, including
different combinatorial classes. Semiclassical states for a
quantum polyhedron are discussed in the next section.

B. Coherent intertwiners and semiclassical polyhedra

Coherent intertwiners for H F were introduced in [8]
and further developed in [9,23] (for previous related work,
see [28]). These Livine-Speziale (LS) coherent inter-
twiners are defined as the SUð2Þ-invariant projection of a

tensor product of states jji; nii 2 VðjiÞ:

kji;nii�
Z
dgDðj1ÞðgÞjj1;n1i . . .DðjFÞðgÞjjF;nFi: (41)

The states jj; ni are SUð2Þ coherent states peaked on the
direction n of the spin [29,30]:

hj; nj ~Jjj; ni ¼ jn: (42)

In (41), the unit vectors ni can be assumed to close:P
ijini ¼ 0. The reduced states are still an overcomplete

basis ofH F, as a consequence of the Guillemin-Sternberg
theorem [9,31].
Coherent intertwiners are semiclassical states for a

quantum polyhedron: The areas are sharp, and the expec-

tation value of the noncommuting angle operators �̂ij
reproduces the classical angles between faces of the poly-
hedron in the large spin limit:

hji; nijj cos�̂ijjjji; nii
hji; nijjji; nii

� ni � nj: (43)

Moreover, the dispersions are small compared to the ex-
pectation values.
A useful fact is that coherent intertwiners can be labeled

directly by a point in the phase space SF of Kapovich and
Millson and therefore by a unique polyhedron. This pro-
vides a resolution of the identity in intertwiner space as an
integral on SF. To realize this reduction, it is convenient to
parametrize SF via F� 3 complex numbers Zk instead of
ð�k; �kÞ. Let us choose an orientation in R3 and consider
the stereographic projection zi of the unit vectors ni into
the complex plane.9 The F� 3 complex variables Zk are
the cross-ratios [9]

Zk¼ðzkþ3�z1Þðz2�z3Þ
ðzkþ3�z3Þðz2�z1Þ ; k¼1; . . . ;F�3: (44)

Given an orientation in R3, a set of normals ni that satisfy
the closure condition (2) can be obtained as a function of
the cross-ratios:

ni ¼ niðZkÞ: (45)

Coherent intertwiners can then be obtained via geometric
quantization [9]: They are labeled by the variables Zk, that
is, jji; Zki, and are equal to the states kji; niij ¼ jji; niðZkÞi
up to a normalization and phase.10 The resolution of the
identity is given by an integral over the variables Zk:

1H F
¼

Z
CF�3

d�ðZkÞjji; Zkihji; Zkj; (46)

where the integration measure d�ðZkÞ ¼
KjiðZk; �ZkÞ

Q
kd

2Zk depends parametrically on the spins ji
and is given explicitly in [9]. The relevance of this formula
for the following discussion is that it provides a resolution

9The relation between the unit vector n ¼ ðnx; ny; nzÞ and the
stereographic projection is

z ¼ � nx � iny
1� nz

¼ � tan
�

2
e�i�;

where � and � are the zenith and azimuth angles of S2,
respectively, and we have chosen to project from the south pole.
10The states jji; Zki also define an holomorphic representation
of the quantum algebra of functions c ðZkÞ � hji; �Zkjc i; see
[23]. We will not use this representation in this paper.
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of the identity in intertwiner space as a sum over semiclas-
sical states, each one representing a classical polyhedron:
The intertwiner space can be fully described in terms of
polyhedra.11

C. Coherent states on a fixed graph and
twisted geometries

The states jji; Zki provide coherent states for the space
of intertwiners only and should not be confused with
coherent spin-network states for loop quantum gravity.
Nevertheless, classical polyhedra and coherent inter-
twiners are relevant to the full theory, as we now discuss.

To relate polyhedra to loop quantum gravity, consider a
truncation of the theory to a single graph �, with L links
and N nodes. The associated gauge-invariant Hilbert space
H � ¼ L2½SUð2ÞL=SUð2ÞN� decomposes in terms of inter-

twiner spaces H FðnÞ � Inv½
l2nV
ðjlÞ� as

H � ¼ �jlð
nH FðnÞÞ: (48)

This Hilbert space is the quantization of a classical space12

S� ¼ T�SUð2ÞL==SUð2ÞN , which corresponds to (gauge-
invariant) holonomies and fluxes associated with links and
dual faces of the graph. The double quotient // means
symplectic reduction. The key result is that this space
admits a decomposition analogous to (48). In fact, it can
be parametrized as the following Cartesian product [1]:

S� ¼ 	lT
�S1 	n SFðnÞ; (49)

where T�S1 is the cotangent bundle to a circle, F the
valence of the node n, and SF is the phase space of
Kapovich and Millson.

The parametrization is achieved through an isomor-
phism between holonomy fluxes and a set of variables
dubbed ‘‘twisted geometries.’’ These are the assignment
of an area Al and an angle 	l to each link and of F normals
ni, satisfying the closure condition (2) to each node. See
[1,2] for details and discussions. In this parametrization, a
point of S� describes a collection of polyhedra associated
to each node. The two polyhedra belonging to nodes

connected by a link l share a face. The area of this face
is uniquely assigned to both polyhedra Al (notice that this
fact alone does not imply that the shape of the face
matches—more on this below). The extra angles 	l carry
information on the extrinsic geometry between the
polyhedra.
The isomorphism (49) and the unique correspondence

between closed normals and polyhedra means that each
classical holonomy-flux configuration on a fixed graph can
be visualized as a collection of polyhedra, together with a
notion of parallel transport between them. Just as the
intertwiners are the building blocks of the quantum ge-
ometry of spin networks, polyhedra are the building blocks
of the classical phase space (49) in the twisted geometries
parametrization.
What is the relevance of this geometric construction to

the quantum theory? Coherent states for loop quantum
gravity have been introduced and extensively studied by
Thiemann and collaborators [34–36]. Although the states
for the full theory have components on each graph, one
needs to cut off the number of graphs to make them
normalizable. In practice, it is often convenient to truncate
the theory to a single graph. This truncation provides a
useful computational tool, to be compared to a perturbative
expansion, and has found many applications, from the
study of propagators [37] to cosmology [38]. In many of
these applications, control of the semiclassical limit re-
quires a notion of semiclassical states in the truncated
spaceH �. The truncation can only capture a finite number
of degrees of freedom, and thus coherent states in H � are
not peaked on a smooth classical geometry. Twisted ge-
ometries offer a way to see them as peaked on a discrete
geometry, to be viewed as an approximation of a smooth
geometry on a cellular decomposition dual to the graph �.
The above results provide a compelling picture of these
twisted geometries in terms of polyhedra and thus of
coherent states as a collection of semiclassical polyhedra.
There is one subtlety with this geometric picture that

should be kept in mind, which justifies the name ‘‘twisted’’
geometries: They define a metric which is locally flat but
discontinuous. To understand this point, consider the link
shared by two nodes. Its dual face has area proportional to
Al. However, the shape of the face is determined indepen-
dently by the data around each node (i.e. the normals and
the other areas), and thus generic configurations will give
two different shapes. In other words, the reconstruction of
two polyhedra from holonomies and fluxes does not guar-
antee that the shapes of shared faces match. Hence, the
metric of twisted geometries is discontinuous across the
face [1,2].13 See the left panel of Fig. 8.
One can also consider a special set of configurations for

which the shapes match; see the right panel of Fig. 8. This

11Recently [5,32,33], attention has been given to a second space
for which polyhedra are relevant. This is a sum of intertwiner
spaces such that the total spin is fixed:

H J ¼ � j1 ::jFP
i

ji¼J

Inv½
F
i¼1V

ðjiÞ�: (47)

The interest in this space is that it is a representation of the
unitary group UðFÞ. Vectors in this space represent quantum
polyhedra with a fixed number of faces and a fixed total area but
fuzzy individual areas as well as shapes as before. Coherent
states for (47) can be built by using UðFÞ coherent states [32].
These are also peaked on classical polyhedra like the LS states
(41), and thus the results in this paper are relevant for them as
well.
12Again, this is a symplectic manifold up to singular points
[34].

13Aspects of this discontinuity have been discussed also in
[39,40].
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is a subset of the phase space S� where the shape-matching
conditions, discussed earlier in Sec. III D, hold. This subset
corresponds to piecewise flat and continuous metrics. For
the special case in which all the polyhedra are tetrahedra,
this is the setup of Regge calculus, and those holonomies
and fluxes indeed describe a 3D Regge geometry: Twisted
geometries with matching conditions amount to edge
lengths and extrinsic curvature dihedral angles [1,2]. This
relation between twisted geometry and Regge calculus
implies that holonomies and fluxes carry more information
than the space of Regge calculus. This is not in contra-
diction with the fact that the Regge variables and the LQG
variables on a fixed graph both provide a truncation of
general relativity: Simply, they define two distinct trunca-
tions of the full theory. See [2] for a discussion of these
aspects.

For an arbitrary graph, the shape-matching subset de-
scribes a generalization of 3D Regge geometry to arbitrary
cellular decompositions. In this case, however, the varia-
bles are not equivalent any longer to edge lengths, since as
already discussed these do not specify uniquely the ge-
ometry of polyhedra. Rather, such cellular Regge geometry
must use areas and normals as fundamental variables.

Finally, let us make some comments on the coherent
states themselves. The discussion so far is largely indepen-
dent of the details of the coherent states onH �. All that is
required is that they are properly peaked on a point in phase
space. The states most commonly used are the heat-kernel
ones of Thiemann and collaborators. Notice that these are
not written in terms of the LS coherent intertwiners (41).
Nevertheless, it was shown in [41] that they do reproduce
coherent intertwiners in the large area limit. Alternative
coherent states based directly on coherent intertwiners
appear in [42]. These results show that coherent inter-
twiners can be used as building blocks of coherent spin
networks.

V. ON THE VOLUME OPERATOR

At the classical level, the volume of a polyhedron is a
well-defined quantity. In this section we investigate the
quantization of this quantity and its relation with the
volume operators used in loop quantum gravity.

A. The volume of a quantum polyhedron

Let us consider the phase space SF of polyhedra with F
faces of a given area. The volume of the polyhedron is a
well-defined function on this phase space, as discussed in
Sec. III B. Coherent intertwiners provide a natural tool to
promote this quantity to an operator in H F.

In the following we use the parametrization of the phase
space SF in terms of the cross-ratios Zk. In particular, the F
normals ni are understood as functions of the cross-ratios,
niðZkÞ. Accordingly we call Vðji; ZkÞ the volume of a
polyhedron with faces of area AiðjiÞ ¼ 8��L2

Pji and nor-
mals niðZkÞ:

Vðji; ZkÞ � VðAðjiÞ; nðZkÞÞ: (50)

For simplicity we assume an ordering of operators such
that the area is linear in the spin, but the above expression,
and the following construction, can be immediately ap-
plied to other possibilities.
Let us consider now the Hilbert space of intertwiners

H F associated to the phase space SF. The volume of a
quantum polyhedron can be defined in terms of coherent
intertwiners jji; Zki and of the classical volume as follows:

V̂ ¼
Z

d�ðZkÞVðji; ZkÞjji; Zkihji; Zkj: (51)

This integral representation of the operator in terms of its
classical version14 is of the kind considered originally by
Glauber [45] and Sudarshan [46]. It has a number of
interesting properties that we now discuss:

Q1 The operator V̂ is positive semidefinite, i.e.

hc jV̂jc i ¼
Z

d�ðZkÞVðji; ZkÞjhji; Zkjc ij2  0; (52)

for every jc i inH . This is a straightforward consequence
of the fact that the classical volume is a positive function:

Vðji; ZkÞ  0. Furthermore, V̂ vanishes for F ¼ 2 and 3.

Q2 V̂ is a bounded operator in H F. Its norm kV̂k ¼
supc hc jV̂jc i=hc jc i is bounded from above by the maxi-

mum value of the classical volume of a polyhedron with
fixed areas:

hc jV̂jc i
hc jc i ¼

Z
d�ðZkÞVðji; ZkÞjhji; Zkjc ij2

� sup
Zk

fVðji; ZkÞg � VmaxðjiÞ: (53)

Q3 0-spin consistency.—Let us consider the operator V̂
defined on the Hilbert space H Fþ1 associated to spins
j1; . . . ; jF; jFþ1 and the one defined on the Hilbert space
H F associated to spins j1; . . . ; jF. When the spin jFþ1

vanishes, the two operators coincide. This is a consequence
of the fact that the classical volume of a polyhedron with
Fþ 1 faces coincides with the volume of a polyhedron
with F faces and the same normals when one of the areas is
sent to zero. These three properties are the quantum ver-
sion of C1, C2, and C3 discussed in Sec. III B. Moreover,

14In the literature [29], the classical function Vðji; ZkÞ is called
the P symbol of the operator V̂. On the other hand, the expec-
tation value of the operator V̂ on a set of coherent states, i.e.

Qðji; ZkÞ � hji; ZkjV̂jji; Zki;
is called the Q symbol. When the P symbol and the Q symbol of
an operator exist, then the operator is fully determined by either
of them. The properties of these symbols and of the operator they
define have been studied by Berezin in [43,44].

EUGENIO BIANCHI, PIETRO DONÁ, AND SIMONE SPEZIALE PHYSICAL REVIEW D 83, 044035 (2011)

044035-12



using the fact that for large spins two coherent intertwiners
become orthogonal,

jhji; Zkjji; Z0
kij2 ! �ðZk; Z

0
kÞ; (54)

we have that the expectation value hV̂i of the volume
operator on a coherent state jji; Zki reproduces the volume
of the classical polyhedron with shape ðji; ZkÞ:

hV̂i � hji; ZkjV̂jji; Zki
hji; Zkjji; Zki � VðAiðjiÞ; niðZkÞÞ: (55)

This fact allows us to estimate the largest eigenvalue of the
volume: In the large spin limit, the largest eigenvalue is
given by VmaxðAiÞ, the volume of the largest polyhedron in
SF.

The spectrum of the operator V̂ can be computed nu-
merically. Let us focus on the case F ¼ 4 for concreteness.

The matrix elements of V̂ in the conventional recoupling
basis are given by

Vkk0 ¼ hji; kjV̂jji; k0i
¼

Z
d�ðZÞVðji; ZÞhji; kjji; Zihji; Zjji; k0i: (56)

The matrix Vkk0 can be diagonalized numerically to obtain
its eigenvalues.15 We focused for simplicity on the simplest
case where all four spins ji are equal to j0. The results
using Wolfram’s MATHEMATICA are shown in Fig. 9 and
confirm that the maximum eigenvalue is below the volume
of the regular tetrahedron. Notice also that the spectrum

has a gap. One of the interesting questions to investigate in
the future is whether this gap survives at higher valence or
it decays as for the standard volume operator [47].
It is interesting to notice that the volume operator intro-

duced above commutes with the parity operator. This is the
operator that sends the normals to their opposite:

P̂ jj; ni ¼ jj;�ni: (57)

In terms of the stereographic projection, the map n � �n
amounts to z � �1=�z, and thus its action on coherent
intertwiners labeled by the single cross-ratios Z is simply

P̂ jji; Zi ¼ jji; �Zi: (58)

Notice that Vðji; ZkÞ ¼ Vðji; �ZkÞ thanks to the invariance
of the classical volume under parity. Moreover the measure
d�ðZkÞ is invariant under the transformation Zk ! �Zk. As
a result, the operator (51) commutes with parity:

P̂ V̂ P̂ y ¼
Z

d�ðZÞVðji; ZÞjji; �Zihji; �Zj

¼
Z

d�ð �ZÞVðji; �ZÞjji; Zihji; Zj ¼ V̂: (59)

This explains the degeneracies seen in the spectrum.
Clearly, there are other possibilities for the volume of a

quantum polyhedron. All of them share the same classical
limit but can have a different spectrum for small eigenval-

ues. An interesting variant is ~̂V ¼
ffiffiffiffiffiffiffi
jÛj

p
, where Û is the

oriented-volume square operator, defined as

Û ¼
Z

d�ðZkÞsðZkÞV2ðji; ZkÞjji; Zkihji; Zkj: (60)

Here sðZkÞ is the parity of the polyhedron, i.e. sðZkÞ ¼ �1
and sð �ZkÞ ¼ �sðZkÞ.
The operator Û anticommutes with the parity, and so

does ~̂V. Therefore, under the assumption that the spectrum
is nondegenerate, we have that the eigenvalues appear
in pairs �u. In particular, a zero eigenvalue is present
when the Hilbert space H F is odd-dimensional. This
operator is similar in spirit to the volume of a quantum

tetrahedron introduced by Barbieri [3]: V̂B ¼
ð8��Þ3=2L3

Pð
ffiffiffi
2

p
=3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijJ1 � ðJ2 	 J3Þj

p
. In Fig. 10, we show

some eigenvalues of ~̂V and a comparison with V̂B.
For more on semiclassical aspects of the spectrum of the

volume, see [48].

B. LQG volume operator and the quantum
polyhedron

In LQG, the operator associated to the volume of a
region in space is a well studied quantity [49–51]. It is
defined on the graph Hilbert space H � as a sum over

contributions V̂n from each node n of the graph within
the region R:

••
••o
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FIG. 9 (color online). Some eigenvalues of V̂. For comparison,
the curve is the classical volume of an equilateral tetrahedron as
a function of the area A ¼ j (units 8��L2

P ¼ 1). The empty
circles are single eigenvalues; the full circles have double
degeneracy. The spectrum is gapped and bounded from the
above by the classical maximal volume, which provides a large
spin asymptote.

15The overlaps, hj; kjji; Zi ¼ ð�1Þ2k
2jþkþ1

ð2j!Þ2
ð2jþkÞ!ð2j�kÞ!Lkð1� 2ZÞ,

where Lk is the kth Legendre polynomial, and the measure,
can be found in [9].
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V̂�ðRÞ ¼
X
n�R

V̂n: (61)

In order to admit a lifting from H � to the full Hilbert

space of LQG, the operator V̂�ðRÞ has to satisfy a number
of consistency conditions that go under the name of ‘‘cy-
lindrical consistency’’ [52]. In particular, these conditions

are satisfied by the operator V̂n if (i) it commutes with the

area of dual surfaces, so that V̂n reduces to an operator on
the intertwiner space H FðnÞ, and (ii) it satisfies a 0-spin

consistency condition so that the operators defined on
different intertwiner spaces coincide when these spaces
are identified.

In the previous section we have introduced an operator

V̂n, given by (51) for the given node that satisfies these
conditions. Condition (i) holds because by construction the
operator acts withinH FðnÞ, and condition (ii) follows from
property Q3 in Sec. V. This operator is based on the knowl-
edge of the classical system behind the intertwiner space

H FðnÞ. The single node operator V̂n measures the volume

of a quantum polyhedron dual to the node, and the operator

V̂�ðRÞ built as in (61) the volume of a region in a twisted
geometry. It has a good semiclassical limit by construction.

The standard strategy in LQG is, on the other hand,
rather different. The starting point is the classical expres-
sion for the volume of a region:

VðRÞ ¼
Z
R
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3!
j
ijk
abcEa

i E
b
jE

c
kj

s
; (62)

Ea
i ðxÞ being the Ashtekar-Barbero triad. The key step is to

rewrite this quantity in terms of fluxes, which are the
fundamental operators of the theory. This step introduces
a regularization procedure which is adapted to a graph �
embedded in space. Then, the regularized quantity is pro-
moted to an operator in the Hilbert spaceH �, and the limit

of the vanishing regulator exists and it is well-defined. Two
volume operators have been constructed in this way: one
by Rovelli and Smolin [49] and one by Ashtekar and
Lewandowski [50]. Both these operators have the form
(61) and differ in the regularization procedure and in de-

tails on the exact form of V̂n. For the Ashtekar-
Lewandowski volume operator, the node contribution is
defined on the intertwiner space H F as

V̂ AL
n ¼ð8��Þ3=2L3

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8

�������� X
1�i<j<k�F


ðei;ej;ekÞ ~Ji �ð ~Jj^ ~JkÞ
��������

vuut ;

(63)

where 
ðei; ej; ekÞ ¼ �1; 0 is the orientation of the tan-

gents ei to the links at the node. The overall coefficient is
fixed by a consistency requirement known as the ‘‘triad
test’’ [53]. There is a large amount of analytical and
numerical results on the spectrum of this operator (e.g.
[47,51]), particularly because it enters Thiemann’s con-
struction of the Hamiltonian constraint [54], and thus it is
relevant to understand the quantum dynamics of the theory.
Moreover, its semiclassical behavior has been investigated
in detail with the conclusion that only cubulations, that is,
regular graphs with 6-valent nodes, have a good semiclas-
sical limit [55]. In the light of the quantum polyhedron
introduced in this paper, this result can be understood as
follows.

On semiclassical states,16 h ~Jii ¼ ~Ai � Aini [see discus-
sion in Sec. IV and cf. (37) and (42)], and the expectation
value of (63) is—at zero order in ℏ [55]—
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FIG. 10 (color online). Left panel: Some eigenvalues of ~̂V. For comparison, the curve is the classical volume of an equilateral
tetrahedron as a function of the area A ¼ j (units 8��L2

P ¼ 1). All but the zero eigenvalue have double degeneracies. Right panel: The
same region of the spectrum for Barbieri’s operator V̂B. Notice that here the asymptotic curve is the equilateral volume with areas

A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

.

16The semiclassical states used in the analysis of [55] are the
heat-kernel coherent states developed by Thiemann and collab-
orators [35]. However, the details on the coherent states do not
matter for our argument; all that is required is that they are
peaked on a given point in the classical phase space S�.
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hV̂AL
n i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8

�������� X
1�i<j<k�F


ðei;ej; ekÞ ~Ai � ð ~Aj^ ~AkÞ
��������

vuut : (64)

As discussed earlier, the variables ~Ai of the semiclassical
state define a polyhedron around the node n. The key
observation is that (64) is not the volume of that polyhe-
dron. The volume of a convex polyhedron with F faces is,
in general, a rather complicated function of the areas and
normals (see the discussion in Sec. III B). There is, how-
ever, a case where this expression simplifies greatly, and in
this case it coincides with (64): It happens for parallelepi-
peds. Parallelepipeds are a subset of the phase space SF for
F ¼ 6 with areas that are equal in pairs. They live within
the combinatorial class of cuboids: They are cuboids with
three couples of parallel faces.17 The volume of a parallel-
epiped is

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~A1 � ð ~A2 ^ ~A3Þj

q
; (65)

where (123) are any three faces sharing a vertex. It is
straightforward to see that this coincides with (64) for the
semiclassical state of a cubic analytic node18 with areas
equal in pairs and normals parallel pairwise.

This fact explains why the expectation value of the
operator (63) on a semiclassical states reproduces the
volume of a parallelepiped for F ¼ 6 but not the volume
of other polyhedra.19

VI. ON DYNAMICS AND SPIN FOAMS

Spin foam models for the dynamics of loop quantum
gravity are usually built by starting from a discretization of
the spacetime manifold in terms of a simplicial triangula-
tion �. A certain control over the dynamics comes from a
connection with Regge calculus in the large spin limit.
Specifically, in this limit the transition amplitudes are
related to exponentials of the Regge action [9,31,56,57].
This result is generally regarded as a promising step to-
wards understanding the low-energy physics of the theory,
since discrete general relativity on � is reproduced. On
the other hand, complete transition amplitudes for LQG

require the use of more general 2-complexes than those
dual to simplicial manifolds.20

Just as Regge calculus is useful to study the semiclassi-
cal behavior on simplicial manifolds, a generalization
thereof to arbitrary cellular decompositions could be rele-
vant to the full theory and allow us to test whether models
such as the one proposed in [58] can be related to (discrete)
general relativity. In this final section, we would like to
make two remarks on this idea.
The first remark concerns Regge calculus on arbitrary

cellular decompositions. The point is that edge lengths are
not good variables to capture the (discrete) metric of the
manifold. This is simply because a generic 4D polyhedron
at fixed edge lengths is not rigid. Therefore a piecewise-
linear metric cannot be described by the edge lengths of the
polyhedra alone. The solution to this problem can be found
by looking again at Minkowski’s theorem, which holds in
any dimension. The theorem implies that a generic poly-
hedron in Rn, sometimes called an n polytope, is uniquely
characterized by nF� nðnþ 1Þ=2 numbers: the volumes
of the F ‘‘faces’’ [which are now (n� 1) polytopes]
and the normals satisfying the n-dimensional closure
condition. On the other hand, n simplexes are polytopes
with a minimal number of faces: F ¼ nþ 1. In this case,
assigning their nðnþ 1Þ=2 edge lengths suffices; thus,
edge lengths fix a unique flat metric on each n simplex
and can be used as fundamental variables in the full
triangulation.
Let us fix n ¼ 4. To identify the geometry of each

4-polytope, we need volumes Vm and 4D unit normals
Nm of each polyhedron m in its boundary, satisfying the
closure condition. For these to extend to a piecewise-linear,
continuous metric on the whole cellular decomposition, we
additionally need shape-matching conditions, of the sort
described in Sec. III D for three dimensions. A tentative
Regge-like action can then be written as

S½Vm;Nm�¼
X
f

AfðVm;NmÞ
fðVm;NmÞþconstraints; (66)

where f are the 2D faces of the cellular decomposition and

 the deficit angles, defined as usual as 2� minus the sum
of the dihedral angles of each 4-polytope sharing the face.
The constraints are the closure and shape-matching con-
ditions. In principle, we can interpret (66) as an ‘‘effec-
tive’’ Regge action in which the internal edge lengths of an
initial simplicial triangulation have been evaluated on the
flat solution.
The second remark concerns the link between spin foam

amplitudes and Regge calculus. A lesson from the recent
asymptotics studies of the Engle-Pereira-Rovelli model is

17Notice that parallelepipeds are a set of measure zero among
the cuboids. Moreover, cuboids are not the only dominant class
in phase space SF with F ¼ 6.
18That is, the links are the analytic continuations of each other
across the nodes.
19It goes without saying that the dependence on areas and
normals of the expression (63) can be used to define the volume
of a tetrahedron, as we saw with V̂B earlier. But that would
require a different numerical coefficient in (63)—an extraffiffiffi
2

p
=3—which is hard to motivate in the standard LQG

construction.

20Although a direct construction of the path integral for arbi-
trary graph has not been attempted so far, in Ref. [58] a model
valid for an arbitrary graph was proposed, based on a natural
extension of some algebraic properties of the Engle-Pereira-
Rovelli model [59].
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that the amplitude is dominated by exponentials of the
Regge action when the boundary data satisfy certain con-
ditions, which guarantee the existence of a unique
4-simplex in the bulk. This suggests that the dominant
contributions to models on arbitrary graphs could come
from requesting the existence of a unique 4-polytope and
that the amplitude could be related to a form of the Regge
action specialized to the 4-polytope, such as the one
described above. So the question is whether, as for the
4-simplex, the conditions for the existence of the
4-polytope can be mapped into conditions on the boundary
data, such as 3D closure and nondegeneracy conditions,
and shape matching. This is a key question that we leave
open for future work. We believe that the answer, and these
considerations in general, will be relevant to tackle the
problem of the semiclassical limit of spin foams on arbi-
trary graphs, such as the one proposed in [58].

VII. CONCLUSIONS

In this paper we discussed a number of properties of
classical polyhedra which are of interest to loop quantum
gravity. A polyhedron can be uniquely identified by the
areas and the normals to its faces (Minkowski’s theorem
[7], Sec. II). The identification includes the knowledge of
its geometry (edge lengths and volume) and its combina-
torial class (the adjacency of the faces). This information
can be explicitly derived from the areas and normals
through the reconstruction procedure presented in
Sec. III. We observed that the space of polyhedra of given
areas is a phase space, previously introduced by Kapovich
and Millson [6], and used our reconstruction algorithm to
divide this space into regions corresponding to different
classes.

We then discussed the relevance of polyhedra to the
quantum theory. We first recalled that the quantization
of Kapovich and Millson phase space gives the
SUð2Þ-invariant space of intertwiners (Sec. IV) and thus
observed that the LS coherent intertwiners can be inter-
preted as semiclassical polyhedra. The polyhedral picture
can be extended to a whole graph by using the twisted-
geometry parametrization of the holonomy-flux variables
introduced in [1]. The knowledge of the classical space
behind intertwiners was then used to introduce a new
operator, which measures the volume of a quantum poly-
hedron (Sec. V) and by construction has the correct semi-
classical limit. We performed some numerical analysis of
its spectrum for the simplest 4-valent case. We discussed
its relation to the volume operators commonly used in loop
quantum gravity. Finally (Sec. VI), we used the four-
dimensional version of Minkowski’s theorem to make
some remarks on Regge calculus on nonsimplicial discre-
tizations and its possible relevance to spin foam models on
graphs of arbitrary valence.
Our hope is that the notion of a quantum polyhedron can

find useful applications in future developments of loop
quantum gravity and that the results in this paper are a first
step in that direction.
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