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We study the thermodynamics of Gödel-type rotating charged black holes in five-dimensional minimal

supergravity. These black holes exhibit some peculiar features such as the presence of closed timelike

curves and the absence of a globally spatial-like Cauchy surface. We explicitly compute their energies,

angular momenta, and electric charges that are consistent with the first law of thermodynamics. Besides,

we extend the covariant anomaly cancellation method, as well as the approach of the effective action, to

derive their Hawking fluxes. Both the methods of the anomaly cancellation and the effective action give

the same Hawking fluxes as those from the Planck distribution for blackbody radiation in the background

of the charged rotating Gödel black holes. Our results further support that Hawking radiation is a quantum

phenomenon arising at the event horizon.
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I. INTRODUCTION

TheGödel universe is a model that describes the universe
with a global rotation. In four dimensions, the Gödel uni-
verse is an exact solution of the Einstein field equation with
a negative cosmological constant and homogeneous pres-
sureless matter, found by Gödel in 1949 [1]. Unlike the
usual solutions in general relativity, this solution possesses
some peculiar features such as the allowance of closed
timelike curves and the absence of a globally spatial-like
Cauchy surface. It is of great importance for the conceptual
development of general relativity. In recent years, much
interest has been focused on various generalizations of the
four-dimensional Gödel universe, particularly in the con-
text of the five-dimensional minimal supergravity theory
[2–8]. Just as in Gödel’s original four-dimensional solution,
all the higher-dimensional generalized solutions present
closed timelike curves for all times. Furthermore, they can
be easily uplifted to M theory. A remarkable observation
also showed that the maximally supersymmetric analogues
of the Gödel universe in [2] are T-dual to pp waves [3].

Among all the Gödel-type generalizations in five-
dimensional minimal supergravity, one solution describing
a stationary Kerr black hole embedded in the rotating
Gödel universe was recently found by Gimon and
Hashimoto [4]. This solution is not required to preserve
any supersymmetry, compared with the supersymmetric
one in [2]. Its various properties have been intensively
investigated in [9–15]. Particularly in [9], Barnich and
Compère proposed an effective method to calculate con-
served charges in the Gödel-type background. They ob-
tained the Kerr Gödel black hole’s conserved charges that
fulfill the first law of thermodynamics. The charged gen-
eralization of the Kerr Gödel black hole has been found by

one of the authors [8]. Such a solution is an analytic
solution in the five-dimensional Einstein field equation
coupled with Maxwell and Chern-Simons terms in the
Gödel background. We shall refer to it as an Einstein-
Maxwell-Chern-Simons-Gödel (EMCS-Gödel) black
hole. After getting this black hole solution, it is very
necessary to study its thermodynamical properties. In this
paper, we explicitly compute the mass, angular momenta,
and electric charge of the EMCS-Gödel black hole along
the lines of [9]. These conserved charges satisfy the dif-
ferential first law and the generalized integral Smarr for-
mula of black hole thermodynamics. However, unlike work
[9], to close the integral Smarr formula, the Gödel parame-
ter is seen as a thermodynamical variable [8]. For the
extremal EMCS-Gödel black holes, their microscopic en-
tropies can be derived through Kerr/conformal field theory
correspondence [14].
In the above, we have mentioned that the EMCS-Gödel

black hole exhibits thermodynamical characters. Thus
there must exist Hawking radiation at its event horizon.
This quantum phenomenon is actually very universal and
can be found in any geometry background with event
horizons. It is regarded as a clue for seeking the theory
of quantum gravity. Although Hawking radiation has not
yet been observed in the laboratory, it has been verified by
several different approaches since Hawking discovered this
effect more than 30 years ago. Recently, Wilczek and his
collaborators proposed a new derivation of Hawking radia-
tion from four-dimensional black holes via gravitational
and gauge anomalies [16–18]. In their works, Hawking
radiation is treated as a compensating flux to cancel
gravitational and gauge anomalies at the horizon, which
arise since the effective field theory becomes two-
dimensional and chiral after performing a procedure of
dimensional reduction near the horizon of a black hole.
This anomaly cancellation method supports that Hawking
radiation is a common property of the horizon. It is very
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universal and has been successfully applied to black ob-
jects in various dimensions [15,19–29]. Noticing that the
anomalous energy momentum tensors and currents encom-
pass two types of forms in the two-dimensional chiral
effective theory, apart from the consistent form in
[16–18], the other type is the covariant one. In [26], it
was argued that Hawking fluxes of energy momentum
tensors and gauge currents can be obtained by canceling
the covariant gravitational anomaly and gauge anomaly at
the horizon. Such an argument makes the original anomaly
cancellation method [16–18] more economical and con-
ceptually cleaner. Based on development in [26], several
extensions can be found in [27–29]. Especially in [28],
Hawking radiation of black strings in four and higher
dimensions has been studied via covariant anomalies.

A notable feature of the anomaly cancellation method is
that the boundary conditions at the event horizon play an
important role in determining the Hawking fluxes. Indeed,
in [30], by only imposing the boundary condition that the
covariant energy momentum tensor and the covariant
gauge current vanish at the horizon, the chiral effective
action, which describes the two-dimensional chiral theory
near the horizon, has been used to compute the Hawking
fluxes of charged spherically symmetric black holes. This
effective action method is very universal and holds true for
other black holes [15,24,31]. In addition to the chiral
effective action, the normal effective action that induces
anomaly-free energy momentum tensors and gauge cur-
rents has also reproduced the Hawking fluxes of the
Reissner-Nordström black hole [18]. A lot of works on
applying the effective action to study Hawking effect can
be found in [32–35].

In this paper, we investigate the thermodynamics of the
EMCS-Gödel black hole and then generalize the covariant
anomaly cancellation method, as well as the effective
action approach, to study its Hawking radiation. Both the
methods present the same Hawking fluxes. Our results
support that Hawking radiation is a universal quantum
phenomenon arising at the event horizon. The remainder
of this paper goes as follows. In Sec. II, we calculate the
mass, the angular momenta, and the electric charge of the
EMCS-Gödel black hole, which satisfy the first law of
thermodynamics. In Sec. III, we compute the Hawking
fluxes by treating them as compensating fluxes to cancel
the covariant gravitational and gauge anomalies near the
horizon. In Sec. IV, we reproduce the Hawking fluxes of
the EMCS-Gödel black hole via the approach of the effec-
tive action, including the normal effective action in
Sec. IVA and the chiral effective action in Sec. IVB.
The last section is our conclusions.

II. THERMODYNAMICS OF THE EMCS-GÖDEL
BLACK HOLE

In this section, we study the thermodynamics of the
EMCS-Gödel black hole [8]. Although the main results

were presented in [8], here we give the explicit calculations
by adopting the gauge field whose electric-static potential
vanishes at infinity. Our starting point is the EMCS-Gödel
black hole, which is a nonextremal charged rotating Gödel-
type black hole solution in five-dimensional ungauged
minimal supergravity. The relevant Einstein-Maxwell
Lagrangian with the Chern-Simons term reads

L ¼
ffiffiffiffiffiffiffi�g

p
16�

ðR� F��F
��Þ � 1

24�
ffiffiffi
3

p ������A�F��F��;

(1)

where ������ is the five-dimensional tensor density
with �01234 ¼ �1, and F�� ¼ @�A� � @�A� denotes the

Abelian field-strength tensor. The Einstein and gauge field
equations of motion derived from Lagrangian (1) are

R�� � 1

2
g��R ¼ 2

�
F��F�

� � 1

4
g��F��F

��

�
;

r�

�
F�� þ 1ffiffiffi

3
p ffiffiffiffiffiffiffi�g

p ������A�F��

�
¼ 0: (2)

Parameterized by four constants ð�; a; q; jÞ, which cor-
respond to the mass, the angular momentum, the electric
charge, and the scale of the Gödel background, respec-
tively, the EMCS-Gödel black hole satisfying Eq. (2) takes
the form [8]

ds2 ¼ �fðrÞ
�
dtþ hðrÞ

fðrÞ ðd	þ cos
dc Þ
�
2

þ 1

4
r2ðd
2 þ sin2
dc 2Þ þ dr2

VðrÞ
þ r2VðrÞ

4fðrÞ ðd	þ cos
dc Þ2; (3)

A ¼ BðrÞdtþ CðrÞðd	þ cos
dc Þ; (4)

where

fðrÞ ¼ 1� 2�

r2
þ q2

r4
;

hðrÞ ¼ jr2 þ 3jqþ ð2�� qÞa
2r2

� q2a

2r4
;

VðrÞ ¼ 1� 2�

r2
þ 8jð�þ qÞ½aþ 2jð�þ 2qÞ�

r2

þ 2ð�� qÞa2
r4

þ q2½1� 16ja� 8j2ð�þ 3qÞ�
r4

;

BðrÞ ¼
ffiffiffi
3

p
q

2r2
;

CðrÞ ¼
ffiffiffi
3

p
2

�
jr2 þ 2jq� qa

2r2

�
: (5)

In the above equations, the Euler angles 
, c , and 	 run
over the ranges 0 to �, 0 to 2�, and 0 to 4�, respectively.
The line element (3) is the charged generalization of the
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Kerr Gödel black hole. It is asymptotically rotating. Just as
its uncharged counterpart, it exhibits the peculiar features
such as the presence of closed timelike curves and the
absence of a globally spatial-like Cauchy surface. When
the electric charge parameter q ¼ 0, it returns to the Kerr
Gödel black hole in [4], whose Hawking radiation has been
investigated via the covariant anomalies and effective ac-
tion [15]. The angular velocities and the electrostatic po-
tential of the EMCS-Gödel black hole are given by

�ðrÞ ¼ �	 ¼ hðrÞ=UðrÞ; �c ¼ 0; (6)

� ¼ ‘�A� ¼ BðrÞ þ�	CðrÞ; (7)

where

UðrÞ ¼ r2VðrÞ � 4h2ðrÞ
4fðrÞ

¼ �j2r2ðr2 þ 2�þ 6qÞ þ 3jqa

þ ð�� qÞa2
2r2

� q2a2

4r4
þ r2

4
; (8)

and the corotating vector ‘ ¼ @t þ�ðrÞ@	. With the help

of this vector, the surface gravity � is defined by �2 ¼
� 1

2 ‘�;�‘
�;�jr¼rþ , where the outside event horizon rþ is

determined by the equation VðrþÞ ¼ 0 and reads

r2þ ¼�� 4jð�þ qÞa� 8j2ð�þ qÞð�þ 2qÞ þ ffiffiffiffi
�

p
;

�¼ ½�� q� 8j2ð�þ qÞ2�½�þ q� 2a2 � 8jð�þ 2qÞa
� 8j2ð�þ 2qÞ2�: (9)

Hence Hawking temperature via the surface gravity for-
mula is read off as

TH ¼ �

2�
¼ rþV 0ðrþÞ

8�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
UðrþÞ

p : (10)

Here, and in what follows, the prime 0 denotes the deriva-
tive with respect to the radial coordinate r. The entropies
via the Bekenstein-Hawking area law are

S ¼ �2r2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
UðrþÞ

q
: (11)

It is worth noting that the electrostatic potential (7) is not

zero at infinity but�1 ¼ � ffiffiffi
3

p
=2, since the Gödel universe

possesses a global rotation at infinity. In order to make the
electrostatic potential vanish at infinity, we can rescale the
gauge field (4) as

A ¼ B̂ðrÞdtþ CðrÞðd	þ cos
dc Þ; (12)

where B̂ðrÞ ¼ BðrÞ þ ffiffiffi
3

p
=2. We shall adopt Eq. (12) for all

the calculations related to gauge fields.
Now, we compute the mass, angular momenta, and

electric charge of the EMCS-Gödel black hole. Because
of the presence of closed timelike curves and the special
asymptotical structure of the Gödel-type black hole, naive

application of the traditional approaches, such as the meth-
ods of the Komar integral, the usual Abbott-Deser con-
struction, and the covariant phase space [36], fails to give
conserved charges in agreement with the first law of ther-
modynamics. In [9], a new method, based on cohomolog-
ical techniques [37], has been successfully used to derive
the conserved charges of the Kerr Gödel black hole. This
method is also applicable to the EMCS-Gödel black hole.
Our computation follows work [9]. Here we only give the
formulas closely relevant to our calculations. For more
details see [9,37].
Let ’i ¼ ðg��; A�Þ denote the fields of the five-

dimensional ungauged minimal supergravity. �’i ¼
ð �g��; �A�Þ is any fixed reference solution of the motion

equations in Eq. (2). Consider the linearized theory for
the variables �’i ¼ ’i � �’i ¼ ð�g��; �A�Þ ¼ ðh��; a�Þ.
The equivalence classes of conserved 3-forms of this lin-
earized theory are in correspondence with equivalence
classes of field-dependent gauge parameters 
�ðxÞ and
�ðxÞ satisfying the reducibility equations [9]

L 
 �g�� ¼ 0; L

�A� þ @�� ¼ 0: (13)

Each pair of solutions ð
;�Þ of Eq. (13) is associated with
a conserved 3-form k
;�½�’; �’� that can be obtained by

computing the weakly vanishing Noether currents related
to the gauge transformations. Obviously, when 
 is a
Killing vector �
 of the background �’ and � is a constant
c, Eq. (13) holds. For the solutions ð �
; 0Þ, the conserved
3-form k
;� can be decomposed as k �
;0 ¼ k

gr
�

þ kem�
 þ kCS�
 ,

where kgr�
 , k
em
�

, and kCS�
 are the contributions from gravi-

tation, electromagnetism, and the Chern-Simons term, re-
spectively. kgr�
 is defined by

k
gr
�

½h; �g� ¼ ��KK

�

� �
 ��gr; (14)

where the Komar 3-form

KK
�

¼

ffiffiffiffiffiffiffi�g
p
192�

ðr� �
� �r� �
�Þ������dx
� ^ dx� ^ dx�;

(15)

�gr ¼
ffiffiffiffiffiffiffi� �g

p
384�

ð �r�h
�� � �r�hÞ������dx

� ^dx� ^ dx� ^dx�;

(16)

and �
� ¼ �
� @
@ðdx�Þ . The electromagnetic contribution

kem�
 is similar to kgr�
 , which reads

kem�
 ½a; h; �A; �g� ¼ ��Qem
�
;0

� �
 ��em; (17)

where

Qem
�
;c

¼
ffiffiffiffiffiffiffi�g

p
48�

½ð �
�A� þ cÞF���������dx
� ^ dx� ^ dx�;

(18)
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�em ¼
ffiffiffiffiffiffiffi� �g

p
96�

ð �F��a�Þ������dx
� ^ dx� ^ dx� ^ dx�:

(19)

The contribution from the Chern-Simons term is

kCS�
 ½a; �A� ¼ 1

2
ffiffiffi
3

p
�
ð �
� �A�Þa� �F��dx

� ^ dx� ^ dx�: (20)

For the solution ð0; 1Þ, which corresponds to the contribu-
tion from the electric charge, the conserved 3-form

k0;1½a; h; �A; �g� ¼ ��ðQem
0;1 þ JÞ; (21)

where

J ¼ � 1

4
ffiffiffi
3

p
�
A�F��dx

� ^ dx� ^ dx�: (22)

Take into account a path � in the space of solutions that
interpolates between a given solution ’ and the back-
ground solution �’. Let dV’ be a 1-form in the field space.
As long as the pair ð �
; cÞ satisfy Eq. (13) for all solutions
along this path, we can get a closed 3-form

K �
;c ¼
Z
�
k �
;c½dV’;’�; (23)

i.e. dK �
;c ¼ 0 in a four-dimensional hypersurface�. Using

Eq. (23), one can define conserved charges

Q �
;c ¼
I
S
K �
;c; (24)

where the three-dimensional closed surface S is the bound-
ary of the hypersurface �.

Next we turn our attention to calculate the conserved
charges of the EMCS-Gödel black hole via (24). The mass
is computed as

M¼
I
S
K@=@t;0

¼ 3

4
�ðmþqÞ� 4�ðmþqÞja� 8�ðmþ 2qÞðmþqÞj2:

(25)

The angular momentum along the 	 direction

J	 ¼�
I
S
K@=@	;0

¼ 1

2
�

�
a

�
m� q

2
� 2ðm�qÞaj� 8ðm2 þmq� 2q2Þj2

�

� 3jq2 þ 8ð3mþ 5qÞj2q2
�
; (26)

while the one with respect to the coordinate c is zero. The
electric charge is given by

Q ¼
I
S
K0;1 ¼

ffiffiffi
3

p
2

�½q� 4ðmþ qÞaj� 8ðmþ qÞqj2�:
(27)

The electric charge can also be computed through

Q ¼ 1

4�

Z
S3

�
1

12

ffiffiffiffiffiffiffi�g
p

F�������� � 1ffiffiffi
3

p A�F��

�

� dx� ^ dx� ^ dx�; (28)

where the integration is performed on the 3-sphere at
infinity. All the conserved charges are consistent with the
first law of thermodynamics

dM ¼ THdSþ�þdJ	 þ�þdQþWdj; (29)

2
3M ¼ THSþ�þJ	 þ 2

3�þQ� 1
3Wj; (30)

where �þ ¼ �ðrþÞ and �þ ¼ B̂ðrþÞ þ�ðrþÞCðrþÞ are
the angular velocity and the electrostatic potential at the
event horizon, respectively, and

W ¼ 2�ðmþ qÞ½aþ 2jðmþ 2qÞ�

is the generalized force conjugate to the Gödel parameter j
since we have considered j as a thermodynamical variable
to close the expression of the integral Bekenstein-Smarr
formula.

III. HAWKING FLUXES AND COVARIANT
ANOMALIES

In this section, we shall investigate Hawking radiation of
the EMCS-Gödel black hole [8] via the covariant gravita-
tional and gauge anomaly cancellation method [26] devel-
oped on basis of [16–18]. The same results will be obtained
if we adopt the consistent anomaly cancellation method in
[16–18]. Before our proceeding, it is necessary for us to
briefly review this approach. By performing the technique
of dimensional reduction, the massless scalar field near the
horizon can be effectively described by a collection of
scalar fields in the background of (1þ 1)-dimensional
spacetime. Thereby we can treat the higher-dimensional
theory as a (1þ 1)-dimensional effective theory near the
horizon. If we omit the classically irrelevant ingoing
modes inside the horizon, the two-dimensional effective
theory becomes chiral. Such a chiral theory exhibits cova-
riant gravitational and gauge anomalies. Imposing the
boundary condition that the covariant energy momentum
tensor and current vanish at the horizon, we can get fluxes
that just cancel these anomalies and are identified with
Hawking fluxes for the energy momentum tensor and
charges.
We first implement a process of dimensional reduction

by considering the free part of the action for a scalar
massless complex field in the background of metric (3)
and gauge field (12). We have
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S½’�¼1

2

Z
d5x’�D�ð ffiffiffiffiffiffiffi�g

p
g��D�’Þ

¼ 1

16

Z
dtdrd
d	dc sin
’�

�
�
�4rUðrÞ

VðrÞ ðDtþ�ðrÞD	Þ2

þ@r½r3VðrÞ@r�þ r3

UðrÞD
2
	

þ4r

�
1

sin

@
ðsin
@
Þþ

ð@c �cos
@	Þ2
sin2


��
’; (31)

where D� ¼ @� þ ieA�. After performing a partial wave

decomposition ’ ¼ P
lmn’lmnðt; rÞ expðim	þ inc Þ�

�lmnð
Þ, where the spin-weighted spheroidal functions
�lmnð
Þ satisfy�

1

sin

@
ðsin
@
Þ� ðn�mcos
Þ2

sin2

þ lðlþ 1Þ�m2

�
�lmnð
Þ

¼ 0; (32)

and only keeping the dominant terms near the horizon, the
action (31) becomes

S½’�’1

8

X
lmn

Z
dtdrr2

ffiffiffiffiffiffiffiffiffiffi
UðrÞ

p
’�

lmn

�
� 1

FðrÞ½@tþ ieðB̂ðrÞ

þ�ðrÞCðrÞÞþ im�ðrÞ�2þ@r½FðrÞ@r�
�
’lmn: (33)

In Eq. (33), we have defined 2FðrÞ ¼ rVðrÞUðrÞ�1=2.
Thereby the physics near the horizon can be described
by an infinite set of effective massless fields on a
(1þ 1)-dimensional spacetime with the metric and the
gauge potential

ds2 ¼ �FðrÞdt2 þ dr2

FðrÞ ; (34)

At ¼ eAð0Þ
t þmAð1Þ

t ¼ e½B̂ðrÞ þ�ðrÞCðrÞ� þm�ðrÞ;
Ar ¼ 0; (35)

where Atð1Þ ¼ 0, and Fð1Þ ¼ F0ð1Þ ¼ F00ð1Þ ¼ 0. In
such a two-dimensional effective theory, the t component
of the gauge fieldA contains two types ofUð1Þ fields. The
gauge fieldAð0Þ

t comes from the original electric field (12)

, while Að1Þ
t can be interpreted as an induced Uð1Þ gauge

field from the axial isometry in the 	 direction. The
azimuthal quantum number m for each partial wave serves

as a charge of the gauge field Að1Þ
t .

Next, we pay attention to derive the currents of the gauge
field (35) via the covariant gauge anomaly. In our case,
there are two Uð1Þ gauge symmetries yielding two gauge

currents Jð0Þr and Jð1Þr, corresponding to the gauge poten-

tials Að0Þ
t and Að1Þ

t , respectively. Except for different
types of charges, both the gauge potentials are essentially

consistent with each other. Thus we only give an explicit

derivation of the current Jð0Þr. Jð1Þr can be obtained by a
similar procedure.
Because of the anomaly cancellation method, the gauge

current behaves differently in the range outside the horizon
and that near the horizon. In the former, namely, the range

r 2 ½rþ þ ";þ1Þ, the current J
ð0Þ�
ðOÞ is anomaly-free and

takes the conserved form

r�J
ð0Þ�
ðOÞ ¼ 0; (36)

while in the range near the horizon ðr 2 ½rþ; rþ þ "�Þ,
because of the breakdown of the classical gauge symmetry,

the current J
ð0Þ�
ðHÞ satisfies the anomaly Ward identity

[17,18,26]

r�

1

e
J
ð0Þ�
ðHÞ ¼ �1

4�
ffiffiffiffiffiffiffi�g

p ���F ��; (37)

where ��� is an antisymmetry tensor density with �tr ¼
��tr ¼ 1 and F �� ¼ @�A� � @�A�. Solving Eqs. (36)

and (37), we have

ffiffiffiffiffiffiffi�g
p

Jð0ÞrðOÞ ¼ cð0ÞO ;

ffiffiffiffiffiffiffi�g
p

Jð0ÞrðHÞ ¼ cð0ÞH þ e

2�
½AtðrÞ �AtðrþÞ�;

(38)

where the charge fluxes cð0ÞO and cð0ÞH are two integration

constants, which denote the current at infinity and the one
at the horizon, respectively. Introducing two step functions
�ðrÞ ¼ �ðr� rþ � "Þ and HðrÞ ¼ 1��ðrÞ to write the
total current as

Jð0Þ� ¼ J
ð0Þ�
ðOÞ �ðrÞ þ J

ð0Þ�
ðHÞ HðrÞ; (39)

we find that the Ward identity becomes

@r½ ffiffiffiffiffiffiffi�g
p

Jð0Þr�
¼ @r

�
e

2�
AtH

�
þ

� ffiffiffiffiffiffiffi�g
p ½Jð0ÞrðOÞ � Jð0ÞrðHÞ � þ

e

2�
At

�

� �ðr� rþ � "Þ: (40)

In order to make the current preserve the gauge symmetry,
the first term in the above equation must be cancelled by
the classically irrelevant ingoing modes while the second
term should vanish at the horizon, which yields

cð0ÞO ¼ cð0ÞH � e

2�
AtðrþÞ;

AtðrþÞ ¼ e½B̂ðrþÞ þ�ðrþÞCðrþÞ� þm�ðrþÞ:
(41)

Further imposing the boundary condition that the covariant

current vanishes at the horizon, namely, cð0ÞH ¼ 0, then the

charge flux corresponding to the gauge potential Að0Þ
t is

given by

cð0ÞO ¼ � e

2�
AtðrþÞ: (42)
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Following the analysis of computing cð0ÞO step by step, the

current with respect to the gauge potential Að1Þ
t reads

cð1ÞO ¼ � m

2�
AtðrþÞ: (43)

From Eq. (37), one can see that Jð0Þr and Jð1Þr are not
independent of each other but there exists the relation
1
e J

ð0Þr ¼ 1
m J

ð1Þr ¼ J r between them, where J � satisfies

the covariant gauge anomaly equation

r�J
�
ðHÞ ¼

�1

4�
ffiffiffiffiffiffiffi�g

p ���F ��; (44)

near the horizon. By analogy, the current out of the horizon
can be solved as

cO ¼ � 1

2�
AtðrþÞ: (45)

With the expression of the charge flux in hand, we now
consider the energy momentum flux in a way similar to the
gauge anomaly. Near the horizon, if we eliminate the
quantum effect of the ingoing modes, the invariance under
the general coordinate transformation will break down.
Thus the two-dimensional effective field theory will ex-
hibit a gravitational anomaly. For the right-handed fields,
the covariant gravitational anomaly has the form [26]

r�T
�
� ¼ 1

96�
ffiffiffiffiffiffiffi�g

p ���@
�R ¼ 1ffiffiffiffiffiffiffi�g

p @�N
�
�: (46)

In the case of a background spacetime with the effective
metric (34), the anomaly is timelike (r�T

�
t ¼ 0), and

Nr
t ¼ 1

192�
ð2FF00 � F02Þ: (47)

Because of the presence of the external gauge fieldA, the
energy momentum tensor outside the horizon does not take
the conserved form but satisfies the Lorentz force law

r�T
�
ðOÞ� ¼ F ��J

�
ðOÞ; (48)

while the energy momentum near the horizon obeys the
anomalous Ward identity after adding the gravitational
anomaly:

r�T
�
ðHÞ� ¼ F��J

�
ðHÞ þ

1

96�
ffiffiffiffiffiffiffi�g

p ���@
�R: (49)

Solving both Eqs. (48) and (49) for the � ¼ t component,
we getffiffiffiffiffiffiffi�g
p

Tr
ðOÞt ¼ aO þ cOAtðrÞ; (50a)

ffiffiffiffiffiffiffi�g
p

Tr
ðHÞt ¼ aH þ

�
cOAtðrÞ þ 1

4�
A2

t ðrÞ þ Nr
t

���������
r

rþ
;

(50b)

where aO and aH are two constants, corresponding to the
fluxes at infinity and the horizon, respectively. Similar to

the case of the gauge current, we express the total energy
momentum tensor as a sum of two combinations: T�

� ¼
T
�
ðOÞ��ðrÞ þ T

�
ðHÞ�HðrÞ. Using Eqs. (50a) and (50b), we

find

ffiffiffiffiffiffiffi�g
p r�T

�
t

¼ cO@rAt þ @r

��
1

4�
A2

t þNr
t

�
H

�

þ
� ffiffiffiffiffiffiffi�g
p ðTr

ðOÞt � Tr
ðHÞtÞ þ

1

4�
A2

t þNr
t

�
�ðr� rþ � "Þ:

(51)

In the above equation, the first term is the classical effect of
the background Uð1Þ gauge field for constant current flow.
The second term should be cancelled by the quantum effect
of the classically irrelevant ingoing modes. In order to
guarantee the energy momentum tensor is invariant under
general coordinate transformations, the third term must
vanish at the horizon, which yields

aO ¼ aH þ 1

4�
A2

t ðrþÞ þ 1

192�
F02ðrþÞ; (52)

where we have used Nr
tðrþÞ ¼ �F02ðrþÞ=ð192�Þ. As for

what we have done to evaluate the gauge current at infinity,
to fix aO completely, we require to impose the boundary
condition that the covariant energy momentum tensor van-
ishes at the horizon, i.e., aH ¼ 0. We will see that such a
boundary condition is compatible with the Unruh vacuum
in the next section. Therefore, the total flow of energy
momentum tensor is

aO ¼ 1

4�
A2

t ðrþÞ þ �2

48�
;

� ¼ 1

2
F0ðrþÞ ¼ rþV 0ðrþÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
UðrþÞ

p :
(53)

For the sake of comparing the total energy momentum
flux (53) with the Hawking one, we consider Hawking

radiation with the fermionic Planck distributionNe;mð!Þ ¼
1=ðe½!�e�̂þ�m�ðrþÞ�=TH þ 1Þ in the background of the
EMCS-Gödel black hole, where TH is the Hawking tem-

perature (10) via the surface gravity formula, �̂þ ¼
B̂ðrþÞ þ�ðrþÞCðrþÞ is the electric chemical potential of
the gauge field (12) at the horizon, and�ðrþÞ is the angular
velocity at the horizon. The Hawking flux with this distri-
bution is

FM ¼
Z 1

0

d!

2�
!½Ne;mð!Þ þ N�e;�mð!Þ�

¼ 1

4�
A2

t ðrþÞ þ �2

48�
; (54)

which takes the same form as Eq. (53). This implies that we
have reproduced the Hawking temperature (10) via the
covariant anomaly cancellation method.
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IV. HAWKING FLUXES AND EFFECTIVE ACTION

In this section, we will use the effective action method to
exploit Hawking radiation of the EMCS-Gödel black hole
in the background of the two-dimensional metric (34) and
gauge field (35). In the two-dimensional effective theory,
there exist normal effective action and chiral effective
action. The former describes the effective theory away
from the event horizon. The energy momentum tensor
and gauge current induced from this action are anomaly-
free and take consistent forms. The normal effective action
has been used to derive the Hawking fluxes of the Reissner-
Nordström black hole [18]. On the other hand, the chiral
effective action [30,38] depicts the chiral theory, in which
the energy momentum tensor and gauge current are not
conserved but covariantly anomalous. By adopting the
covariant boundary condition at the event horizon, this
effective action can be applied to compute the Hawking
fluxes of black holes [30]. In our work [24], the chiral
effective action method has been extended to reproduce the
Hawking fluxes of the Schwarzschild black holes in the
isotropic coordinates where the determinant of the metric
vanishes at the horizon.

A. Normal effective action and Hawking fluxes

In the two-dimensional effective theory, the normal
effective action is obtained by functional integration of
the conformal anomaly [18,35]. It consists of the gravita-
tional (Polyakov) part and the gauge part. From a variation
of this effective action, we get the energy momentum
tensor and gauge current [18,30]

T�� ¼ � 1

�

�
r�Br�B� g��

1

2
r�Br�B

�

� 1

48�

�
r�Gr�G � 2r�r�G

þ g��

�
2R� 1

2
r�Gr�G

��
; (55)

J� ¼ 1

�
ffiffiffiffiffiffiffi�g

p ���@�B; (56)

where R ¼ �F00ðrÞ is the Ricci scalar of the metric (34),
and the two auxiliary fields B and G satisfy

r�r�B ¼ � ���

2
ffiffiffiffiffiffiffi�g

p F ��; r�r�G ¼ R: (57)

From Eqs. (55) and (56), we find that the gauge current
takes the conserved form r�J

� ¼ 0 while the energy

momentum tensor obeys the Lorentz force law (48) and
the trace anomaly

r�T
�
� ¼ F ��J

�; T�
� ¼ � R

24�
: (58)

In the background of metric (34) and gauge field (35),
solving Eq. (57), we get

@tG ¼ a; @rG ¼ b� 2K

FðrÞ ; K ¼ 1

2
F0ðrÞ; (59)

@tB ¼ �; @rB ¼ �þAtðrÞ
FðrÞ ; (60)

where parameters a, b, �, and� are constants. They can be
determined by proper boundary conditions. As in the pre-
vious section, we still choose the boundary conditions that
are compatible with the Unruh vacuum. Such a choice
requires us to express the energy momentum tensor and
gauge current in the Eddington-Finkelstein coordinate
system fu; vg, where u ¼ t� r�, v ¼ tþ r�, and dr� ¼
dr=FðrÞ. We have

Tuu ¼ � 1

4�
ð�� ��AtðrÞÞ2

� 1

192�
½ða� bÞ2 � 4K2 þ 4FðrÞK0�; (61)

Tuv ¼ Tvu ¼ � 1

96�
FðrÞF00ðrÞ; (62)

Tvv ¼ � 1

4�
ð�þ �þAtðrÞÞ2

� 1

192�
½ðaþ bÞ2 � 4K2 þ 4FðrÞK0�; (63)

Ju ¼ 1

2�
ð�� ��AtðrÞÞ;

Jv ¼ � 1

2�
ð�þ �þAtðrÞÞ:

(64)

Adopting the Unruh vacuum boundary conditions

Ju ¼ 0; Tuu ¼ 0; r ¼ rþ; (65a)

Jv ¼ 0; Tvv ¼ 0; r ! þ1; (65b)

the constants a, b, �, and � can be solved as

a ¼ �b ¼ ��; � ¼ �� ¼ 1
2AtðrþÞ: (66)

Substituting the four constants into the ðr; tÞ component
of the energy momentum tensor and the r component of the
gauge current, which correspond to fluxes for Hawking
radiation and the gauge field, respectively, we obtain

Tr
t ¼ 1

4�
AtðrþÞ½AtðrþÞ � 2AtðrÞ� þ �2

48�
;

Jr ¼ � 1

2�
AtðrþÞ;

(67)

where Jr is a constant since the normal effective action
describes the theory away from the horizon and the gauge
current is conserved. Taking the limit at infinity, we derive
the charge flow and the Hawking fluxes
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Jrðr ! 1Þ ¼ � 1

2�
AtðrþÞ; (68)

Tr
tðr ! 1Þ ¼ 1

4�
A2

t ðrþÞ þ �2

48�
; (69)

which agree with Eqs. (45) and (53) via the covariant
anomalies in the previous section.

B. Chiral effective action and Hawking fluxes

Varying the chiral effective action, the covariant energy
momentum tensor ~T�

� and the covariant gauge current ~J
�

read [30,38]

~T�� ¼ � 1

4�
D�BD�B

� 1

96�

�
1

2
D�GD�G �D�D�G þ g��R

�
; (70)

~J � ¼ 1

2�
D�B; (71)

where the chiral covariant derivativeD� ¼ ffiffiffiffiffiffiffi�g
p

���D
� ¼

r� þ ffiffiffiffiffiffiffi�g
p

���r�, ~J� ¼ ffiffiffiffiffiffiffi�g
p

���
~J�, and the two auxil-

iary fields B and G have been defined by Eq. (57). In the
chiral effective theory, the covariant energy momentum
tensor and gauge current satisfy the anomalous Ward iden-
tities:

r�
~J� ¼ �1

4�
ffiffiffiffiffiffiffi�g

p ���F ��; (72)

r�
~T�

� ¼ F ��
~J� þ 1

96�
ffiffiffiffiffiffiffi�g

p ���@
�R: (73)

The energy momentum tensor also obeys the covariant
trace anomaly ~T�

� ¼ �R=ð48�Þ. Operating the chiral

covariant derivative on the auxiliary fields G andB, we get

DtG ¼ �FðrÞDrG ¼ ~a� ~bþ 2K; (74)

DtB ¼ �FðrÞDrB ¼ ~�� ~��AtðrÞ; (75)

where ~a, ~b, ~�, and ~� are constants. Their relations will be
determined later. Now the ðr; tÞ component of the covariant
energy momentum tensor and the covariant gauge current
can be read off as

~Tr
t ¼ 1

4�
ð~�� ~��AtðrÞÞ2

þ 1

192�
½ð~a� ~bÞ2 � 4K2 þ 4FðrÞK0�; (76)

~J r ¼ FðrÞ~Jt ¼ � 1

2�
ð~�� ~��AtðrÞÞ: (77)

Here we do not present the other components of the energy
momentum tensor ~T�

�, which are useless for computation

of the Hawking flux. Finally, to derive the Hawking fluxes
and currents for gauge fields, we need to impose the
covariant boundary conditions that the covariant energy
momentum tensor and gauge current vanish at the horizon
[30], namely,

~� ¼ ~�þAtðrþÞ; ~a ¼ ~b� 2�: (78)

Therefore, taking the asymptotic limit, we obtain the gauge
currents and the fluxes for the energy momentum tensor:

~J rðr ! 1Þ ¼ � 1

2�
AtðrþÞ; (79)

~T r
tðr ! 1Þ ¼ 1

4�
A2

t ðrþÞ þ �2

48�
: (80)

They are in agreement with Eqs. (45) and (53).
It is worth noting that the covariant boundary conditions

adopted in this subsection and the previous section are
compatible with the Unruh vacuum. To see this, as in the
case of the normal effective action, we could express
the energy momentum tensor and gauge current in the
Eddington-Finkelstein coordinate system fu; vg. By chang-
ing ð�;�; a; bÞ to ð~�; ~�; ~a; ~bÞ, respectively, we find
~Tuu ¼ Tuu, ~Tuv ¼ Tuv=2, ~Tvv ¼ 0, ~Ju ¼ Ju, and ~Jv ¼ 0,
where ~Tvv and ~Jv are zeros, since the two-dimensional
effective theory is chiral and there are no ingoing modes.
Clearly, Eqs. (65a) and (65b) hold when one adopts the
covariant boundary conditions (78).

V. SUMMARY

We have obtained the EMCS-Gödel black hole’s [8]
conserved charges, such as the mass, the angular momenta,
and the electric charge along the lines of [9]. They are
consistent with the differential first law and the generalized
integral Smarr formula of black hole thermodynamics
provided that the Gödel parameter j is a thermodynamical
variable. The EMCS-Gödel black hole is an exact charged
rotating solution in the five-dimensional minimal super-
gravity with a Gödel background. It has closed timelike
curves through every point and the asymptotic structure
with a global rotation. These peculiar properties lead to the
failure of the traditional methods on calculating the con-
served charges. A viable method was presented in [9].
Whether there exist other methods to compute the con-
served charges of the EMCS-Gödel black hole is still open.
Besides, we have derived the Hawking fluxes of the

EMCS-Gödel black hole via covariant gravitational and
gauge anomalies, as well as the effective action. By apply-
ing the technique of dimensional reduction to the metric
(3) and the gauge field (12), which has the vanishing
electrostatic potential at infinity, a higher-dimensional the-
ory near the horizon can be effectively described by a two-
dimensional theory in the background of the metric (34)
and gauge field (35). The reduced gauge field consists of
two Uð1Þ fields: one from the original gauge field and the
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other from the axial isometry along the	 direction. On the
basis of both the two-dimensional metric and the gauge
field, by adopting the covariant boundary conditions that
are compatible with the Unruh vacuum, the covariant
anomaly cancellation method and the approach of the
effective action, including the normal and chiral effective
action, were used to derive the same Hawking fluxes as
those from Planck distribution for blackbody radiation in
the background of the EMCS-Gödel black hole.

Our results show that Hawking radiation is a quantum
phenomenon taking place at the event horizon, since both
the methods of the anomaly cancellation and the chiral
effective action only rely on the quantum anomalies and
boundary conditions at the event horizon. Besides, our
calculation supports that the anomaly cancellation method
is applicable to the black holes in the five-dimensional
minimal supergravity with a Gödel background. In some
sense, the approach of the anomaly cancellation is univer-

sal except for the procedure of dimensional reduction
for different background spacetime considered in each
case. A further development of this work is to derive the
entropy of the EMCS-Gödel black hole in the same two-
dimensional effective theory, like in [32,39]. Our analysis
in the present paper can be directly generalized to the
squashed charged rotating black hole in the five-
dimensional Gödel universe [40].
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