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We study geometric structures associated with shear-free null geodesic congruences in Minkowski

space-time and asymptotically shear-free null geodesic congruences in asymptotically flat space-times.

We show how in both the flat and asymptotically flat settings, complexified future null infinityIþ
C acts as a

‘‘holographic screen,’’ interpolating between two dual descriptions of the null geodesic congruence. One

description constructs a complex null geodesic congruence in a complex space-time whose source is a

complex worldline, a virtual source as viewed from the holographic screen. This complex null geodesic

congruence intersects the real asymptotic boundary when its source lies on a particular open-string type

structure in the complex space-time. The other description constructs a real, twisting, shear-free or

asymptotically shear-free null geodesic congruence in the real space-time, whose source (at least in

Minkowski space) is in general a closed-string structure: the caustic set of the congruence. Finally we

show that virtually all of the interior space-time physical quantities that are identified at null infinity Iþ

(center of mass, spin, angular momentum, linear momentum, and force) are given kinematic meaning and

dynamical descriptions in terms of the complex worldline.
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I. INTRODUCTION

In this paper, we describe some interesting structures
based in classical special and general relativity which bear
some resemblance to dualities known as ‘‘holographic’’
dualities which have emerged elsewhere in theoretical
physics over the past decades (cf. [1–3]). Though these
holographic dualities usually involve the use of highly
nonclassical machinery such as supersymmetry or string
theory, most famously in the case of the AdS/CFT corre-
spondence [4–6], we emphasize that our discussion here
will use no such tools; we work entirely in the context of
classical four-dimensional Lorentzian space-time. The
structures we are interested in emerge naturally from the
study of light-cone foliations (and their generalization to
asymptotically shear-free null geodesic congruences) in
space-time and have simply been overlooked in prior re-
search. Although it would certainly be presumptuous for us
to suggest that our work here has any true connection with
holographic duality as it is known to most theoretical
physicists, we do find a holographic screen, open and
closed classical strings, and other suggestive objects, all
of which can be given real physical meaning in four-
dimensional space-time.

Specifically, it is the purpose of this note to first explore
the properties of ordinary ‘‘run of the mill’’ light cones and
then turn to their generalization via complex and virtual
light cones in four-dimensional Lorentzian space-times.

More precisely, we study the properties of light cones and
their complex generalizations both inMinkowski space and
in asymptotically flat (vacuum and Einstein-Maxwell)
space-times in the neighborhood of future null infinity.
This is followed by a discussion of physical applications
of these ideas and constructs. These complex light cones are
first applied to the structure of real Maxwell fields in real
Minkowski space. The complex cones in flat space-time are
then generalized and applied to study equations of motion
in general relativity. Along the way we point out a pretty
duality between the complex light cones and real shear-
free, but twisting, null geodesic congruences.
The first issue raised comes from the simple question: In

Minkowski space, avoiding or ignoring their apex, what are
the geometric properties that a set of null geodesics must
have in order to be a light cone? How can they be deter-
mined to be light cones even far from their apex? The
answer is simple: First of all, the family of relevant null
geodesics (the light-cone generators) must be (null) surface
forming; they must lie on a null surface and thus have
vanishing ‘‘twist.’’ As a result, these surfaces must be
foliated by null geodesics whose tangent vectors are de-
termined by the gradient of the surface. Second, they must
have vanishing shear and nonvanishing divergence. (The
plane null surfaces can be thought of as light cones but with
their apex at infinity; we ignore this case.) From this
requirement, light cones posses the topology of S2 � R.
For us, the most relevant feature is their vanishing shear.
Even far from their apex (i.e., even at future null infinity
Iþ) on the S2 portion of the surface, if the shear vanishes,
then it has an apex and the surface is a light cone. This case
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can be generalized from an individual light cone to a
family of light cones: If Minkowski space is (partially)
foliated by a null geodesic congruence (NGC), can we tell
at Iþ that the geodesics all focus to a timelike worldline in
the interior? The answer again is simple: If the congruence
has vanishing twist and shear at Iþ and nonvanishing
divergence and furthermore has no members lying tangent
to Iþ itself (the regularity condition), then there is a one-
parameter family of light cones and a timelike worldline to
which the NGC converges.

The main goal of this work is to investigate and analyze
how this asymptotic description of light cones can be
generalized, and what applications to physics it might
have. The generalization will be in two distinctly different
but related directions.

First of all, in the context of Minkowski space, we define
and describe complex light cones. They will be determined
solely from the properties of specific sets of null directions
at complexified null infinity (Iþ

C ), the analytic continu-

ation of Penrose’s future null infinity Iþ. These complex
null directions, normal to specific slices of Iþ

C , define—by

following them backwards in time—complex null geode-
sics (and complex light cones) which converge to points in
complex Minkowski space [7,8]. In general there will be a
subset of points in complex Minkowski space where one
(or more) of its light-cone generators intersects real
Minkowski space at real Iþ. If instead of the complex
light cone of a single point in complex Minkowski space
we take a complex analytic ‘‘timelike’’ (to be defined)
worldline parametrized by the complex parameter �, we
would have a two-real-dimensional set of complex points
(from the real and imaginary parts of �) and their light
cones. We show that for any fixed value of the real part
there is a one-dimensional set of points such that the
envelope formed by their individual light cones intersects
real Iþ on an S2 slice. As the real parameter changes we
obtain a one-parameter family of real slicings of Iþ.

At this point, an interesting duality emerges. On one
hand, if we start from each of these slices and move back-
wards into the complex space along the complex null
directions, these trajectories converge to an imaginary
line segment in the complex space. On the other hand,
there is a dual method (described later) for following null
geodesics from the slices back into the real space-time; this
yields a real shear-free, but twisting, null geodesic con-
gruence. It is precisely this twist which links the two
pictures: The ‘‘distance’’ of the complex worldline from
the real Minkowski space-time in the first picture is a
measure of the twist of the real congruence in the latter
picture. The caustic set of the real (dual) congruence is (in
general) a closed curve moving in real time, something
analogous to a classical closed string [8].

The extension of these ideas to asymptotically flat
Einstein space-times initially seems to be impossible.
Standard light cones from any given space-time point

will undergo such distortions from the curvature of the
space-time itself that little or no memory of their origin
will remain when they arrive at Iþ. Nevertheless, we can
consider the possibility of using the procedure that was
successful in the Minkowski space-time case by asking for
null geodesic congruences in the neighborhood of Iþ that
are shear-free and nontwisting. In the general asymptoti-
cally flat case, shear-free null geodesic congruences do not
exist—but there are always null geodesic congruences that
are asymptotically shear-free in the neighborhood of Iþ.
Unfortunately, to use this idea effectively again entails the
analytic extension of the space-time a small distance into
the complex. Working on the complexification of Iþ (i.e.,
on Iþ

C ), there is a construction of complex slices or ‘‘cuts’’

whose complex null normals can be used to determine
asymptotically shear-free and twist-free complex null geo-
desics [7,9,10]. In fact one can construct a four-complex-
dimensional family of such complex cuts which define a
four-complex-dimensional manifold frequently referred to
asH space [11–14]. The immediately relevant feature for
us is that these complex null geodesics from each complex
cut converge or focus to a point inH space [15]. It will be
shown later that real structures associated with H space
can be found and that real physics can be interpreted as
taking place in H space [7,16]. TheH space can thus be
viewed as the virtual image space seen by looking back-
wards along complex null directions from a sphere of
points on Iþ

C . It is this property that could allow us to refer

to Iþ
C as a holographic screen.

The prior discussion of complex Minkowski space
(which is a special case of H space) can be extended to
H space. There is a subset of points inH spacewhere one
(or more) of the light-cone generators (null geodesics)
coming from a complex point intersects real asymptotically
flat space-time at real Iþ. If instead of the complex light
cone of a single point in complex H space we take a
complex timelike (to be defined) worldline parametrized
by the complex parameter � ¼ sþ i�, we would have a
two-real-dimensional set of complex points (from the real
and imaginary parts of �) and their associated complex light
cones. For any fixed value of the real part, s, there is a one-
dimensional set of points (a finite interval parametrized
by �) such that the envelope formed by their individual
light cones intersects real Iþ on a S2 slice. As the real
parameter s changes we obtain in theH space a ribbon (the
finite interval moving in ‘‘s time’’) which could be called a
classical open string; from the null cones of points on this
ribbon, we get a one-parameter family of real slicings on
Iþ. All the information about the ribbon is encoded (holo-
graphically) in the one-parameter family of realIþ slicings
and a null direction field on Iþ. In other words, there is
a duality between the coded information on Iþ and
H -space information. A further related duality is that a
given complex analytic worldline in H space (via its
associated ribbon) yields in the physical space-time (via a
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complex-conjugate action) a real twisting but asymptoti-
cally shear-free null geodesic congruence in the real space-
time.

The question of where this beautiful mathematical struc-
ture makes contact with physical issues does have a simple
answer—the details, however, are rather complicated.

The simple answer is that an (analytic) asymptotically
flat Maxwell field in Minkowski space with nonvanishing
total charge generates, in the complex Minkowski space, a
unique complex analytic worldline: the complex center of
chargeworldline, where the real part describes the standard
center of charge while the ribbon thickness encodes mag-
netic dipole information [17,18]. For the case of asymptoti-
cally flat space-times there are two situations: the vacuum
asymptotically flat and the Einstein-Maxwell asymptoti-
cally flat space-times. For the vacuum case there is a unique
complex H -space worldline that contains, from the real
part, the equations of motion for the physical center of mass
and, from the ribbon thickness, the spin angular momen-
tum, with both interpretations arising from the ‘‘view’’ at
infinity, Iþ [7,16]. These are (loosely) analogues of mea-
suring the total charge at infinity via Gauss’s law or observ-
ing the Bondi energy-momentum vector at infinity.

In Sec. II, the preliminaries, we introduce our notation
and results from earlier investigations that will be needed
here. Specifically we first discuss conventions and notation
followed by a description of flat-space null geodesic con-
gruences. The section ends with a brief summary of prop-
erties of asymptotically flat spaces and their null geodesic
congruences. Section III deals with real space-time struc-
tures that are associated with the complex worldlines, first
in complex Minkowski space and then in H space. In
Sec. IV, we apply the ideas associated with the complex
worldlines to real physical ideas. In particular, we show that
a real asymptotically flat Maxwell field (with nonvanishing
charge) determines a complex worldline (the complex cen-
ter of charge) that carries information about both the elec-
tric andmagnetic dipolemoments. This construction is then
generalized to asymptotically flat space-times, where the
complexmass dipolemoment (the realmass dipolemoment
plus ‘‘i’’ times the angular momentum) determines an
H -space worldline. The Bianchi identities then yield kine-
matic definitions, equations of motion, angular momentum,
and conservation laws. All take place in H space, which
we interpret as a virtual image space. This information is
coded into the real space-time by functions on realIþ. The
results are very reminiscent of ordinaryNewtonian dynami-
cal laws of motion. Though partially a summary of results
presented elsewhere in the literature (e.g., [7,16,18]), our
presentation includes several simplifications and altera-
tions. In Sec. V, we summarize the earlier discussion and
speculate on what meaning and possible future use there
might be to the observations made here. The appendix
provides some background on tensorial spin-s spherical
harmonics, which are used throughout this work.

We again stress that the strange results described here lie
wholly in standard four-dimensional classical physics.
There is no need—other than assumed analyticity—to
rely on drastic modifications of space-time properties
such as supersymmetry or higher dimensions. The results
are here to be seen and perhaps understood. It would have
been a cruel god to have laid down such a pretty scheme
and not have it mean something deep.

II. FOUNDATIONS: Iþ, NULL GEODESIC
CONGRUENCES, AND ASYMPTOTIC FLATNESS

In this section we summarize several of the basic ideas
and tools which are needed in our later discussions. The
explanations are rather concise and extensive proofs are
omitted. In large part, much of what is covered in this
section should be familiar to many or even most workers in
general relativity.

A. Conventions and notation

The arena for most of our discussion is the neighborhood
of the ‘‘far (infinite) null future’’ of our space-time (in-
tuitively the end points of future-directed null geodesics)
for both Minkowski space and asymptotically flat space-
times. This region, first defined and studied by Roger
Penrose and referred to as future null infinity Iþ, is con-
structed by the rescaling of the space-time metric by a
conformal factor which approaches zero asymptotically,
the zero value defining Iþ [19–21]. This process leads to
the (future-null) boundary being a null hypersurface for the
conformally rescaled metric with topology S2 � R. An
easy visualization of the boundary Iþ is as the past light
cone of the point Iþ, future timelike infinity. A natural
coordinatization of Iþ and its neighborhood is via a Bondi
coordinate system: ðu; r; �; ��Þ. In this system, u, the Bondi
time, labels the null surfaces of the space-time that inter-
sect Iþ; r is the affine parameter along the null geodesics
of the constant u surfaces; and � ¼ ei� cotð�=2Þ is the
complex stereographic angle that labels the null geodesics
of Iþ, the S2 portion of Iþ [9].
In Minkowski space, the Bondi coordinates ðu; �; ��Þ of

Iþ can be constructed from the intersection of the future-
null cones of the timelike worldline at the Minkowski
space spatial origin, i.e., from the line, xa ¼ ðt; 0; 0; 0Þ.
The cone has the form

xa ¼ uret�
a
0 þ rl̂að�; ��Þ;

� ¼ ei� cotð�=2Þ;
uret ¼ t� r ¼ ffiffiffi

2
p

u

l̂a ¼
ffiffiffi
2

p
2ð1þ � ��Þ ð1þ � ��; � þ ��;�ið� � i ��Þ;�1þ � ��Þ

¼
ffiffiffi
2

p
2

ð1; sin� cos�; sin� sin�; cos�Þ
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with ð�; ��Þ labeling the sphere of null directions at the
origin and uret the retarded time. Iþ is the limit as r tends
to infinity.

Remark II.1.—Note that uret, u, and t (and the variable �
introduced later) all have the dimensions of length. In
Sec. IV, the velocity of light, c, will be explicitly intro-
duced via the replacement ðuret; u; t; �Þ ! ðcuret; cu; ct; c�Þ
so that uret, u, t, and � have the dimensions of time.

Remark II.2.—We note that the round sphere metric
ds2 ¼ d�2 þ sin2�d’2 becomes in stereographic coordi-
nates ds2 ¼ 4P�2d�d �� , with P ¼ 1þ � �� .

To reach Iþ, we simply let r ! 1, so that Iþ has
coordinates ðu; �; ��Þ. The choice of a Bondi coordinate
system is not unique, there being a variety of Bondi coor-
dinate systems to choose from. The coordinate transforma-
tions between any two are known as Bondi-Metzner-Sachs
(BMS) transformations or as the BMS group (cf. [22,23]).

Our assumption of the analyticity of the space-time then
allows for the complexification of Iþ. For this complex-
ification (i.e., extension to Iþ

C ), we allow u to take on

complex values close to the real and free �� from being

the complex conjugate of � . It is then denoted by ~� � �� .
(Often we take this as implicitly understood and just use �� .)

Associated with the Bondi coordinates is a (Bondi) null
tetrad system, ðla; na; ma; �maÞ (cf. [9,24]):

lala ¼ nana ¼ mama ¼ �ma �ma ¼ 0;

lana ¼ �ma �ma ¼ 1:

The first tetrad vector la is the tangent to the geodesics of
the constant u null surfaces given by

la ¼ dxa

dr
¼ gabrbu; (2.1)

laral
b ¼ 0; (2.2)

la
@

@xa
¼ @

@r
: (2.3)

The second null vector na is tangent to the null geodesics
lying on Iþ, normalized so that

lan
a ¼ 1: (2.4)

The remaining vector ma and its complex conjugate are
tangent to the S2 slices of constant u.

An important construct is the family of past light cones
from each point of Iþ (or Iþ

C ). Each past cone is deter-

mined by a sphere’s worth of null directions at Iþ with
each null direction labeled by the associated sphere coor-
dinate. These coordinates are chosen as the complex
stereographic coordinates and are denoted by the
complex-conjugate pair ðL; �LÞ. An arbitrary field of null
directions on Iþ (and consequently an arbitrary null geo-
desic congruence that intersects Iþ) can then be described
by the function L ¼ Lðu; �; ��Þ or its analytic extension
to Iþ

C .

Often we will use a very specific form of a null tetrad
given in Minkowski coordinates and parametrized by the
points on the sphere in stereographic coordinates ð�; ��Þ and
denoted by the overhat:

l̂a ¼
ffiffiffi
2

p
2ð1þ � ��Þ ð1þ � ��; � þ ��;�ið� � i ��Þ;�1þ � ��Þ

¼
� ffiffiffi

2
p
2

;
1

2
Y0
1i

�
;

n̂a ¼
ffiffiffi
2

p
2ð1þ � ��Þ ð1þ � ��;�ð� þ ��Þ; ið� � i ��Þ; 1� � ��Þ

¼
� ffiffiffi

2
p
2

;� 1

2
Y0
1i

�
;

m̂a ¼ ðla ¼
ffiffiffi
2

p
2ð1þ � ��Þ ð0; 1�

��2;�ið1þ ��2Þ; 2 ��Þ

¼ ð0;�Y1
1iÞ;

�̂ma ¼ ��ðla ¼
ffiffiffi
2

p
2ð1þ � ��Þ ð0; 1� �2; ið1þ �2Þ; 2�Þ;

¼ ð0;�Y�1
1i Þ:

As ð�; ��Þ move over the complex plane, l̂a and n̂a range
over the light cone. The spin-s harmonics [25],
Ys
l;ijk...:ð�; ��Þ, which are frequently used, are described in

the appendix.

B. Flat-space null geodesic congruences

In Minkowski space M, the future light cones from an
arbitrary timelike worldline xa ¼ �aðsÞ can be described
by the NGC

xa ¼ �aðsÞ þ rl̂að�; ��Þ (2.5)

with r the affine parameter on each of the light-cone
generators. This construct is easily generalized to complex
Minkowski space MC, where light cones from �að�Þ (now
an arbitrary complex analytic worldline with complex
affine parameter �), and its corresponding complex NGC is

za ¼ �að�Þ þ rl̂að�; ~�Þ; (2.6)

where r is now complex and ð�; ~�Þ are independent of each
other.
The Sachs complex optical parameters for an arbitrary

NGC (real or complex) are the complex divergence and
shear of the congruence [24,26],

� ¼ 1
2ð�ral

a þ i curl laÞ; (2.7)

	 ¼ rðalbÞmamb; (2.8)

where

curl la �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr½alb�ralbÞ

q
:
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These satisfy the flat-space optical equations:

D� ¼ �2 þ 		;

D	 ¼ ð�þ ��Þ	;
D ¼ la

@

@xa
¼ @

@r
;

(2.9)

with r the affine parameter along the geodesics. The optical
parameters for the above light-cone congruence can be
calculated directly from Eq. (2.5) yielding

� ¼ �r�1; 	 ¼ 0: (2.10)

By reversing the statement and assuming a NGC with
vanishing shear and real divergence, the optical equations
become

D� ¼ �2:

The integral (i.e., � ¼ �r�1) is the same as Eq. (2.10), thus
showing that a NGC with real divergence and vanishing
shear is the light-cone congruence of a (real) timelike
worldline.

An arbitrary NGC in Minkowski space can be described
by the three-parameter, ðu; �; ��Þ, family of null geodesics

xa ¼ uðl̂a þ n̂aÞ � �Lm̂a � L �̂ma þ ðr� r0Þl̂a; (2.11)

where r is the affine parameter, r0 ¼ r0ðu; �; ��Þ is the
arbitrary origin for the affine parameter, and L ¼
Lðu; �; ��Þ, the determining function of the congruence, is
an arbitrary complex spin-weight one function of the pa-
rameters. The three parameters ðu; �; ��Þ are the Bondi
coordinates of the intersection points of the null geodesics
with Iþ. The optical parameters are determined by L,
which is the stereographic angle field on Iþ that deter-
mines the directions of the null geodesics.

The condition for a NGC with vanishing shear is that the
function L must satisfy the nonlinear partial differential
equation [27]

ðLþ L _L ¼ 0; (2.12)

where _L ¼ L;u and ð is the spin-weighted covariant de-
rivative on the 2-sphere (see the appendix for details) [28].
This can be integrated by introducing an auxiliary complex
variable � ¼ Tðu; �; ��Þ, related to L by the so-called
Cauchy-Riemann equation (related to the existence of a
Cauchy-Riemann structure on Iþ [29])

ðT þ L _T ¼ 0 (2.13)

and then using its inversion

u ¼ Gð�; �; ��Þ; (2.14)

� ¼ TðGð�; �; ��Þ; �; ��Þ � �: (2.15)

After a process of implicit differentiation (cf. [7,10,30]),
Eq. (2.12) becomes

ð2�G ¼ 0; (2.16)

with

L ¼ ð�Gj�¼Tðu;�; ��Þ;

where the subscript � indicates that the differentiation is at
� held constant. From this it follows that the regular
solutions to Eq. (2.17) can be given implicitly in terms of
G as

u ¼ Gð�; �; ��Þ � �að�Þl̂a , � ¼ Tðu; �; ��Þ;
L ¼ ðG � �að�Þm̂a ¼ �aðTðu; �; ��ÞÞm̂a:

(2.17)

Several remarks must be made here:
(i) �að�Þ are four arbitrary complex analytic functions

of the complex parameter � which can be interpreted
as determining a complex worldline in complex
Minkowski space.

(ii) � can be regauged by the analytic function
�� ¼ Fð�Þ. Often it is useful to chose �0ð�Þ � �.

(iii) Since � is complex we must allow u to take com-
plex values which requires the complexification
of Iþ, denoted Iþ

C .

(iv) When the �að�Þ are real functions of a real variable
s, Eq. (2.11) reduces to Eq. (2.5) (i.e., to the real
worldline light-cone congruence).

(v) For a complex set �að�Þ, the NGC, Eq. (2.11), is a
real shear-free NGC but with a nonvanishing twist.
The caustic set is in general a closed curve moving
in time.

An important observation that plays a major role for us is
the following: From the same L, two different ‘‘conjugate’’
versions can be constructed. The first is obviously the
complex conjugate given by �L ¼ ��að ��Þ �̂ma while the sec-
ond, referred to as the holomorphic conjugate, is given by
~L ¼ �ðG ¼ �að�Þ �̂ma. Using ~L in Eq. (2.11) instead of �L, we
obtain another shear-free NGC but now it is the complex
congruence, given earlier by Eq. (2.6):

za ¼ �að�Þ þ rl̂að�; ~�Þ:
In other words, the cut function Eq. (2.17) describes a

family of null cones with an apex on the complex line,
za ¼ �að�Þ. We now have on Iþ and Iþ

C two different

tetrad systems (obtained by null rotations from the Bondi
tetrad) coming from �L and ~L, namely,

la ! l�a ¼ la � �L

r
ma � L

r
�ma þOðr�2Þ; (2.18)

m�a ¼ ma � �L

r
na; (2.19)

n�a ¼ na (2.20)

and
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la ! l�aC ¼ la � ~L

r
ma � L

r
�ma þOðr�2Þ; (2.21)

m�a ¼ ma � ~L

r
na; (2.22)

n�a ¼ na: (2.23)

The null geodesic congruence determined by l�a, as men-
tioned earlier, is a real shear-free congruence with twist
while the congruence determined by l�aC is a complex,

shear-free, twist-free congruence and focuses on the com-
plex curve �að�Þ.

Though the complex null geodesics with an apex on
�að�Þ spend most of their ‘‘time’’ in the complex
Minkowski space, some do reach real Minkowski space
and, in particular, some reach the real Iþ. It turns out that
the complex worldline and their associated light cones
have real structures. They are discussed in Sec. III.

C. Asymptotic flatness

At a first glance it would appear as if it were not possible
to duplicate the Minkowski space discussion of light-cone
NGCs in asymptotically flat space-times. Aside from a few
special cases (the algebraically special metrics) there are
no Einstein space-times with shear-free NGCs. The family
of future-directed null geodesics originating at a fixed
space-time point traversing regions of curvature will, in
general, be distorted and develop shear. Surprisingly it
nevertheless is possible to duplicate virtually all the
light-cone NGC results of flat space-time for the general
case of asymptotically flat space-times by looking not for
shear-free NGCs but instead asymptotically shear-free
congruences. In fact such congruences are determined by
a complex analytic curve in an auxiliary four-complex-
dimensional space, referred to as H space.

Before describing these congruences we first review
some relevant features of asymptotically flat space-times.
Details, derivations, and proofs are largely omitted since
they are easily found in the literature [7,9,24,26].

We begin by pointing out that with Bondi coordinates
and tetrad the two optical parameters, the complex diver-
gence and shear are given by

� ¼ �� ¼ � 1

r
þ 	0 �	0

r3
þOðr�5Þ; 	 ¼ 	0

r2
þOðr�4Þ;

(2.24)

with 	0 ¼ 	0ðu; �; ��Þ, the asymptotic Bondi shear of the
NGC with the Bondi tangent vector, i.e., la. The 	0, which
is the free data determining the gravitational radiation,
plays a major role in our discussion. Considering a new
NGC with tangent vector l�a defined at Iþ by the null
rotation

l�a ¼ la � �L

r
ma � L

r
�ma þOðr�2Þ; (2.25)

m�a ¼ ma � �L

r
na; (2.26)

n�a ¼ na (2.27)

with arbitrary L ¼ Lðu; �; ��Þ, one finds that the asymptotic
shear of the new congruence is given by a version of the
Sachs theorem [27]:

	0� ¼ ðLþ L _L� 	0: (2.28)

The condition for the new congruences to be asymptoti-
cally shear-free (	0� ¼ 0) is thus that L satisfy

ðLþ L _L ¼ 	0; (2.29)

which is the extension of the flat-space Eq. (2.12).
As in the Minkowski space case, Eq. (2.12), this can also

be integrated by introducing the same auxiliary complex
variable � ¼ Tðu; �; ��Þ, related to L by the Cauchy-
Riemann equation

ðT þ L _T ¼ 0 (2.30)

and then using its inversion

u ¼ Gð�; �; ��Þ; (2.31)

� ¼ TðGð�; �; ��Þ; �; ��Þ � �: (2.32)

Note that as in the flat case, � is complex and we must

allow the complexification of u and let ~� � �� . For each
value of � we obtain a complex cut of Iþ

C .

Again after manipulating several implicit derivatives,
Eqs. (2.29) and (2.30) become

ð2�G ¼ 	0ðG; �; ��Þ; (2.33)

Lðu; �; ��Þ ¼ ð�Gj�¼Tðu;�; ��Þ (2.34)

with again the subscript � indicating that the derivatives are
at � held constant. Equation (2.33), the ‘‘good-cut equa-
tion,’’ has been shown to depend on four complex parame-
ters, za, (the H -space coordinates), so that we can write
u ¼ Xðza; �; ��Þ, where we distinguish X from G by its
explicit dependence on the four solution parameters. By
the coordinate freedom

za ! z�a ¼ faðzaÞ;
the first four spherical harmonic coefficients can be chosen
as the za (coordinate conditions on H space) so that we
have

u ¼ Xðza; �; ��Þ ¼ zal̂að�; ��Þ þHl�2ðza; �; ��Þ; (2.35)

where Hl�2 are spherical harmonic contributions with
l � 2. Finally, by taking an arbitrary worldline in the H
space, za ¼ �að�Þ, we find the general regular solution to
Eq. (2.29) is given implicitly by

Lðu; �; ��Þ ¼ ð�Gj�¼Tðu;�; ��Þ; (2.36)
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Gð�; �; ��Þ � Xð�að�Þ; �; ��Þ; (2.37)

u ¼ Gð�; �; ��Þ ¼ �að�Þl̂að�; ��Þ þHl�2ð�að�Þ; �; ��Þ
¼ �að�Þl̂að�; ��Þ þ ~Hl�2ð�; �; ��Þ: (2.38)

As in the flat-space case, the regular asymptotically
shear-free NGCs are determined by the arbitrary choice
of a complex worldline in an auxiliary complex space, H
space.

In complete analogy with the complex Minkowski space
case, it turns out that if we use the complex NGC deter-
mined by the stereographic angle field, (2.36), and the
associated holomorphic field, ~Lðu; �; ��Þ ¼ �ð�Gj�¼Tðu;�; ��Þ
[not �Lðu; �; ��Þ ¼ �ð� �Gj ��¼ �Tðu;�; ��Þ] as initial directions

at Iþ
C

l�aC ¼ la � ~L

r
ma � L

r
�ma þOðr�2Þ; (2.39)

the complex geodesics converge on the H -space world-
line za ¼ �að�Þ [15]. By pointing into complex null direc-
tions from the complexified Iþ

C , we have complex virtual

cones and complex virtual worldlines. There will always
be points on the complex worldline whose null cones
partially intersect real Iþ. We will see later that unique
worldlines can be determined so that real meaning or
significance can be given to them, as complex centers of
charge and complex centers of mass—which include both
asymptotic magnetic dipoles and angular momentum.

The basic idea that will be pursued later (in Secs. III and
IV) is to identify certain terms in the asymptotic behavior
of the Maxwell and Weyl tensor tetrad components with
physical quantities and then see how they change when
they are computed with the (rotated) complex null direc-
tions pointing towards a complex worldline, Eq. (2.39). By
choosing the worldline appropriately, so that these quanti-
ties vanish, we identify the virtual complex centers of
charge and mass.

As an interim step, we need the behavior of both the
tetrad components of the Weyl and Maxwell tensors:

c 0 ¼ �Cabcdl
amblcmd;

c 1 ¼ �Cabcdl
anblcmd;

c 2 ¼ �1
2ðCabcdl

anblcnd � Cabcdl
anbmc �mdÞ;

c 3 ¼ Cabcdl
anbnc �md;

c 4 ¼ Cabcdn
a �mbnc �md;

(2.40)

and

�0 ¼ Fabl
amb; �1 ¼ 1

2Fabðlanb þma �mbÞ;
�2 ¼ Fabn

a �mb:
(2.41)

Integrating both the Weyl tensor and Maxwell spin-
coefficient equations leads to the peeling behavior:

c 0¼ c 0
0r

�5þOðr�6Þ; c 1¼ c 0
1r

�4þOðr�5Þ;
c 2¼ c 0

2r
�3þOðr�4Þ; c 3¼ c 0

3r
�2þOðr�3Þ;

c 4¼ c 0
4r

�1þOðr�2Þ;
(2.42)

and

�0 ¼ �0
0r

�3 þOðr�4Þ; �1 ¼ �0
1r

�2 þOðr�3Þ;
�2 ¼ �0

2r
�1 þOðr�2Þ: (2.43)

With the coefficients satisfying the asymptotic Bianchi
identities

_c 0
2 ¼ �ðc 0

3 þ 	0c 0
4; (2.44)

_c 0
1 ¼ �ðc 0

2 þ 2	0c 0
3; (2.45)

_c 0
0 ¼ �ðc 0

1 þ 3	0c 0
2; (2.46)

where

c 0
4 ¼ � €�	0; (2.47)

c 0
3 ¼ ð _�	0; (2.48)

and asymptotic Maxwell equations

_�0
1 ¼ �ð�0

2; (2.49)

_�0
0 ¼ �ð�0

1 þ 	0�0
2: (2.50)

All the r�n coefficients, which are functions on Iþ, i.e.,
functions of ðu; �; ��Þ, have physical meaning, e.g., multi-
pole moments, etc. The four quantities fc 0

1; c
0
2; �

0
0; �

0
1g

are the most important to us, due to the following proper-
ties:
(i) The l ¼ 0 harmonic of �0

1 is the Coulomb charge q.
It is assumed to be nonvanishing whenever a
Maxwell field is being considered.

(ii) The l ¼ 1 harmonic of �0
0 is the complex electro-

magnetic dipole moment: Di
E&M ¼ Di

E þ iDi
M.

(iii) The l ¼ 0; 1 harmonics of c 0
2, slightly modified

by the shear 	0, is the Bondi energy-momentum
four-vector.

(iv) The l ¼ 1 harmonic of c 0
1, also slightly modified

by the shear	0, encodes the center of mass dipole
and angular momentum: Di

CðgravÞ ¼Di
massþ ic�1Ji.

By using the tetrad transformation generated by
Eq. (2.39) [see Eq. (2.21)], one finds the transformation
law of the leading terms of the Weyl and Maxwell tensors:

c �0
0 ¼ c 0

0 � 4Lc �0
1 þ 6L2c �0

2 � 4L3c �0
3 þ L4c 0

4;

(2.51)

c �0
1 ¼ c 0

1 � 3Lc 0
2 þ 3L2c 0

3 � L3c 0
4; (2.52)

LIGHT CONES IN RELATIVITY: REAL, COMPLEX, AND . . . PHYSICAL REVIEW D 83, 044023 (2011)

044023-7



c �0
2 ¼ c 0

2 � 2Lc 0
3 þ L2c 0

4; (2.53)

c �0
3 ¼ c 0

3 � Lc 0
4; (2.54)

c 0
4 ¼ c �0

4 ; (2.55)

��0
0 ¼ �0

0 � 2L�0
1 þ L2�0

2; (2.56)

��0
1 ¼ �0

1 � L�0
2; (2.57)

��0
2 ¼ �0

2: (2.58)

Later, setting to zero the l ¼ 1 parts of c �0
1 and ��0

0 , we

can determine two different worldlines (when a Maxwell
field is present) that can be referred to, respectively, as the
complex centers of mass and charge.

III. REAL STRUCTURES FROM THE
COMPLEX WORLDLINE

Our task in this section is to find the real structures that
are lying in the complex worldlines and their complex light
cones.

A. Flat-space real structure

We first examine the case of flat space-time with a
complex Minkowski worldline, za ¼ �að�Þ, and associated
light-cone cut of Iþ

C ,

u ¼ �að�Þl̂að�; ��Þ: (3.1)

To answer our question, what values of � allow real values
of u, we first write � ¼ sþ i� (s and � real), decompose
the right-hand side of Eq. (3.1) into its real and imaginary
parts, and set the imaginary part to zero [8]:

u ¼ 1
2ð�aðsþ i�Þl̂að�; ��Þ þ ��aðs� i�Þl̂að�; ��ÞÞ
þ 1

2ð�aðsþ i�Þl̂að�; ��Þ � ��aðs� i�Þl̂að�; ��Þ; (3.2)

0 ¼ ½�aðsþ i�Þ � ��aðs� i�Þ�l̂að�; ��Þ: (3.3)

Considering Eq. (3.3) as an implicit equation defining

� ¼ �ðs; �; ��Þ (3.4)

we have that the allowed values of � are given by

� ¼ sþ i�ðs; �; ��Þ: (3.5)

The real values of u are thus given by the one-parameter
(s) family of slicings

u ¼ �aðsþ i�ðs; �; ��ÞÞlað�; ��Þ: (3.6)

Assuming small values for the imaginary part of
�að�Þ ¼ �a

Rð�Þ þ i�a
I ð�Þ, [ð�a

Rð�Þ; �a
I ð�ÞÞ both real analytic

functions] and hence small �ðs; �; ��Þ, it has been shown
that �ðs; �; ��Þ (for a fixed value of s) is a bounded smooth
function on the ð�; ��Þ sphere, with maximum and minimum

values �max ¼ �ðs; �max; ��maxÞ and �min¼�ðs;�min; ��minÞ,
respectively. Furthermore on the sphere, there are a circle’s
(S1) worth of curves between ð�min; ��minÞ and ð�max; ��maxÞ
such that �ðs; �; ��Þ is a monotonically increasing function
on each curve. Hence there will be a family of circles on
the ð�; ��Þ sphere where the value of � is a constant, ranging
between �max and �min.
Summarizing, we have the result that in the complex �

plane there is a ribbon or strip given by all values of s and a
line segment parameterized by � between �min and �max

such that the complex light cones from each of the asso-
ciated points, �aðsþ i�Þ, all have some null geodesics that
intersect real Iþ. More specifically, for each allowed value
of � ¼ sþ i� there will be a circle’s worth of complex
null geodesics leaving the point �aðsþ i�Þ reaching real
Iþ. It is the union of these null geodesics, corresponding
to the circles on the ð�; ��Þ sphere from the line segment,
that produces the real family of cuts, Eq. (3.6).
The real structure associated with a complex worldline

is then the one-parameter family of slices (cuts) Eq. (3.6)
and angle field Lðu; �; ��Þ on each point of the cuts.
The dual point of view, as previously mentioned, is to

start with the same L as used earlier:

u � �að�Þl̂a , � ¼ Tðu; �; ��Þ;
L ¼ �ð�G � �að�Þm̂a ¼ �aðTðu; �; ��ÞÞm̂a;

(3.7)

which was used with the holomorphic ~L,

~L ¼ ð�G � �að�Þ �̂ma ¼ �aðTðu; �; ��ÞÞ �̂ma;

but now, instead, use the complex conjugate of L:

�L ¼ �ð� �G ¼ ��að ��Þ �̂ma

for the null directions pointing inward. In this case one
obtains again a real shear-free NGC but now with twist
�ðu; �; ��Þ which comes from the complex divergence:

� ¼ � 1

rþ i�
; (3.8)

2i� ¼ ð �Lþ Lð �LÞ� � �ðL� �L _L :

¼ ð�að�Þ � ��að ��ÞÞðna � laÞ: (3.9)

As was claimed earlier, the twist is proportional to the
imaginary part of the complex worldline and consequently
we have the real structure coming from two (dual) places.

B. Asymptotically flat-space real structure

The extension of the above argument to the case of
asymptotically flat space-times is relatively simple.
Again assuming that the Bondi shear is sufficiently small
and theH -space complex worldline is not too far from the
‘‘real,’’ the solution to the good-cut equation (2.33),

u ¼ �að�Þl̂að�; ��Þ þ ~Hl�2ð�; �; ��Þ � Gð�; �; ��Þ; (3.10)
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with � ¼ sþ i�, is decomposed into real and imaginary
parts:

Gð�;�; ��Þ¼ 1
2ðGðsþ i�;�; ��Þþ �Gðs� i�;�; ��ÞÞ
þ 1

2ðGðsþ i�;�; ��Þ� �Gðs� i�;�; ��ÞÞ: (3.11)

Setting the imaginary part to zero and solving for � we
obtain an expression of the form

� ¼ �ðs; �; ��Þ:
As in the flat case, for fixed s ¼ s0, � has values on a line
segment bounded between some �min and �max. The al-
lowed values of � are again on a ribbon in the � plane, all
values of s and values on the �-line segments.

Each level curve of the function � ¼ �ðs0; �; ��Þ ¼
constant on the ð�; ��Þ sphere (closed curves or isolated
points) determines a specific subset of the null directions
and associated null geodesics on the light cone of the
complex point �aðs0 þ i�ðs0; �; ��ÞÞ that intersect the real
Iþ. These geodesics will be referred to as real geodesics.
As � moves over all allowed values of its segment, we
obtain the set ofH -space points �aðs0 þ i�ðs0; �; ��ÞÞ and
their collection of real geodesics. From Eq. (3.11), these
real geodesics intersect Iþ on the cut

u ¼ Gðs0 þ i�ðs0; �; ��Þ; �; ��Þ:
As s varies we obtain a one-parameter family of cuts. If

these cuts do not intersect with each other, we say that the
complex worldline �að�Þ is by definition a timelike line.
This occurs when the time component of the real part of
the complex velocity vector, vað�Þ ¼ d�að�Þ=d�, is suffi-
ciently large.

C. Summary of real structures

To put the ideas of this section into perspective we
collect the claims.

(i) In Minkowski space, the future-directed light cones
emanating from a real timelike worldline, xa ¼
�aðsÞ, intersect future null infinity Iþ on a one-
parameter family of spherical nonintersecting cuts.

(ii) The complex light cones emanating from a timelike
complex analytic curve in complex Minkowski
space, za ¼ �að�Þ parametrized by the complex
parameter � ¼ sþ i�, have for each fixed value of
s and � a limited set null geodesics that reach real
Iþ. However, for a ribbon in the complex � plane
(i.e., a region topologically R� I, with s 2 R and
� 2 I ¼ ½�min; �max�), there will be many null geo-
desics intersecting Iþ. Such null geodesics were
referred to as real geodesics. More specifically, for a
fixed s, there is a limited range of � such that all the
real null geodesics intersectIþ in a full cut, leading
to a one-parameter family of real (distorted sphere)
slicings. The ribbon is the generalization of the real
worldline and the slicings are the analogues of the

spherical slicings. When the ribbon shrinks to a line
it degenerates to the real case. We can consider the
ribbon as a generalized worldline and the real null
geodesics from constant s portion of the ribbon as a
generalized light cone.

(iii) For the case of asymptotically flat space-times, the
real light cones from interior points are replaced by
the virtual light cones generated by the asymptoti-
cally shear-free NGCs. These cones emanate from
a complex virtual worldline za ¼ �að�Þ in the as-
sociated H space. As in the case of complex
Minkowski space, there is a ribbon in the � plane
where the real null geodesics emanate from. The
real null geodesics coming from a cross section of
the strip at fixed s (as in the complex Minkowski
case) intersect Iþ in a cut, the collection of cuts
yielding a one-parameter family of cuts. The situ-
ation is exactly the same as in the complex
Minkowski space case except that the spherical
harmonic decomposition of these cuts is in general
more complicated.

Example: The (charged) Kerr metric

Considering the Kerr or the charged Kerr metrics (or
even more generally any asymptotically flat stationary
metric), we have immediately that the Bondi shear 	0

vanishes and hence the associated H space is complex
Minkowski space [31,32]. From the stationarity and a real
origin shift and rotation, the complex worldline can be put
into the form

�að�Þ ¼ ð�; 0; 0; iaÞ; (3.12)

with a being the Kerr parameter. The complex cut function
is then

u ¼ �að�Þl̂að�; ��Þ ¼ �ffiffiffi
2

p � i

2
aY0

1;3ð�; ��Þ;

Y0
1;3ð�; ��Þ ¼ � ffiffiffi

2
p 1� � ��

1þ � ��
;

(3.13)

so that the angle fields are

L ¼ ffiffiffi
2

p
ia

��

1þ � ��
;

�L ¼ � ffiffiffi
2

p
ia

�

1þ � ��
;

~L ¼ ffiffiffi
2

p
ia

�

1þ � ��
:

Using � ¼ sþ i� in Eq. (3.13), the reality condition
u ¼ �u on the cut function is that

� ¼ �ðs; �; ��Þ ¼
ffiffiffi
2

p
2

aY0
1;3ð�; ��Þ;
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so that on the � ribbon, � ranges between	 ffiffiffi
2

p
and the real

slices from the ribbon become simply u ¼ s=
ffiffiffi
2

p
. h

Though we are certainly not making the claim that one
can in reality ‘‘observe’’ these complex worldlines that
arise from (asymptotically) shear-free congruences, we
nevertheless claim that they can be observed in a different
sense. In the following section we will show that there are
simple physical measurements that do determine these
complex worldlines.

IV. APPLICATIONS

We can now explore uses of our observations concerning
light cones and their generalizations. The first issue ad-
dressed is the application, in Minkowski space, to the
Maxwell equations and, in particular, to asymptotically
vanishing Maxwell fields with nonvanishing charge q.
Specifically, we show that such solutions naturally define
a complex worldline that can be identified or referred to as
the complex center of charge. It is determined from the
complex Minkowski space points where the (suitably de-
fined) complex electromagnetic dipole (a combination of
the electric dipole moment plus the i magnetic dipole
moment) vanishes.

The analogous problem for asymptotically flat space-
times (either vacuum or Einstein-Maxwell) is addressed
with a unique worldline again arising, this time from the
gravitational part with its identification as the complex
center of mass. These are the H -space points where the
complex gravitational dipole (identified as the mass dipole
plus i angular momentum) vanishes. For the Einstein-
Maxwell case there will be, in addition, a complex center
of charge line.

A few words of explanation in a much simpler situation
might be of use. In Minkowski space, in a given Lorentz
frame and coordinate origin, with given charge and current
distributions (or given mass and spin distribution), one
defines the electric dipole moment (mass dipole) on any
time slice by an space integral over the charge density (or
mass density) times the position. By shifting the spatial
origin, the dipole moment becomes a space-time field
depending on the origin shift:

~D � ¼ ~D� q ~R:

The zero values of this field determine the center of charge

(or center of mass); ~R ¼ q�1 ~D.
By extending this idea to include the magnetic dipole

moment

~D E&M ¼ ~DE þ i ~DM

and allowing the position ~R to take on complex values, we
find the space dependence of the complex dipole moments
given by

~D �
E&M ¼ ~DE&M � qRC; (4.1)

so that the complex center of charge is given by
~D�
E&M ¼ 0 or

~R C ¼ q�1 ~DE&M: (4.2)

The difficulty with this construction is that it is not
Lorentz invariant: The transformations of the dipoles
from one Lorentz frame to another is nonlocal and one
does not obtain (in any obvious manner) a unique center of
charge or mass worldline.
We use an alternate procedure to find the different

‘‘centers of motion.’’ Namely, the complex dipoles are first
identified from the asymptotic solutions with interior
sources: They are identified from the l ¼ 1 harmonics in
the tetrad components (spin-coefficient components) of the
asymptotic Maxwell field and the asymptotic Weyl tensor,
Eqs. (2.40) and (2.41). [See the discussion immediately
after Eq. (2.43).] These quantities depend on the choice of
the tetrad vectors at Iþ. If we choose the tetrad so that the
null vector l ¼ l�C determines a shear-free (or asymptoti-

cally shear-free) null geodesic congruence that focuses on
points in complex Minkowski space (or in the general
relativity case, on points in the virtual H space), we see
that the associated dipole is a function (three complex
components) on the complex Minkowski space (or H
space). The vanishing set of this function (generically)
determines the complex worldline that is referred to as
the complex center of charge or mass. The idea is then to
express the moments in terms of the complex worldline—
or, as an alternative, find the complex worldline in terms of
the complex dipole. To implement this (in principle
straightforward) procedure is in practice rather involved,
requiring severe approximations and Clebsch-Gordon ex-
pansions of spherical harmonic products. We illustrate the
procedure in detail with the Maxwell field in flat space and
then report the results (obtained earlier) for the Einstein
and Einstein-Maxwell cases with a minimum of detail.

A. Maxwell fields in Minkowski space

Beginning with a complex worldline inMC, z
a ¼ �að�Þ,

its family of cuts of Iþ
C is, as discussed earlier,

u�uB¼c�1�að�Þl̂að�; ��Þ�
ffiffiffi
2

p
�

2
�1

2
c�1�iY0

1i;

Lðu;�; ��Þ¼c�1�að�Þm̂að�; ��Þ¼c�1�ið�ÞY1
1i (4.3)

with L the angle field of its null normals. Note that c has
been explicitly reintroduced so that the cut function u, with
uret and �, has the dimensions of time. This has the annoy-
ing effect of causing the frequent appearance of c.
Remark IV.1.—To avoid a plethora of terms involvingffiffiffi
2

p
we switch from the Bondi time u � uB to the retarded

time uret ¼
ffiffiffi
2

p
uB so that

uret ¼ ��
ffiffiffi
2

p
2

c�1�iY0
1i: (4.4)

T.M. ADAMO AND E. T. NEWMAN PHYSICAL REVIEW D 83, 044023 (2011)

044023-10



Derivatives with respect to uret are denoted by a prime:
@uretF ¼ F0.

We now illustrate how an asymptotically flat Maxwell
field with nonvanishing charge determines a unique com-
plex center of charge worldline, �að�Þ.

We have, first, the asymptotic solution

�0 ¼ �0
0

r3
þOðr�4Þ; �1 ¼ �0

1

r2
þOðr�3Þ;

�2 ¼ �0
2

r
þOðr�2Þ

(4.5)

with the spherical harmonic decomposition

�0
0 ¼ �0

0iY
1
1i þ�0

0ijY
1
2ij þ � � � ; (4.6)

�0
1 ¼ qþ�0

1iY
0
1i þ�0

1ijY
0
2ij þ � � � ; (4.7)

�0
2 ¼ �0

2iY
�1
1i þ�0

2ijY
�1
2ij þ � � � (4.8)

and physical identifications

�0
0¼2q
iðuretÞY1

1iþc�1Qij0
C ðuretÞY1

2ijþ��� ;

�0
1¼qþ ffiffiffi

2
p

qc�1
i0ðuretÞY0
1iþ

ffiffiffi
2

p
6
c�2Qij00

C ðuretÞY0
2ijþ��� ;

�0
2¼�2qc�2
i00ðuretÞY�1

1i �1

3
c�3Qij000

C ðuretÞY�1
2ij þ��� :

(4.9)

The quantities q
i ¼ Di
E&M ¼ Di

E þ iDi
M and Qij

C are,

respectively, the complex (electric and magnetic) dipole
and complex quadrupole.

Under the null tetrad rotation, Eq. (2.21)

la ! l�aC ¼ la � c
~L

r
ma � c

L

r
�ma þOðr�2Þ; (4.10)

m�a ¼ ma � c
~L

r
na; (4.11)

n�a ¼ na; (4.12)

the leading Maxwell field terms transform as

��0
0 ¼ �0

0 � 2cL�0
1 þ c2L2�0

2;

��0
1 ¼ �0

1 � cL�0
2;

��0
2 ¼ �0

2:

(4.13)

The procedure to determine �að�Þ is the following:
In the first equation of Eq. (4.13), written as

�0
0 ¼ ��0

0 þ 2cL�0
1 � c2L2�0

2; (4.14)

replace the uret (appearing in �0
0, �

0
1, and �0

2) by uret ¼
�� ð ffiffiffi

2
p

=2Þc�1�iY0
1i from (4.3), and for fixed �, assume

that the l ¼ 1 terms in ��0
0 vanish.

Formally, by extracting the remaining l ¼ 1 terms in
Eq. (4.14) via the integral at constant �,

I
S2
�0

0Y
�1
1i dS ¼

I
S2
ð2cL�0

1 � c2L2�0
2ÞY�1

1i dS; (4.15)

we have the exact functional relationship between the
dipole q
i and the worldline �að�Þ.
Unfortunately, it is extremely difficult to get explicit

relations from Eq. (4.15) and approximations applied to
Eq. (4.14) must be used. Our basic approximation is to
consider the �að�Þ to be of the form �að�Þ ¼ ð�; �ið�ÞÞ
[using a � rescaling of the form � ! Fð�Þ] with both �i

and the
i to be ‘‘small.’’ We retain only terms up to second
order and harmonic expansions up to l ¼ 2.
Writing out Eq. (4.14),

�0
0 ¼ ��0

0 þ 2cL�0
1 � c2L2�0

2;

using Eqs. (4.9), with uret ¼ �� ð ffiffiffi
2

p
=2Þc�1�ið�ÞY0

1i and

L ¼ c�1�ið�ÞY1
1i, by omitting cubic terms including

L2�0
2, and then using the first two terms of the Taylor

series

F

�
��

ffiffiffi
2

p
2

c�1�iY0
1i

�
¼ Fð�Þ �

ffiffiffi
2

p
2

c�1�iY0
1iF

0ð�Þ (4.16)

and the Clebsch-Gordon expansions of the products of the
spherical harmonics (see the appendix) we finally have
(after simplification) for just the l ¼ 1 harmonic terms

q
k ¼ q�k � i
q

2
�lc�1
i0�ilk þ

ffiffiffi
2

p
10

c�2Qik00
C �i: (4.17)

The first thing we notice is the linear relation:


jð�Þ ¼ �jð�Þ: (4.18)

This can be fed back into Eq. (4.17) in either of twoways
resulting in either of the relations:


k ¼ �k � i
1

2
c�1�l�i0�ilk þ

ffiffiffi
2

p
10

q�1c�2Qik00
C �i;

�k ¼ 
k þ i
1

2
c�1
l
i0�ilk �

ffiffiffi
2

p
10

q�1c�2Qik00
C �i;

(4.19)

which determine the complex dipole in terms of the com-
plex worldline or the worldline in terms of the complex
dipole.
Note that, though all the expressions are functions of �,

the � can be replaced by uret with no other changes needed
due to our approximation scheme.

B. Asymptotically flat space-times

Turning now to the Einstein (or Einstein-Maxwell) case,
we basically repeat the procedure used in the Minkowski
space Maxwell field example.
We begin with an unknown complex worldline in H

space, za ¼ �að�Þ, to be determined by the existing asymp-
totically flat space-time. Its family of cuts and null normal
angle field of Iþ

C is, as discussed earlier [cf. (2.36) and

(2.33), etc.], given by
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u¼ c�1Gð�;�; ��Þ
¼ c�1�að�Þl̂að�; ��Þþ c�1Hl�2ð�að�Þ; �; ��Þ
¼ c�1�að�Þl̂að�; ��Þþ c�1 ~Hl�2ð�;�; ��Þ;

¼
ffiffiffi
2

p
�

2
� 1

2
c�1�ið�ÞY0

1i þ c�1�ijð�ÞY0
2ij þ�� � ; (4.20)

Lðu; �; ��Þ ¼ c�1ð�Gð�; �; ��Þj�¼Tðu;�; ��Þ
¼ c�1�ið�ÞY1

1i � 6c�1�ijð�ÞY1
1ij þ � � � ; (4.21)

	0ð�; �; ��Þ ¼ ð2ð�ÞGð�; �; ��Þ ¼ 24�ijð�ÞY2
2ij þ � � � : (4.22)

We now show how a given asymptotically flat space-
time determines the complex center of charge worldline
�að�Þ.

Returning to the ‘‘peeling’’ theorem:

c 0 ¼ c 0
0r

�5 þOðr�6Þ; c 1 ¼ c 0
1r

�4 þOðr�5Þ;
c 2 ¼ c 0

2r
�3 þOðr�4Þ; c 3 ¼ c 0

3r
�2 þOðr�3Þ;

c 4 ¼ c 0
4r

�1 þOðr�2Þ;
with the transformation law of the leading terms under a
null rotation,

c �0
0 ¼ c 0

0 � 4cLc �0
1 þ 6c2L2c �0

2 � 4c3L3c �0
3

þ c4L4c 0
4; (4.23)

c �0
1 ¼ c 0

1 � 3cLc 0
2 þ 3c2L2c 0

3 � c3L3c 0
4; (4.24)

c �0
2 ¼ c 0

2 � 2cLc 0
3 þ c2L2c 0

4; (4.25)

c �0
3 ¼ c 0

3 � cLc 0
4; (4.26)

c �0
4 ¼ c 0

4; (4.27)

we can then determine the transformation law for the
physical quantities that are identified in the following
harmonic components.

The (truncated) harmonic expansions with their (ap-
proximate) physical identifications are

c 0
0 ¼ c 0ij

0 Y2
2ij þ � � � ;

c 0
1 ¼ c 0i

1 Y
1
1i þ � � � ;

c 0
2 ¼ �� ð2 �	0 � c�1	0ð �	0Þ0;
� ¼ �� ¼ �0 þ�iY0

1i þ � � � ;
c 0

3 ¼ c�1ð �	00;

c 0
4 ¼ �c�2 �	000;

(4.28)

and

c 0ij
0 ¼ approximately; the quadrupole; (4.29)

Di
CðgravÞ ¼ Di

ðmassÞ þ ic�1Ji ¼ � c2
ffiffiffi
2

p
12G

c 0i
1 ; (4.30)

c 0i
1 ¼ � 6

ffiffiffi
2

p
G

c2
ðDi

ðmassÞ þ ic�1JiÞ; (4.31)

� � c 0
2 þ ð2 �	0 þ c�1	0 _�	0; (4.32)

�¼ ��¼�0þ�iY0
1iþ���

¼�MB

2
ffiffiffi
2

p
G

c2
� 6G

c3
PiY0

1iþ��� ; mass aspect; (4.33)

MB ¼ � c2

2
ffiffiffi
2

p
G
�0; Bondi mass; (4.34)

Pi ¼ � c3

6G
�i; Bondi linear momentum; (4.35)

	0 ¼ 24�ijY2
2ij þ � � � Bondi asymptotic shear;

(4.36)

�ij ¼ ð�ij
R þ i�ij

I Þ ¼
G

12
ffiffiffi
2

p
c4

ðQij00
Mass þ iQij00

SpinÞ: (4.37)

Remark IV.2.—The relationship between c 0i
1 and the

mass dipole Di
ðmassÞ and angular momentum Ji is usually

considered to be more complicated than stated here, often
involving quadratic terms in the Bondi shear [33]. The
trouble is that there are disagreements in these quadratic
terms in the different versions. We have simply left them
out here and note that in our approximations the disputed
terms do not appear.
Concentrating on the transformation of the dipole,

among Eqs. (4.23), (4.24), (4.25), (4.26), and (4.27), our
focus is only on Eq. (4.24), which can be rewritten as

c 0
1 ¼ c �0

1 þ 3cLc 0
2 � 3c2L2c 0

3 þ c3L3c 0
4: (4.38)

We first note that the l ¼ 1 term in c 0
1 is proportional to the

complex gravitational dipole Di
CðgravÞðuÞ. Our procedure

is now to replace all the u’s that appear in Eq. (4.38)

by uret ¼ ð ffiffiffi
2

p
cÞ�1�að�Þl̂að�; ��Þ þ ð ffiffiffi

2
p Þ�1Hl�2ð�að�Þ; �; ��Þ

[i.e., Eq. (4.20)], and remember that L also depends on
�að�Þ. Then, from our basic assumption, we take the l ¼ 1
term in c �0

1 to vanish and finally extract the l ¼ 1 har-

monic coefficients from Eq. (4.20). Formally, this is done
via the integral expression

I
S2
c 0

1Y
�1
1i dS¼

I
S2
ð3cLc 0

2 � 3c2L2c 0
3 þ c3L3c 0

4ÞY�1
1i dS;

(4.39)
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which on the left side contains � and the dipole Di
CðgravÞ

while the right side contains �, the unknown worldline
�að�Þ, and the Bondi shear 	0.

Though in principle this equation should allow us to
establish the relationship between Di

CðgravÞ and �að�Þ, in
practice this is not possible: We must to return to Eq. (4.38)
and use harmonic and Clebsch-Gordon expansions with
severe approximations and finally collect the l ¼ 1 terms
directly.

1. A poor approximation: Results

We first describe a preliminary procedure for extracting
the complex worldline from an asymptotically flat space-
time rather explicitly. The following approximations are
used: The Bondi mass is taken as zeroth order while all
other variables are first-order with the calculations done
keeping terms up to second order. In this preliminary
version, the harmonic expansions keep only the l ¼ ð0; 1Þ
terms. This implies the severe condition that the Bondi
shear (	0) be taken to be zero. Later this condition is
relaxed.

Via these approximations Eq. (4.38) becomes

c 0
1ðu; �; ��Þ ¼ c �0

1 þ 3cLð�; �; ��Þ�ðu; �; ��Þ: (4.40)

Using the retarded time uret ¼
ffiffiffi
2

p
u instead of the Bondi

time, then replacing all the uret’s by uret ¼ �� ð ffiffiffi
2

p
=2Þ�

c�1�ið�ÞY0
1i, and finally Taylor expanding with (4.16),

Eq. (4.40) becomes (with physical identifications inserted):

c 0i
1 ð�ÞY1

1i �
ffiffiffi
2

p
2

c�1c 0i0
1 ð�Þ�jY0

1jY
1
1i

¼ � 6
ffiffiffi
2

p
G

c2
MB�

ið�ÞY1
1i �

18G

c3
Pi�jð�ÞY0

1iY
1
1j: (4.41)

Finally after Clebsch-Gordon expansions and the use of
the (linearized) Bianchi identity, Eq. (2.44),

ffiffiffi
2

p
c 00

1 ¼2c�iY1
1i) c 0i0

1 ¼ ffiffiffi
2

p
c�i¼�6

ffiffiffi
2

p
G

c2
Pi; (4.42)

the three complex l ¼ 1 coefficients of (4.41) (with
�k ¼ �k

R þ i�k
I ) yield

ðDk
ðmassÞ þ ic�1JkÞ ¼ MBð�k

R þ i�k
I Þ � �ijkc

�1Piði�j
R � �j

IÞ;
(4.43)

or the pair of real equations

Dk
ðmassÞð�Þ ¼ MB�

k
Rð�Þ þ c�1�ijkP

i�j
I; (4.44)

Jkð�Þ ¼ cMB�
k
I ð�Þ þ �ijkP

j�i
Rð�Þ: (4.45)

From Eq. (4.42), we immediately get the kinematic
definition of the Bondi momentum in terms of the complex
worldline. In addition, we have the conservation of angular

momentumwhich arises from the reality of the mass aspect
�, Eq. (4.33):

Pi ¼ Di0
ðmassÞ ¼ MB�

k0
R þ c�1�ijkMBð�i0

R�
j
IÞ0; (4.46)

Jk0 ¼ 0: (4.47)

There are several things of significance that should be
pointed out here.
(i) If the higher gravitational moments and electromag-

netic terms were included, these results, Eqs. (4.44),
(4.45), (4.46), and (4.47), would all be augmented by
further terms. In particular, there would be a non-
vanishing angular-momentum flux. See below.

(ii) In the expression for the angular momentum there
are two terms, the second being the conventional
orbital angular momentum while the first has been
identified, via the Kerr metric and the charged Kerr
metric [34], as the intrinsic spin angular momentum.

(iii) The mass dipole contains the conventionalM ~R plus
a momentum-spin interaction term that creates a
spin-velocity coupling contribution to the linear
momentum.

These results—basically kinematic, aside from the con-
servation of angular momentum—have been derived, with
severe approximations, by associating the idea of a com-
plex center of mass curve with a complex curve in H
space.
In the same vein (with the same approximations), we

obtain the dynamic law for the motion of the real part of �k

(i.e., �k
R). From the second Bianchi identity, Eq. (2.45)ffiffiffi
2

p
c 00

2 ¼ �cðc 0
3 þ c	0c 0

4 ) c 00
2 ¼ 0; (4.48)

we have that MB and Pi are constant, i.e., conservation of
energy and momentum:

M0
B ¼ Pi0 ¼ 0: (4.49)

2. A better approximation (with Bondi shear): Results

For a more accurate description and determination of the
complex worldline associated with a given asymptotically
flat Einstein (or in the following subsection, Einstein-
Maxwell) space-time we restore, in the calculations, the
Bondi shear and include the effects of the Einstein-
Maxwell equations. Rather than redoing the calculations
from the beginning, using the same procedures as in the
previous section, we simply give the final results. The
approximations are basically the same: The Bondi mass
is zero-order, while all other variables are first-order; in the
calculations only quadratic terms are retained. However
the harmonic expansions now include the l ¼ ð0; 1; 2Þ
harmonics. In addition, since a Maxwell field (with non-
vanishing total charge) is allowed, we have not only the
complex center of mass line, za ¼ �að�Þ, but as well the
complex center of charge line. It is denoted by za ¼ 
að�Þ.
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In general the two lines are different, though in special
circumstance they can coincide.

The idea is to start with Eq. (4.40), use the known
expression for c 0

1ðuret; �; ��Þ and �ðuret; �; ��Þ, in terms

of the physical gravitational moments, then replace every
uret by

uret¼
ffiffiffi
2

p
2
c�1Xð�að�Þ;�; ��Þ;

¼��
ffiffiffi
2

p
2
c�1�ið�ÞY0

1iþ
ffiffiffi
2

p
c�1�ijð�ÞY0

1ijþ��� ; (4.50)

set the l ¼ 1 coefficients of c �0
1 to zero, and finally extract

the l ¼ 1 coefficients from the entire equation—a long
process involving repeated Clebsch-Gordon expansions
(cf. [7,16]). This process leads to

c 0i
1 ¼ �6

ffiffiffi
2

p
Gc�2ðDi

ðmassÞ þ ic�1JiÞ;

ðDi
ðmassÞ þ ic�1JiÞ ¼ MB�

i þ ic�1Pj�l�lji � 4G

5c5
PiQij00

Grav

� 3

5c2
�Qil00
Grav�

l � i
3G

5c6
Qlk00

Grav
�Qkj00
Grav�lji;

(4.51)

or from the real and imaginary parts,

Di
ðmassÞ ¼ MB�

i
R þ c�1�l

IP
j�ijl � 4G

5c5
PiQij00

Mass

� 3

5c2
ðQil00

Mass�
l
R þQil00

Spin�
l
IÞ �

6G

5c6
Qkl00

MassQ
kj00
Spin�lji;

Ji ¼ MBc�
i
I þ Pj�l

R�lji �
4G

5c5
PiQij00

Spin

� 3

5c
ðQil00

Mass�
l
I �Qil00

Spin�
l
RÞ;

the definition of the mass dipole and angular momentum in
terms of the complex worldline

The kinematic definition of the linear momentum and
the angular-momentum conservation law are then found by
extracting the l ¼ 1 harmonics from the Bianchi identity,
Eq. (2.44) (the evolution equation for c 0

1)

_c 0
1 ¼ �ðc 0

2 þ 2	0c 0
3;

or

c 00
1 ¼ �

ffiffiffi
2

p
2

cð�þ
ffiffiffi
2

p
2

cð3 �	þ 3	0ðð �	0Þ; (4.52)

leading to

ðDi0
ðmassÞ þ ic�1Ji0Þ ¼ Pi þ i

12G

5c6
Qkl00

Grav
�Qlj000
Grav�jki:

Then inserting the expressions for Di
ðmassÞ and Ji we

obtain, from the real part, an expression for the linear
momentum

Pi ¼ Di0
ðmassÞ �

12G

5c6
ðQkl00

MassQ
lj00
SpinÞ0�jki; (4.53)

Pi ¼ MB�
i0
R þPi;

Pi ¼ c�1ð�l
IP

jÞ0�jli � 4G

5c5
ðPiQij00

MassÞ0

� 3

5c2
ðQil00

Mass�
l
R þQil00

Spin�
l
IÞ0

� 3G

c6
ðQkl00

MassQ
lj00
SpinÞ0�jki; (4.54)

and, from the imaginary part, the angular-momentum con-
servation law:

Ji0 ¼ ðFluxÞi; (4.55)

Ji ¼ MBc�
i
I þ Pj�l

R�lji �
4G

5c5
PiQij00

Spin

� 3

5c
ðQil00

Mass�
l
I �Qil00

Spin�
l
RÞ; (4.56)

ðFluxÞi ¼ 12G

5c5
ðQlk00

MassQ
jl000
Mass þQkl00

SpinQ
jl000
SpinÞ�ijk: (4.57)

Finally, from the l ¼ 0; 1 parts of the Bianchi identity,
Eq. (4.45), the evolution equation for the mass aspect

_c 0
2 ¼ �ðc 0

3 þ 	0c 0
4;

or

�0 ¼
ffiffiffi
2

p
c

	00 �	00; (4.58)

we obtain both the energy loss expression and the evolution
of the momentum, i.e., the equations of motion.
The energy (mass) loss equation, from the l ¼ 0 part, is

M0
B ¼ � G

5c7
ðQij00

MassQ
ij000
Mass þQij00

SpinQ
ij000
SpinÞ;

the known quadrupole expression, while the momentum
loss equation, from the l ¼ 1 part of (4.58), becomes a
version of Newton’s second law:

Pk0 ¼ Fk
recoil;

Fk
recoil �

2G

15c6
ðQlj000

SpinQ
ij000
Mass �Qlj000

MassQ
ij000
SpinÞ�ilk:

(4.59)

Finally substituting the Pi from Eq. (4.53), we have
Newton’s second law of motion:

MB�
i00
R ¼ Fi

recoil �M0
B�

i0
R �Pi0 � Fi: (4.60)

3. Results for Einstein-Maxwell space-times

The calculations that were performed earlier for the
vacuum general relativity case can be extended to the
Einstein-Maxwell case with considerably more effort.
Rather than going into the details we will simply present

T.M. ADAMO AND E. T. NEWMAN PHYSICAL REVIEW D 83, 044023 (2011)

044023-14



the main results. The Maxwell field considered has only
charge and dipole terms: With a bit of effort quadrupole
terms could be included. The main change needed is the
modification of the asymptotic Bianchi identities to in-
clude the Maxwell field:

_c 0
2 ¼ �ðc 0

3 þ 	0c 0
4 þ k�0

2
��0
2; (4.61)

_c 0
1 ¼ �ðc 0

2 þ 2	0c 0
3 þ 2k�0

1
��0
2; (4.62)

k ¼ 2Gc�4; (4.63)

where the fields �0
1 and �0

2 are given by Eqs. (4.9).
The result of the calculations are

c 0i
1 ¼ � 6

ffiffiffi
2

p
G

c2
ðDi

ðmassÞ þ ic�1JiÞ; (4.64)

ðDk
ðmassÞ þ ic�1JkÞ ¼ MB�

k þ i�mik

c
�mPi

� i
q2

3c2
�mik�

m �
i00 � 4G

5c5
PiQik00

Grav

þ
ffiffiffi
2

p
Gq2

15c6
�
j00Qkj

Grav �
3

5c2
�j �Qkj00

Grav

� i
3G

5c6
�mjkQ

im00
Grav

�Qij00
Grav (4.65)

or

Di
ðmassÞ ¼ MB�

i
R � c�1Pj�k

I"kji �
3

5c2
ð�j

RQ
ij00
Mass þ �j

IQ
ij00
SpinÞ

þ q2

3c2
ð�j

I

k00
R � �j

R

k00
I Þ�jki

� 4G

5c5
PjQij00

Mass �
3G

5c6
Qkl00

MassQ
kj00
Spin�lji

þ
ffiffiffi
2

p
Gq2

15c6
ð
j00

R Qij00
Mass þ 
j00

I Qij00
SpinÞ (4.66)

and

Ji ¼ cMB�
i
I þ �k

RP
j�kji � 3

5c
ðQij00

Mass�
j
I �Qij00

Spin�
j
RÞ

þ q2

3c
ð�k

R

j00
R þ �k

I

j00
I Þ�kji � 4G

5c4
PjQij00

Spin

þ
ffiffiffi
2

p
Gq2

15c5
ð
j00

R Qij00
Spin � 
j00

I Qij00
MassÞ: (4.67)

From the Bianchi identity, Eq. (4.62), we have

Di0
ðmassÞ þ ic�1Ji0 ¼ Pi þ 2q2

3c3
�
i00 þ 12Gi

5c6
Qkl00

Grav
�Qlj000
Grav�jki

þ 2
ffiffiffi
2

p
iq2

3c4

k0 �
j00�jki

or, from the real part,

Pi ¼ MB�
i0
R � 2q2

3c3

i00
R � c�1ðPj�k

I Þ0�kji

þ q2

3c2
ð�j

I

k00
R � �j

R

k00
I Þ0�jki þ 2

ffiffiffi
2

p
q2

3c4
ð
k0

I 

j0
RÞ0�jki

� 4G

5c5
ðPjQij00

MassÞ0 þ
ffiffiffi
2

p
Gq2

15c6
ð
j00

R Qij00
Mass þ 
j00

I Qij00
SpinÞ0

� 3

5c2
ð�j

RQ
ij00
Mass þ �j

IQ
ij00
SpinÞ0 þ

3G

c6
ðQlk00

SpinQ
lj00
MassÞ0�jki;

(4.68)

and imaginary part

Ji0 ¼ ðFluxÞi ¼ 2
ffiffiffi
2

p
q2

3c3
ð
k0

R

j00
R þ 
k0

I 

j00
I Þ�jki

þ 12G

5c5
ðQlk00

MassQ
lj000
Mass þQlk00

SpinQ
lj000
SpinÞ�kji �

2q2

3c2

i00
I :

(4.69)

Alternatively, we can consider the term 2q2

3c2

i00
I as a

contribution to the total angular momentum rather than
the flux. Using this alternative definition of angular mo-
mentum,

JiT ¼ Ji þ 2q2

3c2

i0
I ;

where Ji is given by Eq. (4.67), leads to a
modified flux law:

Ji0T ¼ ðFluxÞiT ¼ 2
ffiffiffi
2

p
q2

3c3
ð
k0

R

j00
R þ 
k0

I 

j00
I Þ�jki

þ 12G

5c5
ðQlk00

MassQ
lj000
Mass þQlk00

SpinQ
lj000
SpinÞ�kji: (4.70)

Finally from the Bianchi identity, Eq. (4.61), we have the
mass loss and momentum loss equations:

M0
B ¼ � G

5c7
ðQij000

MassQ
ij000
Mass þQij000

SpinQ
ij000
SpinÞ

� 2q2

3c5
ð
i00

R 

i00
R þ 
i00

I 

i00
I Þ; (4.71)

Pi0 ¼ 2G

15c6
ðQkj000

SpinQ
lj000
Mass �Qkj000

MassQ
lj000
SpinÞ�lki

þ q2

3c4
ð
k00

I 
j00
R � 
k00

R 
j00
I Þ�jki: (4.72)

C. Interpretations

There are a variety of comments to be made about the
physical content contained in the above kinematic and
dynamical relations:
(i) A subtle (but not essential) comment for complete-

ness should be made. We have used the symbol q
i

for the complex electromagnetic dipole and 
a for
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the complex center of charge. The two 
’s are re-
lated by a nonlinear term, given explicitly by (4.19).
Rather than go into a detailed explanation of our
usage which could be confusing, we note that the
effect is that a small quadratic term in JiT is missing.

(ii) The first term of Pi, Eq. (4.68), is the standard
Newtonian kinematic expression for the linear mo-
mentum, MB�

k0
R . This is followed by a spin-

momentum coupling term of the form ð ~S� ~PÞ0.
(iii) The further term � 2

3 c
�3q2
i00

R , which is a contri-

bution to the linear momentum from the second
derivative of the electric dipole moment, q
i

R,
plays a special role for the case when the complex
center of mass coincideswith the complex center of
charge, 
a ¼ �a. In this case, the second term is
exactly the contribution to the momentum that
yields the classical radiation reaction force of clas-
sical electrodynamics [35]

2
3 c

�3q�i000
R : (4.73)

In this special case we have a rather attractive
identification: Since now the magnetic dipole
moment is given by Di

M ¼ q�i
I and the spin by

Si ¼ MBc�
i
I, we have that the gyromagnetic ratio is

� ¼ jSij
jDi

Mj
¼ MBc

q
;

leading to the Dirac value of the g factor, i.e.,
g ¼ 2.

(iv) Many of the remaining terms in Pi, though appar-
ently second order, are really of higher order when
the dynamics are considered. Others involve
quadrupole interactions, which contain high powers
of c�1.

(v) The complex electromagnetic dipole moment, given
in general by

Di
E&M ¼ qð
i

R þ i
i
IÞ ¼ Di

E þ iDi
M;

becomes, when the worldlines coincide, Di
E&M ¼

qð�i
R þ i�i

IÞ.
(vi) In the expression for Ji (4.67) we have already

identified, in the earlier discussion, the first two

terms Si ¼ MBc�
j
I andMB�

k0
R�

i
R�ikj as the intrinsic

spin angular momentum and the orbital angular

momentum (i.e., ~r� ~P), respectively. An interest-
ing contribution to the total angular momentum
comes from the term 2

3 c
�2q2
i0

I ¼ 2
3 c

�2qDi0
M, i.e.,

a contribution to the total angular momentum from
a time-varying magnetic dipole. A question arises:
Is this an observable prediction?

(vii) Our identification of Ji as the total angular mo-
mentum in the absence of a Maxwell field agrees

with most other identifications (assuming our ap-
proximations) [33]. Very strong support of this
view, with the Maxwell terms added in, comes
from the flux law. In Eq. (4.70) we see that there
are four flux terms (more arise if we included
electromagnetic quadrupole radiation): The first
and second come from the Maxwell dipole flux,
while the third and fourth are the gravitational
quadrupole flux terms. The Maxwell dipole part
of the flux is identical to that derived from pure
Maxwell theory [35]. We emphasize that this
angular-momentum flux law has little to do di-
rectly with the chosen definition of angular mo-
mentum. The imaginary part of the Bianchi
identity, Eq. (4.45), is the conservation law. How
to identify the different terms (i.e., identifying the
time derivative of the angular momentum and the
flux terms) comes from different arguments. The
identification of the Maxwell contribution to total
angular momentum and the flux contain certain
arbitrary assignments: Some terms on the left-
hand side of the equation, i.e., terms with a time
derivative, could have been moved onto the right-
hand side and been called ‘‘flux’’ terms. Our as-
signments were governed by the question of what
terms appeared most naturally to be explicit time
derivatives (thereby being assigned to the time
derivative of the angular momentum) or which
terms appeared to be physically more likely to be
an angular-momentum term.

(viii) The angular-momentum conservation law can be
considered as the evolution equation for the
imaginary part of the complex worldline, i.e.,
�i
IðuretÞ. The evolution for the real part is found

from the Bondi energy-momentum loss equation.

(ix) The Bondi mass MB ¼ �ðc2=2 ffiffiffi
2

p
GÞ�0 and the

original mass of the Reissner-Nordström

(Schwarzschild) unperturbed metric MRN ¼
�ðc2=2 ffiffiffi

2
p

GÞc 00
2 (i.e., the l ¼ 0 harmonic of c 0

2)
differ by a quadratic term in the shear, the l ¼ 0
part of 	0 _�	0. This suggests that the observed mass
of an object is partially determined by its time-
dependent quadrupole moment—if it exists.

(x) In the discussion of the Bondi energy loss theorem
(4.71), we saw that we can relate �ij (i.e., the l ¼ 2
shear term) to the gravitational quadrupole by

�ij ¼ ð�ij
R þ i�ij

I Þ ¼
ffiffiffi
2

p
G

24c4
ðQij00

Mass þ iQij00
SpinÞ

¼
ffiffiffi
2

p
GQij00

Grav

24c4
(4.74)

to obtain the standard quadrupole energy loss.
(xi) The Bondi mass loss theorem with electromagnetic

dipole and quadrupole radiation becomes
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M0
B ¼ � G

5c7
ðQij000

MassQ
ij000
Mass þQij000

SpinQ
ij000
SpinÞ

� 2

3c5
ðDi00

E D
i00
E þDi00

MD
i00
MÞ

� 2

45c7
ðQij000

E Qij000
E þQij000

M Qij000
M Þ (4.75)

with the first term the conventional gravitational
radiation and with the second and third terms the
electromagnetic dipole and quadrupole radiation
loss. The momentum loss with electromagnetic
quadrupole contributions becomes

Pi0 ¼ 2G

15c6
ðQkj000

SpinQ
lj000
Mass �Qkj000

MassQ
lj000
SpinÞ�lki

þ q2

3c4
ð
k00

I 
j00
R � 
k00

R 
j00
I Þ�jki

þ 2

135c6
ðQlj000

M Qkj000
E �Qlj000

E Qkj000
M Þ�lki:

(xii) There are several things to observe and comment
on concerning Eqs. (4.59) and (4.60): Returning to
the case when the complex center of mass and
center of charge coincide the resulting equations
of motion for the worldline, namely,

MB�
i00
R þ 2

3c
�3q�i000

R : ¼ Fi
recoil �M0

B�
i0
R �Pi0

� Fi;

we observe and stress that, aside from several extra
terms, these equations coincide with the Lorentz-
Dirac equations of motion—this includes the hy-
peracceleration term and the mass loss termM0

B�
i0
R.

This result follows directly from the Einstein-
Maxwell equations. There was no model building
other than requiring that the two complex world-
lines coincide—a strong condition, perhaps
equivalent to a point particle assumption.
Furthermore, there was no mass renormalization;
the mass was simply the conventional Bondi mass
as seen at infinity. Further structures (e.g., spin)
could remain. The problem of the runaway solu-
tions, though not solved here, is converted to the
stability of the Einstein-Maxwell equations with
the ‘‘coinciding’’ condition on the two worldlines.
If the two worldlines do not coincide, i.e., the
Maxwell worldline is formed by independent
data, then there is no problem of unstable behavior.
This suggests a resolution to the problem of the
unstable solutions: One should treat the source
as a structured object, not a point, and centers
of mass and charge as independent quantities.
Alternatively, it might be possible that the extra
terms in the equations might stabilize the equa-
tions. It is, however, hard to see how this could be
demonstrated.

(xiii) The Fi
recoil is the recoil force from momentum

radiation; other force terms could be considered
as gravitational radiation reaction.

(xiv) There are alternative perturbation schemes that use
variations of the procedures used here. An example
is the determination of the gravitational radiation
in a Schwarzschild or Reissner-Nordström space-
time induced by a time-dependent Maxwell dipole
radiation field. The physical identifications agree
with those found in the present work. For instance,
the perturbations induced by a Coulomb charge
and general electromagnetic dipole Maxwell field
in a Schwarzschild background lead to energy,
momentum, and angular-momentum flux relations
[36]:

M0
B ¼ � 2

3c5
ðDi00

E D
i00
E þDi00

MD
i00
MÞ;

Pi0 ¼ 1

3c4
Dk00

E Dj00
M�kji;

Jk0 ¼ 2

3c3
ðDi00

E D
j0
E þDi00

MD
j0
MÞ�ijk;

(4.76)

all of which agree exactly with predictions from
classical field theory [35].

The familiarity of these results and those in the full text
act as an exhibit in favor of the physical identification
methods described in this work. That is, they act as a
confirmation of the consistency of the identification
scheme.

V. DISCUSSION AND CONCLUSION

We have studied and described a variety of geometric
structures, all occurring within the confines of classical
special and general relativity, which strongly resemble
ideas in other areas of physics. Our complex-conjugate
method for describing a real, twisting shear-free, or asymp-
totically shear-free NGC places the congruence’s caustic
set (in Minkowski space, interpreted as its source) on a
closed curve propagating in real time, or, in more sugges-
tive parlance, a classical string or world tube. The dual
description, or holomorphic method, constructs a complex
NGC (a complex light-cone congruence) whose apex is on
a complex worldline in either complex Minkowski space
(the shear-free case) or H space (the asymptotically
shear-free case). When one imposes a reality structure on
the null geodesics of this congruence (i.e., asks that they
intersect the real asymptotic boundary), the source be-
comes a real two-dimension (complex one-dimensional)
open world sheet, also oddly reminiscent of string theory.
Furthermore, the role of Iþ

C as the object which inter-

polates between these two dual descriptions is reminiscent
of the conjectured holographic principle [2,3]. In particu-
lar, we can think of a real, twisting asymptotically
shear-free NGC as determining data on Iþ

C (i.e., the
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complex-conjugate construction), which in turn acts as a
‘‘lens’’ into H space, which serves as a virtual image
space for the real space-time, where the real twisting
NGC becomes a complex, twist-free NGC. Hence, one is
tempted to refer to Iþ

C as the holographic screen for some

application of the holographic principle to classical general
relativity. This should be contrasted against the most fa-
mous application of the holographic principle: the AdS/
CFT correspondence [4,5]. Here, the AdS boundary acts as
a holographic screen interpolating between type IIB string
theory in AdS5�S5 and N ¼ 4 super-Yang-Mills theory
in Minkowski space-time. It is interesting that we have
found structures so closely resembling the underlying
holographic principle but which involve nothing like extra
dimensions or supersymmetry.

Our observations also raise a series of potentially inter-
esting questions related to fleshing out the alluded-to con-
nections between general relativity and more ambitious
theories. For instance, is it possible to write down a sigma
model for the embedding of the open world sheet (the
holomorphic method) into H space which yields the real
cuts of Iþ? Also, can the role of the future asymptotic
boundary as a holographic screen be made any more
precise? Furthermore, we have seen (with several ex-
amples) how the geometry of the virtual image space
(H space) allows us to make physical identifications
from data on the holographic screen. This indicates that
our virtual image space represents the ‘‘physical informa-
tion’’ side of some holographic principle, in the same way
as the conformal field theory side of the AdS/CFT
correspondence.

It should be noted that in ’t Hooft’s original work con-
necting gauge theory and string theory in the planar limit,
no supersymmetry was introduced [1]; an extra dimension
for string propagation does enter for anomaly cancellation,
though. It could be possible that the analytic continuation
of Iþ to the holographic screen Iþ

C in our investigation

serves an analogous purpose, adding the degrees of free-
dom necessary to solve the good-cut equation and con-
struct the virtual light-cone congruence. However, it is
unclear whether further degrees of freedom (in the form
of additional dimensions) would be needed if our notion of
the source of real null geodesics as an open string in H
space were taken seriously (i.e., if one attempted to quan-
tize the theory of such ‘‘strings’’).

Other (perhaps less abstract) questions immediately
arise. Since we obtain many of the standard classical
mechanics kinematic and dynamic equations, is it possible
that the standard quantization could shed light on the
difficult issues of quantum gravity? Since the material
described here is closely related to Penrose’s twistor theory
(via different versions of the Kerr theorem relating shear-
freeness and twistors; cf. [7,32,37]) is there a twistorial
version of the present findings? Though the material pre-
sented here deals with the apparent or ‘‘virtual’’ motion of

compact sources as viewed from a great distance, can it be
modified or generalized to treat interacting bodies? Can or
should these complex worldlines with dynamic evolution
and spin structure be taken at all seriously—and in what
context?
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APPENDIX: TENSORIAL SPIN-s SPHERICAL
HARMONICS

Throughout the text, we have made use of tensorial
spin-s spherical harmonics, Ys

li...jð�; ��Þ, to expand analytic

functions on the 2-sphere. Although these are closely
related to the usual spherical harmonics familiar from other
arenas of physics, the incorporation of spin may be new to
some readers. This appendix reviews the basic properties
of the spin-s harmonics and includes some of the Clebsch-
Gordon expansions of their products used in our calcula-
tions. For the original treatment of this material, see [25].
Before introducing these functions though, we recall the

definition of the ð operator (also used throughout the text),
which acts as a spin-weighted covariant derivative on S2

[28]. Suppose f: S2 ! C has spin weight s; then

ðf ¼ P1�s @ðPsfÞ
@�

; �ðf ¼ P1þs @ðP�sfÞ
@ ��

; (A1)

where P is taken to be any conformal factor on the 2-sphere
(in the text, we always take P � 1þ � ��). We see that an
application of the ð operator raises spin weight by 1, while
�ð decreases it by one. As we will see, this property allows
us to move among the spin-weighted tensorial spherical
harmonics simply by applying differential operators.

1. Spherical harmonics

Some time ago, the generalization of ordinary spherical
harmonics Ylmð�; ��Þ to spin-weighted functions ðsÞYlmð�; ��Þ
(e.g., [28,38]) was developed to allow for harmonic ex-
pansions of spin-weighted functions on the sphere. We
have used instead the tensorial form of these spin-weighted
harmonics, the so-called tensorial spin-s spherical harmon-
ics, which are formed by taking linear combinations of the

ðsÞYlmð�; ��Þ [25]:

Ys
li...k ¼

X
Ksm

li...kðsÞYlm;

where the indices obey jsj 
 l and the number of spatial
indices (i.e., i . . . k) is equal to l. Explicitly, these new spin-
weighted harmonics can be constructed from first defining
Yl
li...k.

T.M. ADAMO AND E. T. NEWMAN PHYSICAL REVIEW D 83, 044023 (2011)

044023-18



We impose our special 2-sphere Bondi null tetrad:

l̂a¼ 1ffiffiffi
2

p
P
ðP;�þ ��;�ið�� ��Þ;�1þ� ��Þ;

n̂a¼ 1ffiffiffi
2

p
P
ðP;�ð�þ ��Þ;ið�� ��Þ;1�� ��Þ;

m̂a¼ 1ffiffiffi
2

p
P
ð0;1� ��2;�ið1þ ��2Þ;2 ��Þ; P�1þ� ��:

(A2)

We then project these to their covariant duals and take the
spatial parts to obtain the 1-form components, along with a
useful additional form ci ¼ li � ni:

li ¼ �1ffiffiffi
2

p
P
ð� þ ��;�ið� � ��Þ;�1þ � ��Þ;

ni ¼ 1ffiffiffi
2

p
P
ð� þ ��;�ið� þ ��Þ;�1þ � ��Þ;

mi ¼ �1ffiffiffi
2

p
P
ð1� ��2;�ið1þ ��2Þ; 2 ��Þ;

ci ¼ � ffiffiffi
2

p
i�ijkmj �mk:

(A3)

From this, we define Yl
li...k as [25]

Yl
li...k ¼ mimj . . .mk; Y�l

li...k ¼ �mi �mj . . . �mk: (A4)

The other harmonics are determined by the action of the
ð operator on the harmonics we have defined in (A4).
In particular, it can be shown that

Ys
li...k ¼ �ðl�sðYl

li...kÞ; Y�jsj
li...k ¼ ðl�sðY�l

li...kÞ: (A5)

We now present a table of the tensorial spherical har-
monics up to l ¼ 2, where we truncate all of our expan-
sions in this paper. Higher harmonics can be found in [25].

(i) l ¼ 0:

Y0
0 ¼ 1:

(ii) l ¼ 1:

Y1
1i ¼ mi; Y0

1i ¼ �ci; Y�1
1i ¼ �mi:

(iii) l ¼ 2:

Y2
2ij ¼ mimj; Y1

2ij ¼ �ðcimj þmicjÞ;
Y0
2ij ¼ 3cicj � 2�ij; Y�2

2ij ¼ �mi �mj;

Y�1
2ij ¼ �ðci �mj þ �micjÞ:

In addition, it is useful to give the explicit relations
between these different harmonics in terms of the ð opera-
tor and its conjugate. Indeed, we can see generally that
applying ð once raises the spin index by one, and applying
�ð lowers the index by one. This in turn means that

ðYl
li...k ¼ 0; �ðY�l

li...k ¼ 0:

Other relations for l 
 2 are given by

�ðY1
1i¼Y0

1i¼ðY�1
1i ð; Y0

1i¼�2Y1
1i;

�ðY0
1i¼�2Y�1

1i ;

�ðY2
2ij¼Y1

2ij;
�ð2Y2

2ij¼Y0
2ij; ðY0

2ij¼�6Y1
2ij;

ðY1
2ij¼�4Y2

2ij:

Finally, due to the nonlinearity of the theory, throughout
this review we have been forced to consider products of the
tensorial spin-s spherical harmonics while expanding non-
linear expressions. These products can be expanded as a
linear combination of individual harmonics using Clebsch-
Gordon expansions. The explicit expansions for products
of harmonics with l ¼ 1 or l ¼ 2 are given below (we omit
higher products due to the complexity of the expansion
expressions). Further products can be found in [25].

2. Clebsch-Gordon expansions

(i) l ¼ 1 with l ¼ 1:

Y1
1iY

0
1j ¼

iffiffiffi
2

p �ijkY
1
1k þ

1

2
Y1
2ij;

Y1
1iY

�1
1j ¼ 1

3
�ij � i

ffiffiffi
2

p
4

�ijkY
0
1k �

1

12
Y0
2ij;

Y0
1iY

0
1j ¼

2

3
�ij þ 1

3
Y0
2ij:

(ii) l ¼ 1 with l ¼ 2:

Y1
1iY

2
2ij¼Y3

3ijk;

Y0
1iY

0
2jk¼�4

5
�kjY

0
1iþ

6

5
ð�ijY

0
1kþ�ikY

0
1jÞþ

1

5
Y0
3ijk;

Y1
1iY

0
2jk¼

2

5
Y1
1i�jk�3

5
Y1
1j�ik�3

5
Y1
1k�ij

þ iffiffiffi
2

p ð�iklY1
2jlþ�ijlY

1
2klÞþ

2

5
Y1
3ijk;

Y1
1iY

1
2jk¼�1

6
ððY1

1iY
0
2jkÞ;

Y�1
2ij Y

1
1k¼

3

10
Y0
1i�jkþ 3

10
Y0
1j�ik�1

5
Y0
1k�ij

þ i
ffiffiffi
2

p
12

ð�jklY0
2ilþ�iklY

0
2ljÞ�

1

30
Y0
3ijk;

Y0
1iY

1
2jk¼�2

5
Y1
1i�jkþ3

5
Y1
1j�ikþ3

5
Y1
1k�ij

� i

3
ffiffiffi
2

p ð�iklY1
2jlþ�ijlY

1
2klÞþ

4

15
Y1
3ijk;

Y1
2ijY

�1
1k ¼ 3

10
Y0
1i�jkþ 3

10
Y0
1j�ik�1

5
Y0
1k�ij

� i
ffiffiffi
2

p
12

ð�jklY0
2ilþ�iklY

0
2ljÞ�

1

30
Y0
3ijk;

Y2
2ijY

0
1k¼ððY2

2ijY
�1
1k Þ:
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