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We consider a novel class of fðRÞ gravity theories where the connection is related to the conformally

scaled metric ĝ�� ¼ CðRÞg�� with a scaling that depends on the scalar curvature R only. We call them

C theories and show that the Einstein and Palatini gravities can be obtained as special limits. In addition,

C theories include completely new physically distinct gravity theories even when fðRÞ ¼ R. With

nonlinear fðRÞ, C theories interpolate and extrapolate the Einstein and Palatini cases and may avoid some

of their conceptual and observational problems. We further show that C theories have a scalar-tensor

formulation, which in some special cases reduces to simple Brans-Dicke–type gravity. If matter fields

couple to the connection, the conservation laws in C theories are modified. The stability of perturbations

about flat space is determined by a simple condition on the Lagrangian.
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I. INTRODUCTION

Metric determines distances and connection the parallel
transport of vectors. In principle these are independent fields:
the metric hasDðDþ 1Þ=2 and the connectionD3 degrees of
freedom in D-dimensional spacetime. In the general theory
of relativity (GR), the connection is uniquely determined by
the metric [1], but no fundamental principle dictates such
prescription. Nevertheless, even in the presence of other
connections, the metric does spontaneously generate its
Levi-Civita connection, which always has a physical rele-
vance since matter fields follow the geodesics given by this
connection (assuming minimal coupling to geometry). Thus,
we may call g�� the matter metric and the corresponding

connection � the matter connection. The connection �̂,
which determines the curvature of spacetime, is the geomet-
ric connection that enters the gravitational Lagrangian. In

general,� � �̂, in which case gravity is said to be nonmetric.
One of the earliest physical ideas utilizing the nonmetric-

ity of connections was Weyl’s conformally invariant gravity,
which postulated a gauge symmetry with respect to local
changes of scales [2]. There the incompatibility of the metric
with the connection is characterized by a single vector A� in

such a way that r̂�g�� ¼ A�g��, where r̂ is the covariant

derivative with respect to the independent connection.1

This turns out to be the Levi-Civita connection of the metric
ĝ�� that is related to g�� by the conformal transformation

ĝ�� ¼ Cg��.

In the present paper we propose that the two connec-

tions, � and �̂, have a functional relation that depends
nontrivially upon the spacetime curvature. We assume
the conformal relation

ĝ �� ¼ CðRÞg��; (1)

where C is an arbitrary function of the Ricci curvature

scalar R ¼ R½g; �̂� only. We denote the curvature related
to the matter connection � by R ¼ R½g� and call the class
of theories obeying the relation (1) C theories.
Besides simplicity, one reason for the choice (1) is that

there are suggestions that nonlinear actions involving R
avoid the Ostrogradski and ghost instabilities otherwise
generic in higher-derivative theories [3]. Moreover, it al-
lows us to make contact with the fðRÞ theories on which
there exists an extensive literature (for reviews, see [4–8])
that has inflated during the last decade or so because of the
possibility to explain the observed acceleration by an
infrared modification of gravity. There are two popular
formulations of these theories, the metric and the
Palatini, the latter employing the variational principle re-
garding the metric and the connection as independent
variables. We stress that these are physically different
theories rather than manifestations of the same theory in
different guises, as the two variational principles yield
inequivalent equations of motion (except when the action
is the Einstein-Hilbert and matter is minimally coupled to
geometry). Stability and Solar System constraints impose
restrictions upon the form of fðRÞ in the metric formalism,
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1The gauge symmetry in Weyl’s theory is then g�� ! e’g��,

A� ! A� � ’;�. This demonstrates why one needs a nonzero A�

(and why one could identify it with the electromagnetic
potential).
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and cosmological implications on the background expan-
sion [9,10] and structure formation [11,12] further con-
strain the potentially viable forms into somewhat
complicated functions [13–15]. In the Palatini formulation,
Solar System constraints are passed while there are certain
implications on the physics of stars [16]. The evolution of
cosmological perturbations in these models has been
shown to be incompatible with the observed large scale
structures [17,18], see, though, [19] [bounds on fðRÞ can
be also be derived from the background expansion
[20,21] ]. However, recent investigations show that the
models may be relevant to inflation or bouncing cosmology
[22–24].

An additional physical motivation for adopting the form
(1) is that then (and only then) the causal structure under-
lying the matter and the geometric connections is the same.
The Weyl rescaling, or conformal transformation, changes
the measure of distances but not the angles between vec-
tors, hence leaving the light cones invariant. In our case the
Weyl potential would read A� ¼ logC;�, so that the form

of nonmetricity we consider here would correspond to pure
gauge.

Let us note that although we employ the conformal
rescalings, C theory explicitly breaks conformal invariance
as of course does GR, too (there exist recent attempts at
conformally invariant gravity, e.g., [25]). In the fibre
bundle description [26], the separation of the tangent space
into vertical and horizontal subspaces is given by a slightly
modified rule that can depend upon the local curvature.

Perhaps surprisingly, the rather minimalistic extension
(1) of GR is found to lead to a variety of new physical
features in the structure of gravity. In particular, not only
the right-hand but also the left-hand side of the Einstein
field equations is modified. Moreover, C theories open a
unified view on both the metric and the Palatini formula-
tions of the fðRÞ theories, which are seemingly quite
detached from each other. Here they appear as two specific
limits with C ¼ 1 corresponding to the metric and C ¼
f0ðRÞ to the Palatini formulation. It becomes clear that
these two formulations possess quite special features
among the broader class of C theories: in the metric case
the geometric connection coincides identically with the
matter connection, while in the Palatini case the geometric
connection becomes nondynamical.2 In the latter case the
geometric connection may thus be regarded as only an
auxiliary field one uses to generate modified field equa-
tions. Such field equations then in fact are, at the very least,

problematical due to their strange derivative structure that
has been extensively discussed in the literature [6]. The
Palatini formulation in general seems not to have a
consistent formulation of the Cauchy problem [29], and
moreover, its solutions exhibit unpleasant singularities
[30]. These features are absent in the general class of
theories we consider, and can be traced to the fact that in
the Palatini formulation the independent connection is in
the Einstein frame. In any other case, the conformal rela-
tion between the two connections (or equivalently, the two
metrics), has a physical role in the sense that it is a
dynamical quantity, as consistent with the principle of
minimal action. This introduces a novel kind of gravita-
tional dynamics even in the case fðRÞ ¼ R.
In addition to allowing a unified view of the metric and

Palatini formulations, C theories also contain theories that
interpolate between the two. They also include theories
that extrapolate them. All of these are, in principle, physi-
cally inequivalent.
Furthermore, the presence of higher spin fields such as

spinors which couple explicitly to connection, new effects
arise also in the matter sector. It is natural interpret that
such fields are nonminimally coupled to the geometry, and
should feel the geometric instead of the matter connection.
This implies a generalization of the equivalence principle
and leads us to define a generalized stress energy tensor (or
’’the hyper stress tensor’’). The metric by itself still deter-
mines the motion of particles, but the geodesics of the
matter fields can be different when the geometric connec-
tion is allowed to vary dynamically. This is one of the
testable predictions of these theories. This can be com-
pared with the metric-affine gauge theories of gravity [31],
where spinning matter generates torsion of spacetime.
There the Palatini variational principle is at play and matter
is coupled to the connection. This has been also considered
in the case of nonlinear functions fðRÞ [32].
A crucial difference in our setup with respect to the

metric-affine one is that in our case there is a priori a
metric which is the potential for the independent connec-
tion. We can make this assumption since we are restricted
to Weyl spaces, i.e., the structure group of the fibre bundle
is then the conformal subgroup of the affine group of
transformations that allows considerably less freedom for
the connection. Promoting the metric that generates the
independent connection instead of the latter itself into the
fundamental degree of freedom, may seem a conceptually
better starting point as a connection is not a tensor field. A
practical consequence of prescription (1) is that the result-
ing theory avoids the inconsistency with the projective
invariance that appears in the metric-affine theories.
Namely, there the gravity side is invariant under the trans-

formations �̂�
�� ! �̂�

�� þ ��
�V� by an arbitrary vector V�,

but the matter side in general is not. The theories we
consider do not share this inherent inconsistency because
of the constraint on the connection.

2Our interpretation of the different connections is seemingly
somewhat orthogonal to the one advocated in, e.g., Refs. [27,28],
where g�� is regarded responsible for the causal structure and �̂
for the geodesic structure. As mentioned above, the causal
structures are identical (even in our generalized theories since
we neglect a possible disformal contribution in the relation
between the metrics here) and it is � that determines the physical
trajectories.
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Our prescription (1) is described by an action involving
an infinite loop, since the connection is a function of the
curvature which is generated by the connection etc ad inf.
This results in a nonlocal action,3 and we shall find that
there is indeed an equivalent scalar-tensor theory bearing
some resemblance to a localized version of a nonlocal
gravity theory. We show that a local version of C theories
can be formulated by applying A Lagrange multiplier that
imposes the constraint (1). It is rather trivial that the
Palatini variation, when subjected to the metricity con-
straint, is equivalent to the metric variation [37]. This
was discussed already in Ref. [38] and equivalence has
been established even at the quantum level [39] in the
Einstein-Hilbert case. In fact Lagrange multipliers in
gravitation have a long history,4 see, e.g., [44]. In the so
called constrained first order formalism they have been
applied to generalized gravitational Lagrangians also tak-
ing into account nonmetricity, see [45] for a review.
However, in addition to the most peculiar feature of C
theories which is that (1) the nonmetricity is prescribed
to be given by curvature, the differences to all previous
literature here are that (2a) in our case the constraints are
imposed upon the relation of metrics (and not of the con-
nections) and that (2b) we do not apply the Palatini varia-
tional principle. Nevertheless, a similar conclusion to ours
that the unconstrained variation results in inconsistencies
which are cured by imposing the constrains has been
reached also in, e.g,. [46]. Indeed, the difference (2) here
may be at least classically inessential to the general idea,
though technically allows us to explore a slightly different
framework where we need to vary only tensors (and avoid
an additional index). We stress that the novelty of C
theories and the new insight they provide upon Einstein
and Palatini gravities emerge from the simple proposal that
the relation between the matter and the geometric connec-
tions is curvature-dependent, which results formally in an
infinite derivative theory.5

We will formulate the action principle using a
Lagrangian multiplier in Sec. II. In Sec. III it is shown
that the theory can also be presented as a scalar-tensor
theory, which does not reduce to the usual ones except for
some specific forms of the action or in vacuo. The field
equations are then written down in Sec. IV to analyze the
structure of the theory in more detail. In particular, the

conservation laws are derived when matter is allowed to
couple to the connection. The perturbative stability of these
theories is investigated in Sec. V. Finally, before conclud-
ing in Sec. VII, we consider how the setup could arise from
two dual actions involving nonlinear dependence upon the
curvature in Sec. VI. A few details of scalar-tensor for-
mulations of the theories are confined to the Appendices.

II. ACTION

To specify our notation and conventions, we begin by
reviewing the definitions of some curvature quantities and
conformal relations between them. The Ricci curvature
scalar can be defined as a function of both the metric and

an independent connection �̂ through

R � g��R̂��

� g��ð�̂�
��;� � �̂�

��;� þ �̂�
���̂

�
�� � �̂�

���̂
�
��Þ: (2)

The definition of the metric Ricci scalar R is, as usually, the
above formula unhatted. If the independent connection is
compatible with a metric, there is a ĝ�� such that

�̂
�
�� ¼ 1

2ĝ
��ðĝ��;� þ ĝ��;� � ĝ��;�Þ: (3)

Again this holds with hats off as well. One can also con-
sider the curvature scalar constructed solely from the hat-

ted metric, which is defined by R̂ � ĝ��R̂��. Furthermore,

if the two metrics are related by a Weyl rescaling ĝ�� ¼
Cg��, the relation between the two connections is then

�̂
�
�� ¼ ��

�� þ ð2��
ð��

�
�Þ � g��g

��Þr� logC: (4)

This fixes the form of Weyl’s nonmetricity vector in a
unique way. It is then straightforward to find the trans-
formation of the Ricci tensor,

R̂�� ¼ R�� þ 1

4C2
½3ðD� 2ÞC;�C;� � ðD� 4Þð@CÞ2g���

� 1

2C
½ðD� 2Þr�r�Cþ g��hC�; (5)

from which follows that the three scalar curvatures (there
would be a fourth possible but we have no use for it) are
related as

R ¼ CR̂ ¼ R�D� 1

4C2
½4ChCþ ðD� 6Þð@CÞ2�: (6)

It is well known that the above relations naturally appear in
fðRÞ gravities [47]. In particular, the Palatini variation of
an fðRÞ action yields the result that the independent

connection �̂ is compatible with the conformal metric
ĝ�� ¼ f0ðRÞg��. The conformal factor C that relates the

Jordan and the Einstein frame in the Palatini as well as
metric fðRÞ theories has the same functional dependence
upon R, C ¼ f0ðRÞ (when D ¼ 4).

3This nonlocal action is, perhaps, emerging from a hypotheti-
cal strange loop quantum gravity yet to be developed. From
string field theory of the closed sector, one also expects nonlocal
gravitational actions with an infinite number of derivatives.
Implications of such actions are currently investigated in several
contexts [33–36].

4Recent applications include vector theories like the Einstein-
Aether theory [40,41] and modified gravity with reduced degrees
of freedom [42,43].

5At this point it is clear to the reader that the ’’C’’ of C theories
may refer as well to the modified connection, to the conformal
relation, or to the constrained variation.
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Here we consider the more general case where the
connection is conformally related to the metric by an
arbitrary function CðRÞ. Since this function in turn de-
pends on the connection (or equivalently, the conformal
metric that is the potential for the connection), we are lead
to the feedback loop

R ¼ Rðg; ĝðRðg; ĝðRð. . .ÞÞÞÞÞ: (7)

A way to realize this setup is to introduce a Lagrange
multiplier ��� that enforces the desired condition on the
metric ĝ��. Defining

� � g���
��; �̂ � ĝ���

��; (8)

we may write the action as

S ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p ½fðRÞ þ �̂� CðRÞ�

þ 16�GLmð�; r̂��; g��Þ�: (9)

Formally solving it and plugging the solution back yields
an fðRÞ theory whereR is given by (7). The matter fields
residing in the Lagrangian function Lm are denoted col-
lectively by �. We assume the minimal prescription gen-
eralizing Lagrangians from flat to curved spacetime as

	�� ! g��, @� ! r̂�.

Limiting fðRÞ gravities
We construct a class of theories which interpolates

between the metric and Palatini gravities; let us consider
a one-parameter family of functions C�ðRÞ such that

C0ðRÞ ¼ 1 and C1ðRÞ ¼ ðf0ðRÞÞ2=ðD�2Þ. A simple ex-

ample is C�ðRÞ ¼ ðf0ðRÞÞ2�=ðD�2Þ. One may also employ
the linear form

C �ðRÞ ¼ �ðf0ðRÞÞ2=ðD�2Þ þ 1� �: (10)

With such a choice, the conformal relation between the
metrics interpolates between the metric and the Palatini
cases when � 2 ½0; 1�. Now it is crucial to observe that the
Lagrangian multiplier terms also contribute to the dynam-
ics, in addition to imposing the conformality of the metrics.
In the case � ¼ 1 the presence of ��� modifies the field

equations in precisely the correct way to guarantee the
dynamical equivalence with the metric fðRÞ theory. In
the limit � ¼ 1 however, we obtain additional dynamics.
Thus, this C theory augments the Palatini models in such a
way that it contains all the solutions of the usual Palatini
theories, but also an additional degree of freedom. This
cures the problems like the ill-defined Cauchy formulation
and the appearance of curvature singularities in simple
solutions, since they all stem from the lack of dynamics.
Of course all solutions of the C-theory versions of
Palatini-fðRÞ gravity retain the same functional depen-

dence relating the two metrics ĝ�� ¼ ðf0ðRÞÞ2=ðD�2Þg��.

It is, however, illustrative to use a slightly different
parametrization of the action which yields precisely the
usual Palatini fðRÞ in the limit � ¼ 1. For this purpose we
multiply the constraint term by a constant which is other-
wise an irrelevant rescaling of the Lagrangian multiplier,
but ensures that the multiplier does not introduce addi-
tional dynamics in the case � ¼ 1:

S� ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p ½fðRÞ þ ð1� �Þð�̂� C�ðRÞ�Þ

þ 16�GLmð�; r̂��; g��Þ�: (11)

To recapitulate, this action interpolates between the metric
and the Palatini theories when� 2 ½0; 1�. Without the term
ð1� �Þ, the only difference is that at � ¼ 1 we obtain the
C-theory version of Palatini gravity sharing the solutions of
the usual one but not its pathologies.
It may be useful to observe that the action (9) can have

a mapping to f̂ðR̂Þ gravity in the C frame (the hatted

frame). Observe that R=CðRÞ ¼ R̂ and suppose there is a

solutionR ¼ rðR̂Þ. Then one may write the action in the C
frame as

S ¼
Z

dDx
ffiffiffiffiffiffiffi�ĝ

p
f̂ðR̂Þ þ 16�GSmð�; r̂��; ĝ��=CðrðR̂ÞÞ;

(12)

where

f̂ðR̂Þ ¼ C�ðD=2ÞðrðR̂ÞÞfðrðR̂ÞÞ: (13)

As an example, the power-law case fðRÞ �Rn, C�Rm

is f̂ðR̂Þ � R̂n�ðD=2Þm=ð1�mÞ gravity in the C frame. We look
at the vacuum of this example in the Jordan and Einstein
frames in Sec. III A. Here we should emphasize that the

action (9) is more general than f̂ðR̂Þ gravity (12) at least
because there does not always exist a solution to the

equation R=CðRÞ � R̂ ¼ 0, the simplest degenerate case
being a linear CðRÞ. In addition, this equation in general
has multiple roots, resulting in an interesting picture where
the same spacetime in different regions is effectively de-

scribed by a different f̂ðR̂Þ theory. In Palatini-fðRÞmodels
an analogous situation can occur at a less fundamental
level when the algebraic trace equation has multiple roots
so that the solutions of the same theory can interpolate
between regions of space with a different cosmological
constant.

III. (BI)SCALAR-TENSOR FORMULATIONS

As is well known, by a suitable transformation fðRÞ
theories can be expressed as scalar-tensor theories with

Lg ¼ 
R�!BD



ð@
Þ2 þ fðf0�1ð
ÞÞ �
f0�1ð
Þ; (14)

where the Brans-Dicke coupling parameter !BD ¼ 0 and
!BD ¼ �ðD� 2Þ=ðD� 1Þ, respectively, for the metric
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and Palatini cases.6 Such an approach works also for the
C theories. Adding yet a scalar Lagrangian multiplier
� and an auxiliary field 
, we may write a gravitational
Lagrangian density equivalent to the one appearing
in (9) as

L g ¼ fð
Þ þ �̂� Cð
Þ�þ �ðR�
Þ: (15)

Its algebraic equation of motion allows us to eliminate the
field 
 in terms of the two fields � and � as

f0ð
Þ � �C0ð
Þ � � ¼ 0 ) 
 ¼ 
ð�; �Þ: (16)

It follows that:

L g ¼ fð
ð�; �ÞÞ þ �̂� Cð
ð�; �ÞÞ�þ �R�
ð�; �Þ�:
(17)

We may then vary with respect to ��� to obtain (suppress-

ing the arguments of functions)

ĝ �� ¼
�
C� @f

@�
þ �

@C
@�

þ �
@


@�

�
g��: (18)

By virtue of Eq. (16), the last three terms vanish in the
right-hand side. We may then eliminate the hatted metric
from the Lagrangian. Plugging (6) into the action yields,
after a partial integration,

Lg ¼ �RþD� 1

4C2
½4Cg���;�C;� � ðD� 2Þ�ð@CÞ2�

þ fð
ð�; �ÞÞ � �
ð�; �Þ; (19)

where C is understood as a function of the two scalar fields
C ¼ Cð
ð�; �ÞÞ. In case one is concerned about neglecting
the tensor structure in � ¼ g���

��, note that the equation

of motion for ��� is

0 ¼ �ð ffiffiffiffiffiffiffi�g
p

LgÞ
����

¼ ffiffiffiffiffiffiffi�g
p �

@Lg

@��� �r�

@Lg

@ðr��
��Þ

�

¼ �ð ffiffiffiffiffiffiffi�g
p

LgÞ
��

g��; (20)

and therefore equivalent with the equation of motion for �.
Since we can write r�� ¼ g��r��

��, it follows by an

analogous argument that the tensor structure in � does not
contribute to the field equations of the metric.

We should then check that the parametrization (10) for a
given function f yields the Brans-Dicke theories that cor-
respond to the metric and Palatini fðRÞ in the relevant
limits. In the case � ¼ 0 the kinetic term in (19) is trivial,
and we obtain a Brans-Dicke theory with the coupling
parameter !BD ¼ 0. This corresponds to a metric fðRÞ
theory. When � ¼ 1, we have the solution � ¼ 0, and

then we can infer from (16) that C ¼ �2=ðD�2Þ. In this case
(19) reduces to a Brans-Dicke theory with the coupling
parameter !BD ¼ �ðD� 1Þ=ðD� 2Þ, which corresponds
to the Palatini version of an fðRÞ theory.
In passing we mention that a nonlocal fðR=hÞ action

[49] can also be written as a biscalar-tensor theory7

[52,53]. In that case the scalar fields are massless and the
kinetic term, though involves mixing, is of a different form
than in our (19) [this may be changed by considering more
general operators [54], for example � ¼ r�hð
Þr� and

adding additional term into the action RfðR=�Þ !
RfðR=�Þ þ VðR=�Þ].

A. Einstein frame

We consider the Lagrangian (19) in terms of the pair of
fields ð�;
Þ instead of ð�; �Þ as it simplifies some formu-
las. In Appendix A 1 we consider the equivalent system in
terms of the other pair of fields. The Einstein conformal
frame, denoted by a star, is reached by the conformal

transformation g��� ¼ ð�=�0Þ2=ðD�2Þg��. We obtain

S� ¼
Z

dDx
ffiffiffiffiffiffiffiffiffiffi�g�

p ½R� � 2�abð’cÞg���’a
;�’

b
;� � 4Bð’cÞ

þ 16�Gð�=�0Þ�D=ðD�2ÞLmð�; ð�=�0Þ�2=ðD�2Þg���Þ�:
(21)

We are employing the notation of Ref. [55] and the fields

are denoted as ’ð1Þ ¼ �, ’ð2Þ ¼ 
. The field � was re-
scaled � ! �=�0 so that all the fields have the dimension
mass squared. The potential is

Bð�;
Þ ¼ ð�0=�ÞD=ðD�2Þ

4

�
�

�0


� fð
Þ
�
; (22)

and the components of the field space metric �abð�;
Þ
defining the nonlinear sigma interaction is

���ð�;
Þ ¼ D� 1

2ðD� 2Þ�2
;

��
ð�;
Þ ¼ �
�ð�;
Þ ¼ �ðD� 1ÞC0ð
Þ
4Cð
Þ� ;

�

ð�;
Þ ¼ ðD� 1ÞðD� 2ÞC02ð
Þ
8C2ð
Þ :

(23)
6Brans-Dicke theories with the shifted !BD parameter !BD !

ðD� 1Þ
=ðD� 2Þð
��AÞ generalize the two versions of
fðRÞ theories. For this one-parameter class of theories, the field
is an algebraic function 
 ¼ 
ððD� 2Þ�ARþ 16�TÞ. The
case �A ¼ 0 is equivalent to fðRÞ theory, �A ¼ 1 corresponds
to Rþ fðRÞ theory, and in the limit�A ! 1 one recovers fðRÞ
gravity [48]. The algebraic property singles out uniquely the
interpolation within the restricted (almost) Brans-Dicke context.
However, we shall see that the C theories are not in general
confined to the Brans-Dicke class of scalar-tensor theories.

7However, there are subtleties in this localization to be taken
into account when mapping the solutions in the resulting theory
to the original starting point as remarked also in Refs. [50,51].
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Here again
 ¼ 
ð�; �Þ as given by (16). However, it turns
out that the metric �abð�;
Þ is degenerate. One of
the eigenvalues of the matrix defined by (23) vanishes
identically,

�ð1Þ
� ¼ 0;

�ð2Þ
� ¼ D� 1

8ðD� 2Þ
�ðD� 2Þ2C02ð
Þ

C2ð
Þ þ 4

�2

�
:

(24)

Therefore, we cannot invert �abð�;
Þ and straightfor-
wardly implement the results of [55] to analyze the post-
Newtonian parametrization limit. This implies that there is
only one additional propagating scalar degree of freedom
compared to GR. That agrees with the following section
where we find that the scalar � can be eliminated in terms
ofR and T, whileR needs, in general, to be solved from a
dynamical equation. The eigenmodes corresponding to the

eigenvalues �ð1Þ
� and �ð2Þ

� can be solved from, respectively

d~’ð1Þ ¼ ðD� 2ÞC0ð
Þ�
2Cð
Þ d�þ d
; (25)

d~’ð2Þ ¼ �2Cð
Þ
ðD� 2ÞC0ð
Þ�d�þ d
: (26)

One easily sees that only in the case of an exponential C
(25) and (26) are two exact differentials. We consider this
specific case in Appendix A 2.

In general we can decouple the kinetic term from the
other field even if it is not orthogonal to the dynamical field
in the field space. To this effect, we introduce

c ¼ ðD� 2Þ logCð
Þ � 2 log
�

�0

: (27)

The action is then rewritten as

S� ¼
Z

dDx
ffiffiffiffiffiffiffiffiffiffi�g�

p �
R� � D� 1

4ðD� 2Þg
���c ;�c ;�

� 4Bðc ; �Þ
�
þ 16�GSmð�; ð�=�0Þ�2=ðD�2Þg���Þ;

(28)

where

Bðc ; �Þ ¼ ð�0=�ÞD=ðD�2Þ

4

�
�

�0


� fð
Þ
�
;


 � C�1

��
ec�2

�2
0

�
1=ðD�2Þ�

:
(29)

By varying with respect to �, we obtain�
�0

�

�
D=ðD�2Þ�

Dfð
Þ � 2

�

�0

�

þ 2ec =ðD�2Þ

C0ð
Þ
�
1� �0f

0ð
Þ
�

�
¼ 16�GT: (30)

The field 
 ¼ 
ðc ; �Þ again as in Eq. (29), and T is the
trace of the energy-momentum tensor defined as

T�� ¼ �2ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
LmÞ

�g�� : (31)

We are assuming matter is coupled minimally in the Jordan
frame. Solving the auxiliary field from a constraint facil-
itates the analysis of the field equations. However, elimi-
nating the auxiliary field at the level of action in general
results in an unwieldy formulation of the theory, because of
the coupling to the matter trace in (30). This in general
would couple nonminimally to both the dynamical scalar
and to gravity in the Jordan frame.

B. Power-law model in vacuum

In vacuum or in the presence of only conformal matter
fields the Lagrangian can be written more conveniently in
terms of a single field. When T ¼ 0, the field � is given by

�

�0

¼ Cð
Þf0ð
Þ � D
2 C

0ð
Þfð
Þ
Cð
Þ � C0ð
Þ
 ; (32)

where 
 is regarded as the short-hand for a function of
ðc ; �Þ as in Eq. (29) above. To illustrate the system with an
exactly solvable an example, we consider the power-law
class of models specified by the two exponents n and m,

fðRÞ ¼ f0Rn; CðRÞ ¼ c0Rm: (33)

Here f0 and c0 are constants with the appropriate dimen-
sion. We obtain that


 ¼ k2=mðD�2Þ
0

c1=m
exp

�
c

mðD� 2Þ � 2ðn� 1Þ
�
;

�

�0

¼ k0 exp

� ðn� 1Þc
mðD� 2Þ � 2ðn� 1Þ

�
;

k0 �
�

f0ðn� D
2 mÞ

cðn�1Þ=m
0 ð1�mÞ

�
mðD�2Þ=mðD�2Þ�2ðn�1Þ

:

(34)

One may substitute this back into the action, transform
back into the Jordan frame and by a field redefinition of c
reintroduce the dimensionless � to put the Brans-Dicke
theory into its canonical form. An equivalent result is
obtained by just substituting C ¼ Cð�Þ into the action
(19) which then becomes

S ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p �
�R�!BD

�
ð@�Þ2 � V0�

n=ðn�1Þ
�
; (35)

where

!BD ¼ �mðD� 1Þ
4ðn� 1Þ2 ½4ðn� 1Þ �mðD� 2Þ�; (36)

V0 ¼
�
nþm�D

2
m� 1

��
1�m

ðn� D
2 mÞnf0

�
1=ðn�1Þ

: (37)
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When m ¼ 0 the Brans-Dicke parameter !BD vanishes, as
it should since m ¼ 0 is a metric fðRÞ model. In the case
m ¼ 4ðn� 1Þ=ðD� 2Þ there is also a mapping to a metric
fðRÞ model. The Palatini case m ¼ ðn� 1Þ=ðD2 � 1Þ,
which yields !BD ¼ �ðD� 1Þ=ðD� 2Þ as expected. The
potential (37) vanishes then, reflecting the fact that the
trace equation in Palatini gravity has a zero cosmological
constant solution in vacuum. An alternative way to look at
this is to note that in the C frame this is equivalent to
Einstein-Hilbert gravity, recall the consideration following
(12). We note also, from Eq. (34), that the field � vanishes
when n ¼ D

2 m. The reason behind this is that then the

model is solely the cosmological constant in the C-frame
(without the Einstein-Hilbert term). Finally, from the

relation (32) we make the interesting observation that
regardless of the form of fðRÞ, theories with linear relation
CðRÞ �R have the special property that the field R is an
algebraic function (of matter fields in general). The theory
can then nevertheless be consistent and dynamical.
However, the particular Lagrangian m ¼ 1, n ¼ D=2 is
degenerate, because this coincides with the Palatini limit.
The degeneracy of the quadratic Palatini theory has been
known since long [56].
To close this section, let us clarify that in general the

C theories do not reduce to simple Brans-Dicke gravity
even in vacuum. The general form of the kinetic term there
is such that the constant !BD in (35) is replaced by the
function

!ð�Þ ¼ ðD� 1ÞC02ð2Cf0 �DC0fÞ½D2C03f� 2DC02ðC0fþ 3Cf0Þ þ 4Cð3C02f0 þ 2CC0f00 � 2CC00ðf0 � �ÞÞ�
4C2½ðD� 2ÞC02f0 � 2CC0f00 þ 2CC00ðf0 � �Þ�2 ; (38)

where f ¼ fð
ð�ÞÞ and C ¼ Cð
ð�ÞÞ such that
ð�Þ solves
Eq. (32). Hence, in general the coupling in C theories is
nonlinear.

IV. FIELD EQUATIONS

Let us first assume that matter is minimally coupled to
the metric g��. By varying (9) with respect to the three

tensor fields g��, ĝ��, and �
�� we obtain, respectively, the

following equations of motion:

8�GT�� ¼ ½f0ðRÞ � �C0ðRÞ�R̂�� � 1

2
½fðRÞ þ �̂

� CðRÞ��g�� þ CðRÞ���; (39)

��� ¼ 1

2

ffiffiffî
g

g

s
ðĝ����

��
�
� þ ĝ����

���
�

� 2ĝ�ð���Þ
� �

�
�Þr̂�r̂�

� ffiffiffi
g

ĝ

s
ðf0ðRÞ � �C0ðRÞÞg��

�
;

(40)

ĝ �� ¼ CðRÞg��: (41)

We denote ��� ¼ g��g���
��, and the stress energy was

defined in (31). By imposing the constraint (41), the pair of
equations, (39) and (40), becomes

8�GT�� ¼ ½f0ðRÞ � �C0ðRÞ�R̂�� � 1
2fðRÞg��

þ CðRÞ���; (42)

��� ¼ CðRÞðD�4Þ=2ðĝ��ĥ� r̂�r̂�Þ½CðRÞð2�DÞ=2ðf0ðRÞ
� �C0ðRÞÞ�: (43)

The second derivatives ofR are contained in R̂�� and ���.

Thus, the general theories are nonlinear in second deriva-
tives of the curvature scalar, unlike the conventional fourth
order gravity.
At this point, it is easy to see that we obtain the correct

field equations in the appropriate limits of the parametri-
zation (10). When � ¼ 0, CðRÞ ¼ 1,R ¼ R and, thus, we
obtain the field equations for a metric fðRÞ theory:
� ¼ 0: f0ðRÞR�� � 1

2fðRÞg�� þ ðg��h�r�r�Þf0ðRÞ
¼ 8�GT��: (44)

In the C-theory version of the � ¼ 1 parametrization,
one sees that ��� ¼ 0 is a solution to (43). If we consider

the action (11), ��� does not appear in the field equations

in the first place, but the conformal relation follows as a
solution to Eq. (40). In either case, we obtain

� ¼ 1: f0ðRÞR̂�� � 1
2fðRÞg�� ¼ 8�GT��: (45)

TABLE 7. Some exceptional cases of C theories, which reduce to previously known or
degenerate theories are shown in the table.

C theory fðRÞ �R fðRÞ �RD=2 General fðRÞ
CðRÞ � 1 GR quadratic gravity metric fðRÞ
CðRÞ �R ? degenerate R ¼ RðTÞ
CðRÞ � f02=ðD�2ÞðRÞ GR degenerate Palatini-fðRÞ
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This is the field equation for Palatini-fðRÞ gravity. By
using the trace of this equation, f0ðRÞR�Df=2 ¼
8�GT we can express the scalar curvature as an algebraic
function of the matter stress energy trace, R ¼ RðTÞ.

In the general case, the structure of the theory is as
follows. There are two scalar degrees of freedom � and
R corresponding to the scalar fields � and � in our
formulation (19). The field equation (42) can be written
purely in terms of the metric and the scalar curvature by
using the conformal relation (5) for the Ricci tensor and
rewriting (40) as

��� ¼ CðRÞðD�4Þ=2ðg��h�r�r�ÞSðR; TÞ
� CðRÞðD�6Þ=2½ðDþ 1Þg��g

��CðRÞ;�SðR; TÞ;�
� 2CðRÞð;�SðR; TÞ;�Þ�: (46)

We used the short-hand notation SðR; TÞ ¼
CðRÞð2�DÞ=2ðf0ðRÞ � �C0ðRÞÞ. The reason is that using
the trace of the field equation (42)

�ðC0ðRÞR� CðRÞÞ � f0ðRÞRþD

2
fðRÞ þ 8�GT ¼ 0;

(47)

we may write the function SðR; TÞ as
SðR;TÞ ¼ Cð2�DÞ=2ðRÞ

�
�
f0ðRÞþ f0ðRÞR� D

2 fðRÞ� 8�GT

CðRÞ� C0ðRÞR C0ðRÞ
�
: (48)

It is probably more convenient to use this constraint in
practice than to solve the dynamical equation for the field �
one obtains by taking the trace of (46)

� ¼ ðD� 1ÞCðRÞðD�6Þ=2½CðRÞhSðR; �Þ
� ðDþ 2Þg��CðRÞ;�SðR; �Þ;��: (49)

This can be compared with the biscalar-tensor formulation
in Sec. III Awhere we found that the auxiliary scalar can be
eliminated in terms of the other scalar field and the matter
trace.

The trace (47) appears also as an equation of motion for
the scalar curvature. Notice however, that the field equa-
tions contain second derivatives of the metric and second
derivatives of the curvature scalar R. The trace does not
introduce additional information and thus (47) and (42)
cannot determine the evolution of the system in full gen-
erality. An independent piece of knowledge is provided by
the conformal relation between R and R which results in
the evolution equation for R,

hCðRÞ þ ðD� 6Þ
4CðRÞ ð@CðRÞÞ2 ¼ CðRÞ

D� 1
ðR�RÞ: (50)

Hence, to generate solutions one has to consider the second
order dynamical equation (50) for the scalar curvature
R, coupled with the field equations for the metric (42).

In the Palatini limit � ! 1 of the action (11), (47)reduces
to a constraint and the scalar curvature determining con-
nection cannot settle itself dynamically to minimize the
action. It is easy to see why the formulation of the Cauchy
problem is spoiled in this limit, since it is not continuous
but a degree of freedom disappears with the Lagrangian
multiplier. In the C-theory version this does not occur.
We note that while � ¼ 0 and � ¼ 1 are very special

points in the theory space, there seems to be nothing
particular in the limit fðRÞ ¼ R. This applies in the
case of any nontrivial CðRÞ, but for metric fðRÞ actions
it is well known that the linear case is a special limit where
the theory reduces to second order. However, linear C�R
has the special property that the curvature scalar has the
same functional relation R ¼ RðTÞ as in the Palatini

theories, as one immediately sees from (47). Then fðRÞ ¼
RD=2 is a special case which becomes doubly degenerate in
the sense that there also the trace of the fðRÞ part dis-
appears. It is interesting to note that barring these special
cases, in general one has a dynamical gravity theory even
in the case fðRÞ ¼ �2�, where in fact� can vanish.8 The
question whether such simple but exotic actions could
mimic GR to a sufficient accuracy is outside the scope of
the present study.
On the other hand, one could consider whether the

CðRÞ ! 0 can be dynamically reached consistently with
some general fðRÞ. Looking at the field equations does not
show any apparent problem with this limit. This would
realize the ’’ground state’’ of the metric ĝ�� where all its

components vanish, but the connection �̂ can remain well
defined. See Ref. [57] for an interesting discussion of the
motivations and implications of such a possibility.

Coupling matter fields to the connection

Consider matter fields � which couple explicitly to the
connection, Lm ¼ Lmðg�; ĝ��;�Þ. The equation of

motion for R retains its form (50). The field equations
generalize to

8�GT �� ¼ ½f0ðRÞ � LC0ðRÞ�R̂�� � 1
2fðRÞg��

þ CðRÞL��; (51)

L�� ¼ CðRÞðD�4Þ=2ðg�� �r�r�ÞSðR;T Þ
� CðRÞðD�6Þ=2½ðDþ 1Þg��g

��CðRÞ;�SðR;T Þ;�
� 2CðRÞð;�SðR;T Þ;�Þ�: (52)

The trace is

8For convenience we have multiplied the total action by the
coupling constant 8�G, and thus our � has the mass dimension
two and � ! 8�G� in the more usual convention.
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LðCðRÞ � C0ðRÞRÞ þ f0ðRÞR�D

2
fðRÞ ¼ 8�GT :

(53)

Here T �� is the generalized stress energy tensor

T �� � � 2ffiffiffiffiffiffiffi�g
p

�
�ð ffiffiffiffiffiffiffi�g
p

LmÞ
�g�� þ CðRÞ�ð

ffiffiffiffiffiffiffi�g
p

LmÞ
�ĝ��

þ C0ðRÞg�� �ð
ffiffiffiffiffiffiffi�g

p
LmÞ

�ĝ��
R̂��

�
; (54)

and T is its trace g��T ��. In analogy with metric

affinemetric-affine gravity [31] (MAG), we might call
T �� the hyper stress tensor, because it is the sum of the

usual stress energy tensor and terms from variation of the
matter Lagrangian with respect to the metric that deter-
mines the connection. In MAG the variation of the matter
Lagrangian with respect to the independent connection is
called the hypermomentum. Despite the same underlying
principle of the independence of the connection and the
metric, the structure of the present theory is quite different
from MAG. We have a considerably simpler system which
is ’’closer’’ to standard GR in the sense that our theory
reduces to a metric theory of gravitation with only DðDþ
1Þ=2þ 1 independent field equations. We also note that the
system is devoid of the inconsistency related to projective
invariance that plagues MAG (the gravity sector there is

invariant under transformations �̂�
�� ! ��

�V� where V� is

an arbitrary vector, but the hypermomentum is not). The
problem may stem from promoting the connection to a
fundamental degree of freedom, though it is not a tensor
field. This interpretation further corroborates our starting
point where the fundamental field is rather the metric
associated with the connection than the latter itself.

To study the conservation laws it is useful to define ��

and its trace

�� � �2
�Lm

�ĝ�� ;  � g����; (55)

such that

T �� ¼ T�� þ CðRÞ�� þ C0ðRÞR̂��: (56)

The matter action should be invariant under infinitesimal
coordinate transformations. With a minimal coupling to
geometry, the stress energy tensor is covariantly conserved.
In the case of extended gravity action, this results in
generalized Bianchi identities [47,58]. In the present
case, i.e., Lm ¼ Lmðg�; ĝ��;�Þ, it is obvious that in

general r�T
�� � 0, and the conservation laws will have

a different form. Consider a coordinate transformation

x� ! x0� ¼ x� þ ��: (57)

The variation of the matter action is

��Sm ¼ �8�G
Z

dDx
ffiffiffiffiffiffiffi�g

p �
T����g

�� þ ����ĝ
��

� 2
�Lm

��
���

�
: (58)

For the two first terms, we have used the definitions of the
stress energy tensors. By virtue of the equations of motion
for matter fields, the last term vanishes. It is easy to see by
Lie dragging along the vector �� and using a conformal
transformation that the two metrics change under (57) as

��g
�� ¼ 2rð���Þ; (59)

��ĝ
�� ¼ 2rð���Þ þ 2

CðRÞ ð2�
ð�r�ÞCðRÞ

� g����r�CðRÞÞ: (60)

Plugging this into (58) gives, after a partial integration

��Sm ¼ 16�G
Z

dDx
ffiffiffiffiffiffiffi�g

p ½r�ðT�� þ ��Þ
� 2��r� logCðRÞ þ r� logCðRÞ���: (61)

Since this holds for arbitrary �� we obtain that

r�ðT�� þ ��Þ ¼ 2��r� logCðRÞ þ r� logCðRÞ:
(62)

Thus, the discrepancy between matter and geometric con-
nections has nontrivial consequences to the equivalence
principle.

V. STABILITY CONDITION

In the following we consider the stability of the
theories (9) along the lines of Dolgov and Kawasaki [59],
who discovered an instability of the scalaron mode in
1=R-type theories in the weak field limit. This may be
called the curvature scalar instability, as it becomes appar-
ent in the equation of motion for the curvature scalar. In our
case it is given by Eq. (47). We are interested in the
phenomenological viability of the theories and fix D ¼
4. We may expand the functions determining our theories
about their GR limits as

fðRÞ ¼ Rþ �’ðRÞ; CðRÞ ¼ 1þ �c ðRÞ: (63)

In realistic models compatible with the Solar System ex-
periments, presumably the constant � > 0 can be treated as
a small parameter. We yet parametrize the curvature scalar
as R ¼ �8�GT þ �R1. Thus R1 measures the deviation
from the GR value ofR that is proportional to the trace of
the matter (which for simplicity is assumed a perfect fluid
here). Then Eq. (48) yields

SðR; TÞ � 1þ ð’0ðRÞ � c ðRÞÞ�: (64)
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Furthermore, we consider weak field regime featuring
perturbations h�� about the flat metric 	�� as g�� ¼
	�� þ �h��. Then, up to linear order in � we obtain by

using (64) in Eq. (49) that

� � �3�½ €’0 � €c �r2ð’0 � c Þ�; (65)

where the arguments of R are suppressed and an overdot
means a derivative with respect to time. Using Eq. (47),
one can then obtain the following evolution equation for
the perturbation of the curvature scalar:

€R1 �r2R1 þ 1

3ð’00 � c 0Þ
�
1

�
� ’0

�
R1 þ 2’

3ð’00 � c 0Þ
¼ 8�G

’000 � c 00

’00 � c 0 ½2ð _T _R1 � ðrTÞ � ðrR1ÞÞ

� 8�Gð _T2 � ðrTÞ2Þ� þ 8�G

�
T’0

’00 � c 0 þ €T �r2T

�
:

(66)

The right hand side vanishes in the vacuum and is not
essential for the curvature scalar instability, which occurs
because of the effective mass term. This is the second last
term in the left hand side and is typically large since � is
small. Requiring positivity of the effective mass squared
and recalling (63) yields the stability condition

f00ðRÞ 	 C0ðRÞ: (67)

The theory is invariant under the change of sign of CðRÞ
but the stability condition here is not simply because we
chose to perturb around CðRÞ ¼ 1. We stress also that this
viability criterion applies only around the general relativ-
istic values of these functions. Let us then look at the
implications of this condition in some specific cases.

(i) Einstein-Hilbert action fðRÞ ¼ R� 2�:
The viability criterion is simply that the slope of the
conformal factor is negative.

(ii) Metric fðRÞ gravity:
Now C0ðRÞ ¼ 0 and we have the stability condition
f00ðRÞ 	 0. This agrees with the result of [60],
where the analysis of Dolgov and Kawasaki [59]
in the 1=R case was generalized to arbitrary func-
tions fðRÞ.

(iii) Palatini-fðRÞ gravity:
In this special case CðRÞ ¼ f0ðRÞ, and the crite-
rion (67) is identically satisfied. The absence of the
instability in Palatini-fðRÞ gravity was discussed
in [61]. As expected, the gravitational perturbation
is not propagating but given as a function of the
matter content, R1 ¼ ð8�GT’0 � 2’Þ�, to first
order in �.

(iv) Interpolating and extrapolating models:
Consider the parametrization (10). Now we
find that the condition guaranteeing stability is

f00ðRÞð1� �Þ 	 0. Thus, the theories that interpo-
late between metric and Palatini versions of the
fðRÞ gravities share the same stability criterion
with the metric fðRÞ gravity. Extrapolating beyond
the ’’Palatini limit’’ � ¼ 1 where the scalaron is
nonpropagating then reverses the stability criterion,
and for �> 1 one requires f00ðRÞ< 0. Note that
these conclusions are independent of the detailed
form of the interpolating function C�ðRÞ and the
criterion is identical when, for example, C�ðRÞ ¼
ðf0ðRÞÞ�.

(v) Dual theories:
For the models derivable from dual Lagrangians as
discussed in Sec. VI, the conformal relation is fixed
by (74) for a given fðRÞ. The stability condition
becomes then

f00ðRÞ � 1

�0R2
ðRf0ðRÞ � fðRÞÞ 	 0: (68)

For the special case fðRÞ ¼ R� 2� in D ¼ 4 this
becomes � 
 0, since our convention (63) fixes c0 ¼ 1.
Thus, we can exclude a positive cosmological constant by
the stability argument.

VI. ONAGENERALIZEDEDDINGTON’S DUALITY

The Palatini action for GR in vacuum can be considered
as the parent action from which one can derive the
Einstein-Hilbert action by eliminating the connection, or
the Eddington action by eliminating the metric. Let us
consider this in a more general setting and write

Sðg; �̂Þ ¼
Z
½ ffiffiffiffiffiffiffi�g
p

fðRÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detR̂��j

q
hðRÞ�dDx: (69)

We will show that the two terms are equal when hðRÞ ¼
k0RD=2=fðRÞ, where k0 is a dimensionless constant. In
the special case fðRÞ ¼ R� 2�, the first piece in (69) is
well known to be equivalent to the purely metric Einstein-
Hilbert action. The vacuum solution R ¼ D�=ðD� 2Þ
can be used in the second piece in (69), which then
becomes the Eddington action. Therefore, in this case the
two contributions in (69) are easily seen to be the equiva-
lent daughter actions of GR deriving from the Palatini
action [39,57]. In the general case when fðRÞ and hðRÞ
can be nonlinear functions, varying with respect to the
metric gives

f0ðRÞR̂�� � 1

2
fðRÞg�� þ h0ðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detR̂��

g

vuut
R̂�� ¼ 0; (70)

from the trace of this equation we then obtainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detR̂��

g

vuut ¼
D
2 fðRÞ � f0ðRÞR

h0ðRÞR : (71)
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Considering this constraint back in the action (69), it is
easy to see that the two pieces transform into each other

when hðRÞ ¼ k0RD=2=fðRÞ.
To make better contact with the present ideas, let us

reformulate (69) by beginning from the assumption that
there is a metric ĝ�� that generates the independent con-

nection. It is then natural to consider the volume element to
be given by this metric instead of its Ricci tensor. We are
lead to the bimetric action

Sðg; ĝÞ ¼
Z
½ ffiffiffiffiffiffiffi�g
p

fðRÞ þ ffiffiffiffiffiffiffi�ĝ
p

hðRÞ�dDx: (72)

In analogy to the above, the trace of the field equation
yields the relation between the determinants. This implies
that the metrics are now conformally related,

ĝ �� ¼
�D
2 fðRÞ � f0ðRÞR

h0ðRÞR
�
2=D

g�� � CðRÞg��: (73)

It is then obvious that the first part of the action implements
the setup realized in theory (9), a function fðRÞ of the
conformal curvature related to the curvature of the metric
by CðRÞ. Again, one can deduce that the second piece in

(72) is equal to the first when hðRÞ ¼ ð�0RÞD=2=fðRÞ,
where �0 now has the dimension of mass 2

D ð4�DÞ. In this
case the conformal relation is fixed by the function fðRÞ as

C ðRÞ ¼
�
fðRÞ
hðRÞ

�
2=D ¼ 1

�0R
f4=DðRÞ: (74)

The particular form (74) of CðRÞ may thus be of specific
interest. In the Einstein-Hilbert case this relation becomes
trivial. However, already by including a cosmological con-
stant an interesting deviation from the GR is obtained. In
D ¼ 4 we then have CðRÞ ¼ ð1� 2�=RÞ=�0. This dem-
onstrates how the duality can naturally generate infrared
corrections to gravity due to the inverse relation of hðRÞ
and fðRÞ. This kind of inverse curvature-type corrections
have been invoked to explain the present acceleration of
the Universe. [The fðRÞ-type of inverse curvature gravity
though fails to produce a viable background in the metric
[9] and the observed structures in the Palatini formalism
[17]. The cosmology of the present theories is left to future
studies.] We note that in general the action (72) is not
equivalent to the Palatini-fðRÞ even in vacuum. The con-
dition that CðRÞ operates the transformation to the Einstein

frame is CðRÞ ¼ ðf0ðRÞÞD=ðD�2Þ. Using the relation (74),
the differential equation has the solution

fðRÞ ¼
�

2

D�1�ð2=DÞ
0

ðR2�ðD=2Þ �R2�ðD=2Þ
0 Þ

��D=ðD�4Þ
;

(75)

where R0 is an integration constant. We obtain
Palatini-fðRÞ gravity only for these specific forms
of fðRÞ. In D ¼ 4 the solutions are the power laws

fðRÞ �R1=�0 . The metric fðRÞ gravity is recovered

when fðRÞ �RD=4, which in D ¼ 4 allows only the
Einstein-Hilbert term.
To close this section, we briefly comment relations to

bigravity theories. The recently introduced Eddington-
Born-Infeld theory [57,62] emerges from another type of

modification of the Eddington theory, where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detR̂��j

q
!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j detR̂��j � g��

q
. This theory can then be shown to be-

long to the class of bigravity theories [63] analyzed, e.g., in
Ref. [64]. In our case the dynamics of the two metrics is
much more constrained, and in fact only one extra degree
of freedom, corresponding to the conformal relation be-
tween the metrics, is propagating. Some sort of nonlinear
bigravity could arise if we considered, in complete sym-
metry between g�� and ĝ��, h in (72) to be a function of

h ¼ hðĝ��R��Þ. However, our starting point prescribes

different roles for the metrics, and it is reasonable to
consider that this sorts out also the curvature R in (2) to
mediate the interaction in both parts of the action (72),
though other invariants of course could be constructed
from the two metrics.

VII. CONCLUSIONS AND PERSPECTIVES

In Einstein gravity, the spacetime connection is pre-
scribed to be metric compatible, whereas in metric-affine
theories one treats the connection as an independent vari-
able. In general the latter results in a completely different
theory, which in many instances turns out to be unphysical.
In the paper at hand, we considered the possibility that the
connection has a prescribed relation to the metric, which
however, could depend upon the curvature of spacetime. In
particular, the connection was assumed to be compatible
with the conformal metric ĝ�� ¼ CðRÞg��. It turns out

that this subtle adjustment of a foundational principle
underlying GR generates a novel type of viable gravita-
tional theories that include both the metric and Palatini
gravities as special limits. These C theories contain but one
additional scalar degree of freedom compared to GR, but
nevertheless have a remarkably rich structure. We provided
several viewpoints into this: the loop formulation (7), the
action in the constrained formalism (9), the C-frame picture
(12), and the biscalar-tensor theory (19), which in special
cases can be reduced to the Brans-Dicke form (35).
The observational implications of the C theories remain

to be studied. The first viability check, stability about
Minkowski space, is passed given the condition (67).
Severe constraints can certainly be derived from Solar
System tests of gravity. It would be very useful to find
out how close to unity they force CðRÞ [and how this
depends upon fðRÞ]. Cosmological applications then
come into question. In particular, one could ask whether
C theories eventually have more to say to the cosmological
constant problem or at least to the dark energy problem
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than the limiting fðRÞ theories. In addition, it is natural to
consider constraints on the ultraviolet modifications pos-
sibly relevant in the early universe. Also the theoretical
prospects of C theories are evidently interesting. It is well
known that usual higher-derivative gravity can be renor-
malizable but only for the unaffordable price of unitarity
[65]. Whether this is the case for the present class of
theories should be studied separately.

Finally, let us note the two obvious generalizations of
our starting point (1): one could consider the relation of the
metrics to depend upon more general curvature invariants
thanR, and one could consider the relation to be disformal
[66,67]. These generalizations are in fact intimately re-
lated, as it is known that the Palatini variation of theories
involving general curvature invariants results in disformal
relations [68–71]. Therefore, unifying the Einstein and
Palatini versions of generalized higher-derivative actions
in the way described here would imply modifying the
relation between the metrics from (1). In this exploratory
study, our restriction to this form was guided by simplicity
and minimality. This choice may also be motivated by
special stability properties of actions nonlinear in R
among all possible higher-derivative gravities and the spe-
cial causal structure preserving property of the Weyl re-
scaling among all possible transformations. However, it
would be of interest to study in detail also more general
gravity theories within the unified framework.

ACKNOWLEDGMENTS

We are thankful to Esko Keski-Vakkuri for helpful dis-
cussions. L. A. acknowledges support by the DFG through
TRR33 ‘‘The Dark Universe,’’ K. E. is supported by the
Academy of Finland Grants No. 218322 and No. 131454.
T. K. is supported by the FOM and the Academy of
Finland.

APPENDIX A: EQUIVALENT
SCALAR-TENSOR THEORIES

1. Einstein frame for ð�; �Þ
The Lagrangian (19) is transformed into the Einstein

conformal frame, denoted by a star, by the conformal

transformation g��� ¼ �2=ðD�2Þg��. We obtain

S� ¼
Z

dDx
ffiffiffiffiffiffiffiffiffiffi�g�

p ½R� � 2�abð’cÞg��
� ’a

;�’
b
;� � 4Bð’cÞ

þ 16�G��D=ðD�2ÞLmð�; ��2=ðD�2Þg���Þ�: (A1)

We are employing the notation of Ref. [55] and the fields
are denoted as ’1 ¼ �, ’2 ¼ �. The potential is

Bð�; �Þ ¼ ��D=ðD�2Þ

4
½�
ð�; �Þ � fð
ð�; �ÞÞ�; (A2)

and the components of the field space metric �abð�; �Þ
defining the nonlinear sigma interaction is

���ð�; �Þ ¼ D� 1

2

�
1

ðD� 2Þ�2
� C0ð
Þ

Cð
Þðf00ð
Þ � �C00ð
ÞÞ�þ ðD� 2ÞC02ð
Þ
4C2ð
Þðf00ð
Þ � �C00ð
ÞÞ2

�
;

���ð�; �Þ ¼ ���ð�; �Þ ¼ D� 1

4

� ðD� 2ÞC03ð
Þ
2C2ð
Þðf00ð
Þ � �C00ð
ÞÞ2 �

C02ð
Þ
Cð
Þðf00ð
Þ � �C00ð
ÞÞ�

�
;

���ð�; �Þ ¼ ðD� 1ÞðD� 2ÞC04ð
Þ
8C2ð
Þðf00ð
Þ � �C00ð
ÞÞ :

(A3)

Here again 
 ¼ 
ð�; �Þ as given by (34). However, it turns out that the metric �abð�; �Þ is degenerate. One of the
eigenvalues of the matrix defined by (A3) vanishes identically,

�1
� ¼ 0;

�2
� ¼ ðD� 1Þ½4C2ð
Þðf00ð
Þ � �C00ð
ÞÞ2 � 4Cð
ÞðD� 2ÞC0ð
Þðf00ð
Þ � �C00ð
ÞÞ�þ ðD� 2Þ2C02ð
Þð1þ C02ð
ÞÞ�2�

8Cð
Þ2ðD� 2Þðf00ð
Þ � �C00ð
ÞÞ2�2
:

(A4)

Therefore, we cannot invert �abð�; �Þ and straightfor-
wardly implement the results of [55] to analyze the post-
Newtonian parametrization limit. Does this imply that
there is only one additional propagating scalar degree of
freedom compared to GR? That would agree with the
following section where we find that the scalar � can be
eliminated in terms ofR and T, whileR needs, in general,
to be solved from a dynamical equation. The eigenmodes
corresponding to �1

� and �2
� are, respectively,

d~’1 ¼ �C02ð
Þ�
�Cð
ÞC00ð
Þ � Cð
Þf00ð
Þ þ C0ð
Þ�d�þ d�;

(A5)

d~’2 ¼ �Cð
ÞC00ð
Þ � Cð
Þf00ð
Þ þ C0ð
Þ�
C02ð
Þ� d�þ d�;

(A6)

in D ¼ 4.
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2. Special case: exponential C

To proceed, we use the pair ð�;
Þ instead of ð�; �Þ in
(19) and onwards. Let us consider the case of exponential

relation CðRÞ ¼ C0e2kR=ðD�2Þ where C0 are k some con-
stants, the scaling C0 being irrelevant and k having the
dimension one per mass squared. Now (25) and (26) can be
solved by

~’ ð1Þ ¼ 
þ k�2

2
; ~’ð2Þ ¼ 
� log �

�0

k
: (A7)

The inverse transformation is, assuming � > 0,


 ¼ ~’ð1Þ �Wð½k�0e
kð~’ð1Þ�~’ð2ÞÞ�2Þ
2k

;

� ¼ W1=2ð½k�0e
kð~’ð1Þ� ~’ð2ÞÞ�2Þ
jkj ;

(A8)

where WðxÞ is the Lambert W function which solves the
equation x ¼ WeW . In the following we denote it just
Wð~’cÞ since the argument of the function will have the

fixed form x ¼ k2�2
0e

2kð~’ð1Þ� ~’ð2ÞÞ as above. In terms of the

new fields, the action becomes

S� ¼
Z

dDx
ffiffiffiffiffiffiffiffiffiffi�g�

p �
R� � D� 1

ðD� 2Þk2 ð@ ~’
ð2ÞÞ2 � 4Bð~’cÞ

�
þ 16�GSmð�; A2ð~’cÞg���Þ; (A9)

where the two functions are

Bð~’cÞ ¼ 1

4

� jkj�0

W1=2ð~’cÞ
�
D=ðD�2Þ�W1=2ð~’cÞ

jkj�0

�
~’ð1Þ �Wð~’cÞ

2k

�

þ f

�
~’ð1Þ �Wð~’cÞ

2k

��
; (A10)

Að~’cÞ ¼
� jkj
W1=2ð~’cÞ

�
1=ðD�2Þ

: (A11)

Varying the action (A9) with respect to the auxiliary field

~’ð1Þ now yields, when Wð~’cÞ � �1,

D� 2

2

� jkj�0

W1=2ð~’cÞ
�
D=ðD�2Þ��

~’ð1Þ �Wð~’cÞ
2k

þ 1

jkj
�

�W1=2ð~’cÞ
�0

þ f0
�
~’ð1Þ �Wð~’cÞ

2k

��
� 2Djkj�0Bð~’cÞ ¼ �8�GjkjT: (A12)

Let us consider a special case. We choose the Einstein-
Hilbert form fðRÞ ¼ R in D ¼ 4 dimensional vacuum
T ¼ 0. The theory then assumes the form

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �

R� 3ð8�
ð7� 2
ÞÞ

2ð
� 2Þ4 ð@
Þ2

� ð
� 1Þ2
kð
� 2Þ

�
: (A13)

This illustrates the facts that even linear fðRÞ result in new
gravitational effects in the C theory context and that we
cannot reduce the models in general to the pure Brans-
Dicke form, but the coupling is instead nonlinear. Here, in
the limit k ! 0, the field 
 is fixed to 
 ¼ 1 and Einstein
gravity is recovered.

3. A subtlety

As noted in Sec. III, we can rewrite the action (9) as

L g ¼ fð
Þ þ �̂� Cð
Þ�þ �ðR�
Þ: (A14)

Now solving the constraint equation for ���, which is
ĝ�� ¼ Cð
Þg��, and then plugging the constraint imposed

by � back into the :Lagrangian give

L g ¼ fð
Þþ�

�
R�ðD� 1ÞðD� 6Þ

4C2ð
Þ ð@Cð
ÞÞ2

�D� 1

Cð
Þ hCð
Þ�


�

¼ f

�
R�ðD� 1ÞðD� 6Þ

4C2ð
Þ ð@Cð
ÞÞ2 �h
D� 1

Cð
Þ Cð
Þ
�
:

(A15)

One implication of this would be that when fðRÞ ¼ R the
theory reduces to GR plus a minimally coupled scalar field.
However, we emphasize that the theory on the second line
of (A15) is not, in general, the same as in the first one. This
is because the second equality in (A15) is obtained by
plugging a dynamical equation of motion back into the
action, which in general is not legitimate. This is obvious
when considering a simple scalar theory 2L’ ¼ ’ðh�
m2Þ’: if we plug the Klein-Gordon equation h’ ¼ m2’
back into the action it vanishes. The second line in (A15)
should be regarded as the action for a fixed configuration of

 that is a solution to the constraint equation.
The 
 appearing in the action is thus not a variational
degree of freedom.
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