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Kaluza-Klein models: Can we construct a viable example?
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In Kaluza-Klein models with toroidal compactification of the extra dimensions, we investigate soliton
solutions of Einstein equation. The nonrelativistic gravitational potential of these solitons exactly
coincides with the Newtonian one. We obtain the formulas for perihelion shift, deflection of light, time
delay of radar echoes and post-Newtonian (PPN) parameters. Using the constraint on PPN parameter 7y,
we find that the solitonic parameter k should be very big: |k| = 2.3 X 10*. We define a soliton solution
which corresponds to a pointlike mass source. In this case the soliton parameter k = 2, which is clearly
contrary to this restriction. A similar problem with the observations takes place for static spherically
symmetric perfect fluid with the dustlike equation of state in all dimensions. The common for both of
these models is the same (dustlike) equations of state in our three dimensions and in the extra dimensions.
All dimensions are treated at equal footing. This is the crucial point. To be in agreement with observations,
it is necessary to break the symmetry (in terms of equations of state) between the external/our and internal
spaces. It takes place for black strings which are particular examples of solitons with k — oco. For such k,
black strings are in concordance with the observations. Moreover, we show that they are the only solitons
which are at the same level of agreement with the observations as in general relativity. Black strings can be
treated as perfect fluid with dustlike equation of state p, = O in the external/our space and very specific
equation of state p; = —(1/2)e in the internal space. The latter equation is due to negative tension in the
extra dimension. We also demonstrate that dimension 3 for the external space is a special one. Only in this
case we get the latter equation of state. We show that the black string equations of state satisfy the
necessary condition of the internal space stabilization. Therefore, black strings are good candidates for a
viable model of astrophysical objects (e.g., Sun) if we can provide a satisfactory explanation of negative

tension for particles constituting these objects.
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L. INTRODUCTION

Any physical theory is only worthy of serious attention
when it is consistent with observations. It is well known
that general relativity in four-dimensional spacetime is in
good agreement with gravitational experiments such as
perihelion shift, deflection of light, time delay of radar
echoes and parameterized post-Newtonian (PPN) parame-
ters. On the other hand, the modern theories of unification
such as superstrings, supergravity and M theory have the
most self-consistent formulation in spacetime with extra
dimensions [1]. Different aspects of the idea of the multi-
dimensionality are intensively used in numerous modern
articles. Therefore, it is important to verify these theories
as to their conformity with the experimental data. It was
the main aim of our previous paper [2]. We considered a
Kaluza-Klein model with toroidal compactification of the
extra dimensions. A matter source was taken in the form of
a pointlike mass. This approach works very well in general
relativity for calculation in a weak field limit of the for-
mulas for the gravitational experiments [3]. We expected
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that such approach will be also applicable to our
multidimensional model. To verify it, we obtained the
metric coefficients in a weak field approximation and
applied them to calculate the formulas for gravitational
experiments. We found that expressions for perihelion
shift, light deflection, time delay and PPN parameters
demonstrate good agreement with the experimental
data only in the case of ordinary three-dimensional space.
This result does not depend on the size of the extra dimen-
sions. Therefore, the pointlike gravitational sources
are in concordance with experiments only in three-
dimensional space. This result was a surprise for us and
motivated us to write the present article to clarify the
reason.

The paper is structured as follows. In Sec. II we consider
the family of exact 5-D soliton solutions. To define the
connection with our previous paper, among these solutions
we single out one with asymptotic metric coefficients
exactly coinciding with ones obtained in [2] for a pointlike
mass. Hence, this soliton contradicts the experiments. We
show that T\, is the only nonzero component of the energy-
momentum tensor in this case. From this point this soliton
can be treated as perfect fluid with the dustlike equation of
state in all dimensions.
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To demonstrate that the delta-shaped form is not a cause
for contradictions with experiments, we consider in Sec. I1I
the finite size static spherically symmetric perfect fluid
with dustlike equation of state in all dimensions. Here,
we arrived at exactly the same form of the asymptotic
metric coefficients as in the case of pointlike mass source.
Therefore, this model also contradicts the observations.
Thus, both the pointlike mass model and the perfect fluid
with dustlike equation of state in all directions failed with
experiments. The common for both of these models is the
same equations of state in our three dimensions and in the
extra dimensions. So, all dimensions are treated at equal
footing. This is the crucial point. To be in agreement
with observations, it is necessary to break the symmetry
between the external/our and internal spaces.

To prove it, we investigate in Sec. IV the conditions
under which the solitonic solutions do not contradict the
observations. We obtain the formulas for perihelion shift,
deflection of light, time delay of radar echoes and PPN
parameters. Using the constraint on PPN parameter vy
which comes from the Cassini spacecraft experiment, we
found that the solitonic parameter k should be very big:
|k] = 2.3 X 10*. Roughly speaking, |k| — oo. In the case
of pointlike mass soliton solution k = 2, which is clearly
contrary to this restriction.

In Sec. V, we consider black strings which are a particu-
lar case of the soliton solutions and satisfy the condition
|k| — 0. The four-dimensional part of this metric exactly
coincides with Schwarzschild metrics and the internal
space is flat. Obviously, the results of gravitational experi-
ments in this model exactly coincide with general relativ-
ity. Here, Ty and T4 are the only nonzero components of
the energy-momentum tensor. 7y is negative and is called
tension. Moreover, 7%, = 2T*,. It can be treated as dust-
like equation of state p, = 0 in the external space and very
specific equation of state p; = —(1/2)e in the internal
space. Additionally, we consider in this section the static
spherically symmetric perfect fluid with dustlike equation
of state pp = 0 in dy-dimensional external space and an
arbitrary equation of state p; = we in d;-dimensional
internal space. We demonstrate that the demand of an exact
correspondence between this model and general relativity
automatically leads to equation of state p; = —(1/2)e for
dy = 3. The dimension 3 for the external space is a special
one. Only in this case parameter w does not depend on
d, and equals —1/2. Therefore, in the case of three-
dimensional external space, the black string equations of
state po = 0 and p; = —(1/2)& are the only ones which
ensure the same level of agreement with the observations
as in general relativity.

The main results are summarized and discussed in the
concluding Sec. VI. Here, we reveal one very important
property of black strings. We show that the black string
equations of state satisfy the necessary condition of the
internal space stabilization. Therefore, black strings are
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good candidates for a viable model of astrophysical objects
(e.g., Sun) if we can provide a satisfactory explanation of
negative tension for particles constituting these objects.

II. SOLITON METRICS

The pointlike matter source is the reasonable approxi-
mation in three-dimensional space in the case when the
distance to a gravitating mass is much greater than its
radius. This approximation was used, e.g., in [3] to get
formulas for perihelion shift and deflection of light in
general relativity. At first glance, this approach should
also work well in the case of a multidimensional space.
To check this assumption, in our paper [2] we obtained
asymptotic expression for the metric coefficients in multi-
dimensional spacetime with the pointlike mass m at rest:

2

re Ty
£+ —”z)czdt2

r3 o 2r3

ds? = (1

1 r .
- (1 + ) r—i)(dr% + r3d6* + risin’0dy?)
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where ry is the length of a radius vector in three-
dimensional space, r, = 2Gym/ c?, Gy is the Newtonian
gravitational constant and we used three-dimensional
isotropic coordinates. We suppose that the (D =
3 + d)-dimensional space has the factorizable geometry
of a product manifold M, = R* X T?. R* describes the
three-dimensional asymptotically flat external (our) space
and 79 is a torus which corresponds to a d-dimensional
internal space with volume V,. Then, we demonstrated
that this metric does not provide the correct values of the
classical gravitational tests (perihelion shift, light deflec-
tion, PPN parameters) for D > 3. Mathematically, this
discrepancy arises because of the prefactor 1/(D — 2) in
metric coefficients (1) instead of the prefactor 1 as in
general relativity.

On the other hand, there is a number of well-known
exact vacuum solutions for the Kaluza-Klein models.
Therefore, it is of interest to determine the relationship
between these exact solutions and our asymptotic metric
coefficients and try to understand why the delta-shaped
matter source approach does not work in multidimensional
space. In this regard, we will investigate 5-D static metrics
in isotropic (with respect to our three-dimensional space)
coordinates:

ds®> = A(rs)cdr* + B(r;)(dx* + dy* + dz?) + C(r;)d &2,
(2)
where r3 = 4/x> + y? + z°. This spacetime has two Killing

vectors 9/t and 9/9&. It is clear that the appropriate
energy-momentum tensor also should not depend on time
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t and fifth coordinate £. We suppose that metric (2) is a
solution of the vacuum Einstein equation

Ry =0 3)

with the proper boundary conditions. It is worth noting that
the dependence of the metric coefficients in (2) only on r3
means that the matter source for such metrics is uniformly
“smeared”’ over the fifth dimension [4,5]. It is clear that in
this case the nonrelativistic gravitational potential depends
only on r; and exactly coincides with the Newtonian one.

To our knowledge, the first solution of the form of (2) in
nonisotropic ‘“Schwarzschild-like” coordinates was found
in [6] and reads

! —

ds® = (1 = ﬁ)“ 2di? — (1 = 3) P an

/ /
3 3

b\1-d-b' b\

r3 3

where a’ and b’ are constants satisfying the condition
a?+ad'b +b? =1 ()

and the parameter b is usually connected with the gravitat-
ing mass: a'b = 2Gym/c* = re. Then, in the isotropic
coordinates this solution was obtained in [7,8] and dubbed
in the literature the soliton solution. Its generalization for
D = 5 was performed in [9-11]. In our paper we choose
the metrics in the parametrization proposed in [8]:

ds* = (ar3 _ 1>28kc2dt2

ar; + 1
1 \2/ar; + 1\2&k—1)
_ (1 - —azrg) (m - 1) (A3 + 2d03)
ary + 1)2s ,
- dés, 6
(ar3 - 1 f ( )

where a, € and k are constants and parameters & and k
satisfy the condition

k> —k+1) =1 (7

The Schwarzschild-like solution (4) and the soliton solu-
tion (6) are connected by the relations

/ b 2
r3=r3 1+F (8)
3

and

a = ek, b = —¢, a=

()]

S A

It follows from (8) that ry = r3 + O(1/c?) if b =4/a =
ro/d.

In the approximation f = 1/(ar;) < 1 and up to O(f)
we obtain for the metric coefficients of (6) the following
formulas:
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By = (1= PP( )" = o1 e 1y
- 4e(k — 1)
ars
(10)
and
(LN L g g B
Clry) = (m) I—def = 1= (D

Now, we want to compare these expressions with asymp-
totic metric coefficients from (1) (where D = 4):

p
B(r;) = -1 — %,
(r3) 2rs

Clry) =~ —1—-%  (12)
27”3

Comparing expressions (10) and (11) with our asymptotic
metric coefficients (12), we get

1 8
k=2, e =—, a=—, 13
e G P

where we take into account the relation (7). Finally, for
A(rs) from (6) up to O(f?) we get

1 — 2¢ek
Alrs) = (71 - ;) ~ 1| — dekf + 8%k
dek  8&2k? r, 12
=l-—+="=1-54_8 14
ar a’r? ro 2r? (14

in complete analogy with asymptotic metric coefficient
A(r3) in (1). Therefore, for the parameters (13) the soliton
metric (6) reads

ds? = (M)M ﬁczdtz

1+ \/grg/Srg,
1+/3r,/8r3\2/V3
—(1— 3r§,/64r§)2<71 — \/grz/Slg) (dr +r3dQ3)
_ (1 +3r,/ 8’3)2/ ﬁdgz, (15)
1- \/grg/8r3

Our analysis shows that this form of metric provides the
correct asymptotic behavior in the case of delta-shaped
matter source. The metric (15) is the exact solution of the
Einstein equation for the gravitating mass at rest (v = 0)
uniformly “smeared” over the extra dimension. The only
nonzero component of the energy-momentum tensor is 7y,.
We can prove it by the following way. It is clear from the
previous consideration that the metric coefficients in (15)
up to the terms 1/c? read
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’
goo =1 —-2=1+ he,

r3
Goa~—1—2b = —14hyy = hegy=—-2% (16)
aa 21"3 aa 00 7'3’

r
hyo = — ==, a=12734.

27’3

With the same accuracy the components of the Ricci tensor
are

1 1 r Gym . 1
Ro=zAhypy=—-—AE=—-"L"N=
00 ) 00 ) rs cz rs
47Gymd 1
_ M — ky Loy, (17)
c 2
1
Ry, = kNZm8(r3)C2, a=172734,

where ky = 87Gy/c* and A = 8§%F9%/9x*9xP is the
D-dimensional Laplace operator (see for details [2]).
(17) indicates that all spatial components of the Ricci
tensor are equal to each other. From Einstein equations it
easily follows that this equality may take place only if
T\, = T,, = T33 = T44. Taking into account that the mat-
ter source is at rest: Ty = Ty, =T33 = 0= Ty, = 0, we
may conclude that the only nonzero component of the
energy-momentum tensor is 7. Hence, for the Einstein
equations we obtain

1 2
Ry = kD<T00 - ngoo) = kDgTOOr
1 1
Raa = kD<Toza - 7Tg0zoz) =~ kﬂfTO()) (18)
3 3
a=1,2734,

where kp = 25,Gp/c* and Sp = 27P/2/T(D/2) is the
total solid angle (surface area of the (D — 1)-dimensional
sphere of a unit radius), G, is the gravitational constant in
the (D = D + 1)-dimensional spacetime.

Therefore, from (17) and (18) up to the terms ¢ we get

ky 3 1
Too = - md(rs)c? = —md(rs)c?, (19
kD 4 a
where a; is the size of the extra dimension (the period of
the torus) and we take into account the relation between the
gravitational constants [5]:

2(D 2)

—— 8,Gp/ ]'[ a,

We can write (19) in the form Ty, =~ & = pc*> where
p = (m/a;)d(r;) is the rest mass density in the case of a
point mass smeared over the extra dimension. Thus, for the
considered model the energy-momentum tensor reads
T,’; = diag(e, 0, 0, 0, 0) and corresponds to the delta-shaped
matter source. Unfortunately, despite this clear physical
interpretation, solution (15) contradicts the observations.
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As we have mentioned above, the relation h,, = (1/2)h
(see (16)) results in formulas for the classical gravitational
tests which predict effects considerably different from
the observations [2]. It seems that the reason for this is
the delta-shaped form of the source. However, it is not. To
show it, in the next section we consider a finite size
spherically symmetric perfect fluid.

III. STATIC SPHERICALLY SYMMETRIC
PERFECT FLUID WITH DUSTLIKE EQUATION
OF STATE IN ALL DIMENSIONS

Let us consider now perfect fluid which fills uniformly
a three-dimensional sphere of the radius R and one-
dimensional internal torus with the period a;. If m is a
nonrelativistic rest mass of this configuration, then rest
mass density reads

m p3 m
= where = (21
P Taviar 7= e Y
The energy-momentum tensor is taken in the form
Ti — {diag(& —Po ~Po. —Po ~P1); 13 =R V¢
k 0; ry >R, VE
(22)

where & € [0, a,] is a coordinate of the extra dimension.
We shall consider the case when the energy density is much
bigger than the pressure in all dimensions:

e > po, P1- 23)

This is the usual condition for astrophysical objects in
three-dimensional space.

Now, we want to calculate the metric coefficients
gix (i, k=0,1,2,3,4) in the weak field limit. Prior to
that, we would like to make two comments. First, it is
well known that for static configurations the nondiagonal
metric coefficients are absent: go, = 0 (o =1, 2, 3, 4).
Second, because of spherical symmetry in three-
dimensional space and uniform distribution of matter
over the internal space, the metric coefficients depend
only on r3: g;x = gix(r3). In the weak field limit the metric
coefficients take the form

00~ I+ hOO! 8aa ™ -1+ haa’ hOOr haa -~ 0(1/6‘2)

(24)

In particular, hy, = 2¢/c?. Later we will demonstrate that
¢ is the nonrelativistic gravitational potential. It can be
easily shown (see, e.g., [2]) that Ricci tensors up to the
order 1/¢? read
1 1
Ry = 2 A hyy, Ry = 2 A hya, (25)
where D-dimensional Laplace operator A is reduced to the

usual three-dimensional one. The conditions Ty, > Ty,
T,p result in Einstein equations of the form of (13)
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(the only difference consists in replacement of the exact
equality in the first equation by the approximate one).
Therefore, we arrive at the following relation between
the metric coefficients:

1 ¢
haa = EhOO ? (26)
We can easily see that the Einstein equations in this ap-
proximation are reduced to the Poisson equation for the
nonrelativistic gravitational potential ¢:

Ao =47Gyps, Ao =0, (27)

where we took into account that in the inner region
(3 =R)TW = & = pc® = pyc?/a; and in the outer re-
gion (r; > R) T(()%m) = 0. The latter equation in (27) has the
solution

gD(out) — GN_m (28)
3
where we used the physical boundary condition ¢©*) — 0
for r; — +oo. Therefore, relation (26) leads to the
same expressions for hgaut) and £%Y as in (16). It means
that a considered perfect fluid model contradicts the
observations.

Thus, both a pointlike mass model and a perfect fluid
with dustlike equation of state in all directions failed with
experiments. At first glance, it is a very strange result
which works against KK models because such matter
sources have clear physical motivation. However, as we
shall see below, such approach is naive. What both of these
models have in common are the same equations of state
in our three dimensions and in the extra dimensions. In
considered models, it is a dustlike equation of state. So, all
dimensions are treated at equal footing. This is the crucial
point. As we shall see, to satisfy the observations we
should break this symmetry (in terms of equations of state)
between our and extra dimensions.

IV. EXPERIMENTAL RESTRICTIONS
ON SOLITONS

Now, we want to demonstrate that experimental restric-
tions on parameters of soliton solutions (4) or (6) a result in
breaking of symmetry between our and extra dimensions.
To show this, we consider parameterized post-Newtonian
(PPN) parameters for considered metrics.

It is well known (see, e.g., [12,13]) that in PPN formal-
ism the static spherically symmetric metrics in isotropic
coordinates read

ds? = (1 L + ,('3’”—2')(:2031‘2 — (1 + yr—‘g) i‘_(dxi)2
rs 2r3 r) & '

(29)

In general relativity 8 =y = 1. To get 8 and vy in the
case of soliton solution (6), it is sufficient to analyze the
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asymptotic expressions (10) and (14) for the metric coef-
ficients B(r3) and A(r3), respectively. As we already men-
tioned above, in the case of smeared extra dimension the
nonrelativistic gravitational potential should exactly coin-
cide with the Newtonian one. Because the function A(r3) is
the metric coefficient g, this demand leads to the follow-
ing condition:

2G
ﬂ =r, = gfm_ (30)
a c
Then, (14) reads
1 — £\2&k 2
A(r3)=(—f) ~1-Z24 X @
1+f ry  2r3

Simple comparison of (31) with the metric coefficient g
in (29) shows that soliton PPN parameter

Bs =1, (32)

as in general relativity. To obtain soliton PPN parameter
v, we need to analyze the asymptotic expression (10) for
B(r3). Substitution of the relation (30) into (10) gives

1+f 2e(k—1) k—1r
B(ry) = —(1 - 22(—> z—(u__g)
() = =0 = PP o
(33)
and comparison of Egs. (33) and (29) gives
k—1
= 34
Vs 3 (34

Now, with the help of these PPN parameters, we can
easily get formulas for famous gravitational experiments
[2,12,14]:

perihelion shift
6mmGy 1
Sfp=— = -2+ 2y, —
lp a(l — 62)62 3( Ys Bs)
6mmGy 3k —2  (3k—2)mr,
= N2 = o (35)
a(l —e*)c* 3k ka(l — e?)
deflection of light
2k — 1
B = (1+ )t === %, (36)
p k p

time delay of radar echoes (the Shapiro time delay effect)
s 4'rEalrthr lanet
St=(1+1y,)=21 (7" )
(I+y)—"In R

_ 2k —1r, <4rEarthrplanet>

“£1n
k c R%un

(37)

In (35), the semimajor axis a of the orbit of a planet should
not be confused with parameter a of the solution (6).
Comparison of the formulas (35)-(37) with experimen-
tal data gives the possibility to restrict parameters of
soliton solutions. However, we can get it directly from
experimental restriction on PPN parameter y. The tightest
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constraint on 7y comes from the Shapiro time delay
experiment using the Cassini spacecraft: y — 1 = (2.1 =
2.3) X 1077 [14-16]. Thus, from (34) we find that solitonic
parameter k should satisfy the condition |k| = 2.3 X 10*.
Obviously, the pointlike mass soliton (15) with k = 2
does not satisfy this restriction. We have shown that T is
the only nonzero component of the energy-momentum
tensor for this solution. It means that we have the same
dustlike equation of state in all D = 4 dimensions. It is
not difficult to show that all other solitons with parameters
different from (13) besides nonzero Ty, will also have
some other nonzero components of the energy-momentum
tensor which destroy the symmetry between our and extra
dimensions. We shall demonstrate it for one particular case
of solitons called black strings. It is a unique case because
only this solitonic solution does not prevent the stabiliza-
tion of the internal space (see the following discussion).

V. BLACK STRINGS

Now, we consider a particular example which satisfies
the condition |k| = 2.3 X 10*. It corresponds in (6) to
the limit

e—0, k— +o0, ek — 1, (38)

or to the limit @’ — 1, b’ — 0 in the Schwarzschild-like
metrics (4). In this limit the metrics (6) read

—1\2 + 1\4
ds® = (7‘”3 1) e <L3 1) (dr? + 2dO2) — d&>.

ary+1 ary
(39

It can be easily seen that the four-dimensional part of
these metrics (which corresponds to the section & =
const) is the pure Schwarzschild metrics (for a = 4/ )
in isotropic coordinates. Metrics of the form (39) are often
called the uniform black string. From these metrics up to
the terms 1/c? we get

T
00 =1——==1+ ho,

3
Laa —1——g —1+h,, a=1273
r3
gu=—1=—1+hy=
ro
hoo = hyy = hy = hy3 = _r—z, hay =0. (40)

With the same accuracy the components of the Ricci
tensor are

1 1 G 1
Ryg~=Ahgy=—~At= N\
2 2 n c r3
47Gymd
— m N’Zl (1'3) — kN—m5(l'3)62, (41)
c 2
a=0123 Ry = 0.

For a gravitating mass at rest and based on the form of (41),
we arrive at the conclusion that Ty, and Ty, are the only
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nonzero components of the energy-momentum tensor.
Thus, the Einstein equations take the form

1
Ry = kD<TOO - ngoo),
1
Ry = Ry, = Ry3 = kp _§T811 ) (42)

1
Ry = kD<T44 - §T844>-

Therefore, from (41) and (42) up to the terms ¢ we get
k 4
Too = - md(ry)c® = < n 8(r3)c?,
kD 3 a

1k—NrruS(l'3)c2

T ~
“ 2 kp

2
— > 25y,
3611

3k m
T = TOOgOO + T44g44 = 5 émﬁ(m)cz = 2a—16(r3)02.

(43)

Nonzero component 744 results in nonvanishing tension
of the black strings (see, e.g., [17,18]). (43) shows that the
value Ty, is 2 times bigger than the absolute value of Tyy.
A similar relation exists for the ADM mass and the
tension (see e.g. (B.11) and (B.12) in [17]). The numerical
prefactors 4/3 and —2/3 in front of Ty, and T4, follow
from the normalization (20). We can choose a different
relation between Gp and Gy which will lead to other
numerical prefactors. However, the relation Ty = —2T 4
will remain the same. If we introduce the energy density
e = TO0 =~ Ty, pressure in our external three-dimensional

space po = —T%, = Thela = 1,2,3) and pressure in the
internal space p; = —T*, = Ty, then the black string
energy-momentum tensor can be written in the form
T', = diag(e, —po, —po, —Po, —P1) (44)
with equations of state
1
Po = 0 and P = _58. (45)

Therefore, for black strings there is no symmetry between
our and extra dimensions. Additionally, (40) show that the
relations between the metric coefficients hqg, hyy, han
and h33 are exactly the same as in general relativity and
hyy = 0. Hence, in the case of black strings there is no
deviations from formulas of general relativity for gravita-
tional experiments. Moreover, the condition hy, =
Nge(a = 1,2,3) automatically leads to equation of state
p1 = —(1/2)e and equality A4y = O for static spherically
symmetric perfect fluid with dustlike equation of state in
our space. We shall prove it now.

Let us consider a static spherically symmetric perfect
fluid with energy-momentum tensor

e Y
v dy times %I_Jdl times

(46)
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In what follows, we shall use the notations: i,k =
0,1,....D;ab=1,....D;a,B=1,...,dyand pu, v =
dg+1,...,dy+ d,. For static spherically symmetric
configurations hold go, =0 and g, =0, a#b.
Because we want to apply this model to ordinary astro-
physical objects, we suppose the dustlike equation of state
in dy-dimensional external space: p, = 0, but the equation
of state is an arbitrary one in d;-dimensional internal
space: p; = we. We still consider the weak field approxi-
mation where the metric coefficients can be expressed in
the form of (24) (where a should be replaced by a).
An additional requirement that we impose is that the
considered configuration does not contradict the observa-
tions. Obviously, this will occur if the following conditions
hold hy = hye and h,, = 0. We now define when it
takes place.

First, taking into account that 7 =32 T =
e(l — wd,), Tpo =0, €~ 0(c*) and up to terms c?
that T,y = TOO, T,,=~ —T+,, we get from the Einstein
equation

1
Ry = kD<Tik - —Tgik>» 47

D -1
nonzero components of Ricci tensor (up to 1/c?):

Ryo = €kp D—1 , (48)
1 - wd1
R,, = ckp—, 49
aa Ekp D—1 (49)
w(dy— 1)+ 1
R, = SkQ)ODfl, (50)

where kp ~ O(1/c?) is defined in (18). On the other hand,
the components of the Ricci tensor read

1 1
Ry = 5 A hgy, Ry = 5 A hyg, (51)

where as usual we put hg =2¢/c? and A is
D-dimensional Laplace operator defined in (17).
Therefore, from Eqgs. (48), (49), and (51) we obtain

1— Wdl
dy—2+d(+ w)

haa = hOO' (52)
As we mentioned above, to be in agreement with this
experiment we should demand

3—D 1

haw = h = =—| . (53
aa 00 =~ @ 2d1 D) do=3 ( )

Hence, for a considered perfect fluid the condition
h oo = hoo results in the following conclusions:

(1) The number of dimensions of the external space
dy =3 is a special case. Only in this case the
parameter of equation of state w does not depend
on number of the extra dimensions d;.
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(2) For dy =3, the equation of state in the internal
space is p; = —(1/2)e which exactly coincides
with the case of black strings (see (45)).

Substitution of w from (53) into (50) gives

(3 - do - d])(do - 1) + 2d]
2d,(D — 1)
= 0lg,=3 = hpy = Olg =3 (54)

R/LM =~ 8](1)

Therefore, as in the case of black strings, we obtain flat
extra dimensions.

To conclude the consideration of this perfect fluid, we
want to get the metric coefficients. To do it, it is sufficient
to define the function ¢. It can be easily seen from (48) and
(51) that this function satisfies the equation

D_2+(1)d1

D—1 (53)

iz A Q= SkD

c
where € = p®)¢2? and p® is D-dimensional nonrelativis-
tic rest mass density. We want to reduce this equation to an
ordinary Poisson equation. We consider the case when
matter is uniformly smeared over the extra dimensions:
p'P) = p@ /v, where V, is the volume of the internal
space. In this case the nonrelativistic potential ¢ depends
only on our external coordinates and A is reduced to
dy-dimensional Laplace operator. If we demand now that
the multidimensional gravitational constant G, and the
Newtonian gravitational constant Gy are related as

D_2+(L)d1

4
k
CEDTTp

=47GNVy, (56)

then (55) is reduced to usual Poisson equation:
A @ = 47Gyp' ). (57)

Obviously, in (56) and (57), it is assumed that d, = 3. (56)
shows that the relation between gravitational constants G
and Gy depends on equation of state in the internal space.
If we take the dustlike equation of state, then we obtain
(20). However, for the black string equation of state (53)
(and d, = 3) we obtain

SpGp = 47GyV,,. (58)

If perfect fluid is confined in three-dimensional sphere of a
radius R, then (57) has the following solution in vacuum:
¢ = —Gym/ry, where m = (4/3)7R3p®).

Therefore, in the case of three-dimensional external
space, the black string equations of state p, = 0 and p; =
—(1/2)e are the only possibility to be at the same level of
agreement with the observations as in general relativity.
We also indicate in the Conclusion that these equations of
state satisfy the necessary (but not sufficient!) condition for
stabilization of the internal space.
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VI. CONCLUSION AND DISCUSSION

In our paper, we investigated the multidimensional KK
models with compact static spherically symmetric matter
sources either in delta-shaped form or in the form of
distributed perfect fluid. We usually also supposed that
matter is uniformly smeared over the extra dimensions.
Some of these models have exact solutions (solitons)
and for others we obtained the metric coefficients in the
weak field limit. The main purpose of our paper was to
establish the correspondence between these models
and observable data. There are a number of well-known
gravitational experiments in solar system (perihelion
shift, deflection of light, time delay of radar echoes, PPN
parameters) which can be used to get restrictions on
parameters of considered models. In our previous
paper [2] we have shown that the pointlike mass
matter source strongly contradicts the experiments if the
number of spatial dimensions D > 3. It was a surprise
for us because such approach has clear physical inter-
pretation and works very well in general relativity [3].
Therefore, in the present paper we wanted to clarify the
reason of it.

First, we investigated five-dimensional soliton solutions
to single out one which corresponds to a pointlike mass.
We found parameters of this solution and demonstrated
that T, is the only nonzero component of the energy-
momentum tensor. It can be treated as a dustlike equation
of state in all dimensions. Because in the weak field limit
the metric coefficients exactly coincide with ones for the
pointlike mass, this soliton solution contradicts the experi-
ments. Our first thought was that the reason for this is the
delta-shaped form of the source. To check it we considered
the model with finite size static spherically symmetric
perfect fluid. For astrophysical objects (e.g., Sun) it is
usually supposed that the energy density is much bigger
than pressure. Therefore, we also assumed that a consid-
ered perfect fluid has the dustlike equation of state in all
dimensions. However, here we arrived at exactly the same
form of the asymptotic metric coefficients as in the case of
pointlike mass. Therefore, this model also contradicts the
observations. Thus, both the pointlike mass model and
perfect fluid with a dustlike equation of state in all direc-
tions failed with experiments. What both of these models
have in common is the same equations of state in our
three dimensions and in the extra dimensions. So, all
dimensions are treated at equal footing. This is the crucial
point. To be in agreement with observations, it is necessary
to break the symmetry between the external/our and inter-
nal spaces.

To prove it, we investigated conditions under which the
solitonic solutions do not contradict the observations. It
can be easily done via the parameterized post-Newtonian
parameters (PPN) v and 8. We found these parameters
with the help of asymptotic expression for the solitonic
metric coefficients. Parameter B exactly coincides with
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one in general relativity but vy is not. Additionally, we
also obtained the formulas for perihelion shift, deflection
of light and time delay of radar echoes in the case
of soliton solutions. Using the constraint on y which comes
from the Cassini spacecraft experiment, we found that the
solitonic parameter k should be very big: |k| = 2.3 X 10%.
Roughly speaking, |k| — co. In the case of pointlike
mass soliton k =2, which is clearly contrary to this
restriction.

There is one very interesting five-dimensional soliton
solution that satisfies the condition |k| — co. This is the
so-called black string. Four-dimensional parts of these
metrics exactly coincides with Schwarzschild metrics and
the extra dimension is flat (the internal space metric coef-
ficient does not depend on any coordinates). Obviously, the
results mentioned above of gravitational experiments in
this model exactly coincide with general relativity. Here,
Too and T, are the only nonzero components of the
energy-momentum tensor. Moreover, 7°) = 2T%,. It can
be treated as dustlike equation of state p, =0 in the
external space and a very specific equation of state p; =
—(1/2)e in the internal space. For a better understanding
of black strings, we have considered a static spherically
symmetric perfect fluid with dustlike equation of state
po = 0 in dy-dimensional external space and an arbitrary
equation of state p; = we in d;-dimensional internal
space. We took the dustlike equation of state in our space
because it is the usual condition for astrophysical objects
like the Sun. We demonstrated that the demand of an exact
correspondence between this model and general relativity
automatically leads to equation of state p; = —(1/2)e for
dy = 3. The dimension 3 for the external space is a special
one. Only in this case parameter @ does not depend on d,
and equals to —1/2. Therefore, in the case of three-
dimensional external space, the black string equations of
state po = 0 and p;, = —(1/2)e are the only ones which
ensure the same level of agreement with the observations
as in general relativity.

Now, we want to stress an additional and very important
feature of the black string equations of state. This feature
follows from the conclusions of no-go theorem given in the
Appendix. This theorem (case II, which relates to ordinary
matter in our Universe) clearly shows that the condition of
the internal space stabilization requires the violation of
symmetry (in terms of equations of state) between our
three dimensions and the extra dimensions. The need
for such a violation is especially seen in the example
of radiation. It is well known that radiation satisfies the
equation of state p = (1/3)e. If we assume equality of all
dimensions and allow light to move around all multidimen-
sional space, then equation of state will be p = (1/D)e,
which apparently contradicts the observations for D > 3.
Therefore, radiation should not move in the extra dimen-
sions. This is exactly the situation we have in case II. If we
take o) = 1, then we obtain the usual equation of state for

044005-8



KALUZA-KLEIN MODELS: CAN WE CONSTRUCTA ...

radiation in our Universe ag) =4/3 — p(oc) = (1/3)&
and dust in the internal space: a!” = 1 — p!) = 0. The
latter means that the light does not move in the extra
dimensions. Such a situation is realized if light is localized
on a brane [19].

Thus it is clear now why models with the same
(e.g., dustlike) equation of state in all directions have
failed with experiments. In spite of their clear physical
motivation, they violate the condition of the internal
space stabilization. On the contrary, the black strings
have the dustlike equation of state p, = 0 in our space
and equation of state p; = —(1/2)e in the internal space.
This is in full agreement with the stability condition.
Additionally, multidimensional matter with such equa-
tions of state satisfies the known experimental data.
Therefore, we obtained important restrictions on the
equation of state of the multidimensional matter in direc-
tions of extra dimensions for the localized sources of this
matter.

Nevertheless, we want to add ““a fly in the ointment”.
It is connected with the latter equation or, equivalently,
with nonzero (negative!) component T, of the energy-
momentum tensor. In the black string papers, it is
called the black string tension. In paper by Chodos and
Detweiler [20], they called it the scalar charge. However,
as far as we are aware, the reason for such negative
tension is still not clarified. What does “‘squeeze out” the
ordinary particles (which form the astrophysical objects)
from the extra dimensions? Simple localization on
the brane, as in the case of radiation, is not enough for
this because it results in the dustlike equation of state in
the extra dimension. It should be something else.
Therefore, our answer about a viable KK model is
“yes” (keeping in mind the black string models) if we
can give a satisfactory explanation for the nonzero negative
tension.

In our opinion, brane-world models are the most
promising alternative to the KK models because they
naturally break the symmetry between our three-
dimensional Universe and the extra dimensions.
These models require special consideration. We intend
to clarify this interesting problem in our forthcoming

paper.
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APPENDIX: PERFECT FLUID IN
MULTIDIMENSIONAL COSMOLOGICAL
MODELS: NO-GO THEOREM

The no-go theorem [21] leads to important conclusions
in our paper. Therefore, it makes sense to give a brief
derivation of it in this Appendix.

In conventional cosmology matter fields are taken into
account in a phenomenological way as a perfect fluid with
equal pressure in all three spatial directions. It provides
a homogeneous (if energy density and pressure depend
only on time) and isotropic picture of the Universe.
In the multidimensional case we generalize this approach
to a m-component perfect fluid with energy-momentum
tensor [22]

™y = Z TOM,, (A1)
c=1
T(C)MN
= —diag(—p'?, pgc), oo pﬁf) o pl L plo ).
d times d, times
(A2)

In this Appendix we accept for convenience the system
of units where the speed of light is ¢ = 1. Thus the energy
density £ = p(©9¢? coincides with the mass density p(©.
To get the conditions of the internal space stabilization, we
consider the case of dynamical energy density and pres-
sure: p'© = p©(7) and pg") = pg")(r), i=0,...,n.

The conservation equations we impose on each compo-

nent separately are
M\ =0. (A3)

The metrics of spacetime are also taken in the homoge-
neous form:

n ) )
g =20 — Y Py
i=1

0 dr @ dr — BP0 (F) — Y 2B (y).
i=1

(A4)

The choice of the function +vy(7) defines different
gauges, e.g., the synchronous time gauge y = 0 or the
conformal time gauge y(7) = B°(7), etc. In what follows,

we use the notations a = ¢?’ andb; = eF'(i=1,...,n) to
describe scale factors of the external and internal spaces,
respectively.

Denoting by a dot differentiation with respect to time 7,
the conservation Egs. (A3) for the tensors (A2) read

pO+ S ap (o p0) =0 @)
i=0
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If the pressures and energy density are related via equa-
tions of state

(e) —

12 (a(c) 1)p, i=0,..,n c=1,...,m,

(A6)
then (AS5) has the simple integral

n
_ Y —doal® —d;a;
_A(L)a 0% X l_[bi
i=1

p'(7) (A7)

where A(© is the constant of integration.

To investigate the problem of the stable compactifica-
tion, it is helpful to use the equivalence between
the Finstein equations and the Euler-Lagrange equations
for Lagrangian obtained by dimensional reduction of the
action

s = % [M dPxy[IgHRlg] — 2Ap} - [M a®xlslp,
(A8)

where p is given by (A7) (see [22] for details).
This equivalence takes place for the homogeneous
model (A4). However, we can generalize it to the inhomo-
geneous case allowing inhomogeneous fluctuations
Bi(x)(i = 1,...,n) over stably compactified background
Bl = const: B' = B — Bi. The dimensional reduction
(see, e.g., [23-25]) of the action (A8) results in effective
theory in Einstein frame with the effective potential

n
Uy = (l‘[ odif
n

[—% Z e + Ap + kp i p@], (A9)

i=1 c=1

)*2/(Do*2)

where p'© is defined by (A7) and D, = d, + 1. The inter-
nal space conformal fluctuations 3’ play the role of mini-

mal scalar fields with potential (A9) in external spacetime
with the Einstein frame metrics g(O) =0 2g59)y where
02 = ([T, e%#)~2/=2_ Now, we suppose that the ex-
ternal spacetime metric §© has also the Friedmann-
Robertson-Walker form:

§0 =020 = gi%dx“ ® dx?
= Md3 ® di — 2P g0) (A10)

It results in the following connection between the external
scale factors in the Brans-Dicke frame a = ¢#’ and in the
Einstein frame a@ = "

(l—[ > 1/(Do— Z)a,

(A11)

then, the expression (A7) for p'© can be rewritten in
the form

PHYSICAL REVIEW D 83, 044005 (2011)

. _ o) zi
kpp'® = wﬁ%]‘[e €8, (A12)
where
¢ ~ n (1—a©
pE‘; —A(c‘)d*doag)’ Al :A(C)Vll_[b(d(l);; @; )’ (A13)
i=1
© © _ ag'dy
Y =d|a’ ) Al4
£ = d — (A14)
and we take into account the relation (58) KD = kyVp
with the internal space volume V= V[T, b} (0)1 D' =

>"d; is the total number of the internal dimensions.
Prefactor V; is defined by the geometry of the internal
spaces [21] and for tori V; = 1. It can be easily verified
that A© has dimension cm@® Do

Thus, the problem of stabilization of the extra dimen-
sions is reduced now to search of minima of the effective

potential U, with respect to the fluctuations B3’

U, ~ d L
eff ~ :O:Rk:_D k_z[le_zAD]

B 150
of w0 . 2d
+"NZPE4§(” kz)’ k=1,...n.

(A15)

The left-hand side of this equation is a constant but
the right-hand side is a dynamical function because of
dynamical behavior of the effective four-dimensional

energy density p(4) Thus, we arrive at the following

no-go theorem:

Multidimensional cosmological Kaluza-Klein models
with the perfect fluid as a matter source do not admit stable
compactification of the internal spaces with exception of
two special cases:

1o =0 Val (A16)
2d. (C) — 2 + d0 L),
. £9 = — . { MR “« (A17)
0~ a =« o),
wherei=1,....,n;c=1,..., m.

The first case corresponds to the vacuum in the external

space pEZ; = A = const and arbitrary equations of state
in the internal spaces. Some bulk matter can mimic such
behavior, e.g., vacuum fluctuations of quantum fields
(Casimir effect) [24,26], monopole form fields [24,27]
and gas of branes [28].

In the second case, the energy density in the external
space is not a constant but a dynamical function with the

following behavior:

o o1

p( )( a) = ~2+(d071)a(6) d2(l+a(0)) - (A18)
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The corresponding equation of state is

Pl = (1/3)2a9 = Dp{) = (af’ = 1p(g),
where we put d, = 3. It can be easily seen from (A12) that

in the case of stabilized internal spaces (i.e. B =0) pgj; =

p'9Vp,. Similar relation takes place for pEZ; and pg)c );

pEZ; = ng)VD/. Therefore, the second case corresponds

(A19)

to ordinary matter in our three-dimensional space.
For example, in the case of three-dimensional external
space, the choice «'® =1/2 provides dust in our

(o) —

space: a(()c) =1— Py = 0 and equation of state

af.c) =1/2— pgc) = —(1/2)p'® in the internal spaces,
which are exactly the black string equations of state!
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It is worth of noting that the cases I and II are the
necessary but not sufficient conditions for stabilization.
In [21] it was shown that stability is ensured by the matter
from the first case with a proper choice of the parameters
of models. The matter related to the second case provides
the standard evolution of the Universe and does not spoil
the stabilization. As we mentioned above, matter of the
first case behaves as a cosmological constant in the exter-
nal space. There are strong experimental restrictions on
cosmological constant in the solar system [29]. Therefore,
there is no need to take into account such perfect fluid for
astrophysical problems discussed in our paper.
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