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We study analytically the highly damped quasinormal modes of Kerr black holes in the small angular

momentum limit. To check the previous analytic calculations in the literature, which use a combination of

radial and tortoise coordinates, we reproduce all the results using the radial coordinate only. According to

the earlier calculations, the real part of the highly damped quasinormal mode frequency of Kerr black

holes approaches zero in the limit where the angular momentum goes to zero. This result is not consistent

with the Schwarzschild limit where the real part of the highly damped quasinormal mode frequency is

equal to c3 lnð3Þ=ð8�GMÞ. In this paper, our calculations suggest that the highly damped quasinormal

modes of Kerr black holes in the zero angular momentum limit make a continuous transition from the Kerr

value to the Schwarzschild value. We explore the nature of this transition using a combination of

analytical and numerical techniques. Finally, we calculate the highly damped quasinormal modes of the

extremal case in which the topology of Stokes/anti-Stokes lines takes a different form.

DOI: 10.1103/PhysRevD.83.044001 PACS numbers: 04.70.Bw, 03.65.Pm, 04.30.-w, 04.60.-m

I. INTRODUCTION

Black hole quasinormal modes (QNMs) are the natural
vibrational modes of perturbations in the spacetime exte-
rior to an event horizon. QNM frequency spectrum is
composed of an infinite number of discrete and complex
frequencies,!n ¼ !R þ i!I, with the ‘‘overtone’’ number
n ¼ 1; 2; 3; . . . . The imaginary part of the frequency, !I,
signals the presence of damping, a necessary consequence
of boundary conditions that require energy to be carried
away from the system.

Black holes are used for exploring ideas in quantum
gravity, and their QNM frequency spectrum is an obvious
place to search for a quantum signature. One possible link
between QNMs with high damping rates and the semiclas-
sical level spacing in the black hole quantum area spectrum
has been proposed originally by Hod [1] in 1998 and
modified recently by Maggiore [2]. Many people have
since calculated the highly damped QNMs of different
black hole models.

The QNMs of Kerr black holes with high damping rates
were first explored numerically by Berti et al. in [3–5]. It
was not until recently that Keshet and Hod [6] were able to
analytically calculate the highly damped QNMs of Kerr
black holes for the first time. This work followed with a
more detailed paper by Keshet and Neitzke [7]. Kao and
Tomino [8] generalized the results in [6] to spacetime
dimensions greater than four for scalar (spin-zero) pertur-
bations. According to the results obtained in [3–8], the real
part of the highly damped QNM frequencies of Kerr black
holes approaches zero in the Schwarzschild limit of a ! 0,
where a is the black hole angular momentum per unit mass.
This is in clear contradiction with the Schwarzschild result
in which the real part of QNM frequencies approaches

lnð3Þ=ð8�MÞ, where M is the black hole mass, as the
damping rate approaches infinity. (Here, we use geome-
trized units where G ¼ c ¼ kB ¼ 1.) In other words, it
appears that the large damping limit (j!Ij ! 1) and the
zero angular momentum limit (a ! 0) of Kerr QNMs do
not commute. In [6], Keshet and Hod state that ‘‘the
asymptotic QNMs are not continuous at a ¼ 0’’. In other
words, at a ¼ 0 the real part of the QNM frequency makes
a discontinuous transition from zero to the Schwarzschild
value of lnð3Þ=ð8�MÞ. This issue was presented by
Maggiore in [2] as an argument against Hod’s proposal
in [1] and consequently provides one of the motivations for
this work. Note that the imaginary part of the asymptotic
Kerr QNMs does not suffer from such discontinuity.
Musiri and Siopsis [9] show analytically that when

the range of QNM frequencies is bounded from above by
1=a (ja!j< 1), the Kerr QNMs do coincide with the
Schwarzschild QNMs in the high damping limit. The
calculation in [9] is valid for small values of the parameter
a and includes the Schwarzschild case where a ¼ 0.
According to [9], in the large damping limit

!R ! lnð3Þ
8�M

þma; (1)

where m is the azimuthal eigenvalue of the wave.
In this paper we use a different analytic technique to

reproduce the result obtained by Musiri and Siopsis in [9].
We also reproduce the result obtained by Keshet and Hod
in [6] using a slightly different analytic technique in which
the tortoise coordinate is not required. We show that
the result obtained in [6,7] is only valid when ja!j> 1.
We also show that for any large but finite QNM frequency,
the transition from the Kerr value to the Schwarzschild
value happens in a continuous way. We explore in detail
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this transition which happens at around ja!j � 1. Such
transition becomes discontinuous only when j!j ¼ 1. In
this paper, we also calculate the highly damped QNMs in
the interesting case of extremal Kerr black holes for the
first time.

In Sec. II, we set up the problem. We present the analytic
calculations in Sec. III. In Sec. IV, we explain the numeri-
cal calculations and provide the results. We conclude the
paper in Sec. V.

II. WAVE EQUATION

Following the notations used by Keshet and Hod in [6],
the radial part of Teukolsky’s wave equation for a Kerr
black hole with mass M and angular momentum J can be
written in the general form

d2�ðrÞ
dr2

þ PðrÞ�ðrÞ ¼ 0; (2)

where

PðrÞ ¼ q0ðrÞ!2 þ q1ðrÞ!þ q2ðrÞ
�2

: (3)

We define

� ¼ r2 � 2Mrþ a2 þ q2; (4)

q0 � ðr2 þ a2Þ2 � a2�; (5)

q1 � �2amð2Mr� q2Þ þ 2is½rð�þ q2Þ �Mðr2 � a2Þ�;
(6)

q2 � m2a2 � ðAlm þ sÞ�þM2 � a2 � q2

� sðM� rÞ½2iamþ sðM� rÞ�; (7)

where a ¼ J=M, l and m are angular and azimuthal har-
monic indices, Alm is the separation constant, and s ¼ 0,
�1=2, �1, �2 is the spin-weight parameter for scalar,
two-component neutrino, electromagnetic, and gravita-
tional fields, respectively. Note that Teukolsky’s wave
equation can be generalized to include black holes with
electric charge q [10], where the case of q � 0 in the above
equations is understood only for scalar fields. The roots of
� determine the radii of outer and inner horizons. These

roots are r� ¼ M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2 � q2

p
.

The differential equation (2) has two linearly indepen-
dent WKB solutions:

fðtÞ1 ðrÞ ¼ Q�1=2ðrÞeþi
R

r

t
Qðr0Þdr0

fðtÞ2 ðrÞ ¼ Q�1=2ðrÞe�i
R

r

t
Qðr0Þdr0

(8)

where

Q2ðrÞ ¼ PðrÞ � 1

4ðr� r�Þ2
� 1

4ðr� rþÞ2
(9)

and t is a simple zero of the functionQ2. The last two terms
on the right-hand side of the above equation come from
matching the WKB solutions to the exact solutions of the
wave equation (2) in the limit where r ! r�.
The boundary conditions that we apply to the wave

equation (2) are outgoing-wave at infinity and ingoing-
wave at the horizon. We will choose the phase of the

square-root of Q2 such that
ffiffiffiffiffiffi
Q2

p �! as r ! 1. This
means that the outgoing-wave solution at infinity is pro-
portional to f1 while the ingoing-wave solution at rþ is
proportional to f2. Here, we assume that perturbations
depend on time as e�i!t. This means that !I < 0.
In the large damping limit (!I ! �1), the angular

separation constant can be approximated to be

Alm ¼ iA1a!þ ðA0 þm2Þ þOðj!j�1Þ (10)

and in the Schwarzschild limit where a ! 0, this constant
can be approximated to be

Alm ¼ lðlþ 1Þ � sðsþ 1Þ þOða!Þ: (11)

It is easy to show that in the limit a ! 0, and as long as
j!j � 1=a, we get

q0 � r4;

q1 � 2isðr3 � 3Mr2Þ;

q2 � �Almðr2 � 2MrÞ þ 1� s2

4
ð4r2 þ 4M2 � 8rMÞ

� ð1� sÞðr2 � 2MrÞ: (12)

If, in addition to the above conditions, we assume that
j!j � 1, we can write

q0!
2 þ q1!þ q2 � r4!2 � 6isMr2!þ 1� s2

4
ð2MÞ2:

(13)

Note that we cannot ignore the term q1! because this term
becomes comparable to q0!

2 and q2 when r is of the order

of magnitude of j!j�1=2.

III. ANALYTIC CALCULATIONS

In order to extract the WKB condition on the asymptotic
QNM frequencies, first, we need to determine the zeros and
poles of the function Q2 and consequently the behavior of
the Stokes and anti-Stokes lines in the complex r-plane.
Stokes lines are the lines on which

Re
Z r

t
Qðr0Þdr0 ¼ 0; (14)

and anti-Stokes lines are the lines on which

Im
Z r

t
Qðr0Þdr0 ¼ 0; (15)

where t is a zero of the function Q2. The poles are located
at r�.
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A. The case of finite a

In this case the zeros of the function Q2 are, by a factor
of j!j�1, close to the zeros of the function q0. After
determining the topology of the Stokes/anti-Stokes lines,
we follow the path shown in Fig. 1 starting on an un-
bounded anti-Stokes line at a. The solution on line a is
known due to the boundary condition at infinity:

�a ¼ fðt2Þ1 : (16)

We apply the rules that are explained by Andersson and
Howls in [11] to move along the anti-Stokes lines. The
steps we take are as follows:

�b ¼ fðt2Þ1 � ifðt2Þ2 (17)

�b0 ¼ ei~�21fðt1Þ1 � ie�i~�21fðt1Þ2 (18)

�c ¼ ðei~�21 þ e�i~�21Þfðt1Þ1 � ie�i~�21fðt1Þ2

¼ ðei~�21 þ e�i~�21Þei�12fðt2Þ1 � ie�i~�21e�i�12fðt2Þ2 (19)

��b ¼ ½ðei~�21 þ e�i~�21Þei�12 þ e�i~�21e�i�12�fðt2Þ1

� ie�i~�21e�i�12fðt2Þ2 (20)

��a ¼ ½ðei~�21 þ e�i~�21Þei�12 þ e�i~�21e�i�12�fðt2Þ1

þ iðei~�21 þ e�i~�21Þei�12fðt2Þ2 (21)

where

�12 ¼ ��21 ¼
Z t2

t1

Qdr (22)

along a path to the left of the event horizon and

~� 12 ¼
Z t2

t1

Qdr (23)

along a path to the right of the event horizon. The boundary
condition at infinity requires that the coefficient of f2 in��a

be equal to zero. This leads to the WKB condition

e2i~�12 ¼ �1: (24)

Note that the above condition gives us the correct monod-
romy as a result of rotating clockwise around the outer
horizon in the complex r-plane, which is

��a ¼ e�i��a; (25)

where

� ¼ �12 þ ~�21 ¼
I
clockwise

Qdr: (26)

In the large ! limit, we can write

2i~�12 � 2i!
Z t2

t1

ffiffiffiffiffi
q0

p
�

drþ 2i
Z t2

t1

q1
2

ffiffiffiffiffi
q0

p
�
dr

¼ !�0 þ is�s þ iA1�A þm�m; (27)

where

�0 ¼ 2i
Z t2

t1

ffiffiffiffiffi
q0

p
�

dr;

�m ¼ 2i
Z t2

t1

�að2Mr�Q2Þffiffiffiffiffi
q0

p
�

dr;

�A ¼ 2i
Z t2

t1

�a

2
ffiffiffiffiffi
q0

p dr; and

�s ¼ 2i
Z t2

t1

rð�þQ2Þ �Mðr2 � a2Þffiffiffiffiffi
q0

p
�

dr:

(28)

It is now easy to show that the WKB condition (24) results
in

! ¼ �m!̂� ið�̂� n�̂Þ; (29)

where n is a large integer and !̂ ¼ �m=�0, �̂ ¼ 2�=�0,

and �̂ ¼ ðs�s þ A1�A � �Þ=�0. Equation (29) is the same
equation that Keshet and Hod found in [6].

B. The case of a ! 0

In the limit a ! 0, as long as j!j � 1 and j!aj � 1,
we can combine Eqs. (3), (9), and (13), to see that the four
zeros of the function Q2 approach

t

a

b’

c

1

2

r+

t
b

FIG. 1 (color online). A schematic illustration of Stokes
(dashed) and anti-Stokes (solid) lines for finite a. The hollow
circles represent the zeros of Q2, while the filled circles are the
two poles. The thin line is the path taken along the anti-Stokes
lines to derive the WKB condition on !.
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�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i
ð3� 2

ffiffiffi
2

p ÞMs

!

s
: (30)

Since s < 0 for all types of perturbations and ! � �ij!j,
the four zeros above are located on the real axis. The
structure of Stokes and anti-Stokes lines are shown in
Fig. 2. In order to derive a WKB condition on the QNM
frequency ! we will follow the path indicated by the thin
line shown in Fig. 2 along anti-Stokes lines. We begin our
path on the anti-Stokes line labeled a which extends to
infinity. According to the boundary condition, the solution
on this line is

�a ¼ fðt1Þ1 : (31)

The steps that we take are very similar to the steps ex-
plained in the previous subsection. We choose our branch
cuts in a way that the WKB solution f1 is dominant on the
Stokes lines extending to infinity and f2 is dominant on the
Stokes line ending at the outer horizon. After making a
complete loop around the horizon, we return to the anti-
Stokes line a. The final solution that we get is

��a ¼ e�i~�44ð1þ e�2i�12e�2i�23e�2i�34 þ e�2i�23e�2i�34

þ e�2i�34 þ e2i~�44Þfðt1Þ1

þ ie�i~�44ð1þ e2i�12 þ e2i�12e2i�23 þ e2i�12e2i�23e2i�34Þ
	 ðe�2i�12e�2i�23e�2i�34 þ e�2i�23e�2i�34

þ e�2i�34 þ e2i~�44Þfðt1Þ2 : (32)

The boundary condition at infinity requires that the coef-
ficient of f2 in solution (32) be equal to zero. This leads us
to the WKB condition

e2i~�44 ¼ �e�2i�12e�2i�23e�2i�34 � e�2i�23e�2i�34 � e�2i�34 ;

(33)

where

~� 44 ¼
I
clockwise

Qdr ¼ �2�iResr¼rþQ ¼ �4�i!M

(34)

and in the large damping limit

�ij �
Z tj

ti

r

2M

�
!2 � 6isM!

r2
� s2M2

r4

�
1=2

dr: (35)

Note that condition (33) gives us the correct monodromy as
a result of rotating around the outer horizon in the clock-
wise direction, which is

��a ¼ e�i~�44�a: (36)

The integral (35) can be calculated analytically. We use
the change of variable y ¼ !r2=sM to get

�ij ¼ s

4

Z ð3�2
ffiffi
2

p Þi

ð3
2
ffiffi
2

p Þi

�
1� 6i

y
� 1

y2

�
1=2

dy

¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � 6iy� 1
q

� arccotð3y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 6iy� 1

q
Þ

� 3iarcsinh

��3iþ y

2
ffiffiffi
2

p
�

þ i

2
ln

�
y

3i� 5yþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 6iy� 1

p ��ð3�2
ffiffi
2

p Þi

ð3
2
ffiffi
2

p Þi
¼
 s

2
�:

(37)

Combining Eqs. (33) and (37), we find

e2i~�44 ¼ �3 (38)

for gravitational and scalar perturbations and

e2i~�44 ¼ �1 (39)

for electromagnetic perturbations. These WKB conditions
are in perfect agreement with the Schwarzschild case.

C. The extremal case

In the case of extremal Kerr black hole spacetime where
the inner and outer horizons coincide (a ¼ M), the topol-
ogy of Stokes/anti-Stokes lines takes a new form shown in
Fig. 3. In order to determine the WKB condition, we follow
the path shown in Fig. 3, which begins on the anti-Stokes
line labeled a that extends to infinity and after moving
from t2 to t1 along the anti-Stokes line to the right of the
horizon the path ends on an anti-Stokes line which con-
nects to the horizon rh. The steps that we take will be
identical to the ones we took in subsection 3.1 from
Eq. (16) to (19). The boundary condition at the horizon
requires that the coefficient of f1 in Eq. (19) be equal to
zero. This will lead us to the same WKB condition that we

t t43t2t1

a

b
c

d

e’

e

r+

FIG. 2 (color online). A schematic illustration of Stokes
(dashed) and anti-Stokes (solid) lines when a ! 0. The hollow
circles represent the zeros of Q2, while the filled circles are the
two poles. The thin line is the path taken to derive the WKB
condition on !.
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found in Eq. (24). This shows that the highly damped
QNMs of Kerr black holes in the limit a ! M does
indeed coincide with the highly damped QNMs of
extremal Kerr black holes, even though the topology of

Stokes/anti-Stokes lines in the extremal case is different. In
other words, to find the asymptotic QNM frequency of
extremal Kerr black hole all we need to do is to replace
the angular momentum a with mass M in Eq. (29). This
result is consistent with the high overtone QNMs of other
types of extremal black holes [12].

IV. NUMERICAL RESULTS

The configuration of the anti-Stokes lines was found
using the LineIntegralConvolutionPlot in Mathematica ap-
plied to the vector field hcos½�ðrÞ�;� sin½�ðrÞ�i where
�ðrÞ ¼ arg½QðrÞ�. This vector field defines a direction
for dr at every point in the complex plane such that
arg½QðrÞdr� ¼ 0. The anti-Stokes lines follow this vector
field to and from the zeros. Similarly, the Stokes lines
follow the vector field hsin½�ðrÞ�; cos½�ðrÞ�i. Figure 4
shows the vector fields for the anti-Stokes and Stokes lines
for the extremal case illustrated schematically in Fig. 3.
The numerical results in Fig. 5 use numerical integration

to find the integrals �ij ¼
Rtj
ti QðrÞdr along a path in the

complex plane homotopic to the anti-Stokes lines. We then
use the WKB conditions (24) and (33) to calculate !R in
different regions. Thus the numerical techniques, as well as
the analytical techniques, used in this paper are not valid
when the anti-Stokes lines do not connect the zeros of
QðrÞ. As the zeros move from the configuration seen in
Fig. 1 to that seen in Fig. 2 the anti-Stokes lines no longer
connect the zeros as can be seen by examining the vector
field in Fig. 6.
The results in Fig. 5 show that when a � 1

j!I j , !R !
lnð3Þ=ð8�MÞ and for a � 1

j!I j , the results agree with the

numerical and analytical results in [3–8].

t

a

b’

1

2

r

t
b

h
c

FIG. 3 (color online). A schematic illustration of Stokes
(dashed) and anti-Stokes (solid) lines for the extremal case.
The hollow circles represent the zeros of Q2, while the filled
circle is the pole at the point where the inner and outer horizons
coincide. The thin line is the path taken along the anti-Stokes
lines to derive the WKB condition on !.

FIG. 4 (color online). Numerically generated anti-Stokes (left) and Stokes (right) lines for the extremal case. The small hollow circle
in the middle is the pole at the inner horizon and the bigger hollow circles are the location of the zeros of Q2.
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V. CONCLUSIONS

In this paper, we used a different analytic technique to
reproduce the result obtained by Musiri and Siopsis in [9].
In addition, in order to check the previous analytic calcu-
lations of the highly damped QNMs of Kerr black holes
[6,7], we reproduced the results without the use of the
tortoise coordinate. Our calculations suggest that, contrary
to the previous results in the literature, the highly damped
QNMs of Kerr black holes in the zero angular momentum
limit make a continuous transition to the Schwarzschild
value. See Fig. 5. A similar situation exists also in the
highly damped QNMs of Reissner-Nordström black holes.
In that case as well, it was initially thought that if we first
consider the asymptotic QNMs of a Reissner-Nordström

black hole and then let the charge go to zero, !R does not
reduce to lnð3Þ=ð8�MÞ, but rather reduces to lnð5Þ=ð8�MÞ
[13]. Such discrepancies in Kerr and Reissner-Nordström
black holes were used by Maggiore [2] as an argument
against the validity of Hod’s conjecture [1]. However,
similar to what we did here for Kerr black holes, it is
shown in [14] that the highly damped QNMs of Reissner-
Nordström black holes in the zero charge limit do coincide
with the known Schwarzschild results.
The idea of a connection between the highly damped

quasinormal modes and the black hole horizon area spec-
trum [1,2] are highly speculative (see, for example, the
criticism in [15]). Nevertheless, it is interesting to examine
the consequences of these ideas in light of the results in this
paper. If we try to derive the horizon area spectrum of a
slowly rotating black hole assuming that the real part
of the highly damped QNM frequency approaches zero
when a ! 0, we will end up with zero spacing between the
consecutive states of the spectrum according to Hod’s
interpretation of the highly damped QNMs [1]. For that
reason, Vagenas [16] and Medved [17] use the imaginary
part of the QNM frequency, which approaches the
Schwarzschild value when a ! 0, in deriving the area
spectrum of slowly rotating black holes following
Maggiore’s interpretation [2]. The results of this paper
show that Hod’s interpretation also gives a nonzero spacing
between the consecutive states of the area spectrum.
Following the steps of Medved in [17], we can replace !
in the adiabatic invariant quantityZ dM��dJ

!
; (40)

where� ¼ a=ðr2þ þ a2Þ, with lnð3Þ=ð8�MÞ and we obtain
an area spectrum for slowly rotating black holes of the
form

Ak þOðJ4kÞ � 4k lnð3Þl2Pl; (41)

7 6 5 4 3 2 1 0
log a M

0.01

0.02

0.03

0.04

0.05

0.06

M R

4 6 8 10
log I

0.02

0.04

0.06

0.08

R

FIG. 5 (color online). The real part of the highly damped QNM frequency as a function of a (left) and the damping rate (right).
Logarithmic scale is used along the horizontal axis to better illustrate the transition region from the Kerr value to the Schwarzschild
value. The dots are the numerically generated data points and the solid line is a cubic spline displayed to suggest the possible behavior
in the transition region. The hollow circle on the vertical axis indicates the location of the Schwarzschild value!R ¼ lnð3Þ=8�M. Note
that !R does not appear to be discontinuous at a ¼ 0. We take M ¼ 1=2, m ¼ �1, !I ¼ �106 (left), and a ¼ 10�6 (right).

FIG. 6 (color online). Numerically generated anti-Stokes
lines in the transition region from the Kerr topology to the
Schwarzschild topology. The small hollow circle in the middle
is the pole at the inner horizon and the bigger hollow circles are
the location of the zeros of Q2.
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where k is a large integer. In the case of finite a neither
Hod’s interpretation nor Maggiore’s interpretation of the
highly damped QNMs give a unique value for the spacing
in the area spectrum because both!R and the spacing in!I

are dependent on the parameter a.
It is relevant to mention that Babb et al. in [18] show

that, when one includes quantum corrections to a
Schwarzschild spacetime, lnð3Þ does not appear in the
region of the QNM spectrum where the damping is larger
than the inverse Planck/polymerization length scale, but
it does appear in lower damping rates. They conclude that
it is still plausible to think that the QNMs with damping
rates that are large relative to the inverse horizon length
(�M�1) but small compared to other inverse lengths will
provide information about the black hole horizon. A simi-
lar conclusion can be made regarding the Kerr case. The
QNMs with a damping rate much larger than M�1 but
much smaller than a�1 may provide information about
the mass of the black hole only. The information on the
angular momentum of the black hole appears in the QNM
spectrum of slowly rotating black holes when the damping
rate becomes comparable to a�1. In other words, it seems
that for Hod’s conjecture to be true, we need to associate
lnð3Þ with the mass of the black hole only. When a be-
comes comparable to the mass of the Kerr black hole, the
two regions of the QNM spectrum overlap which makes it
difficult to separate the information regarding the mass and
angular momentum. Now, the question is, how can we
relate the QNM frequencies in the intermediate damping
region M�1 � j!Ij � a�1 to the area spectrum of Kerr
black holes if they only contain information on M. One
way is to follow the intriguing suggestion of Mäkelä et al.

in [19,20] where the authors argue that in the case of
multihorizon black holes, it is the area of both inner and
outer horizons which should be quantized in equal steps.
For the Kerr case this area is

Atotal ¼ 4�ðr2þ þ a2Þ þ 4�ðr2� þ a2Þ ¼ 16�M2; (42)

which is the same as the area of a Schwarzschild black hole
with mass M. We now can use the value of !R in the
intermediate damping region of the Kerr QNM spectrum to
find that

�Atotal ¼ 32�M�M ¼ 32�M
ℏ lnð3Þ
8�M

¼ 4 lnð3Þl2Pl: (43)

This is the same spacing that one finds in the
Schwarzschild black hole area spectrum according to
Hod’s interpretation. Also, Maggiore’s interpretation can
only give a unique value for the spacing in the area spec-
trum if we use !I in the intermediate damping region,
which gives

�Atotal ¼ 32�Mℏðj!Ijn � j!Ijn�1Þ ¼ 32�M
ℏ
4M

¼ 8�l2Pl: (44)

This result is the same as the result that one finds for the
Schwarzschild case using Maggiore’s interpretation.
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