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We show that the inclusion of an axionlike effective potential in the construction of a self-gravitating

system of scalar fields decreases its compactness when the value of the self-interaction coupling constant

is increased. By including the current values for the axion mass m and decay constant fa, we have

computed the mass and the radius for self-gravitating systems made of axion particles. It is found that such

objects will have asteroid size masses and radii of a few meters, thus a self-gravitating system made of

axions could play the role of scalar mini-MACHOs and mimic a cold dark matter model for the galactic

halo.
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The necessity of introducing dark matter (DM) as the
main component of galactic matter has become a solid
fact due to its observational support [1]. Nevertheless,
the nature of DM is one of the most intriguing mysteries
in physics. A large variety of particles have been con-
sidered as the main component of DM in the Universe
and only a few of them are still considered as good
prospects since they must fulfill several requirements
[2]. Among the survivors, the neutralino and the axion
are leading candidates [3]. The question we address in
the present work is the following: If DM is mainly
composed of axions, what type of astrophysical objects
will the axions form?

In order to answer this question, we have solved the
Einstein-Klein-Gordon (EKG) equations in the semiclas-
sical limit. The source for the Einstein equations is the

mean value of the energy-momentum tensor operator hT̂��i
of a real, quantized scalar field constructed with potential
energy density given by [4]

Vð�Þ ¼ m2f2a

�
1� cos

�
�

fa

��
: (1)

It is found that the resulting self-gravitating system, the
axion star, will have an asteroid-size mass (M� 10�16M�)
and radius of a few meters. This work improves our pre-
vious attempts [5,6] by solving numerically the EKG sys-
tem for current allowed values for the axion mass m and
decay constant fa without the necessity of any interpola-
tion. Our findings differ from previous estimates where the
effect of the potential energy density was either neglected

[7] or was taken into account with a wrong sign in the
self-interacting term of the potential [8,9]. In the first case,
it is known that there is a maximum mass for such self-
gravitating system given byMmax ¼ 0:633m2

p=m, wherem

is the mass associated with the scalar field and mp is the

Planck mass. For the allowed values of the axion mass,
10�5 eV<m< 10�3 eV [4,10], the maximum mass for a
self-gravitating system with the potential energy density
(1) neglected lies in the range 10�8M �<Maxionstar

max <
10�5M � . On the other hand, when the axion is considered
to have a repulsive self-interacting term, instead of the
attractive one given by (1), the maximum mass will be as
big as M� 104M � .
Here we solve the EKG system including a Taylor

expansion of the potential energy density (1) and we
observe that its inclusion tends to decrease the mass
and consequently the compactness of the self-gravitating
system made of axions. Because of the smallness of the
axion star’s masses they could play the role of scalar
field mini-MACHOs [11] and they will be the final state
of axion miniclusters [12] originated in the early
Universe at the QCD epoch [13]. Assuming that the
axion is the main component of DM, the galactic halo
will be a collisionless ensemble of axion stars and will
be indistinguishable to the standard CDM scenario since
N-body simulations of CDM with ultrahigh resolution
are insensitive to particle mass granularity smaller than
105M� � 103M� [14,15].
The paper is organized as follows: In Sec. I, the EKG

equations for a real, quantized scalar field with a Taylor
expansion of the potential energy density (1) are obtained
and are solved for arbitrary values of the axion massm and
the decay constant fa. In Sec. II we include the current
values ofm and fa and we obtain the mass and radius of the
axion stars. We finish Sec. II by commenting on some
consequences derived in the case that the axion star has
the properties calculated here.
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I. EINSTEIN-KLEIN-GORDON WITH AN
AXIONLIKE POTENTIAL

Since axions are real scalar particles, it is very useful
to remember how self-gravitating systems made of spin
zero particles are constructed. We will follow the method
developed by Ruffini and Bonazzola [16]. The self-
gravitating system arises as a solution of the EKG equa-
tions:

G�� ¼ 8�G< T̂��>; (2)

�
h� dVð�Þ

d�2

�
� ¼ 0; (3)

where h ¼ ð1= ffiffiffiffiffiffiffi�g
p Þ@�½ ffiffiffiffiffiffiffi�g

p
g��@�� and Vð�Þ are the

scalar field potential. Here < . . .> denotes an average
over the ground state of a system of many particles. Its
presence refers to the fact that we are working in the
semiclassical limit of Einstein’s equations. We will work
with units where c ¼ ℏ ¼ 1. In the case of a spherically
symmetric, static space-time described by

ds2 ¼ BðrÞdt2 � AðrÞdr2 � r2ðsin2�d�2 þ d�Þ (4)

has shown that such self-gravitating systems are fully
characterized by the scalar field properties, i.e. the mass
m of the scalar field and its energy density potential Vð�Þ
[9,17]. The total mass of the resulting object and the typical
radius depend mainly on these two properties of the scalar
field. The axion is no exception. To deal with the quantum
nature of the axion field, we have to compute the average

hT̂��i in Eq. (2). What is usually done is to quantize the

scalar field � ! �̂ ¼ �̂þ þ �̂� where

�̂þ ¼ X
nlm

�þ
nlmRnlðrÞYl

mð�; c Þe�iEnt

�̂� ¼ X
nlm

��
nlmRnlðrÞYl�

m ð�; c ÞeþiEnt
(5)

and �þð�Þ
nlm are the usual creation (annihilation) operators

for a particle with angular momentum l, azimuthal mo-
mentumm and energy En. These operators satisfy the usual
commutation relations ½�þ

nlm;�
þ
n0l0m0 �¼ ½��

nlm;�
�
n0l0m0 �¼0

and ½�þ
nlm;�

�
n0l0m0 � ¼ �nn0�ll0�mm0 . With the operator �̂,

it is now possible to construct the energy-momentum ten-

sor operator T̂�� just by inserting the operator �̂ into the

classical expression for the energy-momentum tensor

T�
� ¼ g��@��@��� 1

2
��
� g��@��@��� ��

� Vð�Þ: (6)

The average hQjT̂��jQi is done by considering a state jQi
for which all N particles are in the ground state (l ¼ m ¼
0, n ¼ 1). The ground state satisfies ��

100jQi ¼ 0. This
procedure, as pointed out in [16], cancels all time depen-

dence on the vacuum expectation value hQjT̂��jQi and, for
the case of a free scalar field (Vð�Þ ¼ m2

2 �2), the real

quantized scalar field yields the same field equations as
those obtained by using a classical complex scalar field.
At this level, the self-gravitating system for a real quan-
tized scalar field does not differ from a complex classical
scalar field, hence, a real quantized scalar field does not
produce the so-called ‘‘oscillations’’ [18], which are time-
dependent. In our case we are interested in the axion-

potential (1). In order to compute hT̂��i, we perform a
Taylor expansion of (1), i.e.,

Vð�Þ �m2

2
�2 � 1

4!

m2

f2a
�4 þ 1

6!

m2

f4a
�6 � . . . (7)

We will show that the final results do not depend strongly
on the number of terms considered in the Taylor expansion
of (1). The relevant term that should be considered is the
self-interacting term �4 and the sign it carries with itself,
which differs from the one considered in Boson Stars (BS)

[8]. With the potential (7), it is possible to compute hT̂�
� i by

performing the quantization and averaging procedure pre-
viously discussed. The computed average of the stress
energy tensor is

hT0
0i ¼ �E2R2

2B
� R02

2A
�m2R2

2
þm2R4

12f2a
� m2R6

144f4a
þ . . . ;

hT1
1i ¼

E2R2

2B
þ R02

2A
�m2R2

2
þm2R4

12f2a
� m2R6

144f4a
þ . . . ;

hT2
2i ¼

E2R2

2B
� R02

2A
�m2R2

2
þm2R4

12f2a
� m2R6

144f4a
þ . . . :

(8)

We have dropped all subindexes since, as we have already
pointed out, we will assume that the axion is in its ground
state. We can observe that there is no time dependence in
(8). Furthermore, there are new numerical factors that

appear due to the averaging performed in T̂�� [19]. For

instance, h�4i ¼ 2R4 and h�6i ¼ 5R6 in such a way that
we cannot recover the original cosð�=faÞ from which we
departed. Following a similar procedure, but now applied
to the scalar wave Eq. (3), with a potential (7) and the
spherically symmetric metric (4), the Einstein-Klein-
Gordon system is obtained:

A0

A2r
þ 1

r2

�
1� 1

A

�
¼ �8�GhT0

0i;
B0

ABr
� 1

r2

�
1� 1

A

�
¼ 8�GhT1

1i;

R00 þ
�
2

r
þ B0

2B
� A0

2A

�
R0 þ A

��
E2

B
�m2

2

�
R

þm2R3

6f2a
�m2R5

48f4a

�
¼ 0:

(9)

Following standard definitions [8], we rewrite the system

(9) in dimensionless variables: x ¼ rm, R ¼ �=
ffiffiffiffiffiffiffiffiffiffi
4�G

p
and
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~B ¼ m2B=E2, and we have found it convenient to define
the dimensionless self-interaction term

� ¼ 1

24�

�
mp

fa

�
2
: (10)

By imposing regularity at the origin and flatness at infinity,
system (9) is solved using a shooting method. Even though
the set of Eqs. (9) is very similar to the case for typical BS,
[8], the behavior we found for the family of solutions with
zero-nodes is completely different. A full set of equilib-
rium configurations is shown in Fig. 1, where the gravita-
tional mass is plotted for different values of �ð0Þ and �.
The equilibrium configurations have a maximum mass
Mmax at some �ð0Þ ¼ �c for each value of �. But the
switch in the potential sign of the �4 term produces a
significant change in the behavior of Mmax in comparison

with standard BS [8]. The relation Mmax ��1=2 is no
longer satisfied. Instead of increasing Mmax as we increase
the value of �, we found a decreasing Mmax. This effect is
expected since instead of adding a repulsive interaction
between the particles of the system, the change in the sign
due to the cosinelike potential (1) implies an attractive
potential. Thus the total number of particles needed to
form an equilibrium configuration that balance the gravi-
tational collapse against the quantum pressure is lower than
the case of a repulsive potential. One can think that this
effect is apparent and as soon as the complete potential (1)
is implemented in the EKG system, a different behavior
would be seen. But the decrease in the mass of the equi-
librium configurations is a robust behavior. The masses of
equilibrium configurations including up to the fourth
power of � in the Taylor series are plotted also in Fig. 1,
illustrating this robustness.

The bigger the value of �, the lower the differences on
the masses. This is because when � is increased, �c

decreases (and equivalently�ðrÞ where we are interested).

Then, the true expansion parameter of (1) is ��, and it is
always a small parameter. Another interesting issue is that
the dependence of the radius R99 (defined as the radius
where 99% of the total gravitational mass is reached)
on the value of � is weak, as it is shown in upper panel
of Fig. 2. Combining the invariance of the radius as �
increases, with the decrease in the mass, means that the
self-gravitating system made of a scalar field that has an
axionlike potential has a lower compactness (2M=R99) as
the self-interaction term increases. This ‘‘Newtonization’’
of the system is shown on the lower panel of Fig. 2.

II. AXION STAR

The previous results were obtained assuming arbitrary
values of the mass m of the scalar field associated with the
axion as well as free values for the decay constant fa. But
the mass of the axion is constrained by astrophysical and
cosmological considerations to lie in the range 10�5 eV �
m � 10�3 eV and the decay constant is related to the axion

mass by m ¼ 6�eV

�
1012 GeV

fa

�
[4,20]. With these two re-

strictions we have 1013 <�< 1017 and then, the previous
selection of dimensionless variables fx; �; A: ~Bg) is now
inadequate in order to numerically solve the system (9).
After some frustrated attempts, we found that a more
suitable set of variables to solve the system (9) is the
following:

R ¼ faffiffiffiffi
m

p �; r ¼ mp

fa

ffiffiffiffiffiffiffi
m

4�

r
x;

1
~B
¼ E2

m2B
: (11)

Since�>>1, it is natural to think that the resulting axion
star will have a small compactness and low mass. So,
besides the change in variables (11), it is convenient to
solve for aðxÞ ¼ 1� AðxÞ. Solving the system (9) for
the new set of variables fx; �ðxÞ; aðxÞ; ~BðxÞg we obtained
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FIG. 1 (color online). Gravitational mass as a function of the
central value of the scalar field �ð0Þ for different values of �.
Dotted lines include only an expansion of the axion-potential up
to the term �4.
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given value of �ð0Þ, the compactness decreases as � increases.
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typical nodeless configurations for these axion stars. Some
of them are shown in Fig. 3, where we have taken axion
mass m ¼ 10�5 eV. The total gravitational mass and the
radius R99, both in physical units, for those configurations
are shown in Table I.

A possible scenario emerges with the hypothesis that
DM is mainly composed by axions. As already pointed out
by Kolb and Tkachev [12], nonlinear effects in the evolu-
tion of the axion field in the early Universe may lead to the
formation of ‘‘axion miniclusters’’. These miniclusters
may relax, due to the collisional 2a ! 2a process or by
gravitational cooling [21], and they will evolve to a BS. In
the present work we have constructed those BSs for axion
particles by solving the EKG system for a real quantized
scalar field which is regulated by an axion-potential (1).
These self-gravitating systems, the axion stars, have very
small masses and radii of meters (Table I) and conse-
quently very low compactness. The resulting densities
are not enough to produce stimulated decays of the axion
to photons since they occur when ��m

2
pVef�=ðRm4

�faÞ>
1 which implies densities 	 > 1015 Kg=m3 for m ¼
10�5 eV [21,22]. Typical densities for axion stars are
shown in Table I.

The galactic halo will be an ensemble of axion stars, and
this picture is not in contradiction with observations since
the size of axions stars fit into the limits coming from
microlensing or gravothermal instability [11]. Previous
studies that construct models for galactic dark matter halos
out of scalar fields assume that each galactic halo is a

spherical Bose-Einstein condensate made of an ultralight
scalar field [23–28]. In the present work, the axion stars
will play the role of the scalar field mini-MACHOs, that is,
a scenario where the scalar field (the axion) form a large
number of stable asteroid-sized scalar condensations
which end up clustering into structures similar to CDM
halos with all their advantages. The stability of struc-
tures made of scalar fields have been extensively studied
[29–31], and those analyses could be extended to our case
with potential energy density given by (1).
Furthermore, axion stars present similar characteristics

to the recently proposed neutralino stars [32], with the ad-
vantage that they could survive longer periods of time [33].
If DM is distributed as axion stars, their detection will be

very difficult. The proposed femtolensing to detect axion
compact objects [34] is close to its lower detectable limit.
Another related issue is the low number of axion stars
around the earth. Assuming for instance a Navarro-
Frenk-White profile for the galactic halo, and a local
halo density of 0:3 GeV= cm3 around the Sun, there will
be �1 axion star in the volume cover between Jupiter and
the Sun. Nevertheless, another axion property can shed
light on the axion, such as the conversion of axions into
photons in the presence of strong magnetic fields [35].
Collisions of axion stars with neutron stars [36] will pro-
duce flashes of light that could be detected by Gamma ray
Observatories [37]. A more detailed analysis of these ideas,
together with a more detailed study of the stability of the
axion stars, could help us to determine if DM is mainly
composed by scalar field particles as the axions.
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