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We present a new estimation method for mapping the gravitational lensing potential from observed

CMB intensity and polarization fields. Our method uses Bayesian techniques to estimate the average

curvature of the potential over small local regions. These local curvatures are then used to construct an

estimate of a low pass filter of the gravitational potential. By utilizing Bayesian/likelihood methods one

can easily overcome problems with missing and/or nonuniform pixels and problems with partial sky

observations (E- and B-mode mixing, for example). Moreover, our methods are local in nature, which

allow us to easily model spatially varying beams, and are highly parallelizable. We note that our estimates

do not rely on the typical Taylor approximation which is used to construct estimates of the gravitational

potential by Fourier coupling. We present our methodology with a flat sky simulation under nearly ideal

experimental conditions with a noise level of 1 �K-arcmin for the temperature field,
ffiffiffi
2

p
�K-arcmin for

the polarization fields, with an instrumental beam full width at half maximum (FWHM) of 0.25 arcmin.
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I. INTRODUCTION

Over the past decade the cosmic microwave background
(CMB) has emerged as a fundamental probe of cosmology
and astrophysics. In addition to the primary fluctuations of
the early Universe, the CMB contains signatures of the
gravitational bending of CMB photon trajectories due to
matter, called gravitational lensing. Mapping this gravita-
tional lensing is important for a number of reasons includ-
ing, but not limited to, understanding cosmic structure,
constraining cosmological parameters [1,2] and detecting
gravity waves [3–5]. In this paper we present a local
Bayesian estimate that can accurately map the gravita-
tional lens in high resolution, low noise measurements of
the CMB temperature and polarization fields.

There is extensive literature on estimating the lensing of
the CMB (classic references include [6–8]) and some
recent observational detections [9,10]. The current estima-
tors in the literature can be loosely characterized into two
types. The first type was initiated in [8] (see also [11,12])
and utilizes quadratic combinations of the CMB and its
gradient to infer lens structure. The optimal quadratic
combinations were then discovered by [7,13,14] and are
generally referred to as ‘‘the quadratic estimator’’. This is
arguably the most popular estimate of the gravitational
potential and uses a first order Taylor approximation
to establish mode coupling in the Fourier domain which
can be estimated to recover the gravitational potential (real
space analogs to these estimators can be found in [15,16]).
The second type is an approximate global maximum like-
lihood estimate and was developed in [6,17].

Our method, in contrast, locally approximates a qua-
dratic form for the gravitational potential and estimates the
coefficients locally using Bayesian methods. The locally
estimated coefficients are then globally stitched together to
construct an estimate of a low pass filter of the gravitational
potential. The local analysis allows us to avoid using the
typical first order Taylor expansion for the quadratic esti-
mator and avoids the likelihood approximations used in
global estimates. Moreover, we are able to easily handle
missing pixels, problems with partial sky observations
(E- and B-mode mixing, for example), and spatially vary-
ing or asymmetric beams. The motivation for developing
this estimate stems, in part, from current speculation that
likelihood methods will allow superior mapping of the
lensing structure (compared to the quadratic estimator)
under low noise levels, and that global likelihood methods
can be prohibitively computational intensive—indeed in-
tractable—without significant approximation.
We illustrate our mapping methodology on a high reso-

lution, low noise simulation of the CMB temperature and
polarization field on a 17� � 17� patch of the flat sky. This
simulation is used throughout the paper to demonstrate
findings and techniques. To get an overview of the per-
formance of our method, Fig. 1 shows the estimated po-
tential (left) from the simulated lensed CMB temperature
and polarization field (observational noise levels are set at

1 �K-arcmin for the temperature field,
ffiffiffi
2

p
�K-arcmin for

the polarization fields, with a beam FWHMof 0.25 arcmin).
The input gravitational potential is shown in the right
diagram in Fig. 1. The details of the simulation procedure

PHYSICAL REVIEW D 83, 043523 (2011)

1550-7998=2011=83(4)=043523(10) 043523-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.043523


can be found in Appendix A. It is clear from Fig. 1 that the
mapping accurately traces the true, unknown gravitational
potential. To get an idea of the noise of this reconstruction
for different realizations of the CMBþ noise we present
Fig. 2 which shows the different estimates of the projected
matter power spectrum using the estimated projected
mass—with the local likelihood approach—for 10 differ-
ent CMBþ noise realizations (dashed lines) while keeping

the gravitational potential in Fig. 1 fixed. The dotted line
(blue) shows the estimated projected mass power spectrum
if one had access to the true gravitational potential used in
our simulations. Finally we plot the theoretical ensemble
average projected mass power spectrum in red to get
an idea of the magnitude of the errors in the mass
reconstruction.

II. LOCALMAXIMUM A POSTERIORI ESTIMATES
OF SHEAR AND CONVERGENCE

The CMB radiation in the flat sky limit can be expressed
in term of the Stokes parameters T, Q, U which measure
total intensity TðxÞ, and linear polarization QðxÞ and UðxÞ
with respect to some coordinate frame x ¼ ðx; yÞ 2 R2.
Instead of directly observing T, Q, U we observe a remap-
ping of the CMB due to the gravitational effect of inter-
vening matter. This lensed CMB can be written
Tðxþr�ðxÞÞ, Qðxþr�ðxÞÞ and Uðxþr�ðxÞÞ where
� denotes the gravitational potential (see [18], for
example).
To describe our estimate of the gravitational potential,

�, first consider a small circular observation patch with
diameter � in the flat sky centered at some point x0,
denoted N �ðx0Þ � R2. Over this small region we decom-
pose � into an overall local quadratic fit and error term

� ¼ q� þ �

where q� is a local quadratic approximation of the poten-
tial � with error term � � �� q�. In what follows we
estimate q�, denoted q̂�, and associate this estimate with
the neighborhood midpoint x0. Then we repeat this proce-
dure for other local midpoints x0 throughout the observa-
tion window. After a shrinkage adjustment is made to the
local estimates we show, in Section II D, how to stitch the

50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

x 10
−7

multipole

sp
ec

tr
al

 p
ow

er

FIG. 2 (color online). Plot of the projected mass power spec-
trum (red solid line) along with the estimated power spectrum
using the true, but unknown, projected mass (blue dotted line).
The dashed lines correspond to different estimates of the power
spectrum using the estimated projected mass—with the local
likelihood approach—for different CMB realizations but the
same lensing potential realization. See Section I and
Appendix A for the simulation details.
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FIG. 1 (color online). Left: Estimated gravitational potential on a 17� � 17� patch of the simulated flat sky. Right: Input
gravitational potential used in the simulation. See Section I and Appendix A for the simulation details.
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estimates together to produce the final estimated potential

�̂ shown in Fig. 1.
Notice that as � ! 0 the expected magnitude of the error

� approaches zero. This has the effect of improving the
following Taylor approximation

Tðxþr�ðxÞÞ ¼ Tð~xÞ þ r�ðxÞ � rTð~xÞ þ � � � (1)

for x 2 N �ðx0Þ, where we use the notation ~x �
xþrq�ðxÞ (with a similar Taylor expansion for both
Qðxþr�ðxÞÞ and Uðxþr�ðxÞÞ). Notice that ~x depends
not only on x but also the unknown coefficients of the
quadratic term q�. We briefly mention that these are re-
lated to the convergence � and shear � ¼ �1 þ i�2 of the
gravitational lens by

� � �ðq�xx þ q�yyÞ=2
�1 � �ðq�xx � q�yyÞ=2
�2 � �q�xy

using the shear notation given in [8]. Now when �
is sufficiently small we can truncate the expansion in (1)
to get

Tðxþr�ðxÞÞ
Qðxþr�ðxÞÞ
Uðxþr�ðxÞÞ

2
64

3
75 �

Tðxþrq�ðxÞÞ
Qðxþrq�ðxÞÞ
Uðxþrq�ðxÞÞ

2
64

3
75 (2)

on the local neighborhood N �ðx0Þ. By regarding q� as
unknown we can use the right hand side of (2) to develop a
likelihood for estimating the coefficients of q�. Nominally
q� has 6 unknown coefficients for which to estimate.
However, we can ignore the linear terms in q� since the
CMB temperature and the polarization are statistically in-
variant under the resulting translation in rq�. Therefore,
one can write q� as c1ðx� x0Þ2=2þ c2ðx� x0Þ�
ðy� y0Þ þ c3ðy� y0Þ2=2 for unknown coefficients

c1 ¼ q�xx, c2 ¼ q�xy, c3 ¼ q�yy.
An important probe of gravitational lensing from the

CMB polarization is the creation of a curl-like B-mode
from the lensing [19,20]. We remark that a local quadratic
approximation in (2) still has the power to detect this
B-mode power so that the local procedure is not blind to
this information source. To see this notice that a quadratic
lensing potential remaps the coordinates by

~x ¼ xþ q�xx q�xy
q�xy q�yy

" #
ðx� x0Þ:

If we assume the original polarization ðQðxÞ; UðxÞÞ is curl
free then the lensed polarization has curl given by

curl ðQð~xÞ; Uð~xÞÞ ¼ �2�1Uxð~xÞ þ �2½Qxð~xÞ �Uyð~xÞ�:
Therefore the shear parameter �, and not the convergence
�, is what creates local B-mode power. The dominant
source of information for B-mode power is in the cross
correlation between the lensed Stokes parametersQð~xÞ and

Uð~xÞ. This agrees with [7] that the E-B cross estimator
provides optimal signal to noise under nearly ideal experi-
mental conditions.
We finish this section with a remark on the accuracy of

the Taylor approximation (1). As the signal to noise ratio
increases and the pixel resolution improves one can shrink
the local neighborhood N �ðx0Þ so the term � becomes
smaller (which improves the Taylor approximation).
However, as � ! 0, the fields T, Q and U become nearly
linear and one may expect some loss of information from
the shrinking power in T, Q and U at frequencies with
wavelengths smaller than the neighborhood N �ðx0Þ. It
therefore may be statistically advantageous to artificially
increase the neighborhood size while simultaneously in-
creasing the order of the local polynomial fit q�. Then,
instead of recording the full polynomial fit at each mid-
point x0, one can retain the second order derivatives

q�xxðx0Þ, q�xyðx0Þ, q�y ðx0Þ for estimates of � and �. It is yet
to be seen, however, what � and what polynomial order
will be optimal for a given noise and resolution level. In
Section III we present an information metric for choosing
the neighborhood size � for the simulation specifics and for
a quadratic polynomial q�.

A. The local posterior

Using the Gaussian approximation of the CMB along
with the quadratic potential approximation given by (2) we
describe how to construct the likelihood as a function of the
unknown quadratic coefficients in q�. Let x1; . . . ; xn de-
note the observation locations of the CMB within the local
neighborhood N �ðx0Þ centered at x0. Using approxima-
tion (2), the CMB observables in this local neighborhood
are well modeled by white noise corruption of a convolved
(by the beam) lensed intensity and polarization field.
Let t, q, u denote n-vectors of observed CMB values
at the corresponding pixel locations in N �ðx0Þ for the
intensity T and Stokes parameters Q, U, respectively.
Using Gaussianity of the full vector of CMB observables,
z ¼ ðty; qy; uyÞy, the log likelihood (up to a constant) as a
function of the quadratic fit q� can be written

L ðq�jzÞ ¼ � 1

2
zyð�q� þ NÞ�1z� 1

2
lndetð�q� þ NÞ

(3)

where�q� þ N is the covariance matrix of the observation

vector z (we use the subscript to emphasize the
dependence on the unknown quadratic q�), N ¼
diagð�2

TI; �
2
QI; �

2
UIÞ is the noise covariance structure and

I is the n� n identity matrix. Notice that the noise struc-
ture does not depend on the unknown quadratic q�. In the
next section we will derive the exact form of the prior
distribution on q�, denoted �ðq�Þ, but briefly mention that
the posterior distribution on q�, which we maximize to
estimate q�, is
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pðq�jzÞ / eLðq�jzÞ�ðq�Þ: (4)

The entries of �q� þ N contain the covariances

htktjiCMB, hqkqjiCMB, hukujiCMB and all cross-covariances

among t, q, u (we use tk to denote the kth entry of t, for
example). Let’ denote the instrumental beam and�T ,�Q,

�U denote the noise standard deviations of T,Q,U so that,
for example, the kth entry of t is modeled as

tk �
Z
R2

d2x’ðxÞTð~xk � ~xÞ þ �Tnk (5)

where the nk’s are independent standard Gaussian random
variables, ~xk ¼ xk þrq�ðxkÞ and ~x ¼ xþrq�ðxÞ. Note
that this is an approximate model for tk based on (2). In
actuality, the kth temperature measurement isR
R2 d2x’ðxÞTðxk�xþr�ðxk�xÞÞþ�Tnk, but the line-

arity of rq� allows us to write xk � xþr�ðxk � xÞ �
constantþ ~xk � ~x on the small neighborhood N �ðx0Þ.
Under the assumption of zero B-mode, the spectral den-
sities associated with Q, U can be written

CQ
‘ ¼ CE

‘ cos
2ð2’‘Þ (6)

CU
‘ ¼ CE

‘ sin
2ð2’‘Þ (7)

CQU
‘ ¼ CE

‘ cosð2’‘Þ sinð2’‘Þ (8)

where tanð’‘Þ ¼ ‘2=‘1 and ‘ ¼ ð‘1; ‘2Þ 2 R2. Since one
can write xþrq�ðxÞ ¼ Mx where the M is a 2� 2 real
matrix, the sheared Stokes parameters Tð~xÞ,Qð~xÞ andUð~xÞ
are stationary random fields with spectral densities given

by CT
M�1‘

detM�1, CQ

M�1‘
detM�1 and CU

M�1‘
detM�1, re-

spectively. After adjusting for the beam (which is applied
after lensing) the covariance between the observations in t
can be written

htktjiCMB ¼ �2
T�ij þ

Z
R2

d2‘

ð2�Þ2 e
i‘�ðxk�xjÞj’ð‘Þj2 C

T
M�1‘

detM
:

(9)

The computations are similar to complete the entries of
covariance matrix �q� þ N. At face value the above inte-

gral seems too computationally intensive for every pair
xk � xj. Moreover, to apply Newton type algorithms for

maximizing the posterior (4) one needs to compute the
derivatives of htktjiCMB with respect to elements of M. In

Appendix B we show that some of these computational
challenges can be overcome by utilizing a single fast-
Fourier-transform algorithm (FFT) to quickly compute
the above integral for sufficient resolution in the argument
xk � xj to recover htktjiCMB for all pairs k, j.

B. Taylor truncation bias

The quadratic function q� is defined as the best least
square fit of� over the neighborhoodN �ðx0Þ. The residual

� ¼ �� q�, defined over N �ðx0Þ, is nonstationary and
will therefore not have a spectral density that diagonalizes
the covariance structure. However, stationarity is a good
approximation for order of magnitude calculations on the
truncation error in (1). We approximate the spectral density

of � as an attenuated version of C�
‘ by arguing that the

quadratic fit effectively removes the spectral power at wave-
lengths greater than 2�. Reasoning similarly we expect the
quadratic fit to have negligible impact on the spectral power
at wavelengths smaller than �. By assuming the spectral
power grows linearly in the intermediary spectral range,

from zero at ‘ ¼ �=� to C�
2�=� at ‘ ¼ 2�=�, we obtain an

approximate model for the spectral density of �

C�
‘ � min

�
1;

�
�

�
j‘j � 1

�þ�2
C�
‘

where xþ denotes the positive part of the real number x.
Notice that the attenuation happens on the realizations of�,
hence requiring the square on the low pass filter in the
spectral density. This implies that the second term in the
Taylor expansion (1) has approximate spectral density

CrTð~xÞ�r�ðxÞ
‘ �

Z d2‘0

ð2�Þ2 ðM
�1‘0 � ð‘� ‘0ÞÞ2C�

‘�‘0
CT
M�1‘0

detM
:

In our simulation we use a neighborhood diameter of
� ¼ 0:006 radians (20.6 acrmin). This diameter was
chosen using the information criterion developed in
Section III. The corresponding approximate rms of
rTð~xÞ � r�ðxÞ is 	2:3 �K with an order of magnitude
reduction for the polarization field. Brute force simulation

of h Mean
xk2N �ðx0Þ fTðxk þr�ðxkÞÞ � Tð~xkÞg2i1=2CMB yields a

value closer to 	3:6 �K, suggesting a reasonable station-
ary approximation to �. These approximations show that
the polarization truncation error is smaller (by an order of

magnitude) than the simulation noise level
ffiffiffi
2

p
�K-arcmin.

However, the temperature truncation error is greater than
the temperature noise level 1 �K. A consequence is that
the likelihood explains the additional high frequency
power in the observations (from the error term) by adjust-
ing the estimate of q� to artificially magnify the conver-
gence � estimates. Indeed, this bias seems relatively
constant and can be clearly seen in Fig. 3 in the top blue
points. Each blue point corresponds to a local neighbor-
hood: the x-coordinate representing the true r2q� associ-
ated with that neighborhood; the y-coordinate representing
the estimated local value shifted up by 0.2, i.e.r2q̂� þ 0:2.
The bias of nearly 	0:1 above the top dashed blue line
y ¼ xþ 0:2, shows the effect of the additional high fre-
quency power of the error term rTð~xÞ � r�ðxÞ. To adjust
this, we subtract the overall mean of the local estimates,
reasoning that the observation window is large enough at

17� � 17� so that the overall mean of the true values q�xx,

q�xy, q
�
yy is close to zero. For smaller observation windows it
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may be possible to estimate an overall quadratic fit to
correct for this bias but we do not investigate that here.

C. The prior �ðq�Þ
The stationary approximation for � also yields an ap-

proximation for the prior distribution of the local quadratic
fit q� using the identity q� ¼ �� �. Since � is well
modeled by a high pass filter of �, the quadratic function
q� can be modeled by the corresponding low pass filter

q�ðxÞ �
Z d2‘

2�
eix�‘�lpð‘Þ

over x2N �ðx0Þ, where �lpð‘Þ�minf1;½2� �
�j‘j�þg�ð‘Þ

which has spectral density minf1; ½2� �
� j‘j�þg2C�

‘ .

Therefore a natural candidate for the prior on the coeffi-

cients of q� are the random variables @2�lpð0Þ
@xk@xj

which are

mean zero and Gaussian with variances obtained by the
corresponding spectral moments of �lp. This prior is used
on each local neighborhood N �ðx0Þ to derive the local
maximum a posteriori estimate. For the simulation used in
this paper, the neighborhood width was set to � ¼ 0:006
radians (20.6 arcmin) which gives prior variances 0.0023,

0.0008, 0.0023 for q�xx, q
�
xy and q�yy, respectively, (the only

nonzero cross covariance is between q�xx and q�yy and is
0.0008).

D. Reconstructing � from q̂�

When observing the full sky, the estimates of � will
allow one to recover the gravitational potential � by solv-
ing the poisson equation r2� ¼ �2� (up to a constant).
With partial sky observations, however, the shear is needed
to break ambiguity corresponding to different boundary

conditions. We do this in two stages, first using q̂�xx, q̂
�
xy and

q̂�yy (regarded as functions of the local neighborhood mid-
point x0) to recover the estimated displacement field

ð�̂x; �̂yÞ, then using this displacement field to recover the

estimated potential �̂. To handle this, we adopt the method

of [21,22] and define �̂x, �̂y as minimizers of functionals

F1 and F2 defined as

F1ð�xÞ �
Z

dxdy½ð�xx � q̂�xxÞ2 þ ð�xy � q̂�xyÞ2�

F2ð�yÞ �
Z

dxdy½ð�xy � q̂�xyÞ2 þ ð�yy � q̂�yyÞ2�:

In particular, �̂x satisfies F1ð�̂xÞ ¼ min�x
F1ð�xÞ and

similarly for �̂y. See [23] for details of the minimization

algorithm. Now we use the estimated displacements

ð�̂x; �̂yÞ to define the estimated potential �̂ as the mini-

mizer of the functional F3 defined as

F3ð�Þ �
Z

dxdy½ð�x � �̂xÞ2 þ ð�y � �̂yÞ2�:

The minimization is needed to account for the fact that our
estimates are noisy versions of the truth and therefore may
not correspond to an integral vector field for which a

potential exists. A consequence is that the estimate �̂ is
‘‘shrunk’’ towards zero when the algorithm fits a gradient
to a vector field which may have nonvanishing curl. This
shrinking can be seen in Fig. 3 looking at the scatter plot of

green points. These points show ðr2�ðx0Þ;r2�̂ðx0ÞÞ for
each local neighborhood N �ðx0Þ. One can clearly see the
shrinkage effect by noticing the slope of the trend in the
green points is less than one. We undo this shrinkage effect

by multiplying �̂ by a factor that undoes this shrinkage.
The multiplication factor, denoted c, is determined by
matching the variance of the raw estimates r2q̂� with

cr2�̂. The result of this correction factor is seen in the
scatter plot of the red points, in Fig. 3, which show the local
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FIG. 3 (color online). Estimated values of r2�ðx0Þ, for each
local neighborhood midpoint x0, plotted against the simulation
truth at different stages of the algorithm. The blue points (top)
correspond to the raw estimates at each local neighborhood; The
green points (middle) to the estimates after fitting a gravitational
potential; The red points (bottom) after a shrinkage correction.
The y coordinates of the blue points (top) are shifted up by 0.2
and the red points (bottom) are shifted down by 0.2 to fit on the
same diagram. See Sections II B and II D for discussion.
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convergence estimates versus truth after the correction

factor (r2�, cr2�̂� 0:2).

The estimated �̂x (after correcting for the shrinkage)
along with the true displacement �x (used in the simula-

tion) are shown in Fig. 4. The estimated �̂ along with the
true gravitational potential � are shown in Fig. 1. These
two figures demonstrate accurate reconstruction of both the
gravitational potential and the displacement field. In addi-

tion, by differentiating the estimated potential, �̂, one
obtains smoothed estimates of convergence and shear

(smoothed from the fitting of �̂). In Fig. 5 we plot the

estimate �̂xy (which corresponds to minus the imaginary

part of the shear �), along with �xy (bottom right) and the

low pass filter �lp
xy (bottom left) defined in Section II C.

Notice that the estimate �̂xy tracks the derivatives of the

low pass filter �
lp
xy, whereas the additional high frequency

in �xy is not accurately estimated from �̂xy. This is pre-

sumably due to the local fitting of a quadratic potential
over the neighborhoods N �ðx0Þ.

III. NEIGHBORHOOD SIZE AND STRUCTURE

We define the following measure of information which
is used as a metric for choosing the width of the neighbor-
hood and other parameters of our estimation method:

Information for q�

� variance of the prior on q�

expected variance of the posterior on q�
:

The above information metric is essentially a measure of
signal to noise ratio (squared). The variance of the prior
corresponds to the squared magnitude of the signal,

whereas the expected variance of the posterior is a proxy
for the squared magnitude of the noise. We use simulations
to estimate this information (while using the hessian of the
posterior density at q̂� to approximate posterior variance)
and use it for guidance when choosing the tuning parame-
ters for our estimation algorithm. Note: we avoided a
lengthy and rigorous simulation study to choose global
optimal tuning parameters, opting for a less rigorous simu-
lation study which yields, potentially, suboptimal but rea-
sonable algorithmic parameters.
The main parameter that needs tuning is the local neigh-

borhood size �. Notice that our information measure at-
tempts to balance two competing quantities when choosing
a neighborhood size, the larger the neighborhood the
smaller the signal q� (from the low pass filter). On the other
hand, larger neighborhoods correspond to more data when
the resolution is fixed. Using this metric, � ¼ 0:006 radians
(20.6 arcmin) emerges as a good neighborhood size when

the beam FWHM is 0.25 arcmin and the noise levels are
ffiffiffi
2

p
and 1 �K-arcmin pixels for Q, U and T, respectively.
Because of computational limitations associated with

larger neighborhoods we found it necessary to down-
sample the local neighborhoods by discarding pixels.
Using the information metric we were able to isolate that
randomly sampling the pixels seemed preferable to evenly
down-sampling to a courser grid. Moreover, we found that
using different randomly selected pixels for T, Q and U
was preferable to using the same random pixels for all the
Stokes fields. Therefore, for each local neighborhood we
selected 300 random pixels in N �ðx0Þ for the T observa-
tions, then randomly selected 300 pixels from those re-
maining for Q and finally 300 pixels from the remaining
unselected pixels for U (allowing overlaps when the local
neighborhood size had fewer than 900 pixels).
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FIG. 4 (color online). The right diagram shows �x, where r� � ð�x;�yÞ is the true gravitational displacement field used in the
simulation. The left diagram shows the estimate �̂x which is derived from the local quadratic estimates using the methodology
described in Section II D.
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IV. DISCUSSION

We have demonstrated the feasibility of using a local
Bayesian estimate to accurately map the gravitational po-
tential and displacement fields under low noise, small
beam experimental conditions. The motivation for devel-
oping this estimate stems, in part, from speculation that
likelihood methods will allow superior mapping of the
lensing structure (compared to the quadratic estimator)
under low noise levels. The main difference between the
global estimates of [6,17] and the local estimate presented
here is the nature of the likelihood approximation. In [6,17]
the global likelihood is defined as a functional on the
unknown gravitational potential � and approximations
are made to this functional. Our method, in contrast, uses
a nearly exact likelihood—exact up to approximation (B1)
in Appendix B—but under a local modeling approximation

that assumes a quadratic �. One advantage is the added
precision available to model instrumental and foreground
characteristics. For example, the local analysis models the
beam convolved CMB rather than the deconvolved CMB.
Deconvolution induces spatial correlation in the additive
instrumental noise which is potentially nonstationary if the
beam spatially varies. Since this noise is not invariant
under warping it complicates the global likelihood.
Another advantage is that the local estimates are relatively
easy to implement and parallelize. In addition, the local
estimate automatically uses the highest signal to noise
combinations of Q, U and T so there is no need to rederive
the optimal quadratic combinations for different experi-
mental conditions.
The local analysis is not free from disadvantages how-

ever. A global analysis is presumably much better suited
for estimating long wavelengths in the gravitational

FIG. 5 (color online). The top diagram shows the estimate of �xy (which corresponds to minus the imaginary part of the shear �)

where � denotes the gravitational potential. The bottom two diagrams show the simulation truth: bottom left shows �lp
xy where �lp

denotes the low pass filter�lpð‘Þ � minf1; ½2� 0:006
� j‘j�þg�ð‘Þ (see Section II C for a discussion); bottom right shows�xy. Notice that

the estimate of �xy tracks the low pass filter �
lp
xy and does not have the high frequency behavior seen in the simulation truth �xy.
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potential and wavelengths that are shorter than the local
neighborhood size. Moreover, since our estimates are de-
fined implicitly—as the maximum of the posterior den-
sity—it is difficult to derive expected error magnitudes.
However, the results presented here show that under some
experimental conditions the advantages overcome the dis-
advantages. Moreover our local estimate uses an approxi-
mation that is inherently different from the Taylor
approximation used to derive the quadratic estimator.
This leaves open the possibility that the local estimate
may have different bias and error characteristics which
could compliment the quadratic estimator, rather than re-
place it.
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APPENDIX A: SIMULATION DETAILS

The fiducial cosmology used for the simulations is based
on a flat, power law �CDM cosmological model, with
baryon density �b ¼ 0:044; cold dark matter density
�cdm ¼ 0:21; cosmological constant density �� ¼ 0:74;
Hubble parameter h ¼ 0:71 in units of 100 km s�1 Mpc�1;
primordial scalar fluctuation amplitude Asðk ¼
0:002 Mpc�1Þ ¼ 2:45� 10�9; scalar spectral index
nsðk ¼ 0:002 Mpc�1Þ ¼ 0:96; primordial helium abun-
dance YP ¼ 0:24; and reionization optical depth 	r ¼
0:088. The code for anisotropies in the microwave back-
ground is used to generate the theoretical power spectra
[24].

We start by simulating maps of the unlensed CMB
Stokes parameters T, Q, U. The following Riemann sum
approximation is used for the random fields T, Q, U

TðxÞ � X
‘

ZT
‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�‘1�‘2

p
2�

eix�‘
ffiffiffiffiffiffi
CT
‘

q
(A1)

QðxÞ �X
‘

ZE
‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�‘1�‘2

p
2�

eix�‘ cosð2’‘Þ
ffiffiffiffiffiffiffi
CE
‘

q
(A2)

UðxÞ � X
‘

ZE
‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�‘1�‘2

p
2�

eix�‘ sinð2’‘Þ
ffiffiffiffiffiffiffi
CE
‘

q
(A3)

where ’‘ ¼ tan�1ð‘2=‘1Þ; �‘1, �‘2 are the frequency
spacing in the two coordinate directions; for each ‘,
ZT
‘ and ZE

‘ are mean zero complex Gaussian random

variables such that hZT
‘Z

T

‘0 i ¼ hZE

‘Z
E

‘0 i ¼ �‘�‘0 ,

hZT
‘Z

E

‘0 i ¼

CTE
‘ffiffiffiffiffi

CT
‘

p ffiffiffiffiffi
CE
‘

p �‘�‘0 , Z
T
�‘ ¼ ZT


‘ and ZE
�‘ ¼ ZE


‘ . To

enforce the proper cross correlation between ZT
‘ and ZE

‘

we set

ZT
‘

ZE
‘

" #
¼ 1ffiffiffi

2
p � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 

p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 

pffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 

p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 

p

� �
W1

‘

W2
‘

" #
(A4)

where 
 � CTE
‘ffiffiffiffiffi

CT
‘

p ffiffiffiffiffi
CE
‘

p , and for each ‘,W1
‘ ,W

2
‘ are mean zero

complex Gaussian random variables such that hW1
‘W

1

‘0 i ¼

�‘�‘0 , hW2
‘W

2

‘0 i ¼ �‘�‘0 , hW1

‘W
2

‘0 i ¼ 0, W1

�‘ ¼ W1

‘ and

W2
�‘ ¼ W2


‘ .

In our simulation, the above sums—Eqs. (A1)–(A3)—
are taken over frequencies ‘2 f2�L k: k 2 f�N=2; . . . ;

N=2� 1g2g where L ¼ 0:2967 radians so that T will be
periodic on ½�L=2; L=2�2. The limit N ¼ L=�x is chosen
to match the resolution in pixel space, denoted �x, so that
FFT can be used to compute the sums (A1)–(A3) which,
after simplification, becomes

Tðj�xÞ � L�1
X
k

ZT
ð2�=LÞke

i2�k�j=N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CT
ð2�=LÞk

q
(A5)

Qðj�xÞ � L�1
X
k

ZE
ð2�=LÞke

i2�k�j=N cosð2’‘Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE
ð2�=LÞk

q
(A6)

Uðj�xÞ � L�1
X
k

ZE
ð2�=LÞke

i2�k�j=N sinð2’‘Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE
ð2�=LÞk

q
(A7)

for each j 2 fN=2; . . . ; N=2� 1g2 where the sums range
over k 2 f�N=2; . . . ; N=2� 1g2. The matrix of values
½Tðj�xÞ�j2f�N=2;...;N=2�1g2 , for example, can then be simu-

lated by a two dimensional FFT of the matrix

½L�1ZT
ð2�=LÞke

i2�k�j=N ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CT
ð2�=LÞk

q
�k2f�N=2;...;N=2�1g2 . The

identities W1
�‘ ¼ W1


‘ and W2
�‘ ¼ W2


‘ are enforced using

a two dimensional FFT of two N � N matrices with inde-
pendent standard Gaussian random entries.
Remark: Typically the above method suffers from an

aliasing error when truncating to a finite sum in (A1)–(A3).
We avoid any such complication by setting the power

spectrum in CT
‘ , C

Q
‘ and CU

‘ to zero for all frequencies

beyond j‘j ¼ 6000. We justify this truncation since both
diffusion damping and the beam FWHM of 0:250 combine
to produce negligible amplitude in the CMB Stokes pa-
rameters at frequencies j‘j � 6000 compared to the noise
level.
Remark: Since the full sky Stokes parameters T, Q, U

are defined on the sphere, the theoretical power spectrum

for CT
‘ , C

Q
‘ , C

U
‘ are only defined on integers ‘. Our flat sky

approximation is obtained by extending CT
‘ , C

Q
‘ and CU

‘ to

‘ 2 R2 by rounding the magnitude j‘j to the nearest
integer. See Appendix C in [25] for a derivation of this
flat sky approximation.
To get a realization of the lensed CMB Stokes parame-

ters T, Q, U we use the above method to generate a high
resolution simulation of T, Q, U and the gravitational
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potential � on a 17� � 17� patch of the flat sky with
0.25 arcmin pixels. The lensing operation is performed
by taking the numerical gradient of �, then using
linear interpolation to obtain the values Tðxþr�ðxÞÞ,
Qðxþr�ðxÞÞ, Uðxþr�ðxÞÞ. The beam effect is then
performed in Fourier space using FFT of the lensed fields.
Finally, we down-sample the lensed fields, every 4th pixel,
to obtain the desired arcmin pixel resolution for the
simulation output.

APPENDIX B: NEWTON’S METHOD FOR
MAXIMIZING THE LOCAL POSTERIOR

In this section we discuss our numerical procedure for
maximizing the local posterior given by (4). We remark
that calculations need to be fast since they will be per-
formed on each local neighborhood for which a shear and
convergence estimate is required. We discuss how the FFT
can be used to compute the covariance matrix, denoted
�q� þ N in Section II A, and the corresponding derivatives

with respect to the unknown coefficients of q�. We let M
be the symmetric 2� 2 matrix defined as

M � 1þ q�xx q�xy
q�xy 1þ q�yy

 !

so that xþrq�ðxÞ ¼ Mx. The matrixM is regarded as the
unknown which will be estimated from the data in the local
neighborhoodN �ðx0Þ. Let Tb;M denote a sheared tempera-

ture field, convolved with a Gaussian beam (with standard
deviation �b) so that

Tb;MðxÞ ¼
Z
R2

d2yTðMx�MyÞe�jyj2=ð2�2
b
Þð�2

b2�Þ�1:

To compute the covariance matrix of the T observations
t ¼ ðt1; . . . ; tnÞy in N �ðx0Þ (see Eq. (5)) one needs to
evaluate the following covariance function for a given
test shear matrix M at all vector lags h ¼ xj � xk

CTb;M
ðhÞ � hTb;Mðxþ hÞTb;MðxÞiCMB

¼
Z
R2

d2‘

ð2�Þ2 e
i‘�he��2

b
j‘j2 C

T
M�1‘

detM
:

All these calculations can be approximated using a FFT by
noticing

CTb;M
ðj�xÞ �

X
k

�2
‘

ð2�Þ2 e
i2�k�j=Ne��2

b
j�‘kj2

CT
�‘M

�1k

detM
(B1)

where the sum ranges over k 2 f�N=2; . . . ; N=2� 1g2,
�x is the pixel spacing, j 2 f�N=2; . . . ; N=2� 1g2,
�‘ ¼ 2�=L and L ¼ N�x. Then to compute the covari-
ance between tj and tk we simply select the entry of the

matrix ½CTb;M
ðj�xÞ þ �2

T�j1j2�j2f�N=2;...;N=2�1g2 such that

j�x ¼ xj � xk (which was obtained by a single FFT).

A similar technique can be used to compute all other
covariance and cross-covariances among T, Q and U to
construct the covariance matrix �q� . We remark that to

speed up the computations we choose a smaller N than the
one used in the simulations (N ¼ 4096 in the simulation
but N ¼ 256 for the approximation of CTb;M

ðj�xÞ).
Once the covariance matrix �q� þ N is constructed

using the approximation (B1) (and the analogous approx-
imations forQ,U and all cross correlations) the posterior is

easily computed as pðq�jzÞ / eLðq�jzÞ�ðq�Þ where L de-
notes the log likelihood (3) and � is the prior distribution
derived in Section II C. In principle, one can now simply
use preexisting minimization algorithms for maximizing
the posterior pðq�jzÞ with respect to q�. If one desires a
more sophisticated Newton type algorithm for maximizing
the posterior one often needs to compute the gradient and
hessian of the posterior. Using the techniques of automatic
differentiation (see [26], for example) one can easily com-
pute such derivatives if one can compute the rates of
change of the covariance �q� with respect to the elements

of M.
We finish this Appendix by noticing that the FFT can be

used to approximate the derivatives of �q� with respect

to the elements of the matrix M, denoted Mk;j for k,

j 2 f1; 2g. For illustration we focus on the covariance
structure of the temperature field T and mention that the
extension to Q, U is similar. First notice that by trans-
forming variables ‘0 ¼ M�1‘ one gets

dCTb;M
ðhÞ

dMk;j

¼ d

dMk;j

Z d2‘0

ð2�Þ2 e
iðM‘0Þ�h��2

b
jM‘0j2CT

‘0

¼
Z d2‘0

ð2�Þ2 e
iðM‘0Þ�h��2

b
jM‘0j2CT

‘0

� d

dMk;j

½iðM‘0Þ � h� �2
bjM‘0j2�:

Now d½iðM‘0Þ � h� �2
bjM‘0j2�=dMk;j can be written as a

sum
P

kckðhÞgkðM; ‘0Þ so that by retransforming variables
to ‘ ¼ M‘0 one gets

dCTb;M
ðhÞ

dMk;j

¼X
k

ckðhÞ
Z d2‘

ð2�Þ2e
i‘�h��2

b
j‘j2gkðM;M�1‘ÞC

T
M�1‘

detM
:

The point is that the above integrals can now be approxi-
mated using the FFT to approximate the matrix of values

½dCTb;M
ðj�xÞ

dMk;j
�j2f�N=2;...;N=2�1g2 . The same method applies to

approximate all higher order derivatives of the covariance
matrix. These derivatives can then be used in a Newton
type algorithm for finding the maximum a-posteriori
estimates q̂�.
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