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We discuss the thermodynamic aspects of a simple model of cosmic string loops, whose energy is

nonlinearly related to their lengths. We obtain in a direct way an equation of state having the form

p ¼ �ð1þ �Þ�=3, with � the energy density and 1þ � the exponent which relates the energy ul of a

loop with its length l as ul � l1þ�. In the linear situation (� ¼ 0) one has p ¼ ��=3, in the quadratic one

(� ¼ 1) p ¼ �2�=3, and in the cubic case (� ¼ 2) p ¼ ��. For all values of � the entropy goes as

S� ð2� �ÞL3=2 (L being the string length density). The expression of S is useful to explore the behavior

of such string loops under adiabatic expansion of the Universe. Thermodynamic stability suggests that the

gas of string loops must coexist with several long strings, longer than the horizon radius.
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I. INTRODUCTION

Dark energy is thought to be the majoritary ingredient of
the Universe, but its composition is unknown [1–5]. Its
main physical feature is to produce an acceleration in the
expansion of the Universe. According to Einstein’s equa-
tions of general relativity, this requires that 3pþ �, with p
the pressure and � the energy density, should be negative
[1–5]. This follows from the form of the energy-
momentum tensor, which for an ideal fluid with four-
velocity u� has the form T�� ¼ ð�þ pÞu�u� � pg��,
where g�� is the metric tensor of the space-time, � the
energy density, and p the pressure. Introduction of this
tensor into the Einstein equations leads to the evolution
equation for the cosmic scale factor a

€a

a
¼ � 4�

3
G
X
i

ð�i þ 3piÞ; (1)

where G is the gravitational constant and the summation is
over all constituents of the Universe (baryonic matter,
radiation, neutrinos, dark matter, and dark energy). The
Hubble ratio _a=a is related to the total energy density as�

_a

a

�
2 ¼ 8�
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X
i

�i ðflat universeÞ: (2)

It follows from (1) that an homogeneous fluid with
p ¼ ��=3 would not produce gravitational effects.
Furthermore, the energy conservation law states that

_� i ¼ �3
_a

a
ð�i þ piÞ: (3)

The first term in the right-hand side is the decrease of mass
per unit volume due to the expansion, and the second one is
the work done by the pressure. This equation states that
the relation between p and � also influences the rate of

decrease of the energy density along the Universe expan-
sion. If p ¼ ��, the work of expansion would cancel the
reduction of energy density, and therefore the energy den-
sity would stay constant during the expansion.
Research of systems with the property p ¼ �w�, with

w a numerical parameter in the interval 1=3 � w � 1, is an
interesting topic in cosmology as well as in thermodynam-
ics. The value w ¼ 2=3 was considered to be close to the
observational data on cosmic expansion some years
ago [6,7], but more recent results favor values closer to
w ¼ 1 [8].
Some candidates for dark energy range from an ex-

tremely tiny cosmological constant to a variety of exotic
fields as scalar fields, tachyons, k-essence, topological
defects in cosmic fields, and so on [1,2]. In particular, the
idea of topological defects and cosmic strings has been
examined, for instance, in Refs. [9–17].
The aim of this paper is to present a thermodynamic

analysis of a simple model of a system of cosmic string
loops whose energy is nonlinearly related to their length.
By starting from three simple hypotheses, the thermody-
namic model is built, giving equations of state for the
energy, pressure, and entropy of the system. This is a naive
analysis where relativistic effects are not taken into ac-
count but which reproduces in a simple way a set of
interesting physical features of this system. Being a ther-
modynamic model, it does not deal with the dynamical
microscopic aspects nor with the physical origin and
properties of the elementary ingredients, but it relates the
assumed microscopic properties with macroscopic thermo-
dynamic behavior. Thus, whether the cosmic loops disap-
pear rapidly or slowly because of gravitational radiation,
for instance, is not the topic of our analysis, which is
devoted to the thermodynamic properties of the system
as far as it exists. From our thermodynamical equations,
and from the hypothesis of a reversible adiabatic expan-
sion, the energy density and the entropy are obtained in
terms of the cosmic scale factor (and therefore of the
volume).

*david.jou@uab.es
†mongiovi@unipa.it
‡msciacca@unipa.it

PHYSICAL REVIEW D 83, 043519 (2011)

1550-7998=2011=83(4)=043519(8) 043519-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.043519


From a thermodynamic point of view, the system is
characterized by a given average length of loops and by
the number of loops. The use of thermodynamic methods
does not necessarily imply that the system is in equilib-
rium, but it may be in a nonequilibrium steady state, this
average length and number of loops being the result of a
fast and complex dynamics of breaking and reconnections
under the effects of the expansion. The condition of using
these methods is that the microscopic internal dynamics
of the subsystem being considered is much faster than its
macroscopic dynamics; it is not necessary that the different
subsystems forming the system are in mutual thermody-
namic equilibrium, but thermodynamic methods can be
used for each of them provided the dynamics of their
mutual energy exchange is much slower than the internal
microscopic dynamics of each subsystem [18]. We assume
that this is the case here, and we focus our interest on the
consequences of this hypothesis rather than examining
a priori the consistency of the hypotheses, which would
require a better knowledge of the true microscopic nature
and the true dynamics of the internal processes of the
system is being considered. Since these microscopic de-
tails are not completely known, and since the current
observations of it are of a macroscopic nature, it is logical
to use thermodynamics and statistical mechanics as meth-
ods to derive the macroscopic consequences of micro-
scopic models, in order to keep only those microscopic
models compatible with the macroscopic observations.

Our approach may be useful to complement other analy-
ses of the thermodynamics of dark energy which start from
the dynamical equations for the cosmic expansion (1)–(3),
relating the thermodynamic equations to some features of
the expansion. Our approach starts from the definition of
temperature in terms of the average energy of the hypo-
thetical cosmic loops and on two hypotheses concerning
the form of the energy of the individual loops as a function
of their corresponding length and a scale-invariant hy-
pothesis relating the average string loop length to the
average separation between neighboring cosmic loops.

The plan of the paper is the following. In Sec. IIm the
model is presented and the thermodynamic functions are
thoroughly studied. In Sec. III, a study of the thermody-
namic stability is made, a critical value for the temperature
of the cosmic loops is determined, and the cosmological
consequences are analyzed. A microscopic statistical in-
terpretation of these results is proposed in Sec. IV. In the
concluding remarks we compare our results to those ob-
tained by previous authors [19–26].

II. TEMPERATURE, PRESSURE, AND ENTROPY
FOR A GAS OF STRING LOOPS

The first hypothesis of the model is to assume that the
temperature T of the system of closed cosmic string loops
is given by

~ckBT ¼ huli; (4)

where ul is the energy of a loop of length l, kB is the
Boltzmann’s constant, ~c is a constant of the order of 1, and
the angle brackets denote the average over the loops of
different lengths. This hypothesis comes from assuming
that the energy is related only to the length of the loops; for
the sake of generality, we write the numerical parameter ~c.
For instance, if different normal modes of the string were
assumed to act as different degrees of freedom, the value of
~c would be related to the total number of degrees of free-
dom.Wewill show that its particular value does not modify
essentially our conclusions and, in particular, that it has no
influence on the equation of state for the pressure in terms
of the energy density [Eq. (14)]. The robustness of this and
other results is of interest because the value of ~c could
depend, in principle, on the number of independent degrees
of freedom. The value of this hypothesis, which is plausible
but not self-evident, will be judged in terms of the interest
of the conclusions achieved from them.
The second hypothesis is to assume that the average

length of the loops behaves as

hli ¼ �L�1=2; (5)

L being the total length of loops per unit volume, which has
dimensions of ðlengthÞ�2, and � a dimensionless constant.
This hypothesis follows from microscopic analysis [15]
which will be commented on in Sec. IV and is related to
the statistical properties of the system of loops. In physical
terms, Eq. (5) implies that the average length and curvature
radius of loops are of the order of their average separation,

which is given, on purely geometrical grounds, by L�1=2 (L
being the string length per unit volume).
Note that relation (5) is scale-invariant, because if all the

sizes of the system are multiplied by a numerical factor,
both the average radius of the loops as their average
separation would increase in the same factor and (5) would
remain unchanged.
Equation (5) implies that the total number of loops

per unit volume N, given by N ¼ L=hli, will behave as

N ¼ ��1L3=2. Thus, a reduction of the average size of the
loops at constant L will imply a big increase of the number
of loops, and vice versa.
In the case of cosmic string loops, it is usually

assumed that their energy is proportional to their length
[9,10,12–17]. Here, for the sake of exploring a wider range
of physical possibilities, we assume that the energy ul of a
line of length l is

ul ¼ a0l
1þ�; (6)

with � a constant exponent and a0 a constant given by
a0 ¼ �Vl

��
0 , �V being a coefficient of dimensions of

energy per unit length, also called the tension of the string,
and l0 a fixed reference length. The term � in the exponent
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of the expression (6) describes possible deviations with
respect to the linear behavior in the energy-length relation.

A deviation with respect to the linear behavior may be an
intrinsic property of the loops or may be attributed to the
interaction between other cosmic strings or with the several
parts of the string loop; for instance, a source of discrep-
ancy with respect to the linear expression may be the
presence of kinks, arising from recombinations of previous
loops; if the kink is very acute, the two parts of it may have
a strong interaction between themselves, thus leading to
contributions which would be absent in a smooth model of
lines. The coefficient � is not necessarily an integer but it
could be a fraction; that is, the interactions between loops
or between other parts of the same loop could contribute to
fractal aspects in such a way that the contribution to the
energy is neither linear nor quadratic [27].

Here, we will not discuss the physical origin of the
parameter � but its influence on the macroscopic equations
of state. It could be guessed, however, that a positive
(negative) value of � corresponds to situations where
long wavelength perturbations have a higher (lower)
contribution to the energy than short wavelength per-
turbations. Indeed, an exponent higher than 1 in
ul � l1þ� gives proportionally a higher increase of energy
when l increases, and the opposite follows for exponents
lower than 1.

Thus, relations (4)–(6) lead to a0hl1þ�i ¼ ~ckBT. In view
of (5), and of hl1þ�i ¼ �hli1þ�, with � being a numerical
constant which depends on the detailed form of the statis-
tical distribution of the lengths of the loops, which will be
discussed below, in Sec. IV, temperature scales with L as

~ckBT ¼ a0��
1þ�L�ð1þ�Þ=2 � ATL

�ð1þ�Þ=2; (7)

with AT ¼ a0��
1þ� [the value of � is explicitly obtained

in Eq. (27) for a potential distribution function with a lower
cutoff for the loop length]. This implies that the energy
density per unit volume � of the system of string loops
depends on T as

� ¼ ~ckBTN ¼ AT

�
Lð2��Þ=2

¼ AT

�

�
~ckB
AT

��½ð2��Þ=ð1þ�Þ�
T�½ð2��Þ=ð1þ�Þ�: (8)

Since, according to the fundamental Gibbs equation of
thermodynamics, the entropy per unit volume s satisfies
the relation ð@s=@�Þ ¼ T�1, we obtain

@s

@L
¼ @s

@�

@�

@L
¼ 1

T

AT

�

2� �

2
L��=2 ¼ ~ckB

2� �

2�
L1=2:

(9)

Integrating this equation, we get for the entropy per unit
volume sðLÞ

sðLÞ � s0 ¼ ~ckB
2� �

3�
ðL3=2 � L3=2

0 Þ: (10)

It is worth noting that the exponent of L in this expression
does not depend on �. This implies that the value of � will
not have an influence of the evolution of L as a function of
time in an adiabatic expansion (i.e. at constant total en-
tropy). Furthermore, to have a positive entropy requires �
to be less than or equal to 2, which excludes the possibility
of a phantom energy, i.e. of a system with p <�� (we will
come back to this point at the end of the paper in a
discussion on the chemical potential of cosmic loops)
[19,28–32].
Since sðLÞ is the contribution of the loops to the entropy

density of the Universe, it is logical to expect that when
L ¼ 0, this contribution to the entropy will be 0; therefore,
one can ignore the additive factor in (10); i.e. one may set
s0 ¼ 0 and L0 ¼ 0.
To find the expression of the pressure pwe need the total

entropy S ¼ SðU;VÞ as a function of the total energy U
and the volume V, to apply the well known thermodynamic
relation ð@S=@VÞU ¼ p=T [33]. We assume that SðU;VÞ �
sð�ÞV, in other words, that entropy (as well as energy) are
extensive quantities, namely, that for a uniform system, the
total energy and total entropy are equal to their respective
densities per unit volume times the total volume, i.e.
U ¼ �V and S ¼ sV. This is not the only conceivable
possibility, because systems with long range interaction,
such as the gravitational one, may be expected to behave in
a nonadditive way. Thus, the present hypothesis is admis-
sible provided that the mutual gravitational interaction of

neighboring loops, of the order of GM2=L�1=2, M being
the average mass of a loop, is much less than the average

energy of a single loop Mc2 ¼ kBT ¼ ð1=~cÞATL
�ð1þ�Þ=2,

with c being the light speed.
Recall that according to (5) both the average lengths of

loops as their average separation are of the order of L�1=2.

This requires that ðGAT=c
4~cÞL��=2 � 1. In the linear

case, when � ¼ 0, this means that G�V=c
4 � 1, with

�V being the tension of the string or energy per unit length.
In fact, the usual analyses of cosmic strings take for
G�V=c

4 values ranging from 10�6 to 10�30, in any case
much smaller than 1 [9–11], and therefore the extensivity
hypothesis may be safely used.
In view of the relation (8) between � and L, and of the

extensivity hypothesis that we have just discussed, neglect-
ing, as has been said, the constant of integration in (10), we
may write the total entropy as

SðU;VÞ ¼ ~ckB
2� �

3�
L3=2V ¼ ~ckB

2� �

3�

�
�

AT

�
3=ð2��Þ

�
�
U

V

�
3=ð2��Þ

V / U3=ð2��ÞV�½ð1þ�Þ=ð2��Þ�: (11)

Note, incidentally, that in an adiabatic expansion (i.e.
constant entropy), in a universe dominated by loops, one

would have, according to (11), L3=2V ¼ constant. If aðtÞ is
the cosmic scale factor, and therefore VðtÞ � a3ðtÞ, this
would yield LðtÞ � a�2ðtÞ. Thus, in view of (8), in an
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adiabatic expansion, the energy density � of loops
changes as

� ¼ U

V
� a�2ð1�ð�=2ÞÞðtÞ: (12)

This means that under cosmic expansion the energy density
of cosmic loops reduces in a slower way than that of matter
(�mat � a�3) or that of radiation (�rad � a�4). As a con-
sequence, it will become dominant at long times, provided
the loops may subsist long enough, as they may disappear
by emission of gravitational waves, decaying into baryonic
matter, or coalescing into long strings not being loops [15].
Furthermore, by introducing (12) into (2) it follows that in
the loop-dominated universe, the scale factor will evolve

as aðtÞ � t2=ð2��Þ; when � ¼ 0, aðtÞ � t, and when � ¼ 1,
aðtÞ � t2.

From expression (11), the pressure may be obtained
from the well known thermodynamical relation
ð@S=@VÞU ¼ p=T, leading to

p

T
¼ �~ckB

�þ 1

3�

�
�

AT

�
3=ð2��Þ

�3=ð2��Þ: (13)

Combining this equality with expression (8) for T in
terms of � leads to

p ¼ � 1þ �

3
�: (14)

Note that this result does not depend on the value of the
coefficient ~c introduced in Eq. (4), which indicates that the
concrete number of degrees of freedom of the loop is not
relevant for the relation between p and �.

The negative pressure is a consequence of the fact that—
according to (11)—S decreases when V increases at con-
stantU; i.e. at a constant value of the total length of cosmic
strings L ¼ LV, for values of � between 2 and �1. For �
higher than 2, the entropy would become negative. We will
comment on this point in the final paragraphs.

An increase of V at constant L implies a decrease of L,
thus yielding a decrease in the number of strings per unit

volume (recall that N � L3=2) and in the entropy density s.
Because of the relation dW ¼ �pdV, with dW the work
done on the system in a change of volume dV, a negative
pressure means that work must be done on the system to
expand it, in contrast with usual materials with positive
pressure. This work will increase the length of the strings
during the expansion and may allow them to become
the dominant constituent of the Universe, at a sufficient
long time.

Note finally that the chemical potential of the loops will
be zero, because the fundamental equation for S in (11)
does depend only on U and on V, but not on N, and
the chemical potential is related to the differential of the
entropy with respect to N at U and V constant. The
vanishing of the chemical potential is analogous to that
for photons. In a following paper we will further explore

the relation between the thermodynamics of string loops
and of photons.

III. STABILITYANALYSIS: STRING LOOPS
AND OPEN STRINGS

In (14) we have found that the coefficient relating p to �
is �1=3 in the linear case (� ¼ 0), which would lead to a
cosmic expansion at a constant rate [as we have seen that in
this case aðtÞ proportional to t], �2=3 [for � ¼ 1, which
implies a constant acceleration, as aðtÞ proportional to t2],
or �1 (for � ¼ 2). It is known that if p ¼ ��, the energy
density remains constant in the expansion, as shown by
Eq. (3). This is consistent with relation (8), which implies
that for � ¼ 2, � does not depend on L: In this case,
expansion could modify the total length and number of
loops, but this would not imply a change in the energy
density.
From a thermodynamic perspective, it must be outlined

that the specific heat of this system is negative, because
from (8) we obtain

Cloops ¼
�
@U

@T

�
V

¼ � 2� �

1þ �

AT

�
V

�
~ckB
AT

��½ð2��Þ=ð1þ�Þ�
T�½3=ð1þ�Þ�:

(15)

The feature of negative specific heat is analogous to that
of black hole thermodynamics [4,34] or other gravitational
systems, as a gas submitted to a central gravitational
potential. This would imply that during the accelerated
expansion the gas of cosmic loops is heating, which means
that they will become longer or coalescing to yield longer
loops and, eventually, infinite strings, which would be the
situation for T ! 1.
Such a kind of process has been studied from a micro-

scopic perspective in Ref. [15]. In fact, a negative specific
heat implies a thermodynamic instability of the system
[33]. This would lead the system to evolve towards a gas
of loops plus a number of single long strings, comparable
to or longer than the horizon radius, which have a positive
heat capacity. Indeed, in contrast with the gas of loops, the
number of very long strings changes very slowly. This
implies that in the relation L ¼ Nhli, N will be fixed and

hli will be proportional to L, instead to L�1=2 as in (5).
Since � ¼ N~ckBT, it follows that the heat capacity is
Clong ¼ NV~ckB, which is positive. The global stability

requirement is

1

Clong
þ 1

Cloops

� 0: (16)

Therefore, a system ofNV long strings plus a gas of cosmic
loops may be thermodynamically stable provided that the
mentioned condition is realized. To get this condition, we
take into account that according to (15) the heat capacity of

D. JOU, M. S. MONGIOVÌ, AND M. SCIACCA PHYSICAL REVIEW D 83, 043519 (2011)

043519-4



a gas of loops, for example, with � ¼ 0, is Cloops ¼
�2A3

T�
�1Vð~ckBÞ�2T�3. Then, the stability condition

will be

1

N~ckB
� �k2B~c

2T3

2A3
T

� 0: (17)

This leads to the following condition for the temperature of
the gas of loops in stable equilibrium with long strings:

kBT � kBTC ¼ AT

~c

�
2

�N

�
1=3

: (18)

Thus, instead of imagining a pure gas of cosmic loops, it
seems more realistic to imagine a mixture of a few very
long loops and a gas of loops. The situation discussed in the
previous paragraph is analogous to that of a Schwarzschild
black hole inside a theoretical box [34]. The heat capacity
of black holes is negative, varies as M�2, M being the
mass of the black hole, and cannot be stable by itself, but
it arrives to a stable state by emission of Hawking
radiation when

1

Cblackhole

þ 1

Crad

� 0: (19)

A natural question is whether the loop temperature
should imply consequences on radiation emission and,
therefore, on the cosmic background radiation. The answer
is negative, however, because dark energy, as well as
dark matter, lacks electromagnetic interaction and, there-
fore, cannot emit or absorb electromagnetic radiation.
However, it may have an indirect influence on the large-
angle correlation functions of the tiny anisotropies of the
cosmic microwave background.

IV. MICROSCOPIC INTERPRETATION

To give a microscopic basis to the starting hypothesis (5)
and to check the consistence of the results which have been
found, we briefly comment on some aspects obtained from
a more microscopic perspective, based on a distribution
function of the length of loops [15]. Let nðlÞdl be the
number of loops of length l comprised between l and
lþ dl, per unit volume. Following some previous authors
[15] we assume that nðlÞ has a power form

nðlÞ ¼ Bl�qðlminÞ�p; (20)

where q and B are positive dimensionless constants and
lmin the minimum length of vortex loops. For B to be
dimensionless, the exponent p must have the form
p ¼ 4� q, because nðlÞdl must have dimensions of
ðlengthÞ�3. In general, the value q ¼ 5=2 is especially
favored in theoretical analyses of these topics. Note that
this kind of distribution is found as the steady state solution
of a kinetic equation for the distribution of the length of
loops in a nonexpanding universe [15]. In Ref. [16],
q ¼ 5=2 was obtained for an expanding universe in the

matter era and q ¼ 2:8 in a radiation era; in any case, q > 2
as required by Eq. (25). Furthermore, distribution functions
having the power-law form are scale-invariant, and there-
fore they are consistent with the scale-invariant macro-
scopic hypothesis (5).
The number N of loops per unit volume, as well as the

loop length density L, the loop energy per unit volume �,
and the entropy per unit volume s, are found to be,
for q > 2þ �,

N ¼
Z 1

lmin

B
l�q

ðlminÞ4�q
dl ¼ B

q� 1
ðlminÞ�3; (21)

L ¼
Z 1

lmin

B
l�qþ1

ðlminÞ4�q
dl ¼ B

q� 2
ðlminÞ�2; (22)

� ¼
Z 1

lmin

B
a0l

�qþ1þ�

ðlminÞ4�q
dl ¼ B

a0
q� 2� �

ðlminÞ�2þ�;

(23)

s ¼ �~ckBN
Z 1

lmin

nðlÞ
N

log
l0nðlÞ
N

dl

¼ ~ckB
B

q� 1
l�3
min

�
q

q� 1
� log

ðq� 1Þl0
lmin

�
: (24)

The factor l0 inside the logarithmic term of the definition
of the entropy is written to have a dimensionless combi-
nation inside the logarithm; l0 could be replaced by some
other characteristic length, such as, for instance, lmin,
which has a well-defined physical meaning; this term
will contribute logarithmically to the factor multiplying
to l�3

min, which is the dominant contribution which will be

examined below.
From (21) and (22) it follows that the average loop

length is

hli ¼ L

N
¼ q� 1

q� 2
lmin ¼ B1=2ðq� 1Þ

ðq� 2Þ3=2 L�1=2; (25)

because from (22) it follows that lmin ¼
B1=2ðq� 2Þ�1=2L�1=2. Then, a potential distribution of
the form (20) is seen to lead to relation (5) that we have
taken as the starting point. It is also seen that for this
relation to be valid the exponent q in (20) must be higher
than 2. This condition implies a finite value of hli and,
therefore, that no infinite strings are taken in consideration
here. This is indeed satisfied under the common assump-
tion that q ¼ 5=2.
The average energy and temperature are related by

~ckBT ¼ �

N
¼ a0

q� 1

q� 2� �
l1þ�
min

¼ a0
q� 1

q� 2� �

�
B

q� 2

�ð1þ�Þ=2
L�½ð1þ�Þ=2�: (26)

This shows that our proposal (4) for the temperature of
the strings in terms of L is also corroborated from a
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microscopic reasoning. Furthermore, it allows us to find
the numerical factor � introduced above Eq. (7) relating
hl1þ�i and hli1þ� as hl1þ�i ¼ �hli1þ�. It turns out that

� ¼ ðq� 2Þ1þ�

ðq� 1Þ�ðq� 2� �Þ ; (27)

this depends on the exponent q defining the statistics, as
was expected, as well as on the exponent �. Note that if an
upper cutoff lmax for the length had been considered be-
sides the lower cutoff lmin, the relation between hli and L
would have been not so simple, but it would have been
dependent also on the ratio lmin=lmax. It could be consid-
ered that Eq. (27) also requires that q > 2þ �; if this
is so, this could be an interesting restriction of the
possible couples of values of q and �. Anyway, the value
q ¼ 5=2 has been obtained in the literature by considering
linear loops, with � ¼ 0; a more general analysis for non-
linear strings with �> 0 should be carried out in the
future.

V. CONCLUDING REMARKS

To summarize the main ideas, here we have analyzed a
simple model to study several thermodynamical functions
which could be of interest for the modelization of dark
energy. In fact, this model has been inspired by analyses of
vortex loops in fully developed turbulence in superfluid
helium [27,35–37]. The connection between cosmological
models and superfluid models has already a fruitful tradi-
tion, summarized in Ref. [38]. We have studied the micro-
scopic requirements in the relation between the energy ul
of a loop of length l and its length, through the relation
ul � l1þ�, and have seen that the linear, the quadratic,
and the cubic cases lead to specially significant relations
p ¼ �ð1=3Þ�, p ¼ �ð2=3Þ�, and p ¼ ��, respectively.

Our paper is based on only two hypotheses (4) and (5),
which are microscopically consistent with a potential dis-
tribution function for the length of the loops, used in
previous work on cosmic strings [15], plus a hypothesis
on the relation between the energy and the length of loops.
In our opinion, the expressions (11) for the entropy and
(14) for the pressure are the most salient ones.

In the former presentation it could seem that our model
leads to a time-independent factor w, in contrast to models
based on dynamical scalar fields [2–5], which yield a time-
dependent wðtÞ. However, our model may also lead in a
natural way to a time-dependentwðtÞ. Indeed, if three kinds
of loops (linear, quadratic, and cubic) are present in the
Universe, their contributions will change in a different
form with the scale factor aðtÞ, according to (12).
Assume that for a given situation, for which we take
a ¼ 1, the respective proportions of the energy are
�i ¼ xi�, with � the total energy density corresponding
to the loops and �i the energy density of loops with energy
proportional to li; then the total contribution of the pressure
will change as

p ¼ � 1

3

x1a
�2 þ 2x2a

�1 þ 3x3
x1a

�2 þ x2a
�1 þ x3

�: (28)

Then, the effective pressure will change from�ð1=3Þ� for
short times to p ¼ �� for long times; i.e. the coefficient
relating the pressure to the density will change from�1=3
to �1. To these contributions one should add the radiation
contribution prad ¼ ð1=3Þ�rad and the matter contribution
pm ¼ 0 with the respective variations as a�4 and a�3.
Then, in this scenario one begins with a dominating radia-
tion and p ¼ ð1=3Þ�, afterwards a dominating matter, and
finally a dominating dark energy with p going to p ¼ ��
in the long time.
On the other side, Eq. (14) shows that we do not assume

a priori a relation p ¼ �w�, with w a constant, but that
this relation follows from hypotheses (4) and (5) and the
microscopic hypothesis (6), and illustrate the relation be-
tween the microscopic equation (6) and the macroscopic
equation (14). Note that because of (5), the entropy may be
rewritten as S� hli�3V, from which it follows that in an
adiabatic cosmic expansion hli would change as hli � aðtÞ;
i.e. the loops would be stretched in the same proportion as
the cosmic horizon. In terms of the temperature, we may

rewrite this expression as S� T�3=ð�þ1ÞV, which becomes
S� T�3V when � ¼ 1.
An equation of this form has also been proposed in

Ref. [28] but derived from the dynamical properties of
the cosmic expansion with dark energy rather than starting
from a purely thermodynamic formalism. In particular, this
relation implies that the gas of loops heats up during the
expansion, as a consequence of the work done on it by
the negative pressure. In this interpretation of temperature,
the gas of loops will not be in equilibrium with the cosmic
event horizon, which is attributed a temperature in an
analogous way to the black hole temperature and which
is inversely proportional to the Hubble radius. Thus, the
horizon temperature decreases, whereas the string loop
temperature increases. This is in contrast with some pro-
posals [29] that the dark energy is in thermal equilibrium
with the apparent horizon. To examine this point, a careful
analysis of the meaning of temperature for each constituent
must be carried out. Because of expansion, it is not neces-
sary to assume that all components are at the same tem-
perature, if the different constituents interact weakly.
The multiplicity of values of temperature in nonequilib-
rium situations is well known (see [30] for an extensive
discussion).
Another topic of discussion in the thermodynamics of

dark energy concerns whether the chemical potential of
dark energy is zero or not [28,31]. In our analysis, the
chemical potential is zero, as the entropy (11) depends only
on U and V but not on N, as in radiation thermodynamics,
where the chemical potential is zero. This vanishing of the
chemical potential was also assumed in Ref. [32] and other
previous papers mentioned in [32]. In [28] it is argued that
if the chemical potential of dark energy is zero, phantom
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energy (i.e. p <��) is forbidden, because the entropy
would become negative. At first sight, our formalism
seems to point also to this fact; however, since the entropy
(11) we have studied is the contribution of the strings, but
the other components of the system (radiation and matter)
have in principle a non-negative entropy, the entropy of the
strings could be negative without the total entropy of the
system being negative. Therefore, this aspect should be
analyzed in more detail by taking into account the total
entropy of the full system. However, our analysis does
indeed point to a zero chemical potential for the strings
and not to a negative chemical potential. But in [28] it is
shown that a negative chemical potential of dark energy
could permit the existence of phantom energy, whereas a
zero or positive chemical potential would rule it out.
However, the introduction of the chemical potential in
[28] is not based on deep physical grounds but only in a
formal analysis concerning the possibility of phantom
energy.

A qualitative, but speculative, argument against phan-
tom energy could be based on a topological interpretation
of the coefficient �. In particular, the situation with � ¼ 1,
corresponding to Ul ¼ a0l

2, may be interpreted as an
energy proportional to an area; one possible interpretation
could be to imagine that, instead of loops of length l, the
basic entities of our system are surfaces of dimension l� l,
whose relation to cosmic walls should be explored. Along
this line of thought, one could also imagine that the situ-
ation with � ¼ 2 would correspond to three-dimensional
entities. Thus, in a three-dimensional space this would be
the maximum possible value of �, because for � higher
than 2 the entities would have a dimensionality higher than
3, which is the dimensionality of the embedding space.

This interpretation is only tentative and cannot be com-
pletely trusted for the moment, but it seems to give an
intuitive hint of why phantom energy would not be possible
in a three-dimensional space. Its possibility could not be
excluded, however, in a four-dimensional space, as those
arising in some brane universe models.
The interest of the model presented in this paper is

therefore to yield a thermodynamic analysis wider than
the more usual models focusing on the equations of state
for the pressure and to be mathematically very simple—
without pretending to grasp the true and definitive physics
of dark energy. Topics to be analyzed in the future include,
for instance, the interaction between dark energy and dark
matter or with other cosmic components [22–26], in order
to avoid the so-called coincidence problem.
This kind of result points out that thermodynamics,

being not based on the concrete microscopic details, may
provide useful insights relating very different microscopic
phenomenologies in interesting macroscopic connections.
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Autònoma de Barcelona. D. J. acknowledges the financial
support from the Dirección General de Investigación of the
Spanish Ministry of Education under Grant No. FIS2009-
13370-C02-01 and of the Direcció General de Recerca
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