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We present a new solution to the cosmological constant (CC) and coincidence problems in which the

observed value of the CC, �, is linked to other observable properties of the Universe. This is achieved by

promoting the CC from a parameter that must be specified, to a field that can take many possible values.

The observed value of � � ð9:3 GyrsÞ�2 [� 10�120 in Planck units] is determined by a new constraint

equation which follows from the application of a causally restricted variation principle. When applied to

our visible Universe, the model makes a testable prediction for the dimensionless spatial curvature of

�k0 ¼ �0:0056ð�b=0:5Þ, where �b � 1=2 is a QCD parameter. Requiring that a classical history exist, our

model determines the probability of observing a given �. The observed CC value, which we successfully

predict, is typical within our model even before the effects of anthropic selection are included. When

anthropic selection effects are accounted for, we find that the observed coincidence between t� ¼ ��1=2

and the age of the Universe, tU, is a typical occurrence in our model. In contrast to multiverse explanations

of the CC problems, our solution is independent of the choice of a prior weighting of different � values

and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and

does not require the introduction of new dynamical scalar fields or modifications to general relativity, and

it can be tested by astronomical observations in the near future.
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I. INTRODUCTION

The cosmological constant (CC), �, was first introduced
by Einstein in 1917 [1] to ensure that his new general theory
of relativity admitted a static cosmological solution.
The introduction of � required only the addition of the
divergence-free term��g�� to the original field equations:

G�� ¼ R�� � 1
2Rg

�� ¼ 8�GT�� ! G��

¼ 8�GT�� � �g��;

where R�� is the Ricci curvature of g��, and T�� is the

energy-momentum tensor of matter. It was not an easy
matter to unambiguously interpret the astronomical data
concerning galaxymotions and attribute them to systematic
recession rather than a steady lateral drift. The first obser-
vations of galaxy redshifts were made by Slipher in 1912
[2]. By 1917, Slipher hadmeasured the redshifts of 25 spiral
galaxies; all but four of them were found to be receding
from us [3]. In 1917, de Sitter [4] found an empty expanding
solution with a � term present and in the early 1920s,
Friedmann [5] discovered a class of homogeneous and
isotropic cosmological solutions of general relativity with-
out a� term. These cosmological models were not static but
could either expand or contract. Lemaı̂tre found a wide
range of expanding and contracting universes, both with
and without � in 1927 and also predicted the theoretical
relationship between distance and redshift in an expan-
ding universe [6,7]. Notably, Lemaı̂tre proposed that an

expanding universe could explain the velocities of galaxies
first measured by Slipher and first deduced what became
known as ‘‘Hubble’s Law’’ (unfortunately the translation
[6] omitted the crucial footnote where it appears in the
original). Two years later, Hubble and Humason empiri-
cally derived the redshift-distance relation [8]. This led to
the static universe model, which first motivated Einstein
to introduce �, being abandoned in favor of the now
familiar expanding universe cosmology. Lemaı̂tre had
also demonstrated the instability of the static universe
model with respect to conformal perturbations. Unaware
of Lemaı̂tre’s work, Eddington had also proved the insta-
bility of the static universe against density perturbations [9]
(the full stability analysis was only completed in 2003 and
can be found in [10]). However, some scientists, notably
Eddington, believed that � was a n essential part of general
relativity because it offered a possible link between gravi-
tation and microphysics [11,12].
Whilst the original motivation for a CC evaporated, it

was later appreciated that there were other, more funda-
mental reasons for its presence (see, e.g. Ref. [13] for a
discussion of this and for a modern review see Ref. [14]).
Quantum fluctuations result in a vacuum energy, �vac,
which contributes to the expected value of the energy-
momentum tensor of matter

hT��i ¼ T
��
m � �vacg

��;

where T��
m vanishes in vacuo. The quantum expectation of

the energy-momentum tensor, hT��i, acts as a source for
the Einstein tensor. Hence, we have

G�� ¼ 8�GT��
m ��g��; � ¼ �þ 8�G�vac:
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It is clear from this that the vacuum energy, �vac, provides a
contribution, 8�G�vac, to the effective cosmological con-
stant, �. Even if the ‘‘bare’’ cosmological constant is as-
sumed to vanish,� ¼ 0, the effective cosmological constant
will generally be nonzero. Requiring that � ¼ 0 means
there must be an exact cancellation of the ‘‘bare’’ cosmo-
logical constant,�, and the vacuum energy stress, 8�G�vac.

Formally, the value of �vac predicted by a general quan-
tum field theory in a flat Minkowski space background is
infinite. If we assume that the field theory is only valid up
to some energy scale M�, then there is a contribution to
�vac of OðM4�Þ. Collider experiments have established that
the standard model is accurate up to energy scales M� *
OðMEWÞ whereMEW � 246 GeV is the electroweak scale.
We would therefore expect �vac to be at least OðM4

EWÞ.
In the absence of any new physics between the electro-

weak and the Planck scale, Mpl ¼ 2:4� 1018 GeV, where

quantum fluctuations in the gravitational field can no lon-
ger be safely neglected, we would expect �vac �OðM4

plÞ.
Astrophysical observations do, however, strongly suggest
there exists some new form of dark, weakly interacting
matter, beyond that described by the standard model. The
most developed theoretical extensions of the standard
model, which include candidates for this dark matter, in-
troduce an additional supersymmetry (SUSY) between
fermions and bosons. If supersymmetry were an unbroken
symmetry of Nature, the quantum contributions to the
vacuum energy would all exactly cancel leaving �vac ¼
0 ) � ¼ �. However, our Universe is not supersymmetric
today, and so SUSYmust have been broken at some energy
scale MSUSY, where 1 TeV & MSUSY & Mpl and so we

expect �vac �OðM4
SUSYÞ.

Given the standard model of particle physics and rea-
sonable extensions of it, a �vac somewhere between M4

EW

and M4
pl appears unavoidable. Furthermore, in the absence

of exact cancellations, we would expect the effective
vacuum energy,

�eff
vac ¼ �

8�G
þ �vac � �

8�G
;

to be no smaller than �vac, giving an estimate of �eff
vac *

OðM4
EWÞ. This cannot, however, be the case.

The expansion rate of our Universe is sensitive to �eff
vac,

or equivalently �, through Einstein’s equations.
Measurements of this expansion rate have established

that ð�eff
vacÞ1=4 � 2:4� 0:3� 10�12 GeV [15] and this im-

plies that �eff
vac is some 1060–10120 times smaller than the

expected contribution from quantum fluctuations.
This gives rise to the cosmological constant problem:

‘‘Why is the measured effective vacuum energy or cosmo-
logical constant so much smaller than the expected con-
tributions to it from quantum fluctuations?’’ Equivalently,
assuming the estimate of �vac from quantum fluctuations
is accurate: ‘‘Why does the approximate equality
� � �8�G�vac hold good to an accuracy of somewhere

between 60 to 120 decimal places?’’ A fuller exposition
and review of the cosmological constant problem and ear-
lier attempts at its solution can be found in Weinberg in
Ref. [14].
Observations of the cosmic microwave background

(CMB) [15], Type Ia Supernovae [16–19], and large-scale
structure [20,21] all strongly prefer a small (but nonzero)
value for �eff

vac: specifically, �eff
vac ¼ ð3:8� 0:2Þ �

10�6 GeV cm�3 [15]. This presents an additional
conundrum; it is easier to conceive a situation where
j�vac þ�=8�Gj is exactly zero, than one in which the
cancellation between the two terms is very nearly exact.
This is related to the coincidence problem which we de-
scribe in more detail below.
The presence of an (effective) cosmological constant,�,

introduces a fixed time scale: t� ¼ ��1=2. Curiously, the
observed value of t� � 9:3 Gyrs is of the same order as the
age of the Universe today tU � 13:7 Gyrs. This gives rise
to the coincidence problem: ‘‘Why is t� � tU today?’’ The
epoch at which we observe the Universe is conditioned by
the requirement that the Universe be old enough for typical
stars to have experienced a period of stable hydrogen
burning and then produce the heavier elements required
for biological complexity [22]. The characteristic time
scale, t�, over which this occurs is determined by a combi-
nation of the constants of nature: t� � �2

em=Gmpme ¼
5:7 Gyrs [23]. Naturally, one expects that tU �Oð1Þt�,
which is indeed the case. Thus, the coincidence problem
can be alternatively viewed as the coincidence of two
fundamental time scales, t� and t�, determined entirely
by fundamental constants of nature. The coincidence
problem is then simply ‘‘Why is t� � t�?’’
The coincidence problem is puzzling because it implies

that we live at a special epoch tU when, by chance t� �
OðtU � t�Þ, or that there is some deep reason, related to the
solution of the cosmological constant problem, why � is
such that t� � t�ð�tUÞ.
Recently, in the field of cosmology, there has been more

literature addressing the coincidence problem than the
cosmological constant problem. It is generally assumed
(or perhaps hoped) that there is a dynamical mechanism
that ensures that �eff

vac ¼ �vac þ �=8�G vanishes exactly.
The observed effective cosmological constant then comes
about due to some other mechanism e.g. the energy density
of a slowly rolling scalar field. In dark energy models, for
instance, the effective cosmological constant is not actually
constant. Instead there is a additional field (the eponymous
dark energy) whose energy density has caused the expan-
sion of the Universe to accelerate in such a way that is, up
to current measurement accuracy, indistinguishable from
the effect of a cosmological constant. Whilst some dark
energy models can alleviate the coincidence problem, they
invariably feature a high degree of fine tuning to ensure
that the transition to a dark energy dominated expansion
occurs at a time scale �Oðt�Þ.
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Although in principle it seems natural for � to be sig-
nificantly larger than t�2

U (i.e. t� � tU), first Barrow and

Tipler [23], and then Weinberg [24] and Efstathiou [25],
showed that ’observers’ similar to ourselves could not exist
if this were the case. Our existence requires that small
inhomogeneities in the early Universe are able to grow
by gravitational instability so as to form galaxies and stars.
If � is too large this cannot occur: gravitational instabil-
ities turn off once the Universe starts accelerating. The
requirement that galaxies and stars exist places an an-
thropic upper bound on observable values of � equivalent
to t� * 0:7 Gyrs [23]. If there is only one Universe, with
one value of �, the anthropic constraint on � brings us
no closer to understanding why � is so small (although if
some constants vary cosmologically there is the possibility
that a small nonzero�might be anthropically necessary in
order to switch off variations in constants before they
stop atoms from existing, see Ref. [26]). However, if there
are many possible universes (or a ‘‘multiverse’’) each with
different values of �, then our Universe could only ever
be in the (possibly small) subset of universes where
t� * 0:7 Gyrs.

If we knew the prior probability distribution, fpriorð�Þ, of
values of � in such a multiverse, one could then calculate
the conditional probability of finding t� � tU given the
requirement that observers such as ourselves exist.
Weinberg [24] noted that if fpriorð�Þ � const for t� *

0:7 Gyrs, we would typically expect t� � few�
0:7 Gyrs. The observed value of t� � 9:3 Gyrs would
then look fairly reasonable, and one could argue that the
cosmological constant and coincidence problems had been
solved. This fpriorð�Þ corresponds to an approximately

uniform distribution of� values smaller than the anthropic
upper bound. Such an fð�Þ is not, however, the only rea-
sonable possibility for the prior distribution. If, for instance
� ¼ Mple

�, and values of� were uniformly distributed in

the multiverse, one would naturally expect � to be much
smaller than the anthropic upper bound, i.e. t� 	 tU (and
fpriorð�Þ / ��1). Before we had observations consistent

with a nonzero value of �, Coleman [27,28] and Hawking
[29], and later Ng and van Dam [30], used Euclidean
approaches to quantum gravity to argue that the distribution
of � values should be strongly peaked about � ¼ 0 (i.e.
fpriorð�Þ ¼ expð3�=G�Þ) with a form that is interestingly

characteristic of a Fisher-Tippett extreme-value distribution
[31]. Again, this would make t� � tU seem highly
unnatural.

Ultimately, we would like to calculate fpriorð�Þ from

some fundamental theory. Currently, the notion of a multi-
verse with different values of � seems to have a natural
realization in the some 10500 different vacua of string
theory (see, e.g. Ref. [32]). A derivation of fpriorð�Þ in

this landscape of string vacua for those vacua compatible
with life still represents a major theoretical challenge.
Common criticisms of anthropic selection in a multiverse

as a explanation of the CC problems are that it is not clear
that observers similar to ourselves are the only potential
observers we should consider when restricting possible
values of �; or that this explanation, as it is currently
understood, makes no sharp predictions that can be tested
by observations.
Ideally, we would like to find explanations of the cos-

mological constant and coincidence problems that are
natural, in the sense of requiring little or no fine-tuning,
and are, at least in principle, falsifiable by future observa-
tions. In this paper we propose such a solution. Formally,
we propose a paradigm which can be applied to a variety
of models, including extensions of general relativity and
extra dimensions, and sometimes in a number of different
ways. This paradigm establishes a new field equation for
the bare cosmological constant � which determines its
value in terms of other properties of the observed universe.
Crucially, one finds the effective cosmological constant,�,
which is a sum of the bare cosmological constant and
quantum fluctuations, to be of the observed order of mag-
nitude ��Oðt�2

U Þ. When our proposal is applied to gen-

eral relativity, � is not seen to evolve (i.e. it is constant
throughout the Universe). Hence, the resulting cosmology
is indistinguishable from general relativity with the value
of� put in by hand. However, any given application of our
theory produces a firm prediction for � in terms of other
measurable quantities. If the actual value of � deviates
from this predicted value then that particular application
of the paradigm is ruled out. It should be stressed that our
paradigm is equally applicable to models where general
relativity is modified in some way, or where there are more
than four dimensions. In such theories, the order of mag-
nitude of the predicted effective cosmological constant is
generally the same as it is in 3þ 1 general relativity.
The rest of this paper is laid out as follows: We specify

and describe our new scheme to solve the cosmological
constant problems in Sec. II. In Sec. III, we apply it to a
realistic model of our Universe. We find that the predicted
value of � depends in detail on the spatial curvature and
energy density of baryonic matter. Given the measured
value of �, this results in a prediction for the spatial
curvature of the observable Universe if our scenario is
the correct explanation for the observed value of �.
In inflationary scenarios, different regions of the

Universe undergo different amounts of inflation (measured
by the number of e-folds, N). The observed spatial curva-
ture scales as expð�2NÞ following inflation, and so the
spatial curvature would be different in each bubble uni-
verse according to the amount of inflation it experiences.
Our model therefore provides a link between the probabil-
ity of living in a bubble universe where a given value of
the cosmological constant is observed and the duration
of inflation in that bubble. In Sec. III C we calculate the
probability of living in a bubble universe where t� coin-
cides with tU and find that, in our model it is indeed a

TESTABLE SOLUTION OF THE COSMOLOGICAL . . . PHYSICAL REVIEW D 83, 043518 (2011)

043518-3



typical occurrence. Our conclusions, together with a list of
answers to some possible questions about our scheme and
its application to cosmology, are found in Sec. IV. Some
detailed background calculations are presented in the ap-
pendices. We have provided a condensed presentation
of our proposal in Ref. [33]. We work throughout with a
metric signature ð� þþþÞ and units where c ¼ ℏ ¼ 1;
we denote 	 ¼ 8�G.

II. A PROPOSAL FOR SOLVING
THE CC PROBLEMS

In this section we propose a new approach to solve the
CC problems without fine-tuning.

Preliminaries: We begin with some preliminary defini-
tions. We will take the total action of the Universe defined
on a manifold M, and with effective cosmological con-
stant�, to be Itot½g��;�

a;�;M
, where�a are the matter

fields and g�� is the metric field. We define @M ¼ @MI [
@Mu where @MI denotes some initial hypersurface, and
@Mu denotes the rest of @M.

As usual, provided certain quantities are held fixed on
@M, the classical field equations result from the require-
ment that Itot½g��;�

a;�;M
 be stationary with respect to
small variations in g�� and �a. We represent the classical

field equations for g�� and �a by E�� ¼ 0 and �a ¼ 0,

respectively. The quantities that must be held fixed on @M
depend on the surface terms in Itot. For instance, it is well
known that we can introduce the Gibbons-Hawking-York
(GHY) surface term on @M [34,35] into Itot so that the
only quantities that need to be fixed on the boundary are
the fields �a and the induced 3-metric, 
��, on @M.

In general, the quantities that must be held fixed cannot
be freely specified on @M. The classical fields generally
imply consistency conditions that must be satisfied by
these quantities. This is particularly the case if some parts
of @M are causally connected to other parts. For instance,
if @MI represents a Cauchy surface for @Mu, then the 
��

and�a on @Mu will be at least partially determined by the
specification of the initial data on @MI and by the field
equations E�� ¼ 0 and �a ¼ 0.

We define fQAg to be a minimal set of quantities that
need be freely specified on @M and held fixed, such that
Itot is a stationary point with respect to variations in g��

and �a. For definiteness, we consider the total action with
GHY surface term and focus on the variation of the metric.
For an unconstrained metric variation, we have

�Itot ¼ 1

2	

Z
@M

ffiffiffiffiffiffiffi
j
j

q
d3xN���
��

þ 1

2	

Z
M

ffiffiffiffiffiffiffi�g
p

d4xE���g��;

for some tensorN��. We hold some fQAg fixed and decom-

pose the variations in g�� into g�� ¼ gð0Þ�� þ �gðMÞ
�� þ

�gð@MÞ
�� . We define �
ðMÞ

�� and �
ð@MÞ
�� , respectively, to be

the projections of �gðMÞ
�� and �gð@MÞ

�� onto @M. The de-
composition of the metric variation is performed so that

�
ðMÞ
�� ¼ 0 and a priori �
ð@MÞ

�� � 0. We write �g�� ¼
gð0Þ�� þ �gð@MÞ

�� . Minimizing the action with respect to fluc-

tuations �gðMÞ
�� that vanish when projected onto @M re-

quires E��½ �g��
 ¼ 0. This equation, combined with the

fixed fQAg, constrains the form of �
ð@MÞ
�� . We require

that fixing the set fQAg and imposing E��½ �g��
 ¼ 0 are

sufficient to determine that, with fixed �, N���
�� ¼
N���
ð@MÞ

�� ffi 0, where ffi 0 here indicates that
N���
�� is a total derivative and hence �Itot ¼ 0 when

E�� ¼ 0. Usually this implies that E�� ¼ 0 and the fixed
fQAg completely fix the induced metric (
��) up to diffeo-

morphisms of @M. This is just a restatement of the usual
variational principle.
The gravitational field equations, E�� ¼ 0, depend on

the (effective) cosmological constant �. It follows that the
metric 
�� on @M determined by fQAg and E�� ¼ 0

depends on �. Usually, � is treated as a fixed parameter,
either put in by hand or picked from a distribution of
different values in a multiverse. With � fixed, the fQAg
and the equations E�� ¼ 0 then fix 
��, and hence imply

�
�� ¼ 0. However, if � is varied by some small amount

��, one would have

�
�� ¼ H ����;

where

H �� ¼ �
��

��

��������E��¼�a¼0;fQAg
:

Similarly, for the matter fields, we can define P a by

P a ¼ ��a

��

��������E��¼�a¼0;fQAg
:

A new proposal: Given the definitions above, our pro-
posal for solving the CC problems is as follows:
(i) We promote the bare cosmological constant, �, from

a fixed parameter to a field (albeit one that is constant
in space and time). Quantum mechanically, the par-
tition function of the Universe (see Sec. II A below)
includes a sum over all possible values of � in
addition to the usual sum over configurations of
g�� and �a. The effective cosmological constant,

�, is equal to �þ const and so a sum over all
possible values of � is equivalent to a sum over all
�. This sum over � is defined up to an unknown
weighting function, �½�
, which is similar to the
prior weighting of different � in multiverse models.

(ii) We sum over configurations of g�� and�
a keeping

some data fQAg fixed on the boundary, @M, of the
manifold M on which the action, Itot, is defined.

(iii) The classical field equations are found by requiring
that �Itot ¼ 0with respect to variations in the fields
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that preserve fQAg. For variations of g�� and �a,

this gives, respectively, E�� ¼ 0 and �a ¼ 0. The
classical value of the effective cosmological con-
stant is now determined by the requirement that Itot
be stationary with respect to variations in �, i.e.

�Itot
��

��������fQAg
¼ 0:

Crucially, this new field equation for � includes
contributions from the variation of the boundary
values of g�� and�

a with respect to � (with fixed

fQAg). This provides a nontrivial equation for the
classical value of the effective cosmological con-
stant in M. Note that this classical field equation
for � is independent of the prior weighting �½�
.

(iv) The classical value of the effective CC, �, that is
determined in this way does not depend on the
quantum vacuum energy. It is instead determined
by M, and the fixed quantities fQAg (which could
be taken as the initial conditions). Because � is no
longer determined by �vac, the quantum cosmologi-
cal constant problem is evaded in our proposal.

(v) Finally, we construct a concrete application by de-
manding that, for a given observer, the sum of differ-
ent configurations of the partition function depends
only on the potential configurations in the observ-
er’s causal past. This implies that M is the causal
past of the observer. Given this choice, or similar
choices, for M, an order of magnitude estimate
for the classical value of � seen by an observer at
a time when the age of the universe is tU is always
��Oðt�2

U Þ and a solution of the coincidence prob-
lem is ensured.

We define Iclassð�;MÞ to be the value of
Itot½g��;�

a;�;M
 evaluated with g�� and �a obeying

their classical field equations for fixed boundary/initial
conditions, fQAg. We show below that the field equation
for the effective CC, �, is then given succinctly by

dIclassð�;MÞ
d�

¼ 0: (1)

In this rest of this section we present a more detailed
statement of our proposal for solving the CC problem,
give the general form of the new field equation for �,
and show that the classical value of the CC determined
by this equation is typically expected to be of the observed
order of magnitude.

A. Partition function of the Universe

A relatively simple and revealing statement of our pro-
posed paradigm for determining the effective CC can be
given in terms of the partition function (or quantum state),
Z, of the Universe. Z is given by a sum over all possible
configurations of fields, consistent with certain fixed quan-
tities on the boundary (i.e. the fQAg) and weighted by

expðiItotÞ, where Itot is the total action. The action is
defined on a manifold M with boundary @M. The fields
are the metric, g��, and supporting matter fields, �a.

In the usual approach the bare CC, �, is not a field, in the
sense that its different configurations are summed; rather, it
is a fixed parameter which determines Itot. With fixed � the
partition function is Z½�;M
 � Z�½M
, where � ¼ �þ
const and

Z�½M
 ¼ X
g��;�

a fixed fQAg
eiItot½g��;�

a;�;M


� ½gauge fixing terms
:
In the classical limit Z�½M
 is dominated by configu-

rations g�� and�
a that are compatible with the fixed fQAg

for which Itot is stationary. We assume there are N such
classical solutions (not related by gauge transformations)

and for the �th solutions Itot½g��;�
a;�;M
 ¼

Ið�Þclass½�;M
. In this limit, we have

Z�½M
 � XN
�¼1

eiI
ð�Þ
class

½�;M
:

We demand that the quantities that must be held fixed
on @M, i.e. the fQAg, are independent and can be freely
specified. Hence, when they are held fixed, the stationary
points of Itot correspond to configurations obeying the
usual classical field equations, E�� ¼ �a ¼ 0.
We propose to promote � from a fixed parameter to a

‘‘field’’ whose different configurations are summed over
in the partition function. The introduction of a sum over �
is only defined up to some arbitrary weighting function
�� � �½�
. The total partition function for the scenario
we have proposed is then simply given by

Z½M
 ¼ X
�

�½�
Z�½M


¼ X
�;g��;�

a fixed fQAg
�½�
eiItot½g��;�

a;�;M


� ½gauge fixing terms
:
In principle, the weighting �½�
 should be determined
by a fundamental theory or some symmetry principle.
Crucially, we shall see that our results are independent of
this �½�
 and so we do not need to concern ourselves with
its precise form. This is in contrast to multiverse scenarios,
where the extent to which the observed value of the CC is
natural depends significantly on the prior weighting of
different values of � in the multiverse. Here, while g��

and �a are space-time fields on M, � is a space-time
constant. In the different histories that are summed over, �
takes different values, but in each history it takes only one
value throughoutM. We could promote � to a space-time
scalar field, �ðx�Þ, provided we introduced a delta func-
tion that requires r�� ¼ 0—see Appendix A for further
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discussion of this; taking this approach does not alter our
results. Alternatively, the variable � required in our model
could be associated with the squared 4-form field strength
F2
4, where F4 ¼ d ^A3 is a 4-form field strength andA3 is

a 3-form gauge field. Such a term arises naturally in N ¼ 8
supergravity in four dimensions (see Ref. [36] for further
details). With the inclusion of an appropriate boundary
term, the sum over different configurations of A3 reduces
to the sum over a contribution, �, to the cosmological
constant with is constant over M in each history.

Taking the classical limit for g�� and �a, Z½M
 then
reduces the partition function to

Z½M
 � XN
�¼1

X
�

�½�
eiIð�Þclass
½�;M
:

The sum over � in the above expression is then dominated

by the value(s) of � for which dIð�Þclass=d� ¼ 0. This pro-
vides the classical field equation for �. In order for the
Universe to appear classical to an observer, there should be
a unique classical solution (once the gauge freedoms are
fixed) for g��, �

a (i.e. N ¼ 1) and for �. If there were

more than one solution for �, some number N� say, the
observer would see a superposition of N� classical histor-
ies each with different values of �. If there were no
classical solutions for �, the Universe would be observed
to behave in a fundamentally quantum manner. Provided a
unique classical solution exists for�, the partition function
is dominated by a single history in which the CC is �, as
given by Eq. (1), and Itot ¼ Iclass½�;M
. In the classical
limit, we have

Z½M
 � �½�
eiIclass½�;M
:

The expectation of an observable Oðg��;�
a;�Þ is given

by

hOi¼ 1

Z½M

� X

�;g��;�
a fixed fQAg

Oðg��;�
a;�Þ�½�
eiItot½g��;�

a;�;M


�½gauge fixing terms
:
When Eq. (1) has a solution for the CC, and a classical
limit exists, we then have

hOi � Oðg��;�
a;�Þ

�
�½�
eiIclass½�;M


Z½M

�

¼ Oðg��;�
a;�Þ;

which is independent of the prior weighting �½�
.

B. Field equation for �

We have proposed a paradigm for dynamically deter-
mining the value of the effective cosmological �. In our
proposal, we have found that the value of � is given by an

additional field equation Eq. (1). In order to estimate the
order of magnitude of� determined by Eq. (1) it is helpful
to rewrite it in an expanded form.
The total action, Itot, is composed of the gravitational

action, Igrav, the bare matter action, Im, and the bare

cosmological constant action ICC½�; g��;M
, where

ICC½�; g��;M
 ¼ � 1

	

Z
M

ffiffiffiffiffiffiffi�g
p

d4x�:

In this context Im is ‘‘bare’’ in the sense that it includes the
contribution from the matter sector to the vacuum energy
i.e. Im ¼ Imatter þ Ivac, where Imatter vanishes in a vacuum
and Ivac ¼ ICC½	�vac; g��;M
 gives the contribution from
the vacuum energy. Henceforth we refer to Imatter as the
matter action and note that it makes no contribution to
the vacuum energy. With the effective CC, �, given by
� ¼ �þ 	�vac, we have

Itot½g��;�
a;�;M
 ¼ Igrav½g��;M
 þ ICC½�; g��;M


þ Imatter½�a; g��;M
:
At this stage, for illustrative purposes, we assume that the
boundary terms in Igrav and Imatter have been chosen so that

the action is first order in the derivatives of g�� and �a.

With this choice, small perturbations in the fields g��,�
a,

and in the bare cosmological constant �, give Itot ! Itot þ
�Itot, where schematically,

�Itot ¼
Z
@M

ffiffiffiffiffiffiffi
j
j

q
d3x

�
1

2	
N���
�� þ �a��

a

�

þ
Z
M

ffiffiffiffiffiffiffi�g
p

d4x

�
1

2	
E���g�� þ�a��

a

�

� ��

	

Z
M

ffiffiffiffiffiffiffi�g
p

d4x; (2)

for some N��, �a, E
�� and �a. Minimizing this action

with respect to variations of g�� and�
a in the ‘‘bulk’’,M,

with fixed boundary values requires E�� ¼ �a ¼ 0. We
showed above that these equations combined with the
requirement that some fQAg (which can be freely specified)
are fixed on the boundary, @M, restrict the variations of
�
�� and ��

a (up to gauge transformations) on @M to be

of the form

�
��j@M ¼ H ����; �aj@M ¼ P a��:

Thus, with E�� ¼ �a ¼ 0, for �Itot ¼ 0 one needs
�Itot=�� ¼ 0, which is equivalent to dIclass=d� ¼ 0, and
which, from the above, can be written asZ

@M

ffiffiffiffiffiffiffi
j
j

q �
1

2	
N��H �� þ�aP a

�
¼ 1

	

Z
M

ffiffiffiffiffiffiffi�g
p

d4x:

(3)

The forms of H �� and P a are determined by E�� ¼ 0,

�a ¼ 0, and the requirement that fQAg are fixed.
Equation (3) is equivalent to Eq. (1) in the case where
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the boundary terms in Itot are chosen so that the action is
first order in derivatives g�� and �a. Although Eq. (1)

represents a more succinct statement of the field equation
for �, the expanded form given by Eq. (3) is more useful
in estimating the order of magnitude of the value of �
determined by its field equation.

C. The natural order of magnitude
of the effective cosmological constant

In this subsection, we estimate the order of magnitude of
the classical effective CC that arises from solutions of the
�-field equation, i.e. Eq. (1) or equivalently Eq. (3).

We focus on a cosmological setting whereM is taken to
be the causal past and @Mu is the past light cone. The
boundary is @M ¼ @Mu [ @MI where @MI is the initial
hypersurface. We assume that the fixed quantities, fQAg,
are such as to fix the initial state on @MI; H �� and P a

vanish (up to diffeomorphisms) on @MI. Equation (3) then
readsZ

@Mu

ffiffiffiffiffiffiffi
j
j

q �
1

2
N��H ��þ	�aP a

�
¼
Z
M

ffiffiffiffiffiffiffi�g
p

d4x: (4)

Now we estimate

N��H �� ¼ N��
�
��

��
�OðtrN=�Þ;

where trN ¼ N��
��. In many theories of gravity, includ-

ing general relativity, trN �OðtrKÞ, where K�� is the

extrinsic curvature of the boundary, @Mu.
Cosmologically, trK �OðHÞ where H is the Hubble
parameter; H0 is its value today. Thus, we have

1

2

Z
@M

d3x
ffiffiffiffiffiffiffi
j
j

q
N��H ���

Z
@M

ffiffiffiffiffiffiffi
j
j

q
d3x��1H�H0

�
A@M;

where A@M is the surface area of @M. Similarly, the
contribution from the 	�aP a matter terms in Eq. (4)
is generally of the same order as that from N��H ��.

The left-hand side of Eq. (4) is therefore generally
�OðH0A@M=�Þ. The right-hand side of Eq. (3) is simply
the 4-volume, VM, of M. We note that typically VM �
tUA@M where tU is the age of the Universe. Putting these
estimates together in Eq. (3), we have

H0

�
A@M � VM ) ��H0A@M

VM
�H0

tU
:

Using tU �H�1
0 , we find the general order of magnitude

estimate is �� t�2
U . We note that the presence of D small

(or even large) extra dimensions with volume Vextra would
not change this order of magnitude estimate. The
extra dimensions would result in A@M ! A@MVextra,
VM ! VMVextra, but the prediction ��H0A@M=VM !
H0A@M=VM � 1=t2U remains unchanged.

Thus, provided the field equation for �, Eq. (1), admits
a unique classical solution, we naturally expect the

magnitude of the classical value of the effective CC, �,
to be Oð1=t2UÞ. Thus our proposal results in a � whose
expected magnitude is naturally of the order of the
observed value. Provided a specific application of our
proposal realizes a unique prediction for � of this magni-
tude (� 1=t2UÞ, it will have simultaneously solved both
the cosmological constant and the coincidence problems
(see Sec. III) for an example of such an application).
Our proposal results in a situation where those classical

histories that dominate the partition function naturally have
a value of the bare cosmological constant � that all but
exactly cancels the vacuum energy of 	�vac in M. The
effective CC, � ¼ �þ 	�vac, is then determined by the
properties of M. This is achieved without introducing
ad hoc small parameters or special fine-tunings. In this
sense, the solution to the CC problem provided by scheme
could be considered natural.

III. APPLICATION TO COSMOLOGY

In this section we consider the application of our pro-
posal for solving the CC problem to cosmological models.
The scheme we laid out in the previous section is flexible
in that it does not make any specific assumptions about
either the theory of gravity or the dimensionality of the
Universe. There is also a freedom in how one chooses to
define the manifold M on which the total action, Itot, is
defined.
In this section, for simplicity, we assume that gravita-

tional sector is described by unmodified general relativity,
space-time has 3þ 1 dimensions, and thatM is the causal
past of the observer. We take the observer to be at a fixed
point, p0. The manifold M is bounded by the past light
cone @Mu of p0 and an initial timelike hypersurface @MI

with given normal t
�
0 . Our proposal requires that M re-

mains fixed for different values of the bare cosmological
constant, �; that is, there exists a coordinate chart C ¼ fx�g
such that, for all �, the values of the fx�g at p0, and on the
boundaries @Mu and @MI, are the same for all �.
While there is considerable freedom in the definition of

the chart C, a natural and simple choice results from the
demand that changes in � preserve the light cone, and
hence the causal, structure of space-time. Given this
choice, we define some null coordinates u and w such
that u ¼ �0, for some � independent �0, on @Mu, and
u < �0 in w. We then define w so that w ¼ �u on @MI

and w ¼ �0 at p0. We define u� ¼ r�u and w� ¼ r�w.

Now, w�w
� ¼ u�u

� ¼ 0, and we define 
 by 2e�2
 ¼
�u�w

�. The metric can then be decomposed as

g�� ¼ �e2
uð�w�Þ þ h��:

Here, h�� ¼ Ei
�E

j
�hij where i ¼ 1, 2 for some positive-

definite 2-metric, hij, and some Ei
� for which w�Ei

� ¼
u�Ei

� ¼ 0. We define some intrinsic coordinates �i ¼
f�1; �2g on the closed 2-surfaces Sðu;wÞ of constant u and
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w. The 2-metric hij is then defined by taking h��@��
i ¼

Ei
�; h

ij ¼ h��Ei
�E

j
�. We can then write

Ei
� ¼ @��

i þ riu� þ siw�;

for some ri and si. Our coordinate chart is then given by
C ¼ fu;w; �1; �2g, and in M is determined by u < �0,
�u < w< �0. In this chart

ds2 ¼ g��dx
�dx� ¼ �e2
dudwþ hijD�

iD�j;

D�i ¼ d�i þ riduþ sidw:
(5)

We define a timelike coordinate � ¼ ðuþ wÞ=2. The initial
hypersurface therefore corresponds to � ¼ 0 and the ob-
server’s position is � ¼ �0. The normal to @MI is taken to
be given, and this therefore partially restricts the freedom
in the definition of u and w. We also define a spacelike
radial coordinate r ¼ ðu� wÞ=2; we then have r ¼ 0 at
p0. Figure 1 shows an illustration of M and its boundary.

The intrinsic three-metric on the initial hypersurface has
line element

ds2�¼0 ¼ e2
ðIÞ ðdr2 þ �hðIÞij DðIÞ�iDðIÞ�jÞ;
DðIÞ�i ¼ d�i þ Ki

ðIÞdr;

where 
ðIÞ ¼ 
j�¼0, �hðIÞij ¼ e�2
hijj�¼0 and Ki
ðIÞ ¼

ri � sij�¼0. The requirement that the initial state be fixed

independently of � on @MI implies that
I, �h
ðIÞ
ij andKi

I are

fixed up to � independent diffeomorphisms on @MI.
The surfaces Sðu;wÞ of constant u and w (or equivalently

constant � and r) represent the intersection of a past and a
future-directed light cone. As such, the Sðu;wÞ are closed

two-surfaces. We define �R to be the scalar curvature
of the conformal 2-metric �hij. Since �hij describes a two-

dimensional space, it is completely characterized by �R.
Additionally, by the Gauss-Bonnet theorem, we know that

h �Riðu;wÞA2ðu; wÞ �
Z
u;w¼const

�R
ffiffiffi
�h

p
d2�

¼ 2
Z
u;w¼const

ffiffiffi
�h

p
d2� � 2A2ðu; wÞ:

where A2ðu; wÞ is the surface area of the conformal 2-space

described by �hij, and h �Riðu;wÞ is the average curvature. The
conformal 2-surfaces are homotopic to a 2-sphere. If the
intrinsic metric on the 2-spheres were that of a two-sphere
with conformal radius �, then we would have A2ðu; wÞ ¼
4��2 and h �Riðu;wÞ ¼ 2=�2. This singles out a preferred

class of definitions for u and w on the initial hypersurface
on which � ¼ ðuþ wÞ=2 ¼ 0. We can always pick
r ¼ ðu� wÞ=2 so that on @MI (where u ¼ �w),

A2ð�w;wÞ ¼ 4�r2 or equivalently h �Rið�w;wÞ ¼ 2=r2.
We note that for a 2-metric, with constant r, the diffeo-

morphism invariant structure of �hðIÞij is completely deter-

mined by its scalar curvature �RðIÞ. Since ðu; wÞ ¼ const

represents the intersection of two light cones, the surfaces

of constant u and w are closed, and so �RðIÞ > 0. We note

that we can always choose u andw so that on @MI,
�RðIÞ ¼

2=r2 with r ¼ u ¼ �w on @MI.
Choice of surface terms:Another freedom in our scheme

is the choice of surface terms in Itot. Focussing on the
variation of the metric, and keeping all other fields includ-
ing the CC fixed, these surface terms determine the quan-
tities that must be held on @M, so that �Itot=�g�� ¼ 0

when the classical field equations hold. The metric on and
around a spacelike and timelike boundary is described by
the induced metric 
�� and the extrinsic curvature, K��.

On a null boundary the situation is slightly more compli-
cated and we discuss it further below; nonetheless, there
are quantities analogous to 
�� andK

��. The 
�� andK
��

are, respectively, analogous to position variables and their
associated momenta. In most cases it is natural to choose
the surface terms so that (for fixed CC), the ‘‘position
variable’’ 
�� must be held fixed. The required surface

term was first identified by York [34], and then rediscov-
ered and refined by Gibbons and Hawking [35]. We refer to
ii as the GHY boundary term. However, if K��, (or some

FIG. 1 (color online). An illustration of the manifold M and
its boundary @M ¼ @Mu [ @MI for the general cosmology
setup considered in Sec. III. Here, M is the causal past of the
observer, @Mu is the null boundary given by the observer’s past
light cone and @MI is a spacelike boundary which represents the
initial hypersurface. The model remains well defined in the limit
where @MI is the initial singularity. We pick orthogonal null
coordinates u and w such that @Mu corresponds to u ¼ �0, and
on @Mu, ��0 <w< �0 for some fixed �0, and the time coor-
dinate given by � ¼ ðuþ wÞ=2 vanishes on @MI. We also
define a radial coordinate r ¼ ðu� wÞ=2 and choose w ¼ �0
at the observer’s position, so that there � ¼ �0 and r ¼ 0. In the
figure, constant u surfaces are shown as dotted red line (except
@Mu which is a solid red line), and correspond to past light
cones of points on the line r ¼ 0 (the dashed black line) which
connects the observer with @MI . The w ¼ const surfaces are
future-directed light cones of points on r ¼ 0 and are shown
above as dot-dashed blue lines. Surfaces of constant u and w are
closed 2-surfaces Sðu;wÞ with intrinsic coordinates �i; i ¼ 1, 2.
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components of it), diverge faster than 
�� as one ap-

proaches the boundary, different choices of boundary
term may be required.

Metric quantities are suitably well behaved on the null
boundary @Mu and so for this boundary it is natural to pick
the null boundary analogue of the GHY term.

In the cosmological setting, @MI is the initial singularity

and the intrinsic metric, 
ð0Þ
��, on @MI has vanishing deter-

minant.More formally, taking
ð�Þ
��, to be the inducedmetric

on surfaces of constant �, lim�!0þ det

ð�Þ ¼ 0. We define

K
��
ð�Þ to be the extrinsic curvature on constant � surfaces;

Kð�Þ ¼ K�
ð�Þ�. Generally,K diverges as � ! 0þ. The quan-

tities det
 and K are canonically conjugate. It is most
natural to choose boundary terms so that the most diver-
gence of two canonically conjugate variables is held fixed
(cf. the argument for fixing the charge rather than the
chemical potential in Ref. [37]). This implies that, on
@MI, we choose the surface term so that K rather than
det
 is fixed. In Appendix B, we note that this term is the
‘‘cosmological’’ boundary term found by York in Ref. [34].
Thus, we fix the surface terms in Itot to be York’s cosmo-
logical boundary term on @MI, and the GHY boundary
term on @Mu. It should be stressed, though, this choice of
York rather than a GHY boundary term on @MI has no
affect on the equation for � and is only made for the
technical reason stated above. This is because the initial
state on@MI is fixed independently of� in our proposal and
so for any @MI boundary term, I@MI

, �IdMI
=�� ¼ 0. It

follows that boundary terms on @MI do not contribute to
the � equation �Itot=�� ¼ 0.

A. General cosmology

We begin by writing down the form of Itot for the general
cosmological setting and considering its variation. In ad-
dition to Itot, our scheme requires that we specify a set of
quantities fQAg that are kept fixed (for all values of the bare
cosmological constant) and which can be independently
specified. By considering the variation of the action, we
present a natural choice of these fixed quantities.

Since we have taken the gravity sector to be described
(to a suitable approximation) by unmodified general rela-
tivity, the gravitational action, Igrav, is given by

Igrav½g��;M
 ¼ IEH½g��;M
 þ Isurf½g��;@M
;
where Isurf are the surface terms defined on @M and IEH is
the Einstein-Hilbert (EH) action defined on M

IEH½g��;M
 ¼ 1

2	

Z
M

d4x
ffiffiffiffiffiffiffi�g

p
RðgÞ:

We have taken the boundary to be @M ¼ @MðuÞ [ @MI,

where @MðuÞ is described by the vanishing of the null

coordinate u, and so it represents a null boundary. Our
@MI is the initial spacelike hypersurface given by � ¼ 0.
As one approaches � ¼ 0, the determinant of the induced

metric on � ¼ const hypersurfaces vanishes, while the
trace of the extrinsic curvature diverges. On @MðuÞ it is
natural to take the surface term to be the null boundary

analogue of the GHY term, IðuÞGHY say, whereas on @MI the

divergence ofK makes � ! 0 limit of York’s cosmological

(YC) surface more natural; we write this as IðIÞYC.

In Appendix B, we present a detailed rederivation and
discussion of boundary terms in general relativity for both
non-null and null boundaries. Here, we briefly review those

results where they apply to the form of the IðuÞGHY and IðIÞYC

terms.

1. GHY term on @Mu (u ¼ �0)

We consider a null boundary @MðuÞ described by some

uðx�Þ ¼ �0 where, with u� ¼ r�u, we have u�u� ¼ 0.

We define n� ¼ �e
u� for some 
. In order to describe
points on @MðuÞ, we have a wðx�Þ such that w� ¼ r�w is

null and w�u
� ¼ �2e�2
 > 0. We also define � ¼ ðuþ

wÞ=2 and so, on @Mu, � ¼ ð�0 þ wÞ=2. Equation (5) gives
the decomposition of the metric g�� in terms of u, w and

the intrinsic coordinates �i on the closed 2-surfaces, Sðu;wÞ,
of constant u and w. The hij is the induced 2-metric on the

Sðu;wÞ and h�� ¼ g�� � e2
wð�u�Þ. We define n� ¼
�e
u�, and �n� ¼ e
w� so that �n�n� ¼ 2.

The extrinsic curvature of Sðu;wÞ along n� isK�� and is

defined by

K �� ¼ �1
2h

��h�
Lnh�
 ¼ e
h��h�
r�u
: (6)

Writing ei� ¼ @��
i, we define Kij ¼ ei�e

j
�K�� and the

trace of the extrinsic curvature is K ¼ K��h�� ¼
Kijhij. We also define the inaffinity, �, and twist, !�, by

� ¼ �Ln
 ¼ e
u�r�
; !� ¼ 1
2h

�� �n�r�n
�:

We also define !i ¼ !�ei�.

The usual GHY term (defined on non-null boundaries)
has the property that it renders the action first order in
derivatives of the metric. The variation of the total action
with respect to the metric is then free of surface terms
whenever the induced boundary 3-metric is held fixed.
On a null boundary there is no (nonsingular) boundary
3-metric. In its place are h�� and e
. This is clear when

one notes that the invariant area element on @MðuÞ is

e

ffiffiffi
h

p
d�d2�, as opposed to

ffiffiffiffiffiffiffij
jp
d3x on a non-null bound-

ary. Thus, the analogue of the GHY term for a null bound-
ary is defined by the property that when e
 and h�� are

fixed, variation of the total action with respect to the metric
is free of surface terms on @Mu.
Given this, we find in Appendix B that the GHY term

for @MðuÞ is

IðuÞGHY ¼ 1

	

Z
@Mu

e

ffiffiffi
h

p
d�d2�½Kþ �
:
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One finds the same boundary term if one starts with the EH
action in terms of a vierbein and adds a boundary term so
that action is first order in derivatives of the vierbein (see
Appendix B for a proof of this).

On a spacelike or timelike boundary, � say, it is well
known that the GHY boundary term invariant under
diffeomorphisms restricted to � (i.e. those under which
the 4-vector normal to � is invariant). However, on a null

boundary this is not the case. IðuÞGHY is invariant under

diffeomorphisms on the two surfaces of constant u and w
(i.e. Sðu;wÞ), but it is not invariant under reparametrizations

of the ‘‘radial’’ coordinate (in this casew or equivalently �,
along the null hypersurface). Specifically, it is always
possible to find such diffeomorphisms that preserve the
normal to @MðuÞ but under which

�j@Mu
! �j@Mu

þ e
Luf�ðw; �iÞ

for any f�ðw; �iÞ. This means that the IðuÞGHY term as defined

above is ambiguous. The ambiguity in the GHY term for
null boundaries is because the 3-metric normal to the
boundary is degenerate. This means that there is no pre-
ferred normalization of the normal to the boundary and
consequently no preferred ‘‘radial’’ coordinate along the

boundary. To unambiguously define the IðuÞGHY one must fix

this remaining gauge freedom by either picking a form for
� on @MðuÞ or, equivalently, by specifying a preferred

choice of w=� on @Mu. Simplifying choices that are
common in the literature, and can always be achieved, are

�j@Mu
¼ 0 or �j@Mu

¼ � c0
2
K;

for some constant c0. Each choice identifies a preferred w
for which the total action is first order in derivatives of
metric quantities. In this application of our proposal to
solve the CC problems, we demand that the initial state
is fixed independent of �. However, both these choices for
� on @Mu given above would single out a preferredw, and
hence a definition of 
 which would depend on � on @MI.
In the scenario we consider here, it is more natural to
remove the ambiguity in � on @Mu by fixing the definition
of 
 initially (i.e. on @MI). This is achieved by picking a
preferred radial coordinate r on @MI. More exactly, we
should specify the r on @MI up to residual coordinate

transformations that leave IðuÞGHY invariant. We noted above

that since the Sðu;wÞ, which are the surfaces of constant r
on @MI, are closed 2-surfaces, our r represents a radial
coordinate on @MI. A simple and natural definition of r
(up to residual coordinate transformations) is then to pick
it so that the average scalar curvature of the conformal
2-surface at � ¼ 0 and r ¼ const (and described by the
metric �hij ¼ e�2
hijÞ is 2=r2 with r ¼ u ¼ �w on @MI.

By the Gauss-Bonnet theorem, this is equivalent to choos-
ing r so that the surface area of the conformal 2-surface is

4�r2. This choice does not uniquely determine r but it is
sufficient to fix � on @Mu.
The choice of a preferred r on @MI is equivalent to the

specification of an unambiguous boundary term on @Mu.
Making such a specification requires that one replace � in

IðuÞGHY by some quantity that is invariant under diffeomor-

phisms that vanish normal to @Mu and @MI. Any such
choice will then pick out a preferred set of definitions of w
on @Mu for which � ¼ �Ln
 and hence the total action
is first order. This in turns picks out a preferred set of 2r ¼
ðu� wÞ on @MI where w ¼ �u. For the application of
our proposal to cosmology in this section we fix the defi-

nition of � so that on @MI, h �Ri�¼0 ¼ 2=r2. This is argu-
ably the simplest choice we can make that is consistent
with the requirement that the initial state be � independent
when described in the coordinate chart for which the action
is (up to a boundary term on @MI) first order in metric
derivatives.

2. YC term on @MI (� ¼ 0)

The initial timelike hypersurface, @MI, is singular;
however, we may still define the surface term by taking a
limit as � ! 0 from above (i.e. � ! 0þ). We take t� ¼
e
r�� where � ¼ ðuþ wÞ=2. We then have t�t� ¼ �1;

t� is the backward pointing normal to surfaces, ��, of
constant �. We can decompose the metric into

g�� ¼ �t�t� þ 
��:

With r ¼ ðu� wÞ=2, we have

��dx

�dx� ¼ e2
dr2 þ hij½d�i þ Kidr
½d�j þ Kjdr
;
where Ki ¼ ðri � siÞ. The �i are the intrinsic coordinates
on the surfaces of constant u and w. The line element for
the 4-metric can then be written as

ds2 ¼ �e
d�2 þ 
��½dx� þ N�d�
½dx� þ N�d�
;
where

N�dx
� ¼ hijðrj þ sjÞd�i:

We call N� the shift vector. We note that we can always
define the �i so that in M, N� ¼ 0 i.e. ri ¼ �si. The
extrinsic curvature, K��, of �� is given by

K�� ¼ �1
2


��
�
Lt
�
;

and the trace is K ¼ K��
��. With these definitions we

see in Appendix B that the cosmological boundary term
of York for @MI is

IðIÞYC ¼ � lim
�!0þ

1

3	

Z
@MI

ffiffiffiffi



p
d3xK:
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3. Variation of gravitational action and fixed quantities

In this cosmological setup the total gravitational action
is

Igrav¼ 1

2	

Z
M

d4x
ffiffiffiffiffiffiffi�g

p
RðgÞþ 1

	

Z
@Mu

e

ffiffiffi
h

p
d�d2�½Kþ�


� lim
�!0þ

1

3	

Z
@MI

ffiffiffiffi



p
d3xK:

In Appendix B, we show that the variation of this action
with respect to the metric, g��, gives

�Igrav ¼ � 1

2	

Z
M

d4x
ffiffiffiffiffiffiffi�g

p
G���g��

� 1

2	

Z
@MI

�
~P���~
�� þ 4

3

ffiffiffiffi



p
�K

�
drd2�;

þ 1

2	

Z
@Mu

e

ffiffiffi
h

p ½ðKþ �Þhij �KijÞ�hij
þ 2K�
þ 2!i�s

i
d�d2�; (7)

where

~
�� ¼ ðdet
Þ�1=3
��;

~P�� ¼ ðdet
Þ5=6½K�� � 1
3K


��
:
Since ~P�� ~
�� ¼ 0, it follows that

~P���~
�� ¼ �~
��� ~P�� ¼ � ffiffiffiffi



p

���


��;


�� ¼ K�� � 1
3K


��:

We now specify the fixed quantities, fQAg, for the gravita-
tional sector. We see that the boundary terms in Eq. (7)
vanish when K and either ~
�� or 
�� are fixed on @MI

(up to residual coordinate transformations on @MI) and si,
hij and 
 are fixed on @Mu. The fQAg will be a subset of
these quantities, and their defining property is that they are
a maximal subset which can be independently specified.

In terms of the familiar 3þ 1 Arnowitt-Deser-Misner
decomposition on constant time (i.e. �) hypersurfaces, ��,
our e
 is the lapse function and N� ¼ ð0; ri þ sjÞ is the
shift vector; 
�� is the induced metric on ��. The six

components of 
�� are given by 
, Ki ¼ ri � si, and hij.

In general, the intrinsic coordinate-independent geome-
try in M is determined uniquely when the 12 variables

�� and K�� are specified on @MI. The Einstein equa-

tions provide four constraint equations on @MI which
reduce the number of independent functions in 
�� and

K�� to eight. When N ¼ e
 and N� in M are fixed, this
reduces the number of independent functions that must be
specified on @MI to four. Thus, to completely specify the
space-time inM, we must fix four free functions on @MI

as well as specifying N and N� in M.
The specification of ~
�� (or 
��) and K on @MI fixes

six functions on the initial hypersurface in a coordinate

dependent manner. We found that the definition of IðuÞGHY

resulted in the specification of a preferred r on @MI. There
remains, however, the freedom to define the �i on @MI

which can be used, for instance, to setKi ¼ 0 initially. This
freedom means that ~
�� (or 
��) and K on @MI fix four

free functions on @MI in a coordinate-independent man-
ner. The lapse function, N, inM to be given by N ¼ e
. If
N� can be fixed in M, then ~
�� (or 
��) and K on @MI

are sufficient to completely determine, via the field equa-
tions, all metric quantities in M, and on @Mu. Fixing N�

in terms other metric quantities is equivalent to fixing
ri þ si which in turn is equivalent to specifying our coor-
dinates �i on Sðu;wÞ which are defined on surfaces of

constant � relative to their values on @MI. A simple choice
with a geometrical basis is demand that the �i are Lie-
propagated along �� ¼ r�� from the values that are arbi-
trarily assigned to them on the initial hypersurface @MI,
i.e. L��

i ¼ 0. This implies that

L ��
i ¼ 1

2ðu�@��i þ w�@��
iÞ ¼ e�2
ðri þ siÞ ¼ 0;

and so ri ¼ �si in M. We then have N� ¼ 0. We make
this choice in our subsequent analysis.
Our choice of fixed quantities, fQAg, is therefore as

follows:
(i) We assume that the initial state on @MI is fixed.

Thus, the fixed fQAg includeK and either ~
�� or

��

on @MI.
(ii) These quantities are fixed with respect to a

�-independent coordinate chart C ¼ hu; w; �1; �2i
defined such that u ¼ �0 ¼ fixed on @MI, w ¼
�0 ¼ fixed at p0 and u ¼ �w on @MI. @MI has
fixed unit normal t

�
I ¼ e�
��j@MI

; �� ¼ r�ðuþ
wÞ=2.

(iii) We found that an invariant definition of the bound-
ary term on @Mu requires us to pick out a preferred
set of r ¼ ðu� wÞ=2 on @MI. Our choice of r is
to define it so that e�2
r�2hij has an average scalar

curvature of 2 on @MI.
(iv) The values �i inM are defined by Lie propagating

their values on @MI along ��: L��
i ¼ 0 and so

ri ¼ �si everywhere.
Similarly, for the matter variables, we fix the initial state

on @MI and any residual gauge freedom on @Mu, so that
the gauge is fixed independently of �.
Given this choice fQAg, the 2-metric, hij, on @Mu is

determined by the classical field equations. Since the field
equations depend on �, this, in turn, fixes the form of
H ij � dhij=d�.

4. The � field equation

The field equation for � in our proposed paradigm is
Eq. (3). Here, the total action is

Itot ¼ Igrav½g��
 þ ICC½�; g��;M

þ Imatter½�a; g��;M
;
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where Igrav ¼ IEH þ IðuÞGHY þ IðIÞYC. We assume that Imatter is

of the form

Imatter ¼
Z
M

ffiffiffiffiffiffiffi�g
p

Lmatter þ
Z
@MI

ffiffiffiffi



p
d3xLmI;

for someLmI, whereLmatter andLmI are at most first order
in derivatives of �a. The choice of fixed quantities fQAg
define the initial state and ensure all integrals over @MI in
�Itot vanish. The classical field equations for gravity and
matter are

E�� ¼ �G�� þ 	T�� ��g��;

�a ¼ �r��
�
a þ �Lmatter

��a ¼ 0;

where

T�� ¼ 2ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
LmatterÞ

�g��

; ��
a ¼ �Lmatter

�ðr��
aÞ :

Combined with these classical field equations, the fixed
fQAg determine hij and �a on @Mu as functions of �.

Thus, they give

H ij ¼
dhij
d�

��������@Mu; fixedfQAg
;

P a ¼ d�a

d�

��������@Mu; fixedfQAg
:

When g�� and �a obey E�� ¼ �a ¼ 0, we have

Itot ¼ Iclass½�;M
 and so Eq. (3) reads

dIclass
d�

¼ 1

2	

Z
@Mu

N
ffiffiffi
h

p
d�d2�½N ijH ij þ�aP a


� 1

	

Z
M

ffiffiffiffiffiffiffi�g
p

d4x ¼ 0;

where N ij ¼ ðKþ �Þhij �Kij and �a ¼ �n��
�
a .

5. Rewriting the classical action

When the classical field equations for the metric and
matter variables hold, we can rewrite Iclass in a form that
is particularly instructive in the cosmological setting for
both expressing and solving the � equation.

Independent of the field equations, we can rewrite

IðuÞGHY as

	IðuÞGHY ¼
Z
@Mu

e

ffiffiffi
h

p ½Kþ �
d�d2�

¼
Z
@Mu

½r�u
� þ u�r�

 ffiffiffiffiffiffiffi�g

p
d�d2�

¼ �
Z
M

ffiffiffiffiffiffiffi�g
p r�½t�Ln

d4x

� lim
�!0þ

Z
@MI

e

ffiffiffi
h

p
Ln
drd

2�;

where we have used u�u
� ¼ 0, and

ffiffiffiffiffiffiffi�g
p ¼ 0 on � ¼ 0

and at p0. We have also used n� ¼ �e
u�, t� ¼ e
r��
and n�t� ¼ 1. Now,

L n
 ¼ n�r�
 ¼ t�n�r�n� ¼ �n�n�r�t�

¼ �Kr
r � ar;

where r�t� ¼ K�� � t�a�, and a� ¼ t�r�t
� is the ac-

celeration and K�� the extrinsic curvature of constant �

hypersurfaces. We have also defined l� ¼ e
r�r ¼
e
r�½u� w
=2, so that n� ¼ �ðt� þ r�Þ and Kr

r ¼
l�l�K��, ar ¼ l�a�.

Since

lim
�!0þ

�Z
@MI

e

ffiffiffi
h

p
ardrd

2� ¼
Z
@MI

t�n
�e


ffiffiffi
h

p
ardrd

2�

�
;

¼
Z
M

ffiffiffiffiffiffiffi�g
p

d4xr�½n�ar
;

we can write

IðuÞGHY ¼ 1

	

Z
M

ffiffiffiffiffiffiffi�g
p r�½t�Kr

r � l�ar
d4x

þ lim
�!0þ

1

	

Z
@MI

e

ffiffiffi
h

p
Kr

rdrd
2�:

The Ricci tensor of M is R��, and we define Rð3Þ
�� to be

the Ricci tensor of a 3-surface of constant �. We define

Rr
r ¼ R��l

�l�, Rð3Þr
r ¼ Rð3Þ

��l�l�. We then have

r�½t�Ln
� l�ar
 ¼ �Rr
r þ Rð3Þr

r þLlar þ A2

� �2 � arKl;

�2 ¼ 2���
�; �� ¼ h��l�K

��; A2 ¼ A�A
�;

A� ¼ h��a
�; Kl ¼ h��r�l� ¼ 1

2h
��Llh��:

We now define

� � Rð3Þr
r þLlar þ A2 � �2 � arKl: (8)

We can then write

Itot ¼ IEH þ IðuÞGHY þ IðIÞYC þ ICC þ Imatter;

¼ 1

	

Z
M

ffiffiffiffiffiffiffi�g
p �

1

2
R� Rr

r ��þ �þ 	Lmatter

�
d4x

þ lim
�!0þ

1

	

Z
@MI

ffiffiffiffi



p �
Kr

r � 1

3
K þLmI

�
d3x:

Iclass is defined to be Itot evaluated with g�� and the matter

fields obeying their classical field equations. For g�� this

means that we have the Einstein equation G�� ¼ R�� �
g��R=2 ¼ 	T�� ��g�� where T�� is the energy-

momentum tensor that follows from varying Lmatter.
Substituting the Einstein equation into Itot and defining
Pr

r ¼ T��l
�l�, we arrive at
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Iclass ¼
Z
M

ffiffiffiffiffiffiffi�g
p ½	�1�þ ðLmatter � Pr

rÞ
d4x

þ lim
�!0þ

1

	

Z
@MI

ffiffiffiffi



p �
Kr

r � 1

3
K þLmI

�
d3x: (9)

Since the initial state on @MI is taken to be fixed, the
equation for the effective cosmological constant, � can be
simply written as

dIclass
d�

¼
Z
M

�

��
f ffiffiffiffiffiffiffi�g
p ½	�1�þ ðLmatter � Pr

rÞ
gd4x
¼ 0:

In the above equation Lmatter is the effective action for
matter renormalized so that it vanishes in vacuo. In a
cosmological setting, this form of the � equation is often
the most straightforward to evaluate since it involves only
scalar quantities.

B. � in a realistic cosmology

In the previous subsection, we considered the applica-
tion of our scheme for determining � in a general cosmo-
logical setting where M is taken to be the past light cone
of the observer at some fixed external time � ¼ �0.

We assume that, in appropriate coordinates ðT; XiÞ, and
except in certain strong gravity regimes (e.g. near neutron
stars or black hole horizons), the space-time is well
described, to linear order in some small � and �, by the
following line element:

ds2 ¼ a2ðTÞ
�
�ð1þ 2�ÞdT2

þ ð1� 2�Þ
ð1þ 1

4 kX
�X����Þ2

���dX
�dX�

�
;

where �, � take values 1, 2, 3; � and � are gravitational
potentials which are sourced by perturbations to the
homogeneous background. They are measured to be small
(�Oð10�5Þ) on average; k is the intrinsic spatial curvature.
Observations indicate that at the horizon jkX�X����j &
10�2 so that to linear order in this and the other small
quantities, � and �:

ds2 � a2ðTÞ½�ð1þ 2�ÞdT2

þ ð1� 2�� 1
2kX

�X����Þ���dX
�dX�
: (10)

We now apply our method for solving the CC problems
to a universe with the line element given by Eq. (10). We
transform this line element to light-cone coordinates
ðu;w; �iÞ, by taking for some small @�@�
,

� ¼ T þ _
; x� ¼ X� þ ���
;�;

here _
 ¼ @
=@� and 
;� ¼ @
=@x�. To linear order

in the small quantities, we have @
=@� ¼ @
=@T
and @
=@x� ¼ @
=@X�. Here, � ¼ ðuþ wÞ=2 and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���x

�x�
q

¼ ðu� wÞ=2. With such a change to linear

order in the small quantities, we obtain

ds2 ¼ a2ð�Þð1þ 2�Þ½�dudwþ �h��dx
�dx�
; (11)

� ¼ �� €
�H _
 ¼ ��� 
00 �H _
; (12)

€
� 
00 ¼ �þ�þ 1
4kr

2; (13)

with H ¼ a;�=a and �h�� ¼ �hð0Þ�� � 2
;�� þ 2
00���,

where �hð0Þ��dx
�dx� ¼ r2½d�2 þ sin2d�2
 and the prime

superscript indicates a partial derivative with respect to r;
also, x�x� �h�� ¼ 0.

To leading order in �, � and 
;��, the line element is

simply that of a Friedmann-Robertson-Walker space-time
with curvature k and � is the conformal time coordinate

ds20 ¼ a2ð�Þ½�dudwþ r2ðd�2 þ sin2�d�2Þ
;
¼ a2ð�Þ½�d�2 þ dr2 þ r2ðd�2 þ sin2�d�2Þ
:

1. Initial conditions for 


If 
0 satisfies the 
 equation then so does 
1 ! 
0 þ
f�ð�� r; �; �Þ þ fþð�þ r; �;�Þ, for arbitrary f�ðx;��Þ.
Changing 
 from 
0 to 
1 shifts

ffiffiffi
h

p
e
�dw on @Mu, and

hence IðuÞGHY by a term proportional to f�;xxxðx; �;�Þ. Thus,
to fix the definition of IðuÞGHY, we must impose initial

conditions that fix f�;xxxðx; �;�Þ.
First, we must specify � ¼ 0 to correspond to a given

timelike hypersurface (e.g. T ¼ 0). This determines _
 and
hence fþ;xðx; �;�Þ in terms of f�;xðx; �;�Þ. For simplicity,

we choose the fixed hypersurface to be T ¼ 0, although
similar choices that coincide with this choice to zeroth
order in the small quantities will give similar results to

the ones we obtain below. The boundary term IðuÞGHY can

then be fixed by specifying 
000 on @MI. It can be checked
that fixing r so that the average curvature of the conformal
2-metric on @MI is 2=r

2 gives 
000 ¼ 0, and hence clearly

fixes IðuÞGHY. We therefore make this choice for r on @MI.

2. Evaluation of Iclass

We can calculate the � quantity defined by Eq. (8) for
this line element. We find that to linear order in the small
quantities

� ¼ 2k

a2ð�Þ þ
2�00

a2ð�Þ þ
2ð���Þ0
a2ð�Þr þ 2

a4ð�Þr ½a
2ð�Þ _
0
;�

þ . . . ;

where the . . . indicate terms of linear order which are total
derivatives with respect to the angular coordinates and so
vanish when integrated over Sðu;wÞ.
For simplicity, we take the energy-momentum tensor of

matter to have a perfect-fluid form
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T�� ¼ U�U�ð�m þ PmÞ þ Pmg
��;

where U� is a forward pointing timelike vector with
U�U� ¼ �1. To leading order, we have U�U� ¼ �v;�

for � ¼ 1, 2, 3. We write

�m ¼ ��ð�Þ þ ��;�

��
vþ ��:

We assume that at those sufficiently late times that provide
the dominant contributions to Iclass, the background cos-
mology is either dominated by pressureless matter or �,
and so Pm � �m. The dominant contribution to Pm is then
from photons (and light neutrinos) and may be approxi-
mated as homogeneous to the order to which we work, i.e.
�Pm=�m � �, �. We therefore take Pm ¼ �Pð�Þ.

The quantities að�Þ, � and � are then given by

H2 ¼ 1

a2
H 2 ¼

�
a;�
a2

�
2 ¼ 8�G ��

3
þ�

3
� k

a2
;

_�� ¼ �3H ð ��þ �PÞ; � ¼ �;

~r2
� ¼ 4�Ga2��;

€�þ 3H _�þ ð2 _H þH 2Þ� ¼ 0;

where H ¼ a;�=a, and
~r2 ¼ ���@�@� with �;� ¼ 1, 2,

3. We also have that Pr
r ¼ T��l

�l� is (to linear order)

Pr
r ¼ �Pð�Þ: (14)

Thus, to linear order in � and 
;��, we have

Iclass¼
Z �0

0
a4ð�Þ

Z �0��

0
r2dr

Z
d2�½	�1�þðLmatter� �PÞ
;

where we have dropped the terms on @MI which are fixed
with respect to �.

Before we consider the variation of Iclass with respect
to �, we must extract the dominant contribution to the
effective Lagrangian density L of the matter.

3. Contributions to �P and Lmatter

For fields that are truly homogeneous (to leading order),
for example, the inflaton or other light scalar fields, we
have Lmatter ¼ �P, and so these fields make no contribution
to Iclass.

We first clarify the definition of the quantity Lmatter that
appears in Iclass when quantum contributions to the matter
action and non-negligible. Formally, the Lmatter that ap-
pears in Iclass is the quantum effective matter Lagrangian,
Leff

matter, rather than the classical matter action. The since
the quantum vacuum energy associated with the matter
have been subsumed into the definition of �, this Leff

matter

vanishes, by definition, in the vacuum. Let nA represent
a set of conversed quantities associated with the matter
species, such that in the vacuum nA ¼ 0. For instance, an
nA could be baryon number. IfLcl

matter is the classical matter
action, Leff

matter is then given by

Ieffm ½nA
 ¼
Z
M

ffiffiffiffiffiffiffi�g
p

Leff
matterd

4x � Re

�
�i ln

�
Zm½nA

Zm½0


��
;

Zm½nA
 ¼
X

�a fixed fnAg
ei
R

M

ffiffiffiffiffi�g
p

Lcl
matter½�a;g��
d4x: (15)

We recognize that Ieffm ½nA
 is the quantum effective matter
action, normalized so that it vanishes in vacuo.
For free fields, the quantum effective action has the same

structure as the classical action. It is well known that Ieffm

and henceLmatter vanishes identically for free fundamental
fermion fields. For fermion fields, c , with energy density
�c , that are weakly coupled to a gauge fields with a

coupling constant g � 1 one typically has Lmatter �
Oðg4Þ�c � �c .

For photons, to leading order Leff
matter � Lcl

matter ¼
�F��F

��=4 ¼ ðE2 � B2Þ=2, and for radiation E2 ¼ B2

and soLmatter ¼ 0. More generally, for an (approximately)
free field, �A, with energy ! 	 H, Leff

matter � Lcl
matter and

the average value of the effective Lagrangian is propor-
tional to the dispersion relation and so, on shell, so we have
Lmatter & OðH=!Þ�matter � �matter for the contribution
from �A. Since the mass of dark matter particles is 	 H
today, we assume there their contribution toLmatter is much
less than their energy density.
Therefore, amongst the fields that contribute to Iclass, the

dominant contribution toLmatter at late times is expected to
come from baryonic matter. Baryons contribute most be-
cause they are not fundamental fermions fields, but com-
posite particles consisting of quarks bound strongly
together with gluons.
We define �baryon and nbaryon to be the baryon energy and

number density, respectively. For baryonic matter, we have

Zm � Zbaryon½nbaryon

¼ X

q; �q;A� fixed fnbaryong
ei
R

M

ffiffiffiffiffi�g
p

Lcl
QCD½q; �q;A�;g��
d4x; (16)

where q and �q are the quark fields and A� is the gluon field.

Lcl
QCD is the classical action for quantum chromodynamics

(QCD). Now, we have

Re ½�i lnZm
 ¼ �
Z
M

ffiffiffiffiffiffiffi�g
p

d4x�QCD�vac þ Ieffm ; (17)

where �QCD�vac is the QCD contribution to the vacuum

energy density. At late times when the baryonic matter
is nonrelativistic, and at subnuclear densities (�baryon �
1017 kgm�3 on average), we have Ieffm � Ieffm ½nbaryon
 and

Ieffm ½nbaryon
 � ��b

Z
M

ffiffiffiffiffiffiffi�g
p

nbaryond
4x:

for some constant �b. At late times, for nonrelativistic
baryonic matter, �baryon ¼ MNnbaryon, where MN is the

nucleon mass. We define the constant �b ¼ �b=MN. For
baryonic matter, it follows that
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L eff
matter � ��b�baryon: (18)

In principle, �b is calculable and depends only on QCD
physics. A full calculation of �b would, however, require
either the derivation of the complete low-energy effective
action for QCD, or a time consuming and technically
challenging lattice QCD calculation. Both of these are far
beyond the scope of this work.

The chiral bag model (CBM) for nucleons is described
by the effective Lagrangian

LCBM ¼ ð �c i
�r�c � BÞ�ðR� rÞ
� 1

2
�c eði ~�� ~�
5Þ=f�c�ðr� RÞ �L��ðr� RÞ;

L� ¼ � f2�
4

tr½L�L
�
 þ 1

32e2
tr½L�; L�
2;

L� ¼ ðr�UÞUy; U ¼ eði ~�� ~�Þ=f�: (19)

Here, R is the ‘‘bag radius,’’ and B is the ‘‘bag constant’’
which has been interpreted as the difference between the
vacuum energy of the perturbative and nonperturbative
QCD vacuums; L� is the Skyrme action. In r < R, i.e.
inside the bag, just free quarks and the bag constant con-
tribute to the mass and the action. Outside the bag quark
degrees of freedom have been confined and mesons are the
effective degrees of freedom. We use the CBM model to
approximate the effective matter action Leff

matter � LCBM.
The total energy-momentum tensor is

T��
CBM ¼ T��

q � Bg���ðR� rÞ þ T��
� ;

where T��
q g�� ¼ 0. The meson configuration outside the

bag is given by a static soliton solution to a first approxi-
mation and so T00

� ¼ �L��ðr� RÞ. The total nucleon
mass is given by integrating T00

CBM over the spatial direc-

tions, and so

MN ¼ Mq þ 4�

3
BR3 þM�:

We calculate the expectation ofLCBM, for a single nucleon,
integrated over the spatial hypersurface to be

4�
Z

rdrhLCBMi ¼ � 4�

3
BR3 �M� ¼ �ðMN �MqÞ

¼ ��bMN; (20)

�b ¼ 1� Mq

MN

: (21)

In general, for a collection of baryons (specifically nucle-
ons) with energy density �b, we have

L baryons � LCBM ¼ ��b�b:

The value of �b in the CBM depends on the bag radius.
Ref. [38] provides an excellent review of the CBM. The
authors note that the best agreement with experimental

physics is found when R � 0:6 fm. For this value they
have Mq � M� þMB where MB ¼ 4�BR3=3. Thus, we

have �b � 0:5. This estimate will be slightly reduced when
the contributions of spin to the nucleon mass are taken into
account.
Henceforth, we take

L matter ¼ ��b�baryon;

where from the CBM we use the estimate that �b � 1=2.

4. � equation

The dominant contribution to the pressure term, �P, at
late times will come from radiation. However since
a4 �P ¼ const for radiation this contribution just shifts
Iclass by a �-independent constant. Dropping such con-
stants, and any terms that are an order of magnitude smaller
than those included, we find that to leading order

Iclass�
Z �0

0
a4ð�Þ

Z �0��

0
r2dr

Z
d2�½	�1a�2 ����b�baryon


þconst; (22)

�� ¼ 2kþ 2�00 þ 2

r2
½r _
0
0; (23)

€
� 
00 ¼ 2�þ kr2=4: (24)

Here, we have integrated by parts to express the �� term in
Iclass in the above form. If kr2 	 � then to leading order in
deviations from flat�CDM we can drop� in the formulae

for �� and 
, leaving only the contribution from k.
We then have

€
� 
00 ¼ kr2=4:

Solving with the required boundary conditions gives


 ¼ � kr4

48
þ kðr� �Þ4

96
þ kðrþ �Þ4

96
;

_
0 ¼ � kðr� �Þ2
8

þ kðrþ �Þ2
8

¼ kr�

2
:

Inserting this expression for 
 into �� givesZ �0��

0
r2 ��dr ¼ 2k

3
ð�0 � �Þ3 þ k�ð�0 � �Þ2:

Thus, we evaluate Iclass to lowest order as

Iclass � 4�

	

Z �0

0
ka2ð�Þ

�
2

3
ð�0 � �Þ3 þ �ð�0 � �Þ2

�
d�

� 4��b
	

Z �0

0
a4

	�baryon

3
ð�0 � �Þ3d�þ const:

We note that a4�baryon / a. To this order the only quantity

in Iclass that depends on � is að�Þ, since we have assumed
the initial conditions that determine k are fixed.
Additionally, baryogenesis and the processes which
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generates the dark matter density must occur at such early
times that they will have only a negligible � dependence.
This implies that a3�m and a3�baryon are fixed indepen-

dently of �. Additionally, the initial conditions fix a3n
,

where n
 is the photon number density, independently of

�. Given this, the � independent initial conditions for the
matter sector are parametrized by the energy of matter
energy per photon, � ¼ �m=n
 ¼ const and the baryon

energy per photon, �b ¼ �baryon=ngamma; ��=�� ¼
��b=�� ¼ 0. The measured values � and �b are
� ¼ 3:43 eV and �b ¼ 0:54 eV.

We define

A ð�Þ ¼ � lna

��

and use the Friedmann equation for the background to
calculate Að�Þ. Under the change � ! �þ �� the
Friedmann equation is perturbed to

2H�H ¼ 2H ;�� lnaþ a2��=3:

Now H ¼ _a=a and so �H ¼ ð� lnaÞ;� and thus

�H =�� ¼ A;�. It follows that

H _A� _HA ¼ a2

6
;)

�
A
H

�
;�
¼ a2

6H 2
:

The condition that the extrinsic curvature, K, of the initial
hypersurface be fixed independently of � is equivalent to
�H=�� ¼ 0 at � ¼ 0 where H ¼ H =a. This condition is
equivalent A;� �HA ¼ 0 at � ¼ 0. Inserting this con-

dition into the above equation for ðA=H Þ;�, we find that

at � ¼ 0, A=H ¼ a2=6H ðH 2 �H ;�Þ which vanishes

at � ¼ 0 as a ¼ 1=H ¼ 0 there. Thus, using this bound-
ary condition and integrating the above equation for
ðA=H Þ;�, we arrive at

A ð�Þ ¼ H
Z �

0

a2ð�0Þd�0
6H 2ð�0Þ :

We make the definitions H0 ¼ Hð� ¼ �0Þ, a0 ¼ að�0Þ
and �baryon0 ¼ 	�baryonð�0Þ=3H2

0 , and then a4	�baryon ¼
3að�Þa30�b0H

2
0 . The equation for � is then given explicitly

by

dIclass
d�

¼ 8�k

	a20H
2
0

Z �0

0
a2ð�Þa20H2

0

�
2

3
ð�0 � �Þ3

þ �ð�0 � �Þ2
�
Að�Þd�� 4�

	
�b�b0

�
Z �0

0
að�Þa30H2

0ð�0 � �Þ3Að�Þd� ¼ 0: (25)

We can rearrange this to give an expression for the dimen-
sionless curvature parameter

��k0� k

a20H
2
0

¼�b�b0

2
N ð�0;�Þ;

N ð�0;�Þ�
R�0
0 að�Þa30ð�0��Þ3Að�Þd�R�0

0 a2ð�Þa20½23ð�0��Þ3þ�ð�0��Þ2
Að�Þd�:

(26)

Thus, we see that our new integral constraint equation
for � is a consistency condition connecting the values of
�k0, �b�baryon0, and �.

The quantities k ¼ ��k0H
2
0a

2
0 and �b�baryon0a

3
0H

2
0 are

fixed by the initial conditions and so this equation deter-
mines �. With all other quantities fixed, Eq. (26) gives
k ¼ k0ð�Þ where the form of k0ð�Þ follows from Eq. (26).
We can invert this to give � ¼ �0ðkÞ. In Fig. 2(a) and
Table I, we show the value of k required for different values
of � for an observation time t ¼ tU � 13:77 Gyrs. In both
the table and the figure, k is given in units of a2?H

2
? where

1=ða?H?Þ is a fixed comoving length scale that is equal to
1=ða0H0Þ when � ¼ �obs. We see that large values of �
require smaller values of k.

We find that when �m0 � 1���0, N ð�0; �Þ �
�N ð��0Þ for any �0, i.e. N is determined entirely by

��0. Thus, by Eq. (26), �N ð��0Þ � �2�k0=�b�b0, and
so, given that the ratio of baryons to dark matter is fixed
for all �, �b0 / ð1���0Þ, and each value of �k0 corre-
sponds to a specific value of ��0 independently of �0. We
illustrate this in Fig. 2(b), where we plot �2�k0=�b�b0

against�m0 � 1���0. We note that Oð1Þ values of�m0

correspond to Oð1Þ values of �2�k0=�b�b0.

5. A prediction for the spatial curvature

In principle, �,�b0, and�k0 are quantities astronomers
can measure accurately. We can therefore test the validity
of our model by checking that the consistency equation,
Eq. (26), is indeed consistent with the observational limits
on�,�b0 and�k0. We note thatN > 0 and so our model
requires that k=�b > 0 or equivalently �k0=�b < 0.
Our estimate of �b from the chiral bag model of baryons
in QCD gives �b > 0. Current observations only bound
the value of �k0 and those bounds are consistent with
�k0 ¼ 0. The values of � and �b0 are relatively well
established.
The most recent 1
 limit on �k0 from WMAP 7 com-

bined with baryon acoustic oscillations ( BAO) andH0 data
(and �CDM prior) is [15]

�k0 ¼ �0:0023þ0:0054
�0:0056: (27)

When our model is applied to our Universe with��0 ¼
�=3H2

0 ¼ 0:73, �b0 ¼ 0:0423, as observed at a present

time when the CMB temperature is 2.725 k, Eq. (26)
predicts the value of �k0 to be
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�k0 ¼ �0:0056

�
�b
1=2

�
; (28)

which is consistent with the observational limit at 1
 for
�b 2 ð0; 0:7
 and within the 95% confidence limit for all
�b 2 ð0; 1
. For the estimated value of �b ¼ 1=2, our model
predicts �k0 ¼ �0:0056. The combination of data from
the Planck CMB survey with current and future measure-
ments of the BAO should be able to confirm or refute this
detailed prediction. Therefore, in contrast to other pro-
posals for solving the CC problems, our model makes a
testable prediction and is falsifiable in the near future.

C. What is a natural value of �?

We have seen that, at a fixed time, our model predicts the
value of � in terms the spatial curvature k. In inflationary
models, the magnitude of spatial curvature k inside the past
light cone is determined by the duration of the inflationary
period in the earlier Universe, specified by the number of
e-folds N. In most inflationary scenario one imagines that
there are many different inflating regions, or ‘‘bubble uni-
verses’’. In each bubble the initial conditions for the scalar
field will differ. The number of e-folds of inflation experi-
enced by a bubble universe depends on these initial con-
ditions in a model-dependent fashion. The value of N (and
hence k) will therefore be different in each bubble universe.
The curvature parameter k is therefore an environmentally
sensitive parameter: it depends on the part of Universe
we observe, and will not be the same everywhere. In our
model, when all other quantities are fixed, � is given
implicitly as a function or k by Eq. (26). Hence, the value
of � that one observes at a given time is also an environ-
mentally determined parameter. If we existed in a different
bubble universe with a different value of k, we would
observe a different value of �. In order for our model to
be said to solve the CC problems, the value of� that we do
observe must be shown to be in some sense ‘‘natural.’’ This
means that, once selection effects such as the requirement
that � and k are not so large as to prevent the formation of
nonlinear structure in the Universe have been taken into
account, the observed value of� should, ideally, be typical

TABLE I. � in the history seen by an observer at time tU �
13:77 Gyrs for different values of the spatial curvature parame-
ter, k. Here, �b is a QCD constant related to baryon structure, and
we expect �b � 1=2; �obs is the particular value of � we
observe, and a?H? is the value of að�ÞHð�Þ today in our visible
Universe. We have taken the matter energy per photon to be � ¼
3:43 eV, and the baryon energy per photon is �b ¼ 0:54 eV.

k
2�ba

2
?H

2
?

�
�obs

k
2�ba

2
?H

2
?

�
�obs

0.0060 0.00 0.0049 2.9

0.0059 0.25 0.0042 5.5

0.0057 0.78 0.0034 10.6

0.0056 1.0 0.0018 35.7

0.0053 1.6 0.000 84 200
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FIG. 2 (color online). (a) The relationship between the value of the spatial curvature k and the value of� that dominants the classical
history. We show k in units of a2?H

2
? where 1=ða?H?Þ is a fixed comoving length scale that is equal to 1=ða0H0Þ for the observed value

of �. � is shown relative to the value of � that we observed, �obs. Here the k�� relationship predicted by our model is for
observations at a time t ¼ tU � 13:77 Gyrs. We have also fixed the � independent properties of matter by fixing the matter energy per
photon, �, and the baryon energy per photon, �b, to their observed values: � ¼ 3:43 eV, �b ¼ 0:54 eV. We note that smaller values of
k correspond to larger values of �. (b) The relationship between �m0 � 1���0 and �2�k0=�b�b0 ¼ N ð�0; �Þ predicted by our
model. When �m0 � 1���0, we find that when N ð�0; �Þ is expressed as a function of ��0, it is almost independent of the
observation time determined by �0. For fixed�b0=�m0 and �b, �k0 corresponds to a specific value of ��0 independently of �0. As in
(a), we have taken � ¼ 3:43 eV, �b ¼ 0:54 eV.
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amongst all possible bubble universes. One could then
conclude that the observable Universe is no more fine-
tuned than it must be, given that we are here to
observe it.

Observers like ourselves require the Universe to be old
enough for a sufficient number of collapsed structures such
as galaxies to have formed, and then for heavy elements to
have been formed by stars. If k or � are too large, then
either the Universe will recollapse before these conditions
have been achieved or the growth of structure will have
been so suppressed that even as t ! 1, galaxies never
form [23].

1. The naturalness of � in string landscape models

Before addressing the naturalness of the observed value
of � in our model, we consider the extent to which the
string landscape model solves the CC problems. The string
landscape solution to the cosmological constant problems
is totally reliant on anthropic selection effects to determine
the value of �. In that scenario, it is assumed that there are
many different possible vacua, each with a different value
of vacuum energy, or equivalently of �. The probability of
a vacuum having a CC in the interval ½�;�þ d�
 is
fpriorð�Þd�, where fpriorð�Þ is the prior probability distri-

bution of� and has not been directly determined by theory.
Anthropic selection effects provide the probability,
fselecð�Þ, of being able to observe a universe with a given
value of �. By Bayes’ theorem, the unnormalized proba-
bility distribution function of observing a vacuum state
with a CC in the interval ½�;�þ d�
 is

f�ð�Þd� ¼ fselecð�Þfpriorð�Þd�:

The form of fselecð�Þ can be estimated by taking the
number of galaxies (collapsed structures with a given
mass) as a proxy for the number of observers, see for
instance Ref. [39] for such a calculation. However, without
knowing the form of fpriorð�Þ, it is not possible to say

whether or not the observed value of � is natural. Some
authors argue that a uniform prior is the most reasonable
for small values of �. If this is the case then, as shown in
Ref. [39], when all other parameters are fixed, the observed
value of � is not atypical, although the most probable
values are still an order of magnitude or two larger.
Specifically, with a uniform prior, and fselec from
Ref. [39], one finds

2:84<
�

�obs

< 44:63; ð68% confidenceÞ;

0:40<
�

�obs

< 123:68; ð95% confidenceÞ;
(29)

where �obs is the particular value of � that we observe.
Hence, with a uniform prior, this value is outside the
68% confidence limit by about a factor of 2.8 but inside

the 95% confidence interval. The observed value of � is
therefore small but not atypically small here.
A uniform prior is not, however, the only reasonable

choice one could make for fpriorð�Þ. A log prior, fpriord� /
d ln�, or an exponential, fprior / expð3�=G�Þ, have also

be supported by theoretical arguments and in both cases
the most probable values of � would be many orders of
magnitude smaller than the observed value. In the string
landscape and other multiverse models, the natural value of
� is crucially dependent on the choice of prior, and until
the prior can be calculated from first principles using the
theory it is not clear whether this model provides an natural
explanation for the observed value of �.

2. The naturalness of � in our model

In our model, we shall see below that, just as in land-
scape and other multiverse models, anthropic selection still
plays a role in limiting the maximum allowed values of �.
The equivalent prior on� in our model is the undetermined
measure �½�
 in the partition function. Unlike for land-
scape or multiverse models though, this unknown prior
on � plays no role. This is because our model requires
� ¼ �0ðkÞ and �0ðkÞ is a function of k that is given by
our model. Thus, whatever the prior on �, the normalized
posterior probability distribution of � given k is a delta
function,

f�jkð�; kÞ ¼ �ð���0ðkÞÞ;
where�0ðkÞ also depends on the size of the observer’s past
light cone,M, and hence observation time. Given that one
lives in a bubble universe with a certain value of k, and
observes it at a given time, in our model there is only one
value that � can take. The probability of measuring a � in
a given range is then given entirely by the probability of
measuring k in a corresponding range. It is independent
of the measure, or prior, �½�
.
Now the curvature parameter k is related to the number

of e-foldsN, since k ¼ kðNÞ ¼ �ke2ð �N�NÞ for some fixedN0

and �k. As above, 1=ða?H?Þ is a comoving length scale
equal to 1=a0H0 in our particular universe. In the expres-
sion for kðNÞ, �N is the number of e-folds required to bring
about the bound j�kj< j �kj=H2

?a
2
? today. We are free to

take j �kj ¼ 10�2a2?H
2
?. Depending on the efficiency of

reheating after the end of inflation, we have �N * 50–62
in realistic inflation models.
The probability distribution for k in different bubble

universes, fkðkÞdk, is therefore given by fNðNÞdN, the
probability distribution of the number of e-folds, N.
Specifically, we have

fkðkðNÞÞ ¼ fNðNÞ
��������dNdk

��������¼ fNðNðkÞÞ
2k

:

The calculation of fNðNÞdN, that is of the probability
that the number of e-folds lies in the region ½N;N þ dN
 is
the measure problem for inflation, and has been the subject
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of a considerable amount of work and debate as to which
is the correct measure. Recently, Gibbons and Turok [40]
used the natural canonical measure on the space of all
classical universes, provided by the Hamiltonian of general
relativity [41], to show that in single-field, slow-roll in-
flation, fNðNÞ ¼ cðNÞe�3N , where cðNÞ is model depen-
dent but generally changes much more slowly with N than
expð�3NÞ. The expð�3NÞ suppression indicates that the
region of phase space that results in a long-lived period of
slow-roll inflation is very small (however, the result is to
some extent just an artefact of having no high-energy cut-
off where the theory inevitably breaks down). To find this
fN, Gibbons and Turok (GT) have to regularize the canoni-
cal measure by imposing a cutoff on the curvature and the
end of inflation or equivalently on the scale factor at the
end of inflation i.e. a < amax. The regularized measure is
then / a3max. If one takes amax to be independent of N, then
it drops out of the normalized probability distribution for
N, and fNðNÞ / e�3N . An alternative procedure would be
to place the cutoff on the curvature at the beginning of
inflation or, equivalently, on the scale-factor there. In this
case, at the end of inflation, a < amax / eN . We would then
have fN ! e3NfNðNÞ, and so fN ¼ cðNÞ. This procedure
factors in a weighting by volume. Another example where
fN ¼ cðNÞ and cðNÞ varies much more slowly with N than
expð�3NÞ was estimated by Freivogel, Kleban, Rodriguez
Martinez, and Susskind, and then extended by De Simone
and Salem in the context of eternal inflationary models
on the string landscape [42,43]. They found fN / N�4.

Our model unambiguously predicts the prior probability
of living in a universe with effective CC in the interval
½�;�þ d�
. We define this to be fmodelð�Þd�, and it is
given (up to a calculable normalization factor) by

fmodelð�Þ ¼
Z

dkf�jkð�; kÞfkðkÞ;

¼ fNðNðk0ð�ÞÞÞ
2

��������d lnk0ð�Þ
d�

��������; (30)

where k0ð�Þ follows from Eq. (26). Note that k0ð�Þ also
depends on the observation time, and the matter/baryon
energy per photon. Depending on the form of fNðNÞ, the
prediction for fmodelð�Þ may indicate that the observed
value of � is natural independently of selection effects
conditioned on the existence of observers. We discuss this
point below.

The dependence on the precise form of fNðNÞ is greatly
weakened when selection effects on � are included. Then,
we have that, in our model, the (unnormalized) posterior
probability of living in a universe with effective CC in the
interval ½�;�þ d�
 is f�ð�Þd�, where

f�ð�Þ ¼ fselecð�Þfmodelð�Þ:
Roughly, the observer-conditioned selection effects on �
limit its value to be no more than about 1000 times that
which is observed in our Universe (�obs). Tegmark et al.

[39] calculated fselecð�Þ by using the number of galaxies
(virialized halos with a mass* 1012M
) as a proxy for the
number of observers. We use their form of fselec here when
evaluating f�ð�Þ.
Unlike in the string landscape model, f�ð�Þ and

fmodelð�Þ have no dependence on the unknown prior
weighting of different values of �. All that is required in
order to specify f�ð�Þ, or fmodelð�Þ, fully is to specify the
prior probability of the number of e-folds, fNðNÞ. At
present, much more is known and is calculable about the
form of fNðNÞ for different inflation models than is known
about the landscape prior on �. Also, we shall see that
f�ð�Þ is much less sensitive to the precise form of fNðNÞ
than the string landscape model is to � prior.
In Table I we provide the value of k (in units of H2

?a
2
?)

required by our model for different values of � at an
observational time of 13.77 Gyrs. Larger values of �
require a smaller value of k, and hence a larger value of
N. Given that fNðNÞ is generally estimated to be a decreas-
ing function of N, this means that the probability of larger
values of � will be suppressed relative to smaller values.
Anthropic limits on � imply that it could not have been
more than about 1000 times larger the value we observe. In
this allowed range the required k for a given � decreases
by less than a factor of 10. Thus, the required number of
e-folds, N ¼ N0ð�Þ ¼ Nðk0ð�Þ, changes by less than
	N � 	ðlnkÞ=2 & lnð10Þ=2 � 1:2. At the same time,
N0ð�Þ * �N > 50–62 in realistic models, and so 	N=N &
0:025. So, unless jd lnfNðNÞ=d lnNj * 10 or so, we have
fNðNÞ � const for anthropically allowed values of�. Such
a flat fNðNÞ emerges if we weight the GT probability
distribution forN (which is / e�3N) by the bubble universe
3-volume at any given time, (which is / e3N). We then

have fN ¼ cðNÞ where cðNÞ is fairly flat (e.g. cðNÞ /
N�1=2 if the inflationary potential is / m2�2 [40]). The
Freivogel, Kleban, Rodriguez Martinez, and Susskind es-
timate of fN / N�4 is another example where fN is fairly
flat for	N=N � 1 [42,43]. In both these cases fN � const
for allowed values of� and so the precise form of fNðNÞ is
unimportant.
The GT measure on inflationary solutions has fN /

e�3N and so jd lnfN=d lnNj3N 	 10. Thus, if this measure
is correct we should not approximate fN by a constant.
We therefore consider this and the fN � const cases
separately.
We note that if fNðNÞ / e�3N , the suppression of large

values of N, and of hence large � values, is actually
sufficient to place the observed value of � within the
95% confidence interval for � prior to the inclusion of
selection effects. Even if we take fN ¼ cðNÞ, where cðNÞ is
fairly flat, the �obs is inside 95% confidence interval of
the prior probability distribution function for �, when one
imposes a sharp cutoff on �> 103�obs. We illustrate this
in Fig. 3 where we have plotted fmodelð�Þ for an observa-
tion time of tU ¼ 13:77 Gyrs. The entire lighter shaded
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region is the symmetric 95% confidence interval, and the
darker shaded region is the symmetric 68% confidence
interval. The dotted black line marks the observed value
of the CC, �obs. We see that even before we have included
selection effects which suppress � 	 100�obs outcomes,
the observed value of � is not atypical with either general
form of fNðNÞ. For comparison, in the multiverse or land-
scape model with a uniform prior and a sharp cutoff
on �> 103�obs, � � �obs is much less likely and has a
probability of only 0.1% prior to the inclusion of selection
effects.

While there are anthropic selection effects on k, these
are automatically satisfied when k is small enough for a
classical solution to exist. The existence of a classical
solution is therefore by far the strongest selection effect
on k. Current observational limits require �0:084<
k=a2?H

2
? < 0:0133 at 95% confidence, where 1=a?H? is

the measured value of the comoving Hubble radius, rH ¼
1=aH, today. All the values of k in Table I are well within

these limits, and so the existence of a classical solution in
our model is sufficient to explain why we must live in a
bubble universe where k is within the current observational
limits, and hence why our observable universe must have
undergone a large number of e-folds of inflation, no matter
how unlikely that is a priori.
We now turn our attention to the posterior probability,

f�ð�Þd�, of observing � in the interval ½�;�þ d�
 in
our model. We consider the consequences of two general
forms of fNðNÞ: (I) fNðNÞ ¼ cðNÞ where cðNÞ � const in
the allowed range (i.e. less steep than �N�10) and
(II) fNðNÞ � cðNÞe�3N where again cðNÞ � const for al-
lowed � values. Finally, for fselecð�Þ we take the form
calculated by Tegmark et al. in Ref. [39].
In case I, with fNðNÞ ¼ cðNÞ � const, we have

f�ð�Þd� / fselecð�Þ
��������d lnkð�Þ

d�
d�

��������;
and in case II where fNðNÞ / cðNÞe�3N
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FIG. 3 (color online). Our model’s prediction for the (prior) probability distribution, fmodelð�Þ, for the value of cosmological
constant � that one would measure at an observation time t ¼ tU ¼ 13:77 Gyrs. In our theory, the observed value of � is given as a
function of the spatial curvature, k, inside the observer’s past light cone. The curvature parameter k depends on N, the number of
e-folds of inflation. Hence, ultimately, the probability of astronomers observing a given value of � depends on the prior probability of
living in a bubble universe where the universe underwent N e-folds of inflation. The probability distribution function of N is fNðNÞ.
Given an fNðNÞ, our model completely determines the prior probability distribution function, fmodelð�Þ. We have plotted fmodelð�Þ for
two different choices of fNðNÞ. Case I is where fNðNÞ ¼ cðNÞwhere cðNÞ � const for changes,	N, in N over less than� 2:5% (e.g. a
power-law N�p for jpj< 10). Case II is where fN ¼ cðNÞe�3N where again cðNÞ � const for 	N=N & 2:5%. This latter choice is the
one calculated in Ref. [40] for slow-roll single-field inflation. In our model this prediction for the prior probability is independent of the
fundamental prior weighting of different values of � in the partition function. Our fmodelð�Þ does not include any observer-dependent
selection effects, apart from the requirement that a classical solution exists. The observed value of � is shown by a dotted black line,
and the whole shaded region is the symmetric 95% confidence interval. The darker shaded area is the symmetric 68% confidence
interval. In case I, we have calculated the confidence intervals by sharply cutting off fmodel for �> 103�obs, since such large values of
the CC are incompatible with the existence of galaxies. For �< 103�obs we have not included any weighting by probability of living
in a universe with a given�. For these natural choices of fNðNÞ, the observed value of � is within the 95% confidence interval in both
cases, and well within it for fN ¼ cðNÞe�3N . In both cases,� ¼ �obs is not atypical whatever precise form of the observer-conditioned
selection effect parametrized by fselecð�Þ. When selection effects are included the probability of larger values � * 100�obs is further
suppressed, and the observed value moves within the 1-
 confidence interval for case II, and just outside this interval in case I.
This is shown in FIG 4 below. We have taken the matter energy per photon to be � ¼ 3:43 eV, and the baryon energy per photon is
�b ¼ 0:54 eV, as is observed.
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f�ð�Þd� / fselecð�Þk3=2ð�Þ
��������d lnkð�Þ

d�
d�

��������:
In Fig. 4, we plot �f�ð�Þ against lnð�=�obsÞ for the
two cases given above. We also show the 68% and
95% confidence limits on � in both cases. In case I, for
fNðNÞ ¼ cðNÞ � const, these limits are

1:31<
�

�obs

< 18:37; ð68% confidenceÞ;

0:19<
�

�obs

< 48:13; ð95% confidenceÞ:
(31)

In case II, where fNðNÞ ¼ cðNÞ expð�3NÞ, (cðNÞ �
const), we have

0:76<
�

�obs

< 10:03; ð68% confidenceÞ;

0:11<
�

�obs

< 26:27; ð95% confidenceÞ:
(32)

We note that, with the same selection effects, for both
choices of fN, our model prefers smaller values of �
than does the string landscape model with a uniform prior.
In both cases, the observed value of �, �obs, is well

within the 95% confidence limit. In case I with a power-law
fNðNÞ, � ¼ �obs is just outside the 68% confidence limit,
whereas with fN / expð�3NÞ, it is just inside this limit.
Thus, whichever form fNðNÞ takes, the observed value of
� is typical within our model. Note again that this con-
clusion is independent of the precise form of fNðNÞ, and
totally independent of the prior weighting of different
values of �.

3. The coincidence problem

To address the coincidence problem directly we can
calculate the probability that the cosmological time scale

t� ¼ 1=
ffiffiffiffi
�

p
introduced by the CC correlates with the

current age of the Universe, tU � 13:77 Gyrs. We define
r ¼ j lnðtU=t�Þj, and take, fairly arbitrarily, r to be our
measure of the coincidence in the values of t� and tU.
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FIG. 4 (color online). The predicted posterior probability distribution, f�ð�Þ ¼ fselecð�Þfmodelð�Þ, for the value of cosmological �
that one would measure at an observation time t ¼ tU ¼ 13:77 Gyrs. Here, �obs is the particular value of � that we have observed. In
our theory, the observed value of� is given as a function of the spatial curvature, k, inside the observer’s past light cone. The curvature
parameter k depends on N, the number of e-folds of inflation. Hence, ultimately, the probability of astronomers observing a given value
of � depends on the prior probability of living in a bubble universe where the universe underwent N e-folds of inflation. The
probability distribution function of N is fNðNÞ. Given an fNðNÞ, our model completely determines the probability distribution
function, fmodelð�Þ, of � prior to the inclusion of selection effects. In the above plots we have included the limits on � due to
observational selection effects using the prescription for fselec given by Tegmark et al. in [39] which uses the number of galaxies as a
proxy for the number of observers. When these are included, the full posterior probability of living in a bubble universe where one
observes a given value of � is f�ð�Þ. Additionally, we find that the inclusion of selection effects makes f�ð�Þ only relatively weakly
dependent on the form of fNðNÞ because for allowed values of �, the required k (and hence N) vary only over a small range. We have
plotted f�ð�Þ for two different choices of fNðNÞ. Case I is where fNðNÞ ¼ cðNÞ where cðNÞ � const for changes, 	N, in N over less
than � 2:5% (e.g. a power-law N�p for jpj< 10). Case II is where fN ¼ cðNÞe�3N where again cðNÞ � const for 	N=N & 2:5%.
This latter choice is the one calculated in Ref. [40] for slow-roll single-field inflation. In both cases we see that the observed value of�
(dotted black line) is well inside the 95% confidence interval (the shaded areas), and near the boundary of the 68% confidence interval
(the more darkly shaded area). In case I, � ¼ �obs is just outside this interval, whereas in case II it is just inside it. In both cases, it is
clear that the observed value of � is typical and can be explained without the need for fine tuning. We have taken the matter energy per
photon to be � ¼ 3:43 eV, and the baryon energy per photon is �b ¼ 0:54 eV for all values of �.
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If r � 1 there is a strong coincidence in the 2 times,
whereas if r 	 1 there is not. Using fposteriorð�Þ as pro-

vided by our model, we calculate probabilities of living in
an observable universe where, at a time tU ¼ 13:77 Gyrs,
r < r0 for different choices of r0. We find

Pðr ¼ j lnðtU=t�Þj< 1
2Þ ¼ 14%; Pðr < 1Þ ¼ 36%;

ðfN ¼ cðNÞÞ; (33)

Pðr < 1
2Þ ¼ 22%; Pðr < 1Þ ¼ 53%;

ðfN ¼ cðNÞe�3NÞ; (34)

where in both cðNÞ cases, jd lnc=d ln�j & 10. It is clear
from these figures that within our model, a coincidence in
the values of tU and t� is quite typical. If we were to do the
same calculation for the landscape model with uniform
prior on �, we would find 7.0% and 19.7%, respectively,
for Pðr < 1=2Þ and Pðr < 1Þ. Thus, even if we have uni-
form prior on �, the probability of tU and t� coinciding
to within a given factor is smaller in the landscape model
than in our proposal.

An alternative quantitative statement of the coincidence
problem is the probability of observing O0 <��0 < 1�
O0 for some O0, e.g. for O0 ¼ 0:1 and O0 ¼ 0:05, we find

Pð��0 2 ð0:10; 0:90ÞÞ ¼ 23%;

Pð��0 2 ð0:05; 0:95ÞÞ ¼ 31%; ðfN ¼ cðNÞÞ; (35)

Pð��0 2 ð0:10; 0:90ÞÞ ¼ 35%;

Pð��0 2 ð0:05; 0:95ÞÞ ¼ 47%; ðfN ¼ cðNÞe�3NÞ:
(36)

For comparison, with the same selection effects and a
uniform prior on �, the landscape model gives

Pð0:10<��0 < 0:90Þ ¼ 11%

Pð0:05<��0 < 0:95Þ ¼ 16%:

Again, the observation of a cosmic coincidence in the
values of t� and tU is not atypical in our model or in the
string landscape model with uniform prior. However, it is
significantly more likely in the model we have proposed,
and our model is independent of the choice of prior for �.

IV. CONCLUDING REMARKS
AND POSSIBLE QUESTIONS

The cosmological constant problem and the related co-
incidence problem are two of the most important unsolved
problems in cosmology, and are also of importance for
high-energy physics and the search for a complete theory
of quantum gravity. So far, cosmologists have only been
able to describe the effects of the cosmological constant
by introducing an arbitrary � term chosen to have the

observed value (�obs), or to model it by a scalar field that
evolves so slowly that its (dark) energy density is ‘‘almost’’
a cosmological constant at late times (as in quintessence
models). It is known that the existence of galaxies, which
one may take as a prerequisite for atom-based observers
such as ourselves, would not be possible if � * 103�obs.
In the context of a multiverse of different universes, each
with a different �, using the anthropic upper limit � &
103�obs to explain the observed � depends heavily on the
prior likelihood of finding different values of � in the
multiverse. This prior, fpriorð�Þd�, is the fraction of all

universes with a CC in the region ½�;�þ d�
. If, for� &
103�obs, we have fpriorð�Þ � const, then the observed

value of � is not atypical in universes compatible with
the anthropic limit. Other plausible forms for the prior
include a uniform prior in log space, fprior / 1=�, or the

form fprior / expð3�=G�Þ. In either case, nonzero values

of�would be greatly disfavored and the observed value of
� highly unnatural. However, until it is clear that a uniform
prior is (at least approximately) the form of fprior predicted

by fundamental theory, the multiverse/anthropic explana-
tion of � remains incomplete. Even if it is correct, the
multiverse explanation has not so far made any testable
predictions.
We have presented a new proposal for solving the cos-

mological constant and coincidence problems. Crucially,
in contrast to the multiverse explanation, our proposal
makes a falsifiable prediction. The essence of our new
approach is that the bare cosmological constant � is pro-
moted from a parameter to a field. The minimization of
the action with respect to � then yields an additional field
equation, Eq. (1) which determines the value of the effec-
tive CC, �, in the classical history that dominates the
partition (wave) function of the Universe, Z. Our proposal
is agnostic about the theory of gravity and the number of
space-time dimensions.
In the sense that the cosmological constant is promoted

to a field, there is a superficial similarity between our
proposal and quintessence models. In the latter, the effec-
tive cosmological constant depends on a scalar field,
�ðx�Þ, and the variation of the action with respect to �
gives a local second-order differential equation which
determines the dynamics of � up to a specification of
two free functions of initial data. In our proposal, the
different values of � are summed over in the partition
function of the Universe, and hence � is a field rather
than parameter, but it is not a local scalar field. Whereas
a scalar field, �ðx�Þ, may take a different value at every
point in space-time, � is the same at all points in a given
classical history. Hence, the additional field equation ob-
tained from the variation of the action with respect to � is
not, as in quintessence theories, a local second-order dif-
ferential equation in � (ie �), but is instead an integral
equation, Eq. (3), where the domain of integration is the
same as for the action in the partition function, and is
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algebraic in �. This algebraic property means that there
are no initial or boundary data for � to specify (unlike in
the quintessence case) and our method makes a unique
prediction for the value of � in terms of the universal
configuration of gravitational and matter fields.

A specific application of our proposal generically results
in a testable prediction. We have taken the action in the
wave/partition function, Z, of the Universe to be defined
on some manifold M. A choice of definition for M (e.g.
the causal past of the observer) is required for a specific
application of our proposal. Different choices will result in
different predictions for the effective CC, �. With a given
M, the equation for �, Eq. (1) can be viewed as a con-
sistency equation which relates the configuration of metric
and matter variables inM to �. Equation (1) can be viewed
as a consistency condition on the configuration of the
effective CC, �, the matter, �a, and metric, g��, fields

in M. The consistency condition provided by Eq. (1) will
be violated for the vast majority of potential configurations
fg��;�

a;�g (even if one demands that g��,�
a obey their

respective field equations). If observations determine a
set of fg��;�

a;�g for which Eq. (1) is violated then our

proposal would be falsified. At the same time, if the
observed configuration is consistent with Eq. (3) to within
observational limits, then our proposal would, for the
time being, have passed an important empirical test and
remain a credible solution to the CC problems. In addition,
if one has measured � but not (or at least not fully), the
fg��;�

ag, then Eq. (1) would require that a certain func-

tional of the undetermined fg��;�
ag vanishes. This would

represent a prediction of our model which could be tested
and falsified by subsequent observations.

In Sec. II, we formally described our proposal in its most
general form. In Sec. III, we considered in detail the
specific and simple case whereM is taken to be the causal
past of the observer. With this choice of M, the partition
function, Z½M
, and � equation, only depend on those
parts of the Universe to which the observer is causally
connected. For a given observer, this choice of M is
well defined in a coordinate invariant fashion. Using this
choice, we found that Eq. (3) for � reduces to a simple
form which, keeping only the dominant terms, requires a
balance between the spatial curvature and the contribution
of baryonic matter to the matter Lagrangian density,
Lmatter. We defined Lmatter ¼ ��b�baryon where �baryon is

the density of baryonic matter and �b is a constant whose
value can in principle be calculated from QCD. Using an
approximate analytical model for baryon structure (the
chiral bag model), we estimated �b � 1=2. Given the com-
plexity of modelling baryon structure, we conservatively
estimate that �b ¼ 1=2 only to within �30% or so.

We found that Eq. (3) is consistent with the current
observable limits on �, the spatial curvature, and other
observable properties of our Universe. If this application of
our theory is correct, then the spatial curvature of our

Universe must take a particular value. This value depends
on ��0 ¼ �=3H2

0 , and the matter and baryon energy per

photon, � and �b, respectively, as well as the time at which
observation take place which can be parametrized, for
instance by the age of the Universe, tU or the CMB tem-
perature, TCMB. Taking the values of ��0 ¼ 0:73, � ¼
3:43 eV and �b ¼ 0:54 eV (consistent with observations),
we found that the observed dimensionless spatial curvature
must be

�k0 ¼ �0:0056

�
�b
1=2

�
:

For reasonable values of �b � 1=2, this is within the current
68% confidence limit �k0 ¼ �0:0023þ0:0054

�0:0056 from the

combination of WMAP7 CMB data, with BAO and H0

measurements. Additionally, the predicted value of �k0

should be easily confirmed or ruled out by future
measurements of the CMB, H0 and BAO. For example, a
combination of Planck CMB data with the Wide-Field
Multi-Object Spectrograph BAO has been estimated
to be able to determine �k0 to a 1-
 accuracy of about
1:76� 10�3 [44]. With the addition of BAO data from the
Square Kilometre Array or something similar, the accuracy
could be increased to 5:64� 10�4 at 68% confidence [44].
This would be more than sufficient to rule out an�k0 at the
predicted level whatever the precise value of �b. This could
conclusively test our model as an explanation of the CC
problems in the real Universe.
For the time being, our model is consistent with current

observations. We also considered the extent to which the
observed value of� is typical within our model, and hence
whether or not our model can truly be said to solve the CC
problems. We found that in our theory the probability of
living in a region of the Universe where one observes a
given value of� was independent of the fundamental prior
weighting on different values of �: instead, it was com-
pletely determined by the probability distribution of the
number of e-folds of inflation in the early Universe, fNðNÞ.
Larger values of � require smaller k and hence more
e-folds of inflation. However, the difference in the value
of N required for � ¼ 0 and a CC on the edge of the
anthropic upper limit (�� 103�obs) is only 	N & 1:2. At
the same time, for a single value of � to dominate the
partition function, and hence for the Universe to behave
classically, one requires a fairly small curvature and hence
N * 50–62 (depending on the efficiency of reheating).
Thus, the anthropically allowed range of values of �
correspond to a range of e-folds with N 2 ½ �N; �N þ 	N
,
where 	N= �N � 1. This means that the dependence of the
posterior probability distribution for � depends only fairly
weakly on fNðNÞ.
Unless there is a strong (exponential) preference for a

value of �N þ	N over �N (which would increase the pref-
erence for larger �) we found that the observed value of �
is indeed typical within our model. Specifically, the
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observed value, �obs, lies close (either just inside or just
outside depending on fN) the symmetric 1-
 confidence
interval for �. We also found that the probability of us
observing the cosmological coincidence between the value
of t� and the age of the Universe is relatively high
(14–53% depending on how one quantifies what counts
as a coincidence).

Our proposal for solving the CC is similar in certain
respects to other multiverse models such as the string
landscape, when � takes different values in different va-
cua/parts of the multiverse. Despite this similarity, it differs
from multiverse/landscape models in three crucial
respects:

(1) Our model is, unlike multiverse models, indepen-
dent of the fundamental prior weighting on different
values of �;

(2) The preference for small � is our model does not
come wholly from anthropic selection effects as it
does in multiverse models. Roughly, the prior proba-
bility for different values of � is uniform for � &
OðfewÞ�obs and approximately uniform in log space
for larger values. This means that the probability of
observing a value of��Oð�obsÞ is typically higher
in our model by a factor of 2–5;

(3) Our model makes a testable prediction for �k0 that
can be falsified by upcoming CMB/BAO surveys.

We now address some possible questions about our
proposal:

(1) ‘‘What is the equation of state of dark energy in this
model?’’: The equation of state is exactly w ¼ �1,
i.e. a pure cosmological constant/vacuum energy.
Provided that Eq. (3) has a solution, observers see
a classical history with a single constant value of the
effective CC� [as determined by Eq. (3)]. Since the
� is observed to be constant, it has an effective
pressure, P�, equal in magnitude but opposite in
sign to its effective energy density, �� ¼ 	�1� and
hence w � P�=�� ¼ �1.

(2) ‘‘Does the observed effective CC depend the time of
observation?’’: Yes (but see Q. 3). In Sec. III, we the
manifold,M, on which the action was defined to be
the causal past of the observer, which clearly de-
pends on the time (and position) of the observer. The
observed� depends onM and @M through Eq. (3)
and hence also depends on the observation time.
Crucially, however, � is not seen to evolve. The
classical history that dominates the wave function,
Z½M
, has a single constant value of � throughout
the observer’s past, M. Thus all observations are
consistent with a single constant � as given by
Eq. (3). The observation time changes, so does the
classical history that dominants the partition func-
tion. Observers at slightly different times would see
slightly different classical histories, respectively,
consistent with slightly different values of �.

In this way, our proposal is quite unlike the
‘‘ever-present lambda’’ models [45] where � arises
as a random space-time fluctuation and is always
inversely proportional to the square root of the
space-time 4-volume, so � � Gt�2 at time t.
Ever-present � models have severe observational
problems [46] and furthermore are only consistent
with �� 1=t2U in 3þ 1 dimensions (in Dþ 1

space-time dimensions �� t�ðDþ1Þ=2
U in natural

units).
(3) ‘‘Can observers at different times establish that they

measure different values of � ?’’: No (at least not
classically). Different values of � correspond to
different classical histories. For an observer at one
time to communicate the value of � that they mea-
sure to another observer (or even the same observer)
at a later time, and hence reveal that the two values
are different, they would have to find a way of
sending information from one classical history to
another. At the classical level (at least) this is not
possible. Classically, an observer will see only a
history consistent with the value of �, equal to �?

say, for their observation time. This would include
seeing reports of/remembering all previous mea-
surements of � as giving � ¼ �?.

(4) How does � change with observation time for the
model presented in Sec. III?’’: It decreases as the
observation time increases. As the observation time,
to increases, the value of the spatial curvature k that
is required (i.e. k0ð�; toÞ) for a given value of �
decreases i.e. k0ð�; t1Þ> k0ð�; t2 > t1Þ, so at fixed
�, @k0=@toj� < 0. We found that at fixed t,
@k0=@�jt < 0. For a given observer, k is fixed.
Thus, defining the observed CC at to to be �ðtoÞ,
we must have

dk0ð�ðtoÞ; toÞ
dto

¼ 0 ¼ d�ðtoÞ
dto

@k0
@�

þ @k0
@to

:

It follows that d�ðtoÞ=dto < 0. This also means that
at some point in the future, k will be too large for
Eq. (3) to admit a classical solution. The Universe
would then cease to have a dominant classical his-
tory. One could view this as in some sense the end of
the classical Universe.

(5) ‘‘Does this proposal require the existence of a multi-
verse/landscape?’’: No, not in the sense of an en-
semble of ‘‘parallel’’ universes with different
physical constants. However our model does not
exclude it either. Our model does require that the
spatial curvature is different for different causally
disconnected observers, a scenario that is naturally
realized in the context of inflationary theory.
Different bubbles of space-time will undergo differ-
ent amounts of inflation and hence have a different
spatial curvature at the same time, however these
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different bubble universes are all part of the same
universe in the sense that a hypothetical tachyonic
astronaut could in principle travel between them.

(6) ‘‘What role does inflation play in this
model?’’: Inflation in important in this model in
two related ways. Firstly, it makes the spatial curva-
ture a spatially varying quantity which is different in
different super-horizon-sized regions, and depen-
dent on the number of e-folds of inflation that took
place in each causally connected part of the
Universe. Provided the whole Universe (not just
the part we see) is large enough (or infinite) the
values of k required for a classical history to domi-
nate the wave function in our model will occur at
least somewhere. It seems reasonable to assume that
this classicality is a prerequisite for the existence of
observers such as ourselves. Provided this is the
case, it is immediately clear that we could only
ever live in those parts of the Universe where the
number of e-foldsN, and the hence spatial curvature
k, lies in the small range we reviewed where classi-
cal solutions exist and anthropic upper bounds on �
hold. Secondly, in our model the prior probability
(i.e. prior to the inclusion of the anthropic bounds)
of observing a CC in ½�;�þ d�
 is related the
probability of a given spatial curvature and hence
to the probability of a given number of e-folds of
inflation.

(7) ‘‘If future observations rule out the predicted value
of �k0 does this rule out this proposal?’’: Yes, the
application of our scheme given in Sec. III where we
take M to the observer’s causal past would be
conclusively ruled out. It may be that one could
argue the case for a different choice of M, and
find another application consistent with observa-
tions but this is not something we have investigated
at this time. Certainly the choices we made for the
particular application of our proposal in Sec. III
seem to be the most simple and natural. The only
wiggle room is if the QCD parameter �b is signifi-
cantly different from 0.5, but the required value
would then be determined by observations and could
be checked against a detailed QCD calculation of �b.

In summary, we have introduced a new approach to
solving the cosmological constant and coincidence prob-
lems. The bare CC, �, or equivalently the minimum of the
vacuum energy, is allowed to take many possible values in
the wave function, Z, of the Universe. The value of the
effective CC in the classical history that dominates Z is
given by a new integral field equation, Eq. (1). Our scheme
is agnostic about the theory of gravity and the number of
space-time dimensions. We have applied it in its simplest
and most natural form to a universe in which gravity is
described by general realtivity. The observed classical
history will be completely consistent with a nonevolving

cosmological constant. In an homogeneous and isotropic
model of the universe with realistic matter content we find
that the observed value of the effective CC is typical, as is

a coincidence between 1=
ffiffiffiffi
�

p
and the present age of the

Universe, tU. Unlike explanations of the CC problem that
rely only on Bayesian selection in a multiverse, our model
in independent of the unknown prior weighting of different
� values, and makes a specific numerical prediction for
the observed spatial curvature parameter. Specifically, we
should observe �k0 ¼ �0:0056ð2�bÞ, where the QCD bag
parameter is �b ’ 0:5. This prediction is consistent with
current observations but can be tested by Planck/BAO
observations in the very near future. In conclusion, we
have described a new type of solution of the cosmological
constant problems. It is consistent with observation and
free of fine-tunings, requires no new forms of dark energy
or modifications to the low-energy theory of gravity, and is
subject to high-precision test by future observations.
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APPENDIX A: CONNECTION WITH
UNIMODULAR GRAVITY

Central to the paradigm we have proposed for solving
the CC problems is the promotion of the bare cosmological
constant, �, from a fixed parameter to a field. Hence, the
wave function (partition function) of the Universe is a
superposition of all possible values of �. This concept is
not new, and it has been seen to arise naturally in the study
of unimodular gravity (see Refs. [47,48] and references
therein).

1. Unimodular gravity

Classically, the field equations of unimodular gravity are
equivalent to those of general relativity but with the cos-
mological constant undetermined. Unimodular gravity was
first formulated in a noncovariant fashion in terms of the
usual EH action for GR (and minimally coupled matter
action) but with the degrees of freedom in the metric, g��,

restricted by the constraint
ffiffiffiffiffiffiffi�g

p ¼ 1. The total action is

the unmodified and, dropping surface terms, for some � is
given by

Itot ¼ 1

2	

Z
M

RðgÞ ffiffiffiffiffiffiffi�g
p

d4x� 1

	

Z
M

�
ffiffiffiffiffiffiffi�g

p
d4x

þ
Z
M

ffiffiffiffiffiffiffi�g
p

d4xLmatter:

Since
ffiffiffiffiffiffiffi�g

p
the second term on the right-hand side (the bare

CC term) is just a constant and so does not contribute to the
field equations found by requiring �Itot ¼ 0. Varying this
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action with respect to the unit modulus metric, ~g�� ¼
ð�gÞ�1=4g��, gives the trace-free part of the usual

Einstein equation

R�� � 1
4Rg

�� ¼ 	½T��
matter � 1

4g
��Tmatter
:

Using r�T
��
matter ¼ 0 and r�R

�� ¼ r�R=2, we have

r�ðRþ 	TmatterÞ ¼ 0 ! R ¼ �	Tmatter þ 4�;

where � ¼ const is a constant of integration. Using the
above equation, we then recover the usual Einstein equa-
tion with effective cosmological constant �

R�� � 1
2Rg

�� ¼ 	T
��
matter ��g��:

In this formulation of unimodular gravity, there is no
connection between the effective CC, �, and either the
bare cosmological constant � or the vacuum energy from
matter �vac. Since

ffiffiffiffiffiffiffi�g
p ¼ 1, it follows that in unimodular

gravity the 4-volume, VM, of M is fixed, where

VM ¼
Z
M

ffiffiffiffiffiffiffi�g
p

d4x:

Fixed VM is usually taken to be the defining feature of
unimodular gravity.

Since � can take any possible value, the partition/wave
function of the Universe in unimodular gravity includes a
sum over all values of � with some unspecified weighting
�½�


Zuni ¼
Z

�½�
d�Dg��D�aeiItot :

Other than the unspecified weight function, �½�
, an-
other issue with the original formulation of unimodular
gravity is that the constraint

ffiffiffiffiffiffiffi�g
p ¼ 1 is not diffeomor-

phism invariant. Henneaux and Teitelboim [47] found an
action for unimodular gravity that is both diffeomorphism
invariant and has the shift symmetry under� ! �þ const
which fixes �½�
 ¼ const.

The Henneaux-Teitelboim action is

IHT � Igrav þ Im � 1

	

Z
M

�ð ffiffiffiffiffiffiffi�g
p � @�~v

�Þd4x;

where Igrav is the Einstein-Hilbert action for gravity plus

surface terms, Im is the matter action including the con-
tribution from the vacuum energy; ~v� is a vector-density
field and � ¼ �ðx�Þ is a scalar field. In this formulationffiffiffiffiffiffiffi�g
p

is not fixed a priori. However, varying the action with

respect to the scalar field � gives
ffiffiffiffiffiffiffi�g

p � @�~v
�. It follows

that there is a shift symmetry under � ! �þ �� for
constant ��

IHT ! IHT � ��

	

Z
M
ð ffiffiffiffiffiffiffi�g
p � @�~v

�Þ ¼ IHT;

where the last equality comes from
ffiffiffiffiffiffiffi�g

p ¼ r�~v
�.

Varying the action with respect to ~v� gives

�IHT ¼ 1

	

Z
M
½~v�@��þ @�ð��~v�Þ
:

For the @�ð��~v�Þ term to vanish, we must have �~v�n� ¼
0 on @M, where @M corresponds to fðx�Þ ¼ 0 and n� /
r�f. With �~v� so fixed on @M, �IHT=�~v

� ¼ 0 gives

@�� ¼ 0 ) � ¼ const;

and so �, which represents the bare cosmological constant,
is an arbitrary space-time constant. Varying the action with
respect to g�� and requiring that any surface integrals

vanish on @M, gives

R�� � 1
2Rg

�� ¼ 	T��
m � �g�� ¼ 	T��

matter ��g��;

where T
��
m ¼ T

��
matter � �vacg

�� and � ¼ �þ 	�vac is the
effective CC. Since

ffiffiffiffiffiffiffi�g
p ¼ @�~v

�, requiring n��~v
� ¼ 0

fixes the four-volume, VM, and ensures that the HT action
really does describe a unimodular theory of gravity

VM ¼
Z
M

d4x
ffiffiffiffiffiffiffi�g

p ¼
Z
M

d4x@�~v
�;

�VM ¼
Z
M

d4x@��~v
� ¼ 0:

The partition function for the HT unimodular action is

ZHT ¼
Z

D�D~v�Dg��D�a�½�
eiIHT ;

where the sum over configurations is for ~v� normal to
@M and the matter and metric variables are fixed on the
boundary.

2. An alternative formulation of our model

Now, with Itot ¼ Igrav þ Im þ ICC½�; g��;M
, we de-

fine we have IHT ¼ Itot þ Iv½�; ~v�;M
, where

Iv ¼ 1

	

Z
M

�@�~v
�

¼ �
Z
M

d4x~v�@��þ 1

	

Z
M

@�ð�~v�Þ;

¼ I� þ Iv-surf ; I� ¼ �
Z
M

d4x~v�@��;

Iv-surf ¼ 1

	

Z
M

@�ð�~v�Þ: (A1)

Here, Iv-surf is a total derivative and so represents a surface
term in the action and I� has the property thatZ

D~v�eiI� / �½@��
;

where �½@��
 is a functional � function peaked about

space-time constant configurations of �, and so acts as
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Z
D��½@��
A½�; . . .
 ¼

Z 1

�1
d�A½�; . . .
:

It follows that the partition function in our proposal can be
rewritten (up to an arbitrary and irrelevant overall constant)
as

Z½M
 ¼
Z

d�Dg��D�a�½�
eiItot

¼
Z

D��½@��

Z

Dg��D�a�½�
eiItot ;

¼
Z

D�D~v�Dg��D�a�½�
eiðItotþI�¼IHT�Iv-surf Þ;

(A2)

where in our proposal the sum over configurations is for
some fixed set fQAg of the metric and matter variables fixed
on the boundary; ~v� is just a Lagrange multiplier field here
and so is not assumed to be fixed anywhere.

It is clear from the second line of Ref. (A2) that there is
an aesthetic similarity between the partition function in our
proposal and that in the HT formulation of unimodular
gravity. Both theories can be formulated in terms of a
scalar field �ðx�Þ and vector-density ~v� in addition to
the usual metric and matter fields. When written in this
way, the action in our proposal is Itot þ I� with differs from
the action in the HT proposal by a surface term Iv-surf . The
two formulations also differ in terms of what is taken to be
fixed on the boundary, with the main difference being that
in HT unimodular gravity, ~v� is fixed normal to @M,
which in turn fixes the 4-volume, VM, of M. In our
formulation the addition of the subtraction of the surface
term Iv-surf relative to IHT, means that one no longer needs
to require �~v�n� ¼ 0 on @M, and hence the VM is not

fixed in our proposal and it is not a unimodular gravity
theory, despite its similarities to the HT theory.

Varying the action in our model, produces terms propor-
tional to ��. Defining Ifull ¼ Itot þ I�, and assuming a
GHY surface term for gravity for illustrative purposes

�Ifull ¼
Z
M

d4x

�
1

2	
~E���g�� þ ~�a��

a � 	�1�~v�@��

� 	�1��ð ffiffiffiffiffiffiffi�g
p � @�~v

�Þ
�

þ
Z
@M

ffiffiffiffiffiffiffi
j
j

q
d3x½	�1N���
�� þ�a��

a

� 	�1��f�~v
�
;

where @M corresponds to fðx�Þ ¼ 0, f < 0 in M, and
f� ¼ r�f. Here, 
�� is the induced metric on @M, and
~E�� ¼ E�� ¼ 	T��

matter �G�� ��g��; ~�a ¼ ffiffiffiffiffiffiffi�g
p

�a

and � ¼ �þ �vac is the effective CC. The classical field
equations for g�� and �a are then E�� ¼ �a ¼ 0 and

these cause the variation of Ifull with respect to g�� and

�a to vanish in the bulk (i.e. in M). Similarly, requiring
�Ifull ¼ 0 with respect to variations of � and ~v� in the
bulk gives

ffiffiffiffiffiffiffi�g
p ¼ @�~v

�; @�� ¼ 0:

When these field equations hold in the bulk, �Ifull reduces
to surface integrals over @M. Since @�� ¼ 0, the allowed

variations of � are those for which �� is a space-time
constant. Hence,

�Ifull ¼
Z
@M

d3x
ffiffiffiffi



p �
	�1 ~N���
�� þ ~�a��

a � ��

�
Z
@M

d3x	�1f�~v
�

�
;

¼
Z
@M

d3x
ffiffiffiffi



p ½	�1 ~N���
�� þ ~�a��
a


� ��
1

	

Z
M

ffiffiffiffiffiffiffi�g
p

d4x;

where in the second line we have used
ffiffiffiffiffiffiffi�g

p ¼ @�~v
� to

eliminate all appearances of the Lagrange multiplier
field ~v�.
We wish to have �Ifull ¼ 0 for the classical solution.

This could be achieved by taking �
�� ¼ ��a ¼ 0 (for

all �) on @M and �� ¼ 0. Indeed fixing 
�� and �a on

@M would, modulo the field equations, generally fix �
and set �� ¼ 0. However, fixing � in M returns us to the
usual action of general relativity where the bare CC is
some fixed external parameter. Thus, to preserve the
nature of � as a configuration variable that is integrated
over the partition function, we cannot take either �� ¼ 0
or �
�� ¼ ��a ¼ 0 (for all �).

In our scheme for solving the CC problems, we propose
making a different ansatz: �
�� ¼ H ���� and ��a ¼
P a�� where the form of H �� and P a must be consistent

with the classical field equations. This is equivalent to
fixing 
�� and P a only for each value of � rather than

for all �. Then, we have

�Ifull ¼ ��

�Z
@M

ffiffiffiffi



p
d3x½	�1N��H �� þ �aP a


� 	�1
Z
@M

d3xf�~v
�

�
;

and so we can have classical solutions where �Ifull ¼ 0
without having to externally fix � (i.e. set �� ¼ 0).
Quantum mechanically, � can take all possible values
and the partition/wave function is a superposition over
histories with all possible values of �. Classically, the
dominant history is the one where the value of � is such
that �Ifull ¼ 0, i.e.Z

@M

ffiffiffiffi



p
d3x½	�1N��H �� þ �aP a
 ¼ 1

	

Z
@M

d3xf�~v
�

¼ 1

	

Z
M

ffiffiffiffiffiffiffi�g
p

d4x:

In Sec. II B, we showed that equation of � in our theory
is entirely equivalent to
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dIclass
d�

¼ 0;

where Iclass is the value of Itot when the classical field
equations hold for the matter and the metric.

Since � only ever appears in the other field equations in
the combination �þ 	�vac ¼ �, this is a field equation for
the effective CC, �. We note that by introducing the
Lagrange multiplier field ~v�, this field equation is equiva-
lent to the vanishing of a surface integral over the boundary
@M. In this sense, it can be said to be holographic.

3. Summary

In this appendix, we have seen that our proposal can
alternatively be formulated in terms of the action Ifull ¼
Itot þ I� and an ansatz about how the boundary metric and
matter fields depend on � which is required to preserve
the freedom to vary the bare cosmological constant �.

We noted that Ifull is almost equivalent to the Henneaux-
Teitelboim action, IHT for unimodular gravity with the only
difference between a surface term, Iv-surf . Despite this
similarity, the subtraction of Iv-surf from IHT to Ifull greatly
alters the properties of the theory as in our model one does
not need to fix the four-volume, VM, whereas in the HT
model, as a unimodular gravity theory, VM must be held
fixed to return the usual classical field equations. Both
unimodular gravity and our proposal feature a sum over
all possible values of the bare CC, �, in the partition
function. This sum includes an unspecified weight, or prior,
on �:�½�
. In unimodular gravity there is no accompany-
ing classical field equation for � and so it remains com-
pletely unspecified. The weighting �½�
 then plays an
important role in determining the relative contributions
of different values of � to the partition function. In our
model, the subtraction of a surface term from the unimodu-
lar action, combined with the ansatz about the dependence
of boundary quantities on �, provides a field equation
which determines the classical value of the effective CC.
The partition function is strongly peaked about the value of
� for which this field equation holds. In this classical limit,
only this value of � contributes to the partition function and
�½�
 simply becomes an irrelevant overall constant multi-
plying the partition function. Its form is no longer impor-
tant. Physics in our model is independent of the prior
weighting function �½�
 to an excellent approximation
whereas in unimodular gravity it is not. We also saw
that the � equation in our model can be written in a
holographic fashion, as the vanishing of an integral over
the boundary @M.

APPENDIX B: SURFACES TERMS
IN GENERAL RELATIVITY

In this appendix we rederive, for completeness, the form
of the surface terms which must be added to the usual
Einstein-Hilbert action, IEH, to make it first order in

derivatives of the metric. The need for these boundary
terms was first realized by York [34], and then rediscovered
and refined by Gibbons and Hawking [35]. York, and then
Gibbons and Hawking, explicitly derived the form of the
required surface term for a non-null boundary. The equiva-
lent surface terms for null boundaries follow from a double
null decomposition of the Einstein field equations, see
Refs. [49,50], although this has rarely been explicitly
stated. We detail the derivation of the Gibbons-Hawking-
York surface terms, IGHY, for a ‘‘cosmological’’ boundary
defined to be the union of the surface of the past light cone
of a given observer, @Mu boundary and some initial hyper-
surface @MI with timelike normal. For this setting, we
explicitly state how the variation of Igrav ¼ IEH þ IGHY
depends on the metric on the boundary. We also restate
the definition of York’s cosmological surface term, IYC,
defined in Ref. [34], since this is relevant for boundaries
such as the initial singularity.
We takeM to be the manifold where uðx�Þ< 0 and 0<

�ðx�Þ< �0 for some uðx�Þ and �ðx�Þ. We define uðx�Þ ¼
�0 on the past light of an observer (at � ¼ �0) and wðx�Þ to
be a null coordinate that lies perpendicular to u, defined
so that � ¼ ðuþ wÞ=2; � is a timelike coordinate i.e.
r��r�� < 0.

An integral over M is equivalent to an integral over
the whole space-time weighted by Hð�uÞHð�ÞHð�0 � �Þ
where HðyÞ is the Heaviside function which is unity for
y > 0 and vanishes for y < 0; dHðyÞ=dy ¼ �ðyÞ where
�ðyÞ is the Dirac delta function.
We therefore write

M ¼ fx�: Hð�0 � uÞHð�ÞHð�0 � �Þ> 0g;

and @M ¼ @Mu [ @MI where @Mu is fu ¼ �0; 0< �<
�0g and @MI is fu < �0; � ¼ 0g. We define u� ¼ r�u and

w� ¼ r�w. Now u and w are null coordinates so u�u� ¼
w�w

� ¼ 0 and we define u�w
� ¼ �2e�2
. We also de-

fine �� ¼ r��. Since � ¼ ðuþ wÞ=2 it follows that

���
� ¼ �e�2
. We define m� ¼ e
�� so that m�m

� ¼
�1 and then n� ¼ e
u�. We then have m�n

� ¼ 1.

Finally, we define f�ig, i ¼ 1, 2, to be intrinsic coordinates
on the surfaces, S, of constant � and u. We define ei� ¼
@��

i. The metric g�� can then be decomposed, thus

g�� ¼ n�n� þ 2nð�m�Þ þ h��; (B1)

where h��n
� ¼ h��m

� ¼ 0.

The Einstein-Hilbert action for general relativity is

IEH ¼ 1

2	

Z
M

ffiffiffiffiffiffiffi�g
p

RðgÞd4x;

where RðgÞ is the Ricci scalar curvature of g��. This is

second order in derivatives of the metric.
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1. GHY surface term

On a non-null boundary, the Gibbons-Hawking-York
surface term, IGHY, is the surface term that must be added
IEH to make IEH þ IGHY first order in derivatives of the
metric. It is natural to extend this definition to null bounda-
ries, so that on a general boundary IEH þ IGHY is first order
in derivatives of the metric. We use this definition to find
the form of IGHY for our @M. This is more simply and
clearly done by writing the metric in terms of a vierbein
EI
�, I ¼ 1, 2, 3, 4, where g�� ¼ EI

�E
J
��IJ for some fixed

�IJ; det� ¼ �1. We choose a form for �IJ suited for a
decomposition of the metric along a null and a timelike
direction:

�IJ ¼
I2�2 0

0 N2�2

 !
; N2�2 ¼

1 1

1 0

 !
;

I2�2 ¼ diagð1; 1Þ:
We use �IJ and its inverse �

IJ to raise and lower indices I.
It follows from g�� ¼ EI

�E
J
��IJ that

g�� ¼ E3
�E

3
� þ 2E3

ð�E
4
�Þ þ

X2
i¼1

Ei
�E

j
�: (B2)

Comparing Eqs. (B1) and (B2), we see that we can take
E3
� ¼ n�, E

4
� ¼ m� and then h�� ¼ E1

�E
1
� þ E2

�E
2
�. With

intrinsic coordinates f�ig on fu; �g ¼ const surfaces, S, we
have Ei

� ¼ aij½ei� þ Kiu� þ �j��
 and let hij ¼ P
la

l
ia

l
j.

hij is then the induced 2-metric on S andKi and�i are shift

2-vectors. We also define a ‘‘radial’’ coordinate, r, on
surfaces of constant � by r ¼ ðu� wÞ=2.

Thus, we have

g��dx
�dx� ¼ e2
du2 � 2e
Ndud�þ hijD�

iD�j;

D�i ¼ d�i þ Kiduþ �id�:

Now E�I is a 4-vector and so

RðgÞ ¼ E�
I½r�;r�
E�I

¼ r�½E�
Ir�E

�I � E�
Ir�E

�I
 þ r�E
�
Ir�E

�I

�r�E
�
Ir�E

�I:

We define !��� ¼ �!��� ¼ E�
I r�E�I. In terms of the

vierbein, we can rewrite IEH in the following form:

IEH ¼ 1

2	

Z
M

ffiffiffiffiffiffiffi�g
p

d4xRðgÞ

¼ � 1

	

Z
M

@�½ ffiffiffiffiffiffiffi�g
p

!�
��
 þ 1

2	

�
Z
M

ffiffiffiffiffiffiffi�g
p

d4x½!�
��!�

�� �!���!���
: (B3)

All second derivatives of the vierbein, and hence also
of the metric, are contained in the term

� 1

	

Z
M

@�½ ffiffiffiffiffiffiffi�g
p

!�
��
:

Since this term is a total derivative it is equivalent to a
surface integral over @M. IGHY is the surface term which
must be added to the action to remove second derivatives of
the metric, it is clear from Eq. (B3) that

IGHY ¼ 1

	

Z
M

@�½ ffiffiffiffiffiffiffi�g
p

!�
��
 ¼¼ IðuÞGHY þ IðIÞGHY; (B4)

IðuÞGHY ¼ 1

	

Z
@Mu

e

ffiffiffi
h

p
d�d2�½�n�!�

��
; (B5)

IðIÞGHY ¼ 1

	

Z
@MI

e

ffiffiffi
h

p
drd2�½�m�!�

��
: (B6)

Then, with G�� ¼ R�� � 1
2Rg

��, varying IEH þ IGHY
with respect to the vierbein gives

�ðIEH þ IGHYÞ ¼ � 1

2	

Z
M

d4x
ffiffiffiffiffiffiffi�g

p
G���g�� � 1

2	

�
Z
M

d4x@�½ ffiffiffiffiffiffiffi�g
p

S���2E�I�E
I
�
;

where

S��� ¼ !��� �!


�g�� þ!



�g��;

We note that S���V�V� ¼ 0 for any V�.

We define

�IðuÞ þ �IðIÞ ¼ � 1

2	

Z
M

d4x@�½ ffiffiffiffiffiffiffi�g
p

S���2E�I�E
I
�
;

�IðuÞ ¼ 1

2	

Z
@Mu

e

ffiffiffi
h

p
d�d2�½n�S���2E�I�E

I
�
;

�IðIÞ ¼ 1

2	

Z
@MI

e

ffiffiffi
h

p
drd2�½m�S

���2E�I�E
I
�
:

We now reexpress the IðuÞGHY, I
ðIÞ
GHY, �I

ðuÞ and �IðIÞ in a more

familiar form in terms of the geometry of the boundaries
@Mu and @MI. We note that EI

�!
��� ¼ r�E�I and so

�n�!
��� ¼ �E3

�!
��� ¼ �r�n�;

�m�!
��� ¼ �E4

�!
��� ¼ �r�m�:

a. Null boundary: We begin by considering the null
boundary, @Mu, given by u ¼ 0. We define K�� to be
the extrinsic curvature of h�� along n�:

K �� ¼ K�� ¼ �1
2h

��h�
Lnh�
 ¼ �h��h�
r�n
:

Thus, with K ¼ K��g�� ¼ K��h�� and using

n�n� ¼ 0,

� n�!�
�� ¼ �r�n

� ¼ K� n�m�r�n� ¼ Kþ �;

where

� ¼ �n�m�r�n� ¼ �Ln
 ¼ �n�r�
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is the inaffinity. Using this, the GHY term on @Mu can be
written succinctly as

IðuÞGHY ¼ 1

	

Z
@Mu

e

ffiffiffi
h

p
d�d2�½Kþ �
:

We now consider �IðuÞ with u and � fixed �E3
� ¼

�n� ¼ n��
 and �E4
� ¼ �m� ¼ m��
. Using these

equations and S���n�n� ¼ 0

n�S
���2E�I�E

I
� ¼ X2

i¼1

n�S
���2E�i�E

i
�

þ 2n�n�m�S
����
;

and

n�S
��� ¼ r�n� � g��r�n

� þ!

�

 n�;

h��r�n
� can be decomposed as

h��r�n
� ¼ �K�� þ n�m
h

��r�n



¼ �K�� þ n�!�;

!� ¼ h��m
r�n

; (B7)

and we define Kij ¼ K��ei�e
j
� and !i ¼ !�ei�; !i ¼

!jhij.

Then, we find

n�n�m�S
��� ¼ n�m�r�n� �r�n

� ¼ ��þ ðKþ �Þ
¼ K;

X2
i¼1

n�S
���2E�i�E

i
� ¼ ½ðKþ �Þh�� �K��
�hij

þ 2e�
!i��
i:

Finally, we have

�IðuÞ ¼ 1

2	

Z
@Mu

N
ffiffiffi
h

p
d�d2�½n�S���2E�I�E

I
�


¼ 1

2	

Z
@Mu

N
ffiffiffi
h

p
d�d2�½ðKij �KhijÞ�hij

þ 2K�
þ 2e�
!i��
i
: (B8)

b. Initial hypersurface: On the initial hypersurface @MI

is given by � ¼ 0 and hencem� is the unit normal to @MI.
The induced 3-metric on surfaces of constant � is 
�� ¼
g�� þm�m�, where


��dx
�dx� ¼ e2
dr2 þ hij½d�i þ Kidu
½d�j þ Kjdu
;

and r ¼ ðu� wÞ=2. The extrinsic curvature of 
�� is

K�� ¼ �1
2


��
�
Lm
�
 ¼ �
��r�m
�;

and K�� ¼ K��; K��m� ¼ 0. Since m� ¼ E�4:

!���m� ¼ r�m� ¼ �K�� �m�a�;

where a� ¼ m�r�m
� is the acceleration; a�m� ¼ 0. It

follows that r�m
� ¼ �K ¼ �K��
��, and so using

e

ffiffiffi
h

p ¼ ffiffiffiffi



p
and d3x ¼ drd2�:

IðIÞGHY ¼ 1

	

Z
@MI

e

ffiffiffi
h

p
drd2�½�m�!�

��


¼ 1

	

Z
@MI

ffiffiffiffi



p
d3xK:

We also find that

S���m� ¼ �K�� þ K
�� �m�A�;

where A� ¼ ½a� � 
�
�!



�
 and so A�m� ¼ 0.

Thus, we have,

S���m�2E�I�E
I
� ¼ ½K
�� � K��
2Eð�I�EI

�Þ
¼ ½K
�� � K��
�
��;

where we have used �m� ¼ m��
. The contribution,

�IðIÞ, to the variation surface term from @MI is therefore

�IðIÞ ¼ 1

2	

Z
@MI

e

ffiffiffi
h

p
dud2�½m�S

���2E�I�E
I
�
;

¼ 1

2	

Z
@MI

ffiffiffiffi



p
d3x½K
�� � K��
�
��:

c. GHY term for the full boundary: Using the results
derived above, the full GHY surface term for @M ¼
@Mu [ @MI is

IGHY ¼ 1

	

Z
@Mu

N
ffiffiffi
h

p
d�d2�½Kþ �
 þ 1

	

Z
@MI

ffiffiffiffi



p
d3xK;

(B9)

and

�ðIEHþIGHYÞ¼� 1

2	

Z
M

ffiffiffiffiffiffiffi�g
p

d4xG���g��

þ 1

2	

Z
@MI

ffiffiffiffi



p
d3x½K
���K��
�
��;

þ 1

2	

Z
@Mu

e

ffiffiffi
h

p
d�d2�½ðKij�KhijÞ�hij

þ2K�
þ2e�
!i��
i
: (B10)

2. YC surface term

In Ref. [34], York also considers a ‘‘cosmological’’
surface term, IYC, in the action. On @MI, this is

IðIÞYC ¼ 1

3	

Z
@MI

ffiffiffiffi



p
d3xK ¼ IðIÞGHY � 2

3	

Z
@MI

ffiffiffiffi



p
d3xK:

Thus, we have

IðIÞYC ¼ �IðIÞGHY � 1

2	

Z
@MI

ffiffiffiffi



p
d3x

�
2

3
K
�� þ 4

3
�K

�
:
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Hence, if we define Igrav ¼ IEH þ IðuÞGHY þ IðIÞGHY, we have

�Igrav ¼ � 1

2	

Z
M

ffiffiffiffiffiffiffi�g
p

d4xG���g��

� 1

2	

Z
@MI

ffiffiffiffi



p
d3x

�
~P���~
�� þ 4

3
�K

�
;

þ 1

2	

Z
@Mu

e

ffiffiffi
h

p
d�d2�½ðKij �KhijÞ�hij

þ 2K�
þ 2e�
!i��
i
; (B11)

where

~P�� ¼ ðdet
Þ5=6½K�� � 1
3K


��
;
~
�� ¼ ðdet
Þ�1=3
��:
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