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We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution

simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18� and

3� CMB maps, including the relevant string contribution at each resolution from before recombination to

today. We extract the angular power spectrum from these maps, demonstrating the importance of

recombination effects. We briefly discuss the probability density function of the pixel temperatures, their

skewness, and kurtosis.
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I. INTRODUCTION

Despite improving observational limits, interest in cos-
mic strings has remained durable (for a review, see [1]).
Strings are a generic phenomena in fundamental theories
and they can emerge in macroscopic form in braneworld
cosmologies, for example, at the end of inflation [2,3].
They are also common to cosmologically viable supersym-
metry grand unified theory models [4]. Stringent con-
straints on strings are important, therefore, in restricting
the latitude available for cosmological model building. The
detection of cosmic strings would be a watershed for high
energy theory.

Despite the potential significance, the investigation of
cosmic strings and their observational consequences faces
many numerical and analytic challenges, not least in creat-
ing accurate realizations of string imprints in the cosmic
microwave sky. In this paper, we take this study a step
further forward by presenting full-sky and small-angle
CMB maps of temperature fluctuations seeded by cosmic
string networks using high resolution simulations in a
Friedmann-Robertson-Walker expanding universe (with
the longest dynamic range to date). This work includes
all the relevant recombination physics and can be used not
only to determine the angular power spectrum of string
CMB anisotropies but also the higher order correlators
such as the bispectrum, trispectrum, and beyond.

Current constraints on cosmic strings result from line-
of-sight CMB power spectrum calculations sourced either
by unequal-time correlators obtained from field theory
string simulations [5–7] or semianalytic models of
Nambu strings [8,9]. Qualitatively these two approaches
produce consistent spectra, that is, without the strong
coherent acoustic peaks associated with inflation.
However, quantitatively there is a mismatch between the
two approaches in both the shape of the primary peak and

its amplitude, which differs by a factor of 2–3. This dis-
parity arises primarily from a difference in string network
densities, which has been discussed at some length else-
where [10] (see also [11]). Nevertheless, there is general
agreement that the relative amplitude of string induced
CMB fluctuations cannot exceed more than 10% of those
arising from adiabatic inflationary perturbations [7,8].
There have also been a number of studies going beyond
the power spectrum through map making with cosmic
strings [12–15] in order to study the degree of
Gaussianity of the resulting CMB signatures. However,
this work has generally only included late-time gravita-
tional effects, ignoring the recombination physics which
makes an important contribution to the signal over a wide
range of multipoles l � 200–2000.
The motivation for the present work, then, is twofold:

first, to include all recombination effects in the string CMB
maps, so that we can ultimately characterize their primary
statistical properties, and second, to match the accuracy of
future experiments such as Planck [16], the Arcminute
Microkelvin Imager [17], and the Q/U imaging experiment
[18] which will impose considerably more stringent con-
straints on cosmic strings through improving precision,
resolution, and added polarization information.

II. COSMIC STRING NETWORK SIMULATIONS

Cosmic string simulations were performed with the
Allen-Shellard string network code [19]. We have used
fixed comoving resolution together with an initial string
resolution of 24 points per correlation length. Simulations
which started in the matter era had a dynamic range of
7.5 in conformal time, i.e. �f ¼ 7:5�i, but in order to use

only the simulation when the network has relaxed into a
scaling regime, we ignored the first 4% of time steps,
resulting in an effective dynamic range of 6 in conformal
time. Simulations that started in the radiation era had an
effective dynamic range of 5, after eliminating the first
4% of time steps from a simulation with a dynamic range
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of 6. The energy-momentum tensor of the network was
projected onto a grid of 2563 points as described in [20].
The background cosmology used was �CDM with the
WMAP 5-year data best fit parameters [21]: �CDM ¼
0:214, �b ¼ 0:044, �� ¼ 0:742, and h ¼ 0:719.

We have used three string simulations which span the
range from before equality to today. The epochs of each
simulation are (1) from � ¼ �0=7:5 to �0, (2) from � ¼
�0=45 to �0=6, and (3) from � ¼ �0=216 to �0=36. Thus,
these simulations together span a range of 180 in confor-
mal time (note that since we ignore the beginning of each
simulation, they do not overlap).

III. EINSTEIN-BOLTZMANN EVOLUTION

We use the Landriau-Shellard code [20] to compute
cosmological perturbations in Fourier space. Two changes
have been made to this code since the algorithm was
presented.

The first modification concerns the scalar metric equa-

tions employed: Instead of solving for _h and _hS, we now

solve for _h and _h� � _h� _hS, which obeys the following
equation:

€h� þ 2
_a

a
_h� ¼ �16�Gðp�þ �pÞ þ 8�Gð�þ 2�SÞ:

(1)

The other modification concerns the inverse computa-
tion of the evolution equations’ fundamental matrices:
Instead of LU factorization, we use singular value decom-
position, for which we employ the freely available LAPACK

routines. This has proved a more numerically stable
method and enables a better treatment of near singular
matrices [22], especially around recombination.

IV. MAPS

We compute maps of CMB fluctuations by following
photon paths through the simulation boxes. The CMB
temperature fluctuations are given by the following equa-
tion, obtained by integrating the linear Boltzmann equation
for the Stokes parameter I:
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where �I
ij is the term that couples the Stokes parameter I

to Q and U and is given in Fourier space by

�I
ijðkÞ ¼ 3

4ðk̂ik̂j � 1
3�ijÞ�S � 1

2ððk̂iê1j þ k̂jê1iÞ�V1

þ ðk̂iê2j þ k̂jê2iÞ�V2Þ þ ðê1iê1j � ê2iê2jÞ�Tþ

þ ðê1iê2j þ ê2iê1jÞ�T� (3)

and all the other terms have their usual meaning. A full
derivation of this formula is given in [23].
In practice, because _�e�� and e�� are zero before the

start of recombination, we only output grids for all pertur-
bations from � ¼ 2�rec=3 to the end of simulation 3,
which is � ’ 3�rec=2. For simulations 1 and 2, we only

output the grids for _hij, because _�e�� is also zero after the

end of recombination.
By putting ‘‘observers’’ at each apex of a cube of side

L=2, where L is the simulation box size, we produce eight
all-sky maps of resolution Nside ¼ 256 from simulation 1.
From simulation 2, we compute six 18� � 18� maps of
resolution of Nside ¼ 2048, by putting an observer outside
each face of the simulation box. Finally, from simulation 3,
using the same setup as for simulation 2, we compute six
3� � 3� maps of Nside ¼ 8192. Figure 1 shows one map
produced from each simulation; it should be noted that
even the maps of patches of sky are computed using a
spherical sky.
Comparing our maps with those of [15], we note that the

18� map shown and their 7.2� map have similar features,
but the former does not present as sharp linelike disconti-
nuities as the latter. The resolution of our maps is effec-
tively lower than that implied by the HEALPIX Nside

parameter used. This can be seen most directly from the
power spectra (see Sec. V): Normally, one would expect
‘max & 3Nside, but the power in the maps falls around
‘ � Nside, which shows they are overpixelized or, to put

FIG. 1 (color online). Temperature fluctuations produced by cosmic strings from simulation 1 (left), simulation 2 (middle), and
simulation 3 (right).
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it another way, the effective resolution is about a third of
that expected from the pixelization. For example, our 18�
maps have an effective resolution of about 50, compared to
1.70 expected from a map of Nside ¼ 2048. This explains
the difference in features with the Fraisse et al. maps,
which have a resolution of 0.420, an order of magnitude
higher than ours.

V. POWER SPECTRUM COMPUTATION

For the all-sky maps, we decompose the temperature
fluctuations in the sky in spherical harmonics: �T

T ¼P
a‘mY

m
‘ , and the angular power spectrum is estimated

from

C‘ ¼ 1

2‘þ 1

X
m

a‘ma
�
‘m: (4)

For this purpose, we use the HEALPIX package [24]. For
the 3� patches, we use the flat-sky approximation (see
e.g. [25]) which replaces the spherical harmonic transform
with a 2D Fourier transform: C‘ ’ Ck ¼ jakj2, where the
modes are obtained from �T

T ¼ P
ake

ik:x. For the 18�

patches, we have used both methods to compare their
relative merit. To use a spherical transform on an incom-
plete sky, one must multiply the extracted spectrum with a

mode decoupling matrix [26]: C‘ ¼ M�1
‘‘0

~C‘0 , where

M‘‘0 ¼ ð2‘0 þ 1ÞX
L

ð2Lþ 1Þ
4�

Cmask
L

‘ ‘0 L
0 0 0

� �
2
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However, the resulting spectra show strong oscillations due
to the Gibbs effect that are not corrected by the procedure
outlined above. Because of this, we have used a 2D Fourier
transform even though the flat-sky approximation starts to
break down at the lower end of the multipole range probed
by these maps. In Fig. 2, we show the angular power
spectrum from each of the three simulation sets, as well

as their summation (i.e. concatenating these consecutive
but nonoverlapping time contributions). For the full sky, all
multipoles are shown, while for the patches of sky, the
spectra are binned. The errors on the individual parts of the
spectrum are estimated by the variance between the maps.
To add up the spectra in sections where two sets of maps
contribute, we average the lower l part in bins of the same
size as that of the higher l part and then add the two
contributions. Also, to reduce the error, we binned the
part of the spectrum in which only the all-sky maps
contribute. We normalize the string spectra using
G�=c2 ¼ 1� 10�6.
In addition, Fig. 3 illustrates the power spectrum from

simulation 3 which begins before equal matter radiation
and separates out the late-time contribution (dashed line),
that is, as if the string simulation and Einstein-Boltzmann
evolution were to start just before decoupling �dec.
Note that maps by other groups have been generated by

FIG. 2. On the left, we show the angular power spectrum of CMB temperature fluctuations produced by networks of cosmic strings
The thin lines represent the spectra from simulations 1–3 (left to right) and the thick line is their sum. On the right, the total spectrum
with its error bars is shown again as an ‘‘expectation area.’’

FIG. 3. Power spectrum from simulation 3 using the full
simulation (solid line) and the late start evolution (dashed line)
and their difference (dotted line).
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considering contributions only after decoupling �> �dec,
e.g. [15]. Here, we see starkly illustrated the importance of
the early contributions to the CMB anisotropy which arise
from matter and radiation perturbations induced by strings
before decoupling (primarily scalar modes). For l > 400,
this strong early scalar component predominates over the
late-time gravitational string contribution (primarily vector
modes). These results contrast markedly with the subdo-
minant scalar power spectra obtained earlier using Nambu
string simulations with full Einstein-Boltzmann evolution
in a flat cold dark matter model [27]. However, this en-
hancement is due here to inclusion of the full matter-
radiation transition with a significantly higher radiation
era string density and a � concordance cosmology with a
higher relative baryon density at decoupling. In future
work [28], we shall compare this result with the spectrum
obtained from the same simulations’ unequal-time corre-
lators. The overall shape for the spectrum computed from
the 18� maps is also qualitatively consistent with the CMB
power spectrum calculated using a simplified analytic
formula [29].

Comparing this result with that of [15]—the only other
group to have recently extracted C‘ from simulated
maps—we see some significant differences attributable
both to the inclusion of recombination physics in our
work and to the different approximations used. Firstly,
we note that Ref. [15] achieves much better statistics
because it is easier to simulate purely gravitational effects
in a flat-sky approximation at high resolution, generating a
larger number of maps which results in smaller error bars.
However, for l � 500, we note that their power spectrum
does not appear to turn over in the range l & 200–400, a
causality cutoff due to the fact that these string modes are
superhorizon at recombination (see e.g. Ref. [29]). In the
range l � 400–2000, as discussed above, there is an
important contribution from early-time scalar modes at

decoupling which is not included in Ref. [15]. It is reason-
able to assume that late-time gravitational effects dominate
the spectrum at l 	 1000, and their result in this range is
probably fairly accurate. However, in this region we note
that the limited spatial resolution of our individual maps
(resulting from propagation of photons through strings
smoothed onto 2563 grids) means that there is generically
small-scale power missing at higher multipoles from the
summed power spectrum in Fig. 2. For example, the gravi-
tational contribution from strings in simulation 1 (full-sky)
is absent beyond l � 100. For this reason and given the
limited number of realizations, we have not yet endeavored
to obtain a detailed constraint using WMAP, though we
expect it to be consistent with constraints in Ref. [30]. By
comparing the Sachs-Wolfe plateau to CMB observations,
we find a normalization of the cosmic strings linear energy
density to beG�=c2 ¼ ð1:45
 0:6Þ � 10�6, in agreement
with our previous result [14].

VI. PROBABILITY DISTRIBUTION FUNCTION

One of the principal aspects of cosmic string induced
CMB fluctuations is their intrinsic non-Gaussianities. In
this section, we present preliminary results from our map
realizations for the pixel temperature distribution, its skew-
ness, and kurtosis. In future work, we shall explore the
efficiency of different techniques and tools, such as the
bispectrum [31], to better characterize the non-Gaussian
signature from strings and thus infer their detectability.
We compute the pixel probability distribution function

of the rectangular map pixel grids computed to estimate the
power spectrum. To compare our results, we generate an
ensemble of 1000 Gaussian maps with the same power
spectrum as the string map. To do so, we use the fact that,
in Fourier space, a Gaussian field will have phases that are
uniformly distributed between 0 and 2�. Hence, for a given
map, after fast Fourier transform, we randomize the phases

FIG. 4. Temperature distributions of the medium- (left) and small- (right) angle maps shown above. The solid lines indicate the 1�
level of an ensemble of Gaussian maps
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and fast Fourier transform back to real space. In Fig. 4,
we show the temperature distribution for medium- and
small-angle maps along with the Gaussian ensemble for
comparison. These probability distribution functions are
remarkably Gaussian, consistent with early string map
results which demonstrated that, despite the distinct sig-
nature of individual strings, the central limit theorem pre-
vailed after many strings contributed [13]. We note,
however, that the higher resolution 3� maps do appear to
have a slightly increased level of non-Gaussianity.

We also computed the skewness

�1 ¼
1

Npix

P
i
ðTi � �TÞ3

�3
(6)

and the kurtosis

�2 ¼
1

Npix

P
i
ðTi � �TÞ4

�4
� 3 (7)

of the string maps and compared it to that of all our
Gaussian maps. Figure 5 shows the skewness and kurtosis
for all the maps as well as the 1� contour value for the
ensemble average of Gaussian realizations. This indicates a
marginal positive 1� skewness and kurtosis for the 3�
maps. The absence of a strong skewness in the 18� maps
seems to be at variance with the significant negative skew-
ness �1 ¼ �0:24 found in the 7.2� maps from late-time
gravitational effects in Ref. [15] (see also the analytic
estimates in [29,32,33]). Two possible explanations are

apparent. First, as mentioned above, the present 3D
Einstein-Boltzmann simulations have an effectively lower
resolution than the 2D flat-sky approximation maps, so
they cannot probe as far into the wings of the distribution.
We are missing the integrated effect of bispectrum
triangles combining disparate large and small scales.
Second, the analytic modeling in Ref. [29] incorporates a
causality or correlation-length cutoff which prevents bis-
pectrum and trispectrum contributions from superhorizon
scales, effectively flattening their accumulated amplitude
below l � 300–500. Without such a cutoff introduced
through energy-momentum compensation, there may be a
significant enhancement of the skewness.
The tentative indications of positive skewness and

kurtosis in the 3� maps, however, are consistent with
physical expectations. On scales above l > 300, we see
that there is an important contribution from early scalars
with strings generating wakelike objects in the matter
distribution with a positive skewness and kurtosis [34].
This will lead to CMB anisotropies with similar properties.
It appears that this positive skewness will compete with
and confuse the negative skewness predicted for the late-
time gravitational effects on intermediate scales. In con-
trast, the kurtosis of these two contributions will sum
positively, reinforcing the view that the trispectrum will
prove a better discriminant of strings than the bispectrum
[29]. These preliminary results indicate that incorporating
recombination effects will be important in any effort to
constrain non-Gaussian strings signatures with WMAP or
Planck data.

FIG. 5. Skewness (left) and kurtosis (right) for all six 18� and 3� maps. The lines show the 1� value for the ensemble of Gaussian
maps.
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VII. CONCLUSION

We have computed maps of cosmic string induced
CMB fluctuations at various resolutions and we have ex-
tracted their angular power spectra. We have demonstrated
the importance of recombination effects for the power
spectrum over a broad range of multipoles 200< l <
2000. We have also shown that the resulting maps are
remarkably Gaussian, though with potential deviations
which are worthy of closer investigation as testable string
signatures in the CMB.
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[24] K.M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K.
Hansen, M. Reinecke, and M. Bartelmann, Astrophys. J.
622, 759 (2005).

[25] M. White, J. E. Carlstrom, M. Dragovan, and W.L.
Holzapfel, Astrophys. J. 514, 12 (1999).
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