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2CNRS, URA 2306, F-91191 Gif-sur-Yvette, Cédex, France
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In dimension 2 and above, the Burgers dynamics, the so-called ‘‘adhesion model’’ in cosmology, can

actually give rise to several dynamics in the inviscid limit. We investigate here the statistical properties of

the density field when it is defined by a ‘‘geometrical model’’ associated with this Burgers velocity field

and where the matter distribution is fully determined, at each time step, by geometrical constructions. Our

investigations are based on a set of numerical experiments that make use of an improved algorithm, for

which the geometrical constructions are efficient and robust. In this work we focus on Gaussian initial

conditions with power-law power spectra of slope n in the range �3< n< 1, where a self-similar

evolution develops, and we compute the behavior of power spectra, density probability distributions and

mass functions. As expected for such dynamics, the density power spectra show universal high-k tails that

are governed by the formation of pointlike masses. The two other statistical indicators however show the

same qualitative properties as those observed for 3D gravitational clustering. In particular, the mass

functions obey a Press-Schechter like scaling up to a very good accuracy in 1D, and to a lesser extent in

2D. Our results suggest that the ‘‘geometrical adhesion model,’’ whose solution is fully known at all times,

provides a precious tool to understand some of the statistical constructions frequently used to study the

development of mass halos in gravitational clustering.
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I. INTRODUCTION

The Burgers equation [1–3], which describes the evolu-
tion of a compressible pressureless fluid, with a nonzero
viscosity, was first introduced as a simplified model of fluid
turbulence, as it shares the same hydrodynamical (advec-
tive) nonlinearity and several conservation laws with the
Navier-Stokes equation. It also appears in many physical
problems, such as the propagation of nonlinear acoustic
waves in nondispersive media [4], the study of disordered
systems and pinned manifolds [5], or the formation of
large-scale structures in cosmology [6,7], see [3] for a
recent review. In the cosmological context, where one
considers the inviscid limit without external forcing, it is
known as the ‘‘adhesion model’’ and it provides a good
description of the large-scale filamentary structure of the
cosmic web [8]. In this context, one is interested in the
statistical properties of the dynamics, as described by
the density and velocity fields, starting with a random
Gaussian initial velocity [2,9] and a uniform density.
These initial conditions are expected for generic models
of inflation of quantum fluctuations generated in the
primordial Universe and agree with the small Gaussian
fluctuations observed on the cosmic microwave back-
ground. In the hydrodynamical context, this setup corre-
sponds to ‘‘decaying Burgers turbulence’’ [9].

This problem has led to many studies, especially in one
dimension (1D) and for power-law initial energy spectra
(fractional Brownian motion) E0ðkÞ / kn of index [10] n.
The two 1D peculiar cases of white-noise initial velocity
(n ¼ 0) [1,2,11–13] and Brownian motion initial velocity

(n ¼ �2) [11,14–16] have received much attention. For a
more general n, it is not possible to obtain full explicit
solutions, but several properties of the dynamics are al-
ready known [4,9,17]. In particular, for �3< n< 1, the
system shows a self-similar evolution as shocks merge
to form increasingly massive objects separated by a typical
length, LðtÞ—the integral scale of turbulence—that grows

as LðtÞ � t2=ðnþ3Þ, while the shock mass function scales
as ln½nð>mÞ� � �mnþ3 at large masses [9,11,18,19]. In
spite of these common scalings, the range�3< n< 1 can
be further split into two classes, as shocks are dense for
�3< n<�1 but isolated for �1< n< 1 [11].
In higher dimensions, the situation gets more compli-

cated as several prescriptions for the matter distribution
(again in the inviscid limit) can be associated to the same
velocity field, governed by the Burgers equation. They
coincide over regular regions (i.e. outside of shocks) but
they can show significantly different behaviors on the
shock manifold. For instance, if one uses the standard
continuity equation mass clusters cannot fragment but
they can leave shock nodes and travel along the shock
manifold [20,21]. By contrast, if one uses a modified
continuity equation, associated with a ‘‘geometrical
model’’ for the matter distribution, thus introducing the
geometrical adhesion model (GAM), mass clusters are
always located on shock nodes but they do not necessarily
merge when they collide (in fact, collisions can redistribute
matter over a possibly different number of outgoing
clusters, while conserving the total momentum) [4,22].
The drawback of the prescription based on the standard
continuity equation is that the latter has to be numerically
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integrated over time depriving the knowledge of the
Hopf-Cole solution of the Burgers equation of much of
its interest. By contrast, the GAM extends the geometrical
structure of the Hopf-Cole solution to define an associated
matter distribution [4,7,22–24], through Legendre trans-
forms and convex hull constructions, so that both the
velocity and density fields can be derived at any time
through geometrical constructions. This is a very conve-
nient property, which allows faster numerical computa-
tions [7,25] as well as greater analytical insights [4,22].

In all cases, beyond 1D and for generic initial conditions
one has to rely on numerical experiments to obtain quanti-
tative results in those systems. The adhesion model
has actually been studied in previous numerical works
[7,26–28], in 1D, 2D, and 3D, using the Hopf-Cole
solution for the velocity field (however, it was not
always realized that one has to specifically complement
the velocity field construction to unambiguously define the
density field).

The goal of this article is to revisit this problem, in 1D
and 2D, with the use of a novel algorithm for the construc-
tion of the convex hull that is more efficient and more
robust for the construction of the convex hull triangulations
(see Sec. IV and Appendix C for details). We take advan-
tage of these simulations to investigate quantities that have
not been studied previously but that are of great interest
in a cosmological context. Thus, in addition to the mass
function of shock nodes (i.e. mass halos), we also consider
the probability distributions of the density contrast, within
spherical and cubic cells, the low-order moments of the
density distribution and the density power spectrum, for
which there exist specific predictions for both the GAM
and the 3D gravitational dynamics.

In particular, the reduced cumulants of the smoothed
density contrast can serve as both a test of the accuracy of
our numerical codes and a guide for comparison with the
results obtained for 3D gravitational clustering by N-body
codes simulating the dynamics of a pressureless self-
gravitating fluid. They are defined as

Sp ¼ h�p
Ric

h�2
Rip�1

; (1)

where �R is the filtered density field at scale R [more
precisely the filtered density-contrast field, with �ðxÞ ¼
ð�ðxÞ � ��Þ= ��]. They were shown in [29] to take a simple
form for a top hat filter and were initially derived for p ¼
3, 4, and then in [30] for all values of p, for the gravita-
tional dynamics in the large-scale limit. In d dimensions
we have,

R ! 1: S
grav
3 ! 6

7

�
5þ 2

d

�
� 3

d
ðnþ 3Þ: (2)

In the context of the adhesion model, because prior to shell
crossings the matter field follows the Zel’dovich approxi-
mation the reduced cumulant values take the form (the

result has been given for the 3D Zel’dovich approximation
in [31,32] and extended to the context of the adhesion
model and to other dimensions in [17]),

R ! 1: S3 ! 3

d
ðd� n� 2Þ; (3)

where n is the energy spectrum index defined in Eq. (31)
below. The result (3) only holds for n � d� 3, since for
larger n shell crossing keeps playing a role in the large-
scale limit [17]. The behavior of those quantities at small
scale is not fully understood. It has been argued that they
should reach a constant value (at least for power-law
spectra). This is the case in the so-called ‘‘hierarchical
clustering models’’ and it was partially checked in numeri-
cal simulations, see [33] where an explicit description of
the small-scale plateau is proposed. More precise motiva-
tions from first principles have been put forward although
it has never been proved explicitly that such a family of
solutions actually exists, and even less that it was relevant
in a cosmological context. The ‘‘stable-clustering ansatz’’
introduced in [34,35] was such an attempt, based on the
approximation that once objects have formed they fully
decouple from the dynamics and keep a constant mass and
physical size. This can also be set in a broader multifractal
description [36,37]. More generally, some physical con-
straints (such as the positivity of the density �) can be used
to obtain some information on the multifractal spectrum
whence on the statistical properties of the density field [38]
(for instance, the coefficients Sp can only grow or reach

a constant in a small-scale highly nonlinear regime).
However, there is no derivation of the precise form of the
multifractal spectrum either from systematic approaches
or well-controlled models. As described in this article,
the geometrical adhesion model offers the opportunity to
check the validity of large-scale limits such as (2) and (3),
while showing a nontrivial but well-understood small-
scale limit.
Another focus of this paper is the Press-Schechter for-

malism [39], which is widely used in cosmological large-
scale studies. Simulations of the formation of large-scale
structures in cosmology have indeed shown that for
Gaussian initial conditions, such as those studied here,
the mass function of halos defined by a given density
threshold (typically �= �� ¼ 200) is reasonably well de-
scribed by the Press-Schechter formula. This heuristic
approach states that the fraction of matter, Fð>MÞ, that
is enclosed within collapsed objects (infinitesimally thin
shocks in the present adhesion model) of mass larger than
M is given by the probability that, choosing a Lagrangian
point q at random, the mass M around this point has just
collapsed to a point at the time of interest if one assumes
spherical collapse dynamics. For Gaussian initial condi-
tions this reads as

FPSð>MÞ ¼
Z 1

�ðMÞ
d�0

�0 fPSð�0Þ (4)
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with (including the usual normalization factor 2)

fPSð�Þ ¼
ffiffiffiffi
2

�

s
�e��2=2: (5)

The value of �ðMÞ can be written as

�ðMÞ ¼ �c

�ðMÞ ; (6)

where �ðMÞ is the rms density fluctuation at scale M and
�c is determined by the dynamical evolution of the density
field. It is �c � 1:69 for 3D and �c � 1:47 for 2D, for the
gravitational dynamics. In the context of the Burgers equa-
tion, prior to caustic formation particles follow the linear
displacement field, which leads to �c ¼ d for d dimen-
sions. The factor 2, which we have inserted in Eq. (5) to
ensure the correct normalization to unity, is not accounted
for in this simple approach but can be using the random
walk approach (as originally shown in [40]) that (at least
partially) takes into account the cloud-in-cloud effects.
It also implies that at late time all matter points are
comprised in a halo, which is expected to be the case for
both the gravitational dynamics and the adhesion model.
Although 3D realistic cosmological numerical experiments
[41–43] show deviations from the simple Press-Schechter
model (4) and (5), the mass functions built by the gravita-
tional dynamics are still very well described by the scaling
(4), but with a slightly different function fð�Þ than (5). It
has been argued that those differences could be accounted
for by various refinements (ellipsoidal collapse [44],
colored noise [45], etc.) that all could be similarly
implemented in the GAM context. One of the aims of
this paper is therefore to test the mere validity of this
Press-Schechter scaling, at the level of the one-point
mass function, within the geometrical adhesion model,
which is better controlled and provides a much larger range
of masses than 3D gravitational simulations. This also
allows us to check (especially in 1D) the predictions that
can be obtained for the large-mass tail of the halo mass
function.

This article is organized as follows. In Sec. II, we recall
the Burgers equation and its Hopf-Cole solution for the
velocity field. Then, we describe the associated ‘‘geomet-
rical adhesion model,’’ which defines the matter distribu-
tion that we study here. We also present the power-law
Gaussian initial conditions that we focus on. They corre-
spond to the initial conditions that appear in the cosmo-
logical context, for the formation of large-scale structures
in the Universe, and they give rise to self-similar dynamics.
We briefly present in Sec. III our numerical results for the
1D case, where they can be checked with the help of the
known analytical results. The large dynamical range also
allows a precise test of scaling laws and asymptotic tails.
In Sec. IV, we discuss our results for the 2D case in greater
detail. After a brief description of our numerical algorithm,
we study the shock mass functions that we obtain and the

dependence of the low-mass and high-mass tails on the
slope of the initial power spectrum. Then, we present our
results for the density probability distributions and the
density power spectrum. Next, we briefly discuss in
Sec. V the case of separable initial conditions in arbitrary
dimensions, where exact results can be obtained. Finally,
we conclude in Sec. VI.
Note that this paper contains a few appendices that

describe the algorithms, compare them with previous nu-
merical studies, and present our detailed results for the 1D
and separable cases.
The reader who is mostly interested in our results and

the comparison with behaviors observed for 3D gravita-
tional clustering, may skip Sec. II, which is devoted to the
definition of the dynamics, and go directly to Sec. III.

II. BURGERS DYNAMICS
AND GEOMETRICAL MODEL

A. Equation of motion and Hopf-Cole solution
for the velocity field

We consider the d-dimensional Burgers equation [1] in
the inviscid limit (with d � 1),

@tuþ ðu � rÞu ¼ ��u; � ! 0þ; (7)

for the velocity field uðx; tÞ. As is well known, for curlfree
initial velocity fields the nonlinear Burgers Eq. (7) can be
solved through the Hopf-Cole transformation [46,47], by
making the change of variable c ðx; tÞ ¼ 2� ln�ðx; tÞ,
where c ðx; tÞ is the velocity potential defined by

u ðx; tÞ ¼ �rc : (8)

This yields the linear heat equation for�ðx; tÞ, which leads
to the solution

c ðx; tÞ ¼ 2� ln
Z dq

ð4��tÞd=2 exp

�
c 0ðqÞ
2�

� jx� qj2
4�t

�
:

(9)

Then, in the inviscid limit � ! 0þ, a steepest-descent
method gives [1,3]

c ðx; tÞ ¼ sup
q

�
c 0ðqÞ � jx� qj2

2t

�
: (10)

If there is no shock, the maximum in (10) is reached at a
unique point qðx; tÞ, which is the Lagrangian coordinate of
the particle that is located at the Eulerian position x at time
t [1,3] (hereafter, we note by the letter q the Lagrangian
coordinates, i.e. the initial positions at t ¼ 0 of particles,
and by the letter x the Eulerian coordinates at any time
t > 0). Moreover, this particle has kept its initial velocity,
and we have

u ðx; tÞ ¼ u0½qðx; tÞ� ¼ x� qðx; tÞ
t

: (11)

If there are several degenerate solutions to (10), we have
a shock at position x and the velocity is discontinuous
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[as seen from Eq. (11), as we move from one solution q� to
another one qþ when we go through x from one side of the
shock surface to the other side].

The solution (10) has a nice geometrical interpretation in
terms of paraboloids [1,3]. Thus, let us consider the family
of upward paraboloids P x;cðqÞ centered at x and of height

c, with a curvature radius t,

P x;cðqÞ ¼ jq� xj2
2t

þ c: (12)

Then, moving down P x;cðqÞ from c ¼ þ1, where the

paraboloid is everywhere well above the initial potential
c 0ðqÞ (this is possible for the initial conditions (26) below,
since we have jc 0ðqÞj � qð1�nÞ=2, which grows more
slowly than q2 at large distances), until it touches the
surface defined by c 0ðqÞ, the abscissa q of this first-
contact point is the Lagrangian coordinate qðx; tÞ. If first
contact occurs simultaneously at several points, there is a
shock at the Eulerian location x. One can build in this
manner the inverse Lagrangian map, x � qðx; tÞ.

B. Geometrical adhesion model for the density field:
Legendre conjugacy and convex hull

To the velocity field uðx; tÞ, defined by the Burgers
Eq. (7), we associate a density field �ðx; tÞ generated by
this dynamics, starting from a uniform density �0 at the
initial time t ¼ 0. The latter obeys the usual continuity
equation outside of shocks. However, along shock lines,
where the inviscid velocity field is discontinuous, it is
possible to define several prescriptions for the evolution
of the matter distribution in dimensions higher than 1. In
this article we use the prescription described in detail in
[22], where both the velocity and density fields are first
defined for finite � and the inviscid limit is taken on a par,
in a fashion which allows to derive the matter distribution
from a geometrical construction in terms of convex hulls.
In terms of the continuity equation, this corresponds to
adding a specific diffusive term that is proportional to �.
Then, this term vanishes in the inviscid limit outside of
shocks but it has a nontrivial nonzero limit along shocks
(just as the diffusive term in Eq. (7) has a nontrivial
inviscid limit, which prevents the formation of multi-
streaming flows in uðx; tÞ).

We now describe how the matter distribution is obtained
within this geometrical adhesion model. Let us first recall
that an alternative description of the Burgers dynamics
to the paraboloid interpretation (12) is provided by the
Lagrangian potential ’ðqÞ [3,7,22]. Thus, let us define
the ‘‘linear’’ Lagrangian potential ’Lðq; tÞ by

’Lðq; tÞ ¼ jqj2
2

� tc 0ðqÞ; (13)

so that in the linear regime the Lagrangian map, q � x, is
given by

x Lðq; tÞ ¼ @’L

@q
¼ qþ tu0ðqÞ: (14)

Thus, we recover the linear displacement field, xL � q ¼
tu0ðqÞ, which is valid before shocks appear, as seen in
Eq. (11) above. Next, introducing the function

Hðx; tÞ ¼ jxj2
2

þ tc ðx; tÞ; (15)

the maximum (10) can be written as the Legendre trans-
form

Hðx; tÞ ¼ sup
q

�
x � q� jqj2

2
þ tc 0ðqÞ

�
¼ Lx½’Lðq; tÞ�:

(16)

Here we used the standard definition of the Legendre-
Fenchel conjugate f�ðsÞ of a function fðxÞ,

f�ðsÞ 	 Ls½fðxÞ� ¼ sup
x
½s � x� fðxÞ�: (17)

Therefore, Eulerian quantities, such as the velocity field
uðx; tÞ, which can be expressed in terms of the velocity
potential c ðx; tÞ, whence of Hðx; tÞ, can be computed
through the Legendre transform (16). In particular, this
yields the inverse Lagrangian map, x � q, qðx; tÞ being
the point where the maximum in Eq. (10) or (16) is
reached.
In 1D, one can derive the direct Lagrangian map, q � x,

from this inverse map, x � q, using the fact that both
maps are monotonically increasing as particles cannot
cross. However, in higher dimensions this is no longer
the case and one must explicitly define the evolution of
the matter distribution. As explained in [22], within an
appropriate inviscid limit for the density field it is possible
to identify the ‘‘Lagrangian-Eulerian’’ mapping q $ x
with the Legendre conjugacy associated with Eq. (16).
Thus, one obtains the direct map, q � x, by ‘‘inverting’’
Eq. (16) through a second Legendre transform,

’ðq; tÞ 	 Lq½Hðx; tÞ� ¼ sup
x
½q � x�Hðx; tÞ�: (18)

From standard properties of the Legendre transform, this
only gives back the linear Lagrangian potential ’Lðq; tÞ of
Eq. (16) if the latter is convex, and in the general case it
gives its convex hull,

’ ¼ convð’LÞ: (19)

Then, q and x are Legendre-conjugate coordinates, and
they are given by

q ðx; tÞ ¼ @H

@x
; xðq; tÞ ¼ @’

@q
: (20)

Thus, both maps, qðxÞ and xðqÞ, derive from a convex
potential and we can define the density field from these
mappings by the conservation of matter [4,22,48],
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�ðx; tÞdx ¼ �0dq; (21)

which reads as

�ðxÞ
�0

¼ det

�
@q

@x

�
¼ det

�
@x

@q

��1
: (22)

Here we used the fact that both determinants are positive,
thanks to the convexity of HðxÞ and ’ðqÞ. Thus, the
‘‘Lagrangian-Eulerian’’ mapping q $ x (20) and the den-
sity field (22) define the geometrical adhesion model that
we study in this article.

Here we must note that it is possible to use other
prescriptions for the evolution of the distribution of matter.
For instance, one can use the standard continuity equation.
However, in this case one needs to numerically integrate
the continuity equation over all previous times, so that one
loses the advantages of the Hopf-Cole solution, which
allows to integrate the dynamics to obtain at once the
velocity field at any time through Eq. (10). By contrast,
within the approach studied here, the density field at any
time is fully determined by the Legendre transform (18),
that is, by the convex hull (19). Therefore, the nonlinear
dynamics has been reduced to a one-time geometrical
problem of convex analysis. In order to obtain the velocity
and density fields at time t it is sufficient to compute the
Legendre transforms (16) and (18), the latter being equiva-
lent to the direct computation of the convex hull (19). In
particular, there is no need to compute the evolution of the
system over previous times.

We must point out that, although different prescriptions
coincide in regular regions (outside of shocks), they can
lead to very different behaviors on the shock manifold.
Thus, it has been shown that if one uses the standard
continuity equation, limit trajectories are unique [20,21],
so that trajectories that pass through a point at a given time
coincide at all later times. Then, halos cannot fragment
(particles which have coalesced remain together forever)
but they can stop growing and leave shock nodes (while
remaining on the shock manifold). In contrast, as described
in detail in [22] (see also [4]), within the approach (20)
studied in this article halos can fragment in dimension 2 or
higher. More precisely, in 2D the matter within shock
nodes is redistributed through only two kinds of events,
‘‘(2 ! 2) flips’’ and ‘‘(3 ! 1) mergings’’. In the first case,
2 halos collide and give rise to 2 new halos, whereas in the
second case, 3 halos collide to form a single object. In each
case there is a redistribution of matter but the total mo-
mentum is conserved. In 3D there are (2 ! 3), (3 ! 2),
and (4 ! 1) events.

On the other hand, as noticed above, in 1D there are no
ambiguities as the map qðxÞ is sufficient to build xðqÞ, and
all prescriptions coincide (in the inviscid limit).

The ‘‘geometrical model’’ defined by the Legendre con-
jugacy (16)–(18) leads to specific tessellations of the
Lagrangian q space and the Eulerian x space [4,22,48].
More precisely, the Eulerian-space tessellation is fully

defined by the Hopf-Cole solution (10), and for the
power-law initial conditions (26) that we consider in this
article one obtains a Voronoi-like tessellation. Eulerian
cells correspond to empty regions (i.e. voids), which are
associated to a single Lagrangian coordinate q as for all
points x in a cell the maximum in (10) is reached for the
same value of q. The boundaries of these cells correspond
to shock lines in 2D (or shock surfaces in 3D) where the
velocity field is discontinuous, and are reminiscent of the
filaments and sheets observed in the 2D and 3D gravita-
tional dynamics. However, for the power-law initial con-
ditions (26) all the mass is contained within pointlike
clusters located at the summits of these Voronoi-like dia-
grams. Moreover, thanks to the geometrical construction
that underlies the ‘‘geometrical model’’ (20), within this
approach this Voronoi-like tessellation is associated in a
unique fashion to a dual Delaunay-like triangulation in
Lagrangian space. Thus, each shock node is associated
with a triangle in 2D (a tetrahedron in 3D) of this
q-space triangulation, which gives the mass and the initial
location of the particles that make up this mass cluster.
Then, as time grows these tessellations evolve in a specific
manner, so that these dual constructions remain valid at all
times. This implies for instance in 2D that a collision
between two shock nodes can only give rise to two new
shock nodes, and not to a single larger mass cluster,
because two triangles cannot merge to build a single
larger triangle (this requires three triangles embedded in
a larger one, which corresponds to a three-body collision in
Eulerian space) [4,22].
Here we may note that standard Voronoi tessellations

have also been used in cosmology to study the large-scale
structures of the Universe, as they provide a model of these
large-scale structures which can reproduce some properties
of the observed galaxy distribution [49–51]. The facts
that the Burgers dynamics leads to generalized Voronoi
cells as described above, see also [48], and that this
model provides a good description of gravitational cluster-
ing at large scales in cosmology [6,7,27], provide a further
motivation for the use of Voronoi tessellations in this
context.
The fact that within the approach defined by the ‘‘geo-

metrical model’’ the system can be integrated is obviously
a great simplification. This allows both to gain a better
understanding of its properties, taking advantage of this
geometrical interpretation [22], and to devise efficient
numerical algorithms. This has already been investigated
in previous works, such as [7]. These nice properties are
the main motivations for the use of the mapping (20),
rather than alternative prescriptions which keep the stan-
dard continuity equation even at shock locations but cannot
be integrated in a similar fashion. Moreover, as we shall
describe in this article (see also [7,26,27]) the density fields
generated by this ‘‘geometrical model’’ show many prop-
erties that are similar to those observed in the large-scale
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structures built by the gravitational dynamics that is rele-
vant in cosmology.

C. Initial conditions

Since there is no external forcing in Eq. (7), the stochas-
ticity arises from the random initial velocity u0ðxÞ, which
we take to be Gaussian and isotropic, whence hui ¼ 0 by
symmetry. Moreover, as is well known [3], if the initial
velocity is potential, u0 ¼ �rc 0, it remains so forever,
so that the velocity field is fully defined by its potential
c ðx; tÞ, or by its divergence �ðx; tÞ, through Eq. (8) and

� ¼ �r � u ¼ �c : (23)

Normalizing Fourier transforms as

�ðxÞ ¼
Z

dkeik:x ~�ðkÞ; (24)

the initial divergence �0 is taken as Gaussian, homogene-
ous, and isotropic, so that it is fully described by its power
spectrum P�0ðkÞ with
h~�0i ¼ 0; h~�0ðk1Þ~�0ðk2Þi ¼ �Dðk1 þ k2ÞP�0ðk1Þ;

(25)

where we note �D the Dirac distribution. In this article we
focus on the power-law initial power spectra,

P�0ðkÞ ¼
D

ð2�Þd k
nþ3�d with � 3< n< 1; (26)

which defines the normalizationD of the initial conditions.
Thus, the initial conditions obey the scaling laws

� > 0: ~�0ð��1kÞ ¼law�d�ðnþ3Þ=2 ~�0ðkÞ; (27)

�0ð�xÞ ¼law��ðnþ3Þ=2�0ðxÞ; (28)

where ‘‘¼law’’ means that both sides have the same statis-
tical properties. This means that there is no preferred scale
in the system and for �3< n< 1 the Burgers dynamics
will generate a self-similar evolution [9,17]. This is why
we only consider the range �3< n< 1 in this article. For
the initial velocity and potential this yields for any � > 0,

u 0ð�xÞ ¼law��ðnþ1Þ=2u0ðxÞ; c 0ð�xÞ ¼law�ð1�nÞ=2c 0ðxÞ:
(29)

Since we have ~uðk; tÞ ¼ iðk=k2Þ~�ðk; tÞ, the initial energy
spectrum is a power law,

h~u0ðk1Þ � ~u0ðk2Þi ¼ �Dðk1 þ k2ÞE0ðk1Þ; (30)

with

E0ðkÞ ¼ k�2P�0ðkÞ ¼
D

ð2�Þd k
nþ1�d; (31)

whereas the initial velocity potential power spectrum
reads as

h ~c 0ðk1Þ ~c 0ðk2Þi ¼ �Dðk1 þ k2ÞPc 0
ðk1Þ; (32)

with

Pc 0
ðkÞ ¼ D

ð2�Þd k
n�1�d: (33)

1. ‘‘IR class’’: �3< n<�1

For �3< n<�1 the initial velocity field is a continu-
ous function but it is not homogeneous and only shows
homogeneous increments (if we do not add an infrared
cutoff). For instance, in the case fn ¼ �2; d ¼ 1g it is a
Brownian motion. Then, one may choose a reference point,
such as the origin x0 ¼ 0, with u0ðx0Þ ¼ 0, and define the
initial velocity in real space as

u 0ðxÞ ¼
Z

dkðeik:x � eik:x0Þ~u0ðkÞ; for � 3<n<�1:

(34)

Alternatively, one may add an infrared cutoff and focus on
much smaller scales (i.e. push this cutoff to infinity in final
results). In the numerical simulations below we choose this
second alternative as we always define our system on a
finite box with periodic boundary conditions. In any case,
the second-order velocity structure function Su0 does not

suffer from this IR divergence, and it reads as

Su0ðx1;x2Þ ¼ hju0ðx1Þ � u0ðx2Þj2i ¼ DInx
�n�1; (35)

where x ¼ jx2 � x1j. Here we used Eq. (31) and the factor
In is given by

In ¼ 2ð2�Þ�d=2
Z 1

0
dkkn

�
21�d=2

�ðd=2Þ � k1�d=2Jd=2�1ðkÞ
�
:

(36)

This reads as

d ¼ 1: In ¼ 2 sinðn�=2Þ
�ð�nÞ sin½ðnþ 1Þ�� ; (37)

d ¼ 2: In ¼ 2nþ1 sinðn�=2Þ
�½ð1� nÞ=2�2 sin½ðnþ 1Þ�� : (38)

Note that In is only defined for�3< n<�1 as it diverges
for n � �1.

2. ‘‘UV class’’: �1< n< 1

For �1< n< 1 the initial velocity is homogeneous but
it is no longer a continuous function (if we do not add an
ultraviolet cutoff). For instance, in the case fn ¼ 0; d ¼ 1g
it is a white noise. Thus, the initial one-point velocity
variance, hju0j2i ¼

R
dkE0ðkÞ, shows an UV divergence.

Then, it can be convenient to consider the initial velocity
potential c 0, which is continuous (but not homogeneous),
rather than the initial velocity u0. Its initial second-order
structure function reads as
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Sc 0
ðx1;x2Þ ¼ h½c 0ðx1Þ � c 0ðx2Þ�2i ¼ DIn�2x

�nþ1;

(39)

where the coefficient In�2 is again given by Eqs. (36)–(38).

D. Density contrast and linear mode

In order to follow the evolution of the matter distribution
we define the density contrast, �ðx; tÞ, by

�ðx; tÞ ¼ �ðx; tÞ � �0

�0

: (40)

Then, if we linearize the equation of motion (7) and the
continuity equation (which holds before the formation of
shocks) we obtain in the inviscid limit, � ! 0þ,

~� Lðk; tÞ ¼ ~�0ðkÞ; ~�Lðk; tÞ ¼ t~�0ðkÞ; (41)

where the subscript L stands for the linear mode. Then,
when we study the system at a finite time t > 0, we can as
well define the initial conditions by the linear density field
�Lðx; tÞ, which is Gaussian, homogeneous, and isotropic,
with a power spectrum

P�L
ðk; tÞ ¼ t2P�0ðkÞ ¼

D

ð2�Þd t
2knþ3�d; (42)

and an equal-time two-point correlation

C�L
ðx1;x2Þ ¼ h�Lðx1; tÞ�Lðx2; tÞi

¼ ð2�Þd=2
Z 1

0
dkkd�1

Jd=2�1ðkxÞ
ðkxÞd=2�1

P�L
ðkÞ

/ t2x�n�3; (43)

where x ¼ jx2 � x1j. Note that for any n >�3 the
initial density field is homogeneous, even though the
initial velocity only shows homogeneous increments
when �3< n<�1.

Since we shall study the statistical properties of the
density field smoothed over arbitrary scales x, it is conve-
nient to introduce the linear density contrast �Lr smoothed
over spherical cells of radius r,

�Lr ¼
Z
V

dx

V
�LðxÞ ¼

Z
dk ~�LðkÞWðkrÞ; (44)

with

WðkrÞ ¼
Z
V

dx

V
eik�x ¼ 2d=2�ð1þ d=2Þ Jd=2ðkrÞðkrÞd=2 : (45)

Its variance is given by

�2ðrÞ ¼ h�2
Lri ¼

2�d=2

�ðd=2Þ
Z 1

0
dkkd�1P�L

ðkÞWðkrÞ2: (46)

Note that �2 is only finite over the range �3< n<�1 if
d ¼ 1 and over�3< n< 0 if d ¼ 2. For higher n it shows
a UV divergence.

E. Self-similarity

For the initial conditions (26) that we consider in this
paper, the rescaled initial velocity potential c 0ð�qÞ has

the same probability distribution as �ð1�nÞ=2c 0ðqÞ for any
� > 0, when we normalize by u0ð0Þ ¼ 0 and c 0ð0Þ ¼ 0,
as seen in Eq. (29). Then, the explicit solution (10) gives
the scaling laws

c ðx; tÞ ¼law tð1�nÞ=ðnþ3Þc ðt�2=ðnþ3Þx; 1Þ; (47)

u ðx; tÞ ¼law tð�n�1Þ=ðnþ3Þuðt�2=ðnþ3Þx; 1Þ; (48)

q ðx; tÞ ¼law t2=ðnþ3Þqðt�2=ðnþ3Þx; 1Þ: (49)

This means that the dynamics is self-similar: a rescaling of
time is statistically equivalent to a rescaling of distances, as

� > 0: t ! �t; x ! �2=ðnþ3Þx: (50)

Thus, the system displays a hierarchical evolution as in-
creasingly larger scales turn nonlinear. More precisely,
since in the inviscid limit there is no preferred scale for
the power-law initial conditions (26), the only character-
istic scale at a given time t is the so-called integral scale
of turbulence, LðtÞ, which is generated by the Burgers
dynamics and grows with time as in (50). Hereafter we
choose the normalization

LðtÞ ¼ ð2Dt2Þ1=ðnþ3Þ; (51)

where the constant D was defined in Eq. (26). This scale
measures the typical distance between shocks, and it sep-
arates the large-scale quasi-linear regime, where the energy
spectrum and the density power spectrum keep their initial
power-law forms, (31) and (42), from the small-scale non-
linear regime, which is governed by shocks and pointlike
masses, where the density power spectrum reaches the
universal white-noise behavior (i.e. P�ðk; tÞ has a finite
limit for k 
 1=LðtÞ).
This self-similar evolution only holds for n < 1, so that

jc 0ðqÞj grows at larger scales, see for instance Eq. (29),
and n >�3, so that jc 0ðqÞj grows more slowly than q2,
and the solution (10) is well defined [9]. This is the range
that we consider in this paper. The persistence of the
initial power law at low k for the energy spectrum,
Eðk; tÞ / knþ1�d, that holds in such cases, is also called
the ‘‘principle of permanence of large eddies’’ [9].
In order to express the scaling law (50) it is convenient to

introduce the dimensionless scaling variables

Q ¼ q

LðtÞ ; X¼ x

LðtÞ ; U¼ tu

LðtÞ ; M¼ m

�0LðtÞd
:

(52)

Then, equal-time statistical quantities (such as correlations
or probability distributions) written in terms of these var-
iables no longer depend on time and the scale X ¼ 1 is the
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characteristic scale of the system, associated with the
transition from the linear to nonlinear regime. In particular,
the variance of the smoothed linear density contrast intro-
duced in Eq. (46) writes as

d ¼ 1; �3< n<�1: �2ðX=2Þ ¼ In
2
X�n�3; (53)

where In was given in Eq. (37) and X ¼ 2R (i.e. X is the
length of the 1D interval and R its radius), and

d ¼ 2; �3< n< 0: �2ðRÞ ¼ KnR
�n�3 (54)

with

d¼ 2; �3<n< 0: Kn ¼ �ð�n=2Þ�½ðnþ 3Þ=2�
�3=2ð1� nÞ�½ð1� nÞ=2�2 :

(55)

On the other hand, in terms of the dimensionless scaling
wave number K and power spectra PðKÞ defined as

K ¼ LðtÞk; PðKÞ ¼ LðtÞ�dPðk; tÞ; (56)

the linear-regime density and velocity power spectra intro-
duced in Eqs. (42) and (30) read as

P�L
ðKÞ ¼ 1

2ð2�Þd K
nþ3�d; E0ðKÞ ¼ 1

2ð2�Þd K
nþ1�d:

(57)

III. THE 1D CASE AS ATEST BENCH

Our numerical implementation follows the algorithms
described in Appendix A. At any time t, the velocity field
uðx; tÞ and its potential c ðx; tÞ are obtained from the Hopf-
Cole solution (16). This also gives the inverse Lagrangian
map, x � q, which can be directly inverted to obtain the
direct Lagrangian map, q � x, because both mappings are
monotonically increasing. Then, the mapping q � x fully
determines the matter distribution. In order to compute the
Legendre transforms associated with Eq. (16) we introduce
the algorithm devised in [52], which first builds the convex
envelope ’ before taking the Legendre transform. This
allows us to obtain the velocity and density fields with an
optimal running time that scales as OðNÞ, where N is the
number of grid points used to set up the initial conditions.
By contrast, previous works [7,25] used a slowerOðN lnNÞ
algorithm. We also take advantage of the fact that for the
1D case numerous exact results are known allowing precise
tests of the convergence properties of the codes.

A. Shock mass function and large-mass tail

In Fig. 1 we show the shock mass function obtained for
different values of the index n. Its shape is known exactly
for n ¼ 0 and n ¼ �2 and the numerical results are shown
to be in exact agreement with the theoretical predictions
(B1) and (B2).

In order to measure the exponent that governs the
high-mass tail, we show in Fig. 2 the derivative
�d ln½NðMÞ�=dðMnþ3Þ. As shown in [18,53], the shock
mass function obeys the high-mass asymptotic behavior

FIG. 1 (color online). The shock mass functions NðMÞ ob-
tained for several indices n. We plot the product M� NðMÞ,
in terms of the dimensionless scaling variables (52), to distin-
guish on the same plot both low-mass and high-mass regimes.
The small error bars show the statistical error (measured
from the scatter between different realizations). For n ¼ 0 and
n ¼ �2 the dashed lines (which can hardly be distinguished
from the numerical results) show the exact analytical results (B1)
and (B2).

FIG. 2 (color online). The derivative �d ln½NðMÞ�=dðMnþ3Þ
at high mass, for several values of n. For n ¼ �2, �2:5, and 0,
the horizontal dashed lines show the asymptotic results (59) and
(60). For n ¼ �2 we also show the exact derivative obtained
from Eq. (B2) [curved dashed line]. For n ¼ �1:5 the dot-
dashed line is the value obtained from Eq. (59), which is only
approximate in this case.
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� 3< n< 1; M ! 1: lnNðMÞ � �Mnþ3: (58)

For �3< n � �2 it is possible to obtain the numerical
prefactor using a saddle-point approach [17], which gives

� 3<n��2; M!1: lnNðMÞ ��Mnþ3

In
; (59)

where In was defined in Eq. (37). One can check that this
agrees with the exact result (B2) obtained for n ¼ �2 by
different methods [15,16]. For n >�2 the relevant saddle
point develops shocks and makes the analysis more com-
plex, although for n ¼ 0 it is possible to obtain analytical
results and to recover the standard theoretical prediction
(B1) [12,13] (using our normalizations),

n ¼ 0; M ! 1: lnNðMÞ � �M3

12
: (60)

We can check in Fig. 2 that each numerical curve reaches
a constant asymptote at high mass, in agreement with the
scaling (58). Moreover, for n ¼ �2:5, �2, and 0, it is
consistent with the analytical results (59) and (60).

Since these results can be recovered by a saddle-point
approach [17], which also applies to the gravitational case,
this suggests that the large-mass tails of the halo mass
functions can also be exactly obtained for 3D gravitational
clustering, as explained in [54]. However, as seen in Fig. 2,
the rate of convergence to the asymptotic regime (58) may
be rather slow, especially for low n [but note that the
deviations from the asymptotic behavior (58) are magni-
fied in Fig. 2 and would appear much smaller in Fig. 1].

More precise comparisons regarding the high-mass or
low-mass tails can be found in the Appendix B.

B. Press-Schechter like scaling

With these results we are in a position to test the Press
and Schechter formalism [39] recalled in the introduction.
For the Gaussian initial conditions (26) we have for �ðMÞ,

� 3< n<�1: �ðMÞ ¼
ffiffiffiffiffi
2

In

s
Mðnþ3Þ=2; (61)

which leads to,

� 3< n<�1: NPSðMÞ ¼ ðnþ 3Þffiffiffiffiffiffiffiffi
�In

p Mðn�1Þ=2e�Mnþ3=In :

(62)

As noticed in [7], it happens that Eq. (62) actually recovers
both the known high-mass and low-mass exponents of
Eqs. (58) and (B3). In fact, a saddle-point approach [17]
shows that it gives the exact high-mass asymptotic behav-
ior (59) for �3< n � �2. This is because in the inviscid
limit (i) particles move freely until shell-crossing in the
Burgers dynamics, and therefore follow the linear displace-
ment field, and (ii) shell crossing only occurs for n >�2 in

the saddle point that governs the high-mass tail (58). For
n ¼ �2, as noticed in [16], the Press-Schechter mass
function (62) is actually exact as shown by the comparison
with the exact Eq. (B2) (I�2 ¼ 1). For n >�2 the factor In
in the exponential (62) no longer applies, as shocks come
into play (note that In actually diverges for n � �1), but
the exponent is still valid as seen in (58).
In order to test whether the scaling with the reduced

variable � also works for the geometrical adhesion model,
we plot in Fig. 3 the function fð�Þ defined from the shock
mass function as

fð�Þ ¼ MNðMÞ dM

d ln�
¼ 2M2

nþ 3
NðMÞ; (63)

where we used Eq. (61).
We can see that the curves obtained for n ¼ �1:5, �2,

and �2:5, are almost identical, which shows that the scal-
ing (63) is a very good approximation over this range,
�2:5 � n � �1:5, even though for �2< n<�1 the nu-
merical factor in the exponential cutoff must show a weak
dependence on n as explained above. In addition, since for
n ¼ �2 the function fð�Þ defined by Eq. (63) coincides
with the Press-Schechter model (5), this implies that the
latter is a very good approximation for this range of in-
dices, �2:5 � n � �1:5. Since for n � �1 the factor In
diverges we can no longer use Eq. (6); this also shows that
the scaling (63) can only be approximate. However, we
display in Fig. 3 the curve obtained for n ¼ 0 by making
the change I0 ! 12 in Eq. (6), so as to recover the exact
high-mass tail (60). We can see that this gives a function
fð�Þ that remains close to the Press-Schechter model (5),

FIG. 3 (color online). The shock mass function in terms of
the scaling variable � of Eq. (6), as defined by Eq. (63). For
n ¼ �1:5,�2, and�2:5, the coefficient In in Eq. (6) is given by
Eq. (37), but for n ¼ 0 (where I0 would diverge) it is replaced by
I0 ! 12. For n ¼ �2 the exact curve fð�Þ happens to match the
Press-Schechter model (5).
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as could be expected from the fact that the latter agrees
with both the exact low-mass slope (B3) and the high-mass
cutoff, although a noticeable deviation can be seen around
the peak at �� 1. Therefore, it appears that the scaling
(63) provides a reasonable description of the shock mass
function for all n, provided one uses the appropriate nor-
malization in the M � � relation (6).

C. Density field

In Appendix B, we further show the behavior of the one-
point probability distribution functions of the smoothed
density, and their low-order cumulants, and compare
them with known results whenever possible. Those tests
are successfully passed. It is to be noted that those quan-
tities show behaviors in qualitative agreement with what
is expected for the gravitational dynamics, in both the low
variance regime and the large variance regime, although
not necessarily for the very same reasons.

In particular, we can check in Fig. 16 that at large scale
the reduced cumulants Sp, defined by Eq. (B15) [or the

equivalent Eq. (1)], agree with the analytical predictions
(B16) and (B17) [whence with Eq. (3) with d ¼ 1], for
n � �2 (this upper boundary is due to strong shell-
crossing effects for n >�1, which are beyond the
reach of perturbation theory). This large-scale behavior
can be analyzed in the same terms as for the 3D gravita-
tional dynamics, through perturbation theory or saddle-
point approaches, and both systems are similar in this
respect.

By contrast, at small scale the universal flat plateau
exhibited by the reduced cumulants is a direct consequence
of the formation of pointlike structures in the GAM. For
the same reason, the density power spectrum (and also
poly-spectra, although we do not explicitly show it here)
precisely exhibits a universal k0 tail in the high-k limit, see
Fig. 17, which is characteristic of the fact that formed
objects are pointlike. This is not expected for the gravita-
tional dynamics as the small-scale behavior of the matter
spectrum, and of the reduced cumulants Sp, depends on the

matter profile within objects [38,55]. Then, the ratios Sp do

not seem to reach constant asymptotes at small scale [56],
even though their scale-dependence is very weak.
Moreover, the ‘‘stable-clustering ansatz’’ introduced in
[34,35], which would predict constant asymptotes (and
fares reasonably well), is not based on such universal
singularities but on very different arguments on the decou-
pling of collapsed halos, so that the high-k slope of the
power spectrum depends on n. Thus, although both dy-
namics show partly similar behaviors at small scales, in
this regime the correspondence is not exact and can be due
to different physical processes. In spite of these limitations,
some key statistical quantities still show similar behaviors
at small scales, such as the mass function and the proba-
bility distribution function of the smoothed density de-
scribed in Appendix B. Therefore, with some care the

geometrical adhesion model could still prove to be a
useful tool to understand processes or to test approxi-
mation schemes encountered within the 3D gravitational
dynamics.

IV. TWO-DIMENSIONAL DYNAMICS

We now consider the two-dimensional case, d ¼ 2.
Our numerical implementation follows the numerical
algorithms described in Appendix C.
As in the 1D case, in Eulerian space the velocity field

uðx; tÞ and its potential c ðx; tÞ are again obtained from the
Hopf-Cole solution (16). Since 2D Legendre transforms
can be obtained from two successive 1D partial Legendre
transforms, we again use the algorithm of Lucet [52], and
we obtain an optimal running time that is linear over the
number of initial grid points, Ntot ¼ N2.
The main difficulty that arises in 2D, and higher dimen-

sions, is that it is no longer possible to read the direct
Lagrangian map, q � x, whence the matter distribution,
from the ‘‘inverse’’ Lagrangian map, x � q. As recalled in
Sec. II B, within the geometrical adhesion model this non-
trivial ‘‘inversion’’ is performed through the second
Legendre transform (18), or equivalently through the con-
vex hull (19). Taking this Legendre transform on a grid, as
in some previous works, would allow us to obtain an
approximation of the matter distribution on such a grid.
Then, using the same algorithm as for the first Legendre
transform (16) we would reach an optimal running time
OðNtot ¼ N2Þ. However, as explained in Appendix C 2,
this procedure artificially splits large voids into smaller
voids and introduces spurious matter concentrations.
Therefore, in this article we prefer to exactly compute
the convex hull (19), without introducing any Eulerian
grid at time t. Thus, once the initial conditions are
given on a grid, we exactly solve the dynamics and we
compute the exact Lagrangian and Eulerian-space tessel-
lations, which have been discussed in detail in [22]. In
particular, the density peaks are not restricted to a prede-
fined Eulerian grid.
Of course, the computation of the exact convex hull ’ is

a much more difficult problem than the computation of
the 2D Legendre transform on a grid. Indeed, whereas the
latter could be reduced to 1D problems, as explained
above, the former is a standard problem of 3D computa-
tional geometry (since ’ðqÞ is embedded in 3D). As de-
scribed in Appendices C 2 and C 4,we implement the 3D
divide-and-conquer algorithm devised by Chan [57]. This
recursive algorithm allows us to reach an optimal running
timeOðNtot lnNtotÞ. (This is slower than the computation of
the 2D Legendre transform on a grid, because both prob-
lems do not have the same complexity, and the convex hull
contains more information.)
We discuss our numerical algorithms in greater detail in

Appendix C, in particular, we compare them with previous
numerical studies in Appendix C 3.
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A. Shock mass function

We show in Fig. 4 the shock mass functions obtained
in the 2D case (more precisely we plot the product
M� NðMÞ). Thus, NðMÞdM is again the mean number
of shocks of mass in the range ½M;Mþ dM� within a unit
volume. As for the 1D case shown in Fig. 1, we can clearly
see the power-law tails at low mass and the exponential-
like cutoffs at high mass, especially for n � �1:5. For
n ¼ �2 and n ¼ �2:5 where the low-mass tail grows
faster than 1=M it is more difficult to distinguish
the low-mass asymptote from the high-mass falloff.
Moreover, one can expect the convergence to the low and
high-mass asymptotic behaviors to be slower for lower n if
the scaling in terms of the Press-Schechter variable �
defined as in Eq. (6) is still a good approximation. In
agreement with previous works [7], we can check that, as
for the 1D case, the shock mass function grows more
slowly than 1=M if �1< n< 1 and faster than 1=M if
�3< n<�1. Therefore, the ‘‘UV class,’’ �1< n< 1,
again corresponds to isolated shocks, which are in finite
number per unit volume, whereas the ‘‘IR class,�3< n<
�1, again corresponds to dense shocks, which are in
infinite number per unit volume. This agrees with the study
of the associated Lagrangian and Eulerian-space tessella-
tions described in [22].

For�3< n � �1 it is again possible to obtain the high-
mass cutoff of the shock mass function [17], which now
reads as

� 3< n � �1;

M ! 1: lnNðMÞ � � 2

Kn

��ðnþ3Þ=2Mðnþ3Þ=2;
(64)

where the factor Kn was defined in Eq. (55). For higher n
the exponent ðnþ 3Þ=2 is expected to remain valid, but

shocks should modify the numerical prefactor. Note
that the analytical result (64) now extends up to
n ¼ �1, instead of n ¼ �2 in 1D. Indeed, in the general
d-dimensional case, the overdense saddle point associated
with this high-mass tail is only affected by shocks for
n > d� 3. Unfortunately, the mass range of the numerical
computations is too small to see the convergence to the
asymptotic behavior (64), although they are consistent with

the scaling Mðnþ3Þ=2.
At low mass, previous numerical works and heuristic

arguments [7] suggest that the 1D power-law tail (B3)
remains valid, with the same exponent ðn� 1Þ=2.
As in Fig. 13, we plot in Fig. 5 the derivative
�d ln½NðMÞ�=d lnðMÞ. We can see that our numerical re-
sults are consistent with Eq. (B3), although the numerical
accuracy is not sufficient to provide a precise measure of
the exponent (we actually get slightly higher values than
ð1� nÞ=2, but this might be due to logarithmic prefactors
or to the fact that the asymptotic regime is barely reached
at these mass scales). As already noticed in Fig. 4, the
transition through the characteristic exponent NðMÞ �
M�1, which marks the divide between dense and isolated
shocks, again appears to take place at n ¼ �1.
Let us now investigate the Press-Schechter like scaling

(4). In dimension d the spherical collapse relates the linear
density contrast �L of a spherical region to its nonlinear
density � through [17]

� ¼ �0

�
1� �L

d

��d
: (65)

Therefore, in 2D complete collapse to a point is achieved at
�L ¼ 2 and the variable � of Eq. (6) is now defined as

d ¼ 2: �ðMÞ ¼ 2

�ðMÞ : (66)

FIG. 4 (color online). The product M� NðMÞ, where NðMÞ is
the shock mass function in the 2D case, for several n.

FIG. 5 (color online). The derivative �d ln½NðMÞ�=d lnðMÞ at
low mass. The horizontal dashed lines are the asymptotic be-
havior (B3).
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Then, the Press-Schechter model [39] still reads as Eqs. (4)
and (5). This now yields

d ¼ 2; �3< n< 0: � ¼ 2ffiffiffiffiffiffi
Kn

p ��ðnþ3Þ=4Mðnþ3Þ=4;

(67)

where Kn was defined in (55), and

� 3<n< 0: NPSðMÞ
¼ nþ 3ffiffiffiffiffiffiffiffiffi

2Kn

p ��ðnþ5Þ=4Mðn�5Þ=4 � e�2Mðnþ3Þ=2=ðKn�
ðnþ3Þ=2Þ: (68)

Thus, although the Press-Schechter prediction (68) recov-
ers the high-mass cutoff for �3< n � �1, for the same
reasons as in 1D, it does not reproduce the low-mass tail
shown in Fig. 5, which was consistent with Eq. (B3). This
discrepancy was already noticed in previous numerical
works [7]. Nevertheless, it remains interesting to see
whether a scaling of the form (63) still provides a good
approximation, albeit with a different function fð�Þ than
the Press-Schechter model (5). Thus, using Eq. (67), we
now define fð�Þ as

fð�Þ ¼ MNðMÞ dM

d ln�
¼ 4M2

nþ 3
NðMÞ; (69)

and we plot in Fig. 6 the functions obtained for n � �0:5.
We can see that the scaling by the variable � again provides
a reasonable description of the dependence on n of
the shock mass function, although there remains a weak
dependence on n. In particular, the low-mass exponent
ðn� 1Þ=2 of Eq. (B3) corresponds to the universal low-�
behavior fð�Þ / �2. Thus, even though the linear low-�
slope of Eq. (5) clearly fails, as seen in Fig. 6, a single
quadratic slope, / �2, appears to match all mass functions,

which was not obvious a priori. However, its normalization
shows a weak dependence on n. At high mass the different
curves are very close, in agreement with (64) [but prefac-
tors are expected to depend on n], except for the case
n ¼ �0:5 which falls somewhat below. This is expected
from the constraint in Eq. (64), as for n >�1 shocks
modify the normalization of this high-mass asymptote.
Note that the range of masses shown in Fig. 6 spans 4

orders of magnitude in terms of the reduced variable �,
whereas current cosmological simulations of 3D gravita-
tional clustering typically cover the range 0:3< �< 4:2
[43,58], that is only 1 order of magnitude. This means that
the asymptotic low-mass and high-mass tails are not really
probed by current 3D gravitational simulations. In particu-
lar, they cannot measure the exponent of the low-� tail. For
the geometrical adhesion model, if the low-mass power-
law tails (B3) remain valid in higher dimensions, we
actually obtain fð�Þ � �d at low � (with again no further
dependence on n). This agrees with the results described
above in 1D and 2D, as well as with the separable case in
any dimension discussed in Sec. V below, see Eq. (79).
Current cosmological simulations cannot discriminate be-
tween such behaviors in 3D, but it would be interesting to
check in future works whether gravitational clustering also
gives rise to such a strong dependence on dimension, in
terms of the reduced variable �. As seen in Fig. 6 for the
case of the geometrical adhesion model, such strong vio-
lations of the low-mass slope predicted by the simple
Press-Schechter prescription do not necessarily imply
strong violations of the Press-Schechter scaling itself.
This is another example of the benefits that can be

obtained by studying dynamics such as this geometrical
adhesion model, which share many properties with the
gravitational dynamics and show complex nonlinear be-
haviors while being simple enough to provide well con-
trolled analytical and numerical analysis. They provide
nontrivial explicit examples that can serve as a guide, to
understand general properties or to confirm/rule out simple
expectations.

B. Density distribution

We now consider the statistical properties of the
smoothed density field. In 2D we can study the probability
distribution function, PRð�Þ or PXð�Þ, of the overdensity �
within circular cells of radius r or within squares of size x,

� ¼ m

�0�r
2
¼ M

�R2
or � ¼ m

�0x
2
¼ M

X2
: (70)

We show both probability distributions in Fig. 7 for cells of
the same area, that is, �R2 ¼ X2. As expected, both dis-
tributions are close although we can distinguish modest
quantitative deviations, especially in the low-density tails.
We can see that we recover the qualitative features
obtained in Fig. 14 for the 1D case. For �3< n<�1,
the probability distributions PRð�Þ and PXð�Þ show both

FIG. 6 (color online). The shock mass function in terms of the
scaling variable � of Eq. (66), as defined by Eq. (69). The dotted
line labeled ‘‘PS’’ is the Press-Schechter model (5).
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high-density and low-density exponential-like cutoffs,
whereas for �1< n< 1 they show a low-density power-
law tail. Moreover, for �1< n< 1 shock nodes are again
isolated and in finite number, so that there is an additional
Dirac contribution of the form P0

R�Dð�Þ orP0
X�Dð�Þ due to

empty cells.
At large scales we recover for �3< n � �1 the

Gaussian distribution associated with the linear regime
[17],

� 3< n � �1;

R ! 1: lnPRð�Þ � �2½�ðnþ1Þ=4 � �ðnþ3Þ=4�2=�2ðRÞ

� � 2Rnþ3

Kn

½�ðnþ1Þ=4 � �ðnþ3Þ=4�2: (71)

The asymptotic behavior (71) holds for any finite � if
�3< n � �2, and only above a low-density threshold

��, with 0<�� < 1, if �2< n � �1 (e.g., for
n ¼ �1 we have �� ¼ 1=4). Again, for �3< n � �1

where typical density fluctuations are of order j�� 1j �
� / R�ðnþ3Þ=2, we can expand the argument around � ¼ 1
to recover the linear-regime Gaussian

� 3< n � �1; R ! 1;

j�� 1j � R�ðnþ3Þ=3: PRð�Þ � e�ð��1Þ2=ð2�2ðRÞÞ:
(72)

For �1< n< 0, where the linear variance (46) is still
finite, we expect to recover the Gaussian (72) at large
scales, but the asymptotic behavior (71) no longer applies,
since shocks modify the dependence on �, whence the
normalization of the cutoff as a function of R for any finite
�. For 0 � n < 1, as for the cases �1< n< 1 in 1D,
where the linear variance (46) diverges, shocks play a

FIG. 7 (color online). The probability distribution functions, PRð�Þ (solid lines) and PXð�Þ [dashed lines], of the overdensity �
within spherical cells of radius R and within squares of size X. The radius R is such that �R2 ¼ X2 (same cell area), with X given in
each panel. For�1< n< 1 there is an additional Dirac contribution [ / �Dð�Þ], associated with empty cells, which does not appear in
the figures.
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key role at all scales and times and the density probability
distributions are always strongly non-Gaussian.

In agreement with Fig. 7, we can expect all these fea-
tures to remain valid for the probability distribution PXð�Þ
within square cells, including the exponents in (71), but the
numerical prefactors in (71) are modified.

At small scales, the density probability distributions are
again governed by the shock mass function, and the 1D
scaling (B12) becomes

� 3< n< 1; R ! 0: PRð�Þ � ð�R2Þ2Nð�R2�Þ;
(73)

X ! 0: PXð�Þ � X4NðX2�Þ: (74)

This implies, in particular, that the two distributions PRð�Þ
and PXð�Þ coincide in the small-scale limit for equal-area
cells, in agreement with Fig. 7. However, at the scales
shown in Fig. 7 this asymptotic regime has not been fully
reached yet, hence we do not plot the quantity X4NðX2�Þ
of Eq. (74) to avoid overcrowding the figure.

Using a saddle-point approach, the high-density tail of
the probability distribution PRð�Þ reads as

� 3< n � �1;

� ! 1: lnPRð�Þ � � 2�ðnþ3Þ=2

�2ðRÞ ¼ � 2Rnþ3

Kn

�ðnþ3Þ=2;

(75)

which also gives rise to the high-mass tail (64) of the shock
mass function. For�1< n< 1 shocks modify the asymp-
totic behavior, but they are expected not to change the
exponents. Unfortunately, the range of our numerical com-
putations is not sufficient to check the tails (75) to better
than a factor 2, although they are consistent with this

scaling, lnPRð�Þ / Rnþ3�ðnþ3Þ=2.

C. Density power spectrum

We show in Fig. 8 the density power spectrum. At low K
we again recover for all�3< n< 1 the linear regime (57),
whereas at high K we have the universal flat tail associated
with shock nodes. Indeed, for the power-law initial con-
ditions (26) that we consider in this article, all the matter
is located within pointlike shock nodes, which form a
Voronoi-like tessellation of the Eulerian space, while the
boundaries of these cells are massless shock lines and the
interior of the cells is empty [22]. For �1< n< 1, these
Dirac density peaks appear to be isolated and in finite
number per unit volume, so that the constant high-K tail
is clearly seen in Fig. 8. For �3< n<�1, shocks appear
to be dense and there are no empty cells, in agreement with
the mass functions and the density distributions obtained in
Secs. IVA and IVB. This makes the matter distribution
closer to a continuous medium, so that the constant high-K
tail is reached more slowly and at higher wave numbers for
lower n.

V. SEPARABLE CASE IN d DIMENSIONS

In dimensions two and higher there are no complete
analytical results for the statistical properties of the dy-
namics. However, it happens that the Burgers dynamics,
and the associated geometrical adhesion model, exhibit
exact factorizable solutions in any dimension, for which
we can obtain explicit results (especially for the cases
n ¼ 0 and n ¼ �2). This can be achieved for separable
initial velocity potentials [59],

c 0ðxÞ ¼
Xd
i¼1

c ðiÞ
0 ðxiÞ: (76)

Then, this property remains true at all times, as can be seen
at once from the Hopf-Cole solution (9), and each velocity
component uiðxÞ only depends on the coordinate xi along
the same direction,

c ðx; tÞ ¼ Xd
i¼1

c ðiÞðxi; tÞ; uiðx; tÞ ¼ uðiÞðxi; tÞ; (77)

where the potentials c ðiÞðx; tÞ and the velocities uðiÞðx; tÞ
are the solutions of the 1D Burgers dynamics defined by

the initial conditions c ðiÞ
0 ðxÞ. Thus, the dynamics is fully

factorized into d 1D Burgers dynamics. In terms of the
Legendre transforms, which fully determine the Eulerian
and Lagrangian fields as described in Sec. II, this follows
from the well-known property

f�ðsÞ ¼ Xd
i¼1

f�i ðsiÞ for fðxÞ ¼ Xd
i¼1

fiðxiÞ: (78)

This states that for any function fðxÞ defined on Rd that is
separable (i.e., can be written as the second sum above) its
Legendre transform f�ðsÞ is the sum of each 1D Legendre
transform, as can be checked from the definition (17). This
means that in d dimension, if the initial velocity potential is

FIG. 8 (color online). The density power spectrum PðKÞ.

PATRICK VALAGEAS AND FRANCIS BERNARDEAU PHYSICAL REVIEW D 83, 043508 (2011)

043508-14



separable the Burgers dynamics can be fully factorized into
d 1D Burgers dynamics. This exact factorizability is spe-
cific to the Burgers dynamics, and it is not shared by more
complex dynamics such as the gravitational or Navier-
Stockes dynamics.

As described in Appendix D, for such factorized initial
conditions we can obtain exact results for the shock mass
function and the density probability distributions. In par-
ticular, we obtain for the mass function the asymptotic tails

M ! 0: NðMÞ � ð� lnMÞd�1

ðd� 1Þ! Mðn�1Þ=2; (79)

and

M ! 1: lnNðMÞ � �Mðnþ3Þ=d: (80)

Therefore, we obtain the same asymptotic behaviors as
those associated with the isotropic 2D case studied in
Sec. IVA, but with a logarithmic prefactor at low mass.
This extends to any dimension d for the high-mass tail
[17]. Thus, keeping Gaussian initial conditions with the
scaling (54) preserves the characteristic exponents of
the shock mass function, even though the isotropy of the
system has been broken. This is not surprising for the high-
mass tail, which can be derived from a simple saddle-point
approach and as such mostly depends on the scaling (54)
and the fact that the initial (linear) density field is Gaussian
[17]. The robustness of the low-mass power-law exponent
is not so obvious a priori, since it has not been derived in
such a systematic fashion. From the analysis of numerical
computations, the scaling (B3) was advocated using simple
arguments that basically assume that the properties of the
2D and 3D convex hulls are similar [7], that is, governed by
the scaling (54). However, this also corresponds to assum-
ing that the separable case studied in this section and the
isotropic case of Sec. IV give the same low-mass expo-
nents, which is not obvious.

As pointed out in Sec. IVA, we can note that the
asymptotic tail (79) actually corresponds to a low-�
power-law tail fð�Þ / �d, in terms of the reduced variable
�, with no further dependence on n. The large-mass tail

(80) also corresponds to the usual falloff fð�Þ � e��2=2 at
large �. Therefore, the Press-Schechter scaling remains
valid in any dimension, at leading order for these separable
cases, even though the low-� exponent strongly depends on
the dimension. On the other hand, while the mass function
appears more sharply peaked at higher d as a function of �,
as seen in Fig. 4, it flattens when it is drawn as a function of
mass, as seen in Fig. 9 below for n ¼ �2.

The same analysis can be applied to the probability
distributions of the smoothed density field, and we
again recover the characteristic exponents (75) of the iso-
tropic case.

For the index n ¼ �2 we can obtain explicit expres-
sions, which simplify in 2D as

n ¼ �2; d ¼ 2: NðMÞ ¼ 2

�
M�3=2K0ð2

ffiffiffiffiffi
M

p Þ; (81)

PXð�Þ ¼ 2X

�
e4X��3=2K0

�
2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ �þ 1

�

s �
: (82)

We show our results in Figs. 9 for the shock mass function
NðMÞ in dimensions d ¼ 1, 2 and 3 and for the index
n ¼ �2. In order to emphasize the low-mass power-law
tails we plot the product M2NðMÞ in Fig. 9. In agreement
with Eqs. (79) and (80), for higher d the mass function
shows a smoother cutoff at high mass and a somewhat
faster growth a low mass due to logarithmic prefactors.
This gives more weight to extreme events, as is usually the
case for multiplicative processes (since M ¼ Q

iMi the
shock mass can also be seen as the outcome of such a
multiplicative process). This also leads to a broadening of
the peak of the product M2NðMÞ, which gives the fraction
of matter within shocks of massM per logarithmic interval
of mass. We can note that such a flattening can also be seen
in the isotropic case, by comparing Fig. 4 with Fig. 1.
Similar results are obtained for the density distribution
PXð�Þ.
We can note that the separable solutions studied in this

section might serve as a basis for approximation schemes
or perturbative expansions to describe the isotropic case
studied in Sec. IV; however, we shall not investigate further
this point in this article.

VI. CONCLUSION

In this article we have presented a numerical analysis of
density fields and mass functions that can be generated by

FIG. 9 (color online). The product M2 � NðMÞ, where NðMÞ
is the shock mass function in the separable case for n ¼ �2 and
dimensions d ¼ 1 (solid line), d ¼ 2 (dashed line), and d ¼ 3
(dot-dashed line).
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the Burgers dynamics in the inviscid limit, the ‘‘adhesion
model’’ in cosmology, when it is supplemented by a geo-
metrical construction that explicitly defines the density
field in the shock manifolds. This leads to what we call
the geometrical adhesion model for the density field. Our
analysis focused on power-law Gaussian initial conditions,
which are relevant within the cosmological context, and we
have considered the 1D and 2D cases.

We furthermore have taken advantage of new more
efficient algorithms, which also make use of the geomet-
rical interpretation of the system, to measure mass func-
tions and density distributions over a large range of masses
and scales. Our simulations cover seven values of the
slope n of the initial density and velocity power spectra,
that span the range �3< n< 1 where a self-similar dy-
namics develops.

In the 1D case, we have checked that our numerical
results agree with the complete analytical results that are
known for the two cases n ¼ �2 and n ¼ 0. For general
index n we also obtain a good agreement with the analyti-
cal results that apply to the tails of the mass function and of
the density probability distributions, and to the low-order
moments of the density contrast in the quasilinear regime.
In particular, this confirms the validity of rare-event tails
obtained by steepest-descent methods. Regarding the mass
functions, we found that in 1D, they could be described
with a good accuracy with the reduced variable, � ¼
�c=�ðMÞ, although there remains a small dependence
with n. This is the basis for Press-Schechter like construc-
tions commonly used in the cosmological context. It also
happens that the Press-Schechter prescription per se (e.g.,
derived from the 1D spherical collapse) provides a good
approximation for this scaling function fð�Þ (and it ac-
tually gives the exact mass function for n ¼ �2). The
density probability distributions show the expected behav-
iors, with a low-density tail for the UV class �1< n< 1
and a sharp low-density cutoff for the IR class �3< n<
�1. Moreover, at small scales we have checked that the
density probability distributions reach their asymptotic
form determined by the shock mass function. For the
density power spectrum we recover the universal constant
high-k tail associated with shocks, which corresponds to
pointlike masses in the density field (and discontinuities in
the velocity field).

In the 2D case we have performed a similar analysis,
although the smaller range of masses and scales does not
allow to probe with a high accuracy the rare-event tails.
Nevertheless, our results are consistent with previous
works for the low-mass tails of the shock-node mass func-
tions. We find that the scaling in terms of � still captures
most of the dependence on n of the mass functions, but
deviations from this scaling law are slightly larger than in
1D. Moreover, the scaling function is clearly different, and
it shows a �2 tail at low � rather than the linear tail obtained
in 1D. In this regime, as noticed in previous works, the

Press-Schechter prescription is no longer a good approxi-
mation. The low-density tails of the density probability
distributions show the same behavior as in 1D, with again a
qualitative difference between the UVand IR classes. This
is related to the low-mass exponents of the mass functions,
which are the same in 1D and 2D (in terms of M). The
density power spectra again reach the universal constant
tail at high k due to the formation of shock nodes, that is
pointlike masses.
Finally, we have described how the mass functions and

density probability distributions can be obtained in any
dimensions for separable initial conditions, where the dy-
namics factorizes over d one-dimensional dynamics.
As compared with the collisionless gravitational dynam-

ics, the nonlinear behavior of this system thus appears as a
whole much simpler to analyze as many statistical proper-
ties can be derived from the mere fact that structures are all
pointlike objects. As we have just seen, this leads to the
universal flat tail for PðKÞ at high K. It also leads to
constant ratios Sp, defined in Eq. (1), in the small-scale

limit. In contrast, in the gravitational case relevant for
cosmology (or in the Navier-Stokes dynamics relevant
for hydrodynamics) characteristic structures are much
more complex. Dedicated numerical simulations show
the formation of extended halos with nontrivial
mean density profiles and some amount of substructure
[60–63]. This has prevented so far the derivation of
simple universal laws for the exponents associated
with the density power spectrum and higher-order
correlations.
Despite these differences for the physical processes that

take place at small scales, we find that the matter distribu-
tion generated by the Burgers dynamics, through the
geometrical adhesion model studied here, shares many
statistical properties with the one built by gravitational
clustering in the cosmological context. Moreover, this
remains valid at small scales for several quantities, such
as the mass function and the probability distributions of the
smoothed density field. We argue then that this system,
because of the existence of an explicit geometrical solution
that can easily be implemented, provides a good tool for
understanding the nonlinear processes that are common to
both systems. One example of this is to be found in [64]
where we explored the behavior of response functions
(propagators) within both the Eulerian and Lagrangian
frameworks. Another line of investigation which remains
to be explored is the use the Burgers dynamics as the
basis of new approximation schemes, for instance through
perturbative methods, for the 3D gravitational dynamics
itself.
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APPENDIX A: ALGORITHMS FOR THE 1D
BURGERS DYNAMICS

1. Set up of the initial conditions

The system is discretized on a regular grid of N points
with a unit step, xi ¼ i with i ¼ 0; . . . ; N � 1, with peri-
odic boundary conditions. As a consequence, the analysis
is restricted to scales x such that 1 � x � N, and times t
such that LðtÞ � N to avoid finite-size effects. In order to
simplify numerical computations (e.g., for Fast Fourier
Transforms) we chooseN to be a power of 2, typicallyN ¼
223 ¼ 8 388 608. We can also take �0 ¼ 1 so that each
initial ‘‘particle’’ i (i.e. initial grid point) carries a unit
mass.

To implement the initial conditions (26) we define the
rescaled coordinates

x̂ ¼ 2�

N
x; k̂ ¼ N

2�
k; (A1)

and we use the discrete Fourier transform

u0ðxÞ ¼ û0ðx̂Þ ¼
XN=2�1

k̂¼�N=2þ1

~̂u0;k̂e
ik̂ x̂; (A2)

where the random complex Fourier coefficients ~̂u0;k̂ are

independent Gaussian variables (except for ~̂u0;�k̂ ¼ ~̂u�
0;k̂
)

with a variance

hj~̂u0;k̂j2i ¼
D

2�

�
2�

N

�
nþ1

k̂n: (A3)

We simultaneously obtain the initial potential c 0ðxÞ, using
~u0ðkÞ ¼ �ik ~c 0ðkÞ from Eq. (23) (and taking ~u0;k ¼ 0 and
~c ðkÞ ¼ 0 for k ¼ 0). Of course, with this prescription
both the initial velocity field u0ðxÞ and potential c 0ðxÞ
are homogeneous, for all n (the discretization has intro-
duced both UV and IR cutoffs, for n ¼ �1 see [65]).

2. Computation of the 1D velocity and density fields

For any time t, the velocity field uðx; tÞ and its potential
c ðx; tÞ are obtained from the Hopf-Cole solution (16)
using the algorithm described in Sec. A 3 below.

For the 1D case, we do not need to use the second
Legendre transform (18) or (20) to compute the
Lagrangian map xðqÞ since, as both functions xðqÞ and
qðxÞ are monotonically increasing, xðqÞ can be obtained
simply by spanning qðxÞ. As a consequence, our algorithm
to obtain the velocity and density fields has an optimal
running time that scales as OðNÞ. By contrast, previous
works [7,25] used a slower OðN lnNÞ algorithm.

3. Computation of a 1D Legendre transform
by building a 2D convex hull

To compute the Legendre transform (16) we use the
algorithm devised in [52], which scales linearly with N,

taking advantage of the fact that we are given ’LðqÞ over
an ordered grid, qj < qjþ1. Thus, we first compute the

convex envelope ’ of the linear Lagrangian potential ’L.
Then, we obtain HðxÞ as HðxÞ ¼ Lx½’LðqÞ� ¼ Lx½’ðqÞ�,
using the property that the ’L and its convex envelope ’
have the same Legendre transform. Moreover, thanks to the
periodicity of c 0ðqÞ the Lagrangian coordinate, qðx ¼ 0Þ,
of the particle that is located at the origin at the time t
of interest obeys �N=2 � q � N=2� 1. Then, since
particles do not cross each other, so that qðxÞ is monotoni-
cally increasing, to construct HðxÞ over the grid xi ¼
0; 1; . . . ; N � 1 we simply need to span ’LðqÞ over the
set of points fqð0Þ; qð0Þ þ 1; . . . ; qð0Þ þ N � 1g.

a. 2D convex hull

We first obtain the convex hull ’ through the following
sequential procedure. Let us assume that at step ðnÞ,
with n � 2, we have built the convex hull ’ðnÞðqÞ of
’LðqÞ over the first n points of this set fqð0Þ; . . . ; qð0Þ þ
n� 1g. At this stage, ’ðnÞðqÞ is made of p points with
2 � p � n (because of the discretization both ’L and
its convex hull ’ are defined by a finite number of
points). Moving to the next step (nþ 1), we add the next
point ðqð0Þ þ n; ’L½qð0Þ þ n�Þ and going backward we
remove if necessary the points p, p� 1; . . . ; p0 þ 1 of

the previous convex hull ’ðnÞ until its last two vertices,
p0 � 1 and p0, and the new point nþ 1 turn counterclock-
wise in the ðq;’LÞ plane. This yields the new convex hull

’ðnþ1Þ. Iterating from n ¼ 2 up to N we obtain the p
vertices of the convex hull ’.
This algorithm is shown in Fig. 10 at step (9). We have

already built the convex hull associated with the 8 points
f0; 1; . . . ; 7g and we are adding the point 8. Moving back-
ward we see that we must remove the vertices 7 and 6 and

the new convex hull ’ð9Þ is made of the list f0; 1; 4; 5; 8g.

b. 1D Legendre transform

Second, as in [52], spanning the vertices j ¼ 1; . . . ; p,
and computing the slope sj;jþ1 associated with the segment

q
0 1 2 3 4 5 6 7 8 9 10

ϕ

FIG. 10 (color online). Construction of the convex envelope
’ðqÞ from the linear potential ’LðqÞ given on a regular grid.
Moving to the right in the ðq;’Þ plane we update the step-n 2D
convex hull ’ðnÞðqÞ as we add a new data point.
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[j, jþ 1] of ’ðqÞ, we note that all x such that sj�1;j < x <

sj;jþ1 have the Lagrangian coordinate qðxÞ ¼ qj, which

also yields HðxÞ ¼ xqj � ’ðqjÞ. Thus, by reading the dis-

crete slopes sj;jþ1 of the piecewise affine convex hull ’ðqÞ
from left to right (whence sj;jþ1 is monotonically increas-

ing since ’ is convex), we gradually ‘‘fill in’’ the values
HðxiÞ on the grid xi ¼ i with i ¼ 0; . . . ; N, in order of
increasing i. Clearly, both steps (computing the convex
hull ’ and next the Legendre transform H) scale linearly
with the number of points on the grid and are thus optimal
[52]. We illustrate in Fig. 11 this second step, computing
HðxÞ on the grid from the vertices of ’ðqÞ.

APPENDIX B: RESULTS FOR THE 1D CASE

We present here the results obtained for the 1D case,
using the algorithm presented in the previous Appendix A
and for initial conditions as described in the text.

1. Distribution of shocks

We show in Fig. 12 the resulting distribution of shocks in
the position-mass plane that we obtain for one realization
of the Gaussian initial conditions (26) at a given time.
Since we use the scaling variables (52) the statistical
properties of the output do not depend on this time. In
particular, the typical masses (at the onset of the exponen-
tial cutoff of the mass function) and their typical length-
scale (e.g. the nearest-neighbor distance) are of order unity.
In agreement with previous works [7,11], we can see
that for n ¼ 0, which is representative of the UV class,
�1< n< 1, we obtain a finite number of shocks per unit
length with very few high and low-mass objects. In con-
trast, for n ¼ �2, which is representative of the IR class,
�3< n<�1, we observe a proliferation of small shocks
which appear to fill all of space (up to the resolution of the
simulation). This agrees with theoretical results, which
show that shocks are isolated and in finite number per
unit length for n ¼ 0 [12,13,66], whereas they are dense

in Eulerian space for n ¼ �2 [14–16]. We obtain similar
figures for other indices n in both characteristic classes,
�1< n< 1 and �3< n<�1.

2. Shock mass function

By averaging over many realizations, and over several
output times for each realization (thanks to the self-
similarity of the dynamics), we can measure the shock
mass function NðMÞdM, defined as the mean number of
shocks of mass within ½M;Mþ dM½ over a unit-length
interval. We have shown our results for several values of
the index n in Fig. 1 (to avoid having a huge vertical range
we actually plot the product M� NðMÞ). We can clearly
see the power-law regime at low mass and the exponential
cutoff at high mass, with a strong dependence on n. We can

−H

x

s
s

23

34

2 3 4 51
q

6

ϕ

FIG. 11 (color online). Computation of the Legendre trans-
form HðxÞ from the convex envelope ’ðqÞ. All lines of slope x
in-between the slopes s23 and s34 of segments (23) and (34) in
the ðq; ’Þ plane make first contact from below with the vertex 3.
Hence HðxÞ ¼ xq3 � ’3 for s23 < x< s34.

FIG. 12 (color online). The distribution of shocks in the
position-mass plane. Each cross corresponds to a shock, ob-
served at a given time for one realization of the Gaussian
initial conditions (26) with n ¼ 0 (upper panel) and n ¼ �2
(lower panel). The position X and the mass M are the scaling
variables (52).
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check that our numerical results agree with the exact
analytical results that have been obtained for both cases
n ¼ 0 [12,13],

n ¼ 0: NðMÞ

¼ 2M
Z þi1

�i1
ds1
2�i

e�s1M

Aiðs1Þ2
�

Z þi1

�i1
ds2
2�i

es2MAi0ðs2Þ
Aiðs2Þ ;

(B1)

and n ¼ �2 [15,16],

n ¼ �2: NðMÞ ¼ 1ffiffiffiffi
�

p M�3=2e�M: (B2)

In agreement with Fig. 12, the shock mass function grows
more slowly than 1=M at low mass for�1< n< 1, which
leads to a finite number of shocks per unit length, whereas
it grows faster than 1=M for�3< n<�1, which leads to
an infinite number of shocks per unit length because of a
divergent number of small shocks (while the total mass
remains unity).

We have checked in Fig. 2 that the high-mass tail of the
shock mass function agrees with the analytical predictions
(58)–(60). For n ¼ �2 we can also check that our numeri-
cal result agrees reasonably well with the exact derivative
obtained from Eq. (B2). For n ¼ �1:5, using the normal-
ization given in Eq. (59) (i.e. I�1:5) appears to provide a
reasonable approximation to the high-mass asymptote.
This means that for �2< n � �1:5 shocks have not sig-
nificantly modified the quantitative profile of the saddle
point. It is interesting to note that the rate of convergence to
the asymptotic regime (58) decreases with n. This is also
due to the fact that the exponential cutoff is smoother for
lower n, in agreement with the exponent (58) and Fig. 1, so
that the rare-event limit associated with these asymptotic
behaviors is reached at higher masses for lower n. Note that
the deviations from the asymptotic behavior (58) are mag-
nified in Fig. 2 and would appear much smaller in Fig. 1 as
the exponential falloff is already very steep over this mass
range and one would not distinguish in this figure the
subdominant effect of power-law prefactors.

At low mass, previous numerical simulations and heu-
ristic arguments [7,11] suggest the power-law tail

� 3< n< 1; M ! 0: NðMÞ �Mðn�1Þ=2; (B3)

which has only been proved rigorously for the white-noise
case n ¼ 0 [12,13] and the Brownian case n ¼ �2 [15,16].
As seen in Fig. 13, where we plot the derivative
�d ln½NðMÞ�=d lnðMÞ, our numerical results agree with
the scalings (B3), and for n ¼ �2 with the full result
(B2). Contrary to the high-mass tail, the rate of conver-
gence to this asymptotic behavior is roughly the same for
all n over �3< n< 1.

3. Density distribution

We now turn to the statistical properties of the smoothed
density field. More precisely, we study the probability
distribution function, PXð�Þ, of the overdensity � within
an interval of length x,

� ¼ m

�0x
¼ M

X
: (B4)

By conservation of matter we have h�i ¼ 1. The exact
expression of PXð�Þ is again explicitly known for the
two cases n ¼ �2 [16],

n ¼ �2: PXð�Þ ¼
ffiffiffiffi
X

�

s
e2X��3=2e�Xð�þ1=�Þ; (B5)

and n ¼ 0 [13],

n ¼ 0: PXð�Þ ¼ P0
X�Dð�Þ þ P�

X ð�Þ; (B6)

with

P0
X ¼

ffiffiffiffi
�

X

r
e�X3=12

Z þi1

�i1
ds1ds2
ð2�iÞ2

eðs1þs2ÞX=2þðs1�s2Þ2=ð4XÞ

Aiðs1ÞAiðs2Þ
(B7)

and

P�
X ð�Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
�X3

p
e�X3=12

Z þi1

�i1
dsds1ds2
ð2�iÞ3

� esXð��1Þþðs1þs2ÞX=2þðs1�s2Þ2=ð4XÞ

Aiðs1ÞAiðs2ÞAiðs1 � sÞAiðs2 � sÞ
�

Z 1

0
dreXrAiðrþ s1ÞAiðrþ s2Þ: (B8)

In Eq. (B6) the Dirac term is associated with the nonzero
probability, P0

X, to have an empty interval, in agreement

FIG. 13 (color online). The derivative�d ln½NðMÞ�=d lnðMÞ at
low mass. The horizontal dashed lines show the asymptotic
behavior (B3). For n ¼ �2 the curved dashed line is the exact
derivative obtained from Eq. (B2).
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with Appendix B 1 and Fig. 12. The second term P�
X ð�Þ is

the regular part associated with nonempty intervals. There
is no Dirac term in Eq. (B5) since shocks are dense for
n ¼ �2, as recalled in Appendix B 1 and seen in Fig. 12,
so that the probability to have an empty interval is zero.

We show in Fig. 14 the evolution of PXð�Þ as we go from
large scales or early times (top) to small scales or late times
(bottom), that is, from the quasilinear regime to the highly
nonlinear regime. We can check that our numerical results
agree with the exact results (B5) and (B6) obtained for
n ¼ �2 and n ¼ 0. At larger scales we recover a proba-
bility distribution that is increasingly peaked around the
mean, h�i ¼ 1, whereas at smaller scales an intermediate
power-law regime develops. This is similar to the behavior
observed in cosmology for the density field built by the
gravitational dynamics [36,67–69], starting from Gaussian
initial conditions such as (26). For �3< n � �2, at large

scales and finite � one goes to a quasi-linear regime
governed by a regular saddle point [17] with

� 3< n � �2;

X ! 1: lnPXð�Þ � �½�ðnþ1Þ=2 � �ðnþ3Þ=2�2=ð2�2ðX=2ÞÞ

� �Xnþ3

In
½�ðnþ1Þ=2 � �ðnþ3Þ=2�2: (B9)

For n >�2 shocks appear as soon as t > 0 and modify the
numerical factor In in Eq. (B9) but not the main exponents.
In particular, for n ¼ 0 one has [13]

n ¼ 0; X ! 1;

j�� 1j 
 X�1: lnPXð�Þ � �X3

12
j�� 1j3:

(B10)

Thus we recover the large-X and large-� exponents of
Eq. (B9), but the functional form over� has been modified.

FIG. 14 (color online). The probability distribution, PXð�Þ, of the overdensity � within intervals of length X. Smaller X (from top to
bottom) probe deeper into the nonlinear regime. For n ¼ �2 and n ¼ 0 the dashed lines are the exact analytical results (B5) and (B8).
For �1< n< 1 there is an additional Dirac contribution ( / �Dð�Þ), associated with empty cells, that does not appear in the figures.
In the last panel (X ¼ 0:125) the dot-dashed lines are the asymptotic behavior (B12).
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Thus, whereas for �3< n � �2 the probability distribu-
tion PXð�Þ goes to a Gaussian at large scales or early times,
and we recover the Gaussian initial conditions (i.e. the
linear regime), this is no longer the case for n >�1.
Indeed, as seen from Eq. (B9) for �3< n � �2, in the

limit X ! 1 typical density fluctuations have j�� 1j �
� / X�ðnþ3Þ=2, so that we can expand the argument over �
around � ¼ 1. This gives

� 3< n � �2; X ! 1;

j�� 1j � X�ðnþ3Þ=3: PXð�Þ � e�ð��1Þ2=ð2�2ðX=2ÞÞ;
(B11)

which coincides with the Gaussian associated with the
linear density contrast �L. For �2< n<�1 shocks
have a modest effect on the relevant saddle point [17]
and we expect to recover the Gaussian (B11) at large
scales, but the asymptotic behavior (B9) is no longer valid:
shocks modify the dependence on �, whence the value of
the exponential cutoff for any finite �. For �1< n< 1,
where the linear density variance (46) diverges, clearly one
cannot recover a Gaussian such as (B11) at large scales:
shocks govern the dynamics at all scales and the probabil-
ity distribution PXð�Þ is always strongly non-Gaussian,
as explicitly shown by Eq. (B10) for the case n ¼ 0.
We can check in Fig. 14 that the features associated with
either case n ¼ 0 and n ¼ �2 (such as the power-law
tail/exponential cutoff at low densities, the nonzero/
zero probability of empty cells) extend to the classes
�1< n< 1 and �3< n< 1, respectively.

At small scales the probability distribution PXð�Þ is
governed by the shock mass function, since it is dominated
by the probability to have a shock of massM ¼ �X within
the cell of size X, which gives [13]

� 3< n< 1; X ! 0: PXð�Þ � X2Nð�XÞ: (B12)

The asymptotic behavior (B12) holds at fixed�, and it does
not describe the low-density exponential cutoff that is al-
ways present for �3< n<�1 (but is repelled to � ! 0
as X goes to zero). One can explicitly check on the exact
expressions obtained for NðMÞ and PXð�Þ in both cases
n ¼ 0 and n ¼ �2 that they agree with (B12). Since the
analytical expression of the mass function NðMÞ is only
known for these two cases, n ¼ 0 and n ¼ �2, we plot in
the lower panel of Fig. 14 the asymptotic quantity
X2Nð�XÞ (dot-dashed lines) obtained using the mass func-
tions measured from our numerical computations and
shown in Fig. 1. We can see that the behavior (B12)
can already be clearly seen at X � 0:125, especially for
�1< n< 1. For�3< n<�1 the low-density falloff has
not been repelled to very low � yet so that the convergence
to (B12) only appears for �> 1.

In order to see more clearly the high-density tail of
the probability distribution PXð�Þ we show in Fig. 15 the
quantity� lnPXð�Þ=ðXnþ3�nþ3Þ. Indeed, in this rare-event
limit one can still apply a saddle-point approach, which
yields [17]

� 3< n � �2;

� ! 1: lnPXð�Þ � � �nþ3

2�2ðX=2Þ ¼ �Xnþ3

In
�nþ3:

(B13)

Indeed, this is governed by the same saddle point as the one
associated with (B9), even though we now consider the
limit of large � at fixed X, instead of large X at fixed �. For
n >�2 the saddle point develops shocks, which modify
the numerical factor in (B13) but not the exponents. In
particular, for n ¼ 0 this gives

n ¼ 0; � ! 1: lnPXð�Þ � �X3

12
�3: (B14)

Of course, one can check that the asymptotic behaviors
(B13) and (B14) agree with the full expressions (B5) and
(B8) obtained for n ¼ �2 and n ¼ 0. We can see in Fig. 15
that our numerical results reach a constant asymptote at
high density, in agreement with the general scaling (B13),
and for n � �2 and n ¼ 0 they are consistent with the
theoretical values (B13) and (B14). For n ¼ �1:5, using
the normalization given in Eq. (B13) [i.e. I�1:5] again
appears to provide a reasonable approximation to the
high-density asymptote (albeit slightly lower). In agree-
ment with Fig. 2, this means that for �2< n � �1:5
shocks have not significantly modified the quantitative
profile of the high-density saddle point. As for the high-
mass tail of the mass functions displayed in Fig. 2, the
convergence to the asymptotic behavior (B13) is slower for
lower n. We can also note that the shape of the function
� lnPXð�Þ=ðXnþ3�nþ3Þ depends on scale, as it typically
reaches its asymptote from below at large X and from
above at low X. As shown by the exact ratio obtained
from Eq. (B5) for the case n ¼ �2, which agrees with
our numerical computations, this is not a numerical arti-
fact. Again, note that Fig. 15 magnifies the deviations from
(B13), due for instance to subdominant power-law prefac-
tors, which would not be easily distinguished in Fig. 14 as
the exponential falloffs are already very steep over this
density range.

4. Low-order density cumulants

We finally test our results with the use of the low-order
cumulants defined, Sp, as

Sp ¼ h�pic
h�2ip�1

c

: (B15)

They are known to reach constant values at large scales,
and those values can be exactly computed in both the exact
dynamics (see [70] and references therein) and for the
Burgers equations [71]. Thus, for the 1D case, those pa-
rameters reach a constant asymptote at large scales when
�3< n<�1, with [17]
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� 3< n � �2; X ! 1: S3 ! �3ðnþ 1Þ; (B16)

S4 ! 3ð9þ 16nþ 7n2Þ: (B17)

For �2< n<�1 shocks modify the large-scale asymp-
totes, while for �1< n< 1 the coefficients Sp typically

vanish for odd p and go to infinity for even p, as can be
explicitly checked in the case n ¼ 0 [13] where exact
results can be derived from Eq. (B8). On the other hand,
at small scales they reach constant asymptotes, for all
n in the range �3< n< 1, as the density cumulants are
governed by the pointlike masses associated with shocks.
The exact values of these small-scale asymptotes, associ-
ated with the highly nonlinear regime and governed by
the shock mass function, are only known for the two
cases n ¼ 0 [13] and n ¼ �2 [16]. In the case n ¼ �2

it happens that the coefficients Sp are actually scale-

independent, so that the quasilinear values (B17) hold for
all X and we have [16]

n ¼ �2: Sp ¼ ð2p� 3Þ!! (B18)

We can check in Fig. 16, where we plot the coefficients S3
and S4, that our numerical computations agree with the
results recalled above. In particular, we clearly see the
small-scale universal constant asymptotes, due to shocks,
except for the case n ¼ �2:5. There it is not clear whether
the deviation is due to the finite numerical resolution or to
the slow convergence to the small-scale asymptote. At
large scale we can see the same curve approach the asymp-
tote (B17). As for the high-mass and high-density tails of
the shock mass function and of the density distribution, for
the case n ¼ �1:5 the value given by Eq. (B17) is a very

FIG. 15 (color online). The ratio � lnPXð�Þ=ðXnþ3�nþ3Þ, which characterizes the high-density tail of the probability distribution
PXð�Þ. The horizontal dashed lines are the exact asymptotic values (B13) and (B14) for n ¼ �2:5,�2, and 0. For n ¼ �2 the curved
dashed line is the exact ratio obtained from Eq. (B5). For n ¼ �1:5 the dot-dashed line is the value obtained from Eq. (B13), which is
only approximate in this case.
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good approximation for S3 at large scales. This again
means that shocks do not have a significant effect for
�2< n � �1:5. For S4 the error bars are too large to
draw any conclusion on the accuracy of (B17).

5. The density power spectrum

We show in Fig. 17 the density power spectrum as a
function of the wave number K. At low K in the ‘‘linear
regime’’ we recover the initial condition (57). Note
that this holds for all �3< n< 1, even though shocks
cannot be ignored even at a qualitative level for n >�1
at all scales (in particular they make the real-space variance
h�2ic finite even though the linear variance �2 was

infinite). At high K, in the highly nonlinear regime, we
recover the universal constant asymptote, due to shocks (as
the haloes that form are pointlike it is easy to see that
white-noise tails are expected to develop at large K.) For
n ¼ 0 and n ¼ �2 we also plot the analytical results
[13,16] as dashed lines. They reproduce exactly the nu-
merical results showing that the numerical results are free
of finite volume effects.

APPENDIX C: ALGORITHMS FOR THE 2D
GEOMETRICAL ADHESION MODEL

1. Initial conditions and the Eulerian velocity field

As for the 1D case, we discretize the system on a regular
N � N grid, with unit steps and periodic boundary con-
ditions, and we choose N to be a power of 2, typically
N ¼ 211 ¼ 2048. To implement the Gaussian initial
conditions we also introduce rescaled coordinates as in
(A1). It is convenient to use the velocity potential c 0,
which is obtained from a discrete Fourier transform as in
(A2), with now

hj ~̂c 0;k̂j2i ¼
D

ð2�Þ2
�
2�

N

�
n�1

k̂n�3: (C1)

This yields the initial velocity field u0ðqÞ through Eq. (23).
In Eulerian space, the velocity field uðx; tÞ and its

potential c ðx; tÞ are again obtained from the Hopf-Cole
solution (16). Thus, we need to compute the 2D Legendre
transform Lx½’Lðq; tÞ�, over the regular N � N grid xi1;i2 ,

from the periodic linear potential ’Lðq; tÞ defined over
the regular N � N grid qi1;i2 . Thanks to the period N of

the system the 2D Eulerian coordinates xi1;i2 ¼ ði1; i2Þ,

FIG. 16 (color online). The low-order coefficients S3 (upper
panel) and S4 (lower panel) defined in Eq. (B15). For n ¼ 0 and
n ¼ �2 the dashed curves are the exact analytical results. Both
S3 and S4 are constant in the case n ¼ �2. For n ¼ �2:5 the
dashed line at X > 1 shows the large-scale asymptote (B17). For
n ¼ �1:5 the dot-dashed line at X > 1 is the value obtained
from (B17), which is only approximate in this case.

FIG. 17 (color online). The density power spectrum PðKÞ. For
n ¼ 0 and n ¼ �2 the dashed lines are the exact analytical
results, which are almost completely masked by the numerical
results.
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with 0 � i � N � 1, are associated with Lagrangian
coordinates qj1;j2 ¼ ðj1; j2Þ that obey �N=2 � j � N þ
N=2� 2. Therefore, we first extend ’Lðq; tÞ to the larger
grid �N=2 � j � N þ N=2� 2 (using periodicity) and
next we computeLx½’Lðq; tÞ�, using the well-known prop-
erty that a 2D Legendre transform can be obtained from
two successive partial 1D Legendre transforms,

Lx1;x2½’Lðq1; q2Þ� ¼max
q1;q2

½x1q1 þ x2q2 �’Lðq1; q2Þ�
¼max

q1
½x1q1 þmax

q2
½x2q2 �’Lðq1; q2Þ��

¼Lx1½�Lx2ð’LÞ�: (C2)

Thus, for each 1D Legendre transform in Eq. (C2) we use
the algorithm of Lucet [52], used in Appendix B for the
one-dimensional case and described in Appendix A, taking
advantage of the fact that all functions are given on regular
grids. This allows to compute the 2D Legendre transform
HðxÞ in linear time over the total number of grid points,
Ntot ¼ N2, which is thus optimal.

2. Direct Lagrangian map

In addition to the Eulerian fields uðx; tÞ and c ðx; tÞ, the
procedure (C2) yields the inverse Lagrangian map x � q.
However, contrary to the 1D case this is no longer suffi-
cient to obtain the direct Lagrangian map q � x. In fact, as
recalled in Sec. II B, the latter (and the associated density
field) depends on the precise definition of the inviscid limit.
In this article we consider the procedure described in
Sec. II B, where the Lagrangian map xðqÞ is defined from
the convex hull ’ðqÞ by Eq. (20). As shown in [22], this
corresponds to adding a specific diffusive term to the
right hand side of the equation of continuity, which van-
ishes in the inviscid limit � ! 0þ except along shocks. As
described in [22], see also [4,7,48], in two dimensions the
convex hull ’ðqÞ defines a triangulation of the Lagrangian
q space (because the convex hull of ’LðqÞ is made of a set
of triangular facets) which is associated with a Voronoi-
like tessellation of the Eulerian x space.

From the Legendre duality (18) we can see that within
this prescription the direct Lagrangian map, q � x, can be
obtained from the Legendre transform of the Eulerian
function HðxÞ. Thus, the position x of the particle of
Lagrangian coordinate q is given by the point x where
the maximum in Eq. (18) is reached. Therefore, since we
have already obtained HðxÞ through a 2D Legendre trans-
form, as explained above, we could use the same algorithm
to apply a second 2D Legendre transform to HðxÞ. This
would give ’ðqÞ on a regular grid, as well as the direct
Lagrangian map, q � x. As noticed in [52], this proce-
dure, based on two successive Legendre transforms, pro-
vides a very fast algorithm to compute on a grid the convex
hull ’ðqÞ of any function ’LðqÞ, since it scales linearly
with the total number of points Ntot of the grid (as we have
recalled above for the computation of HðxÞ).

In contrast, it is known that the explicit computation
of the 3D convex hull scales at least as Ntot lnNtot. The
reason for this longer execution time is that by ‘‘explicit
computation of the 3D convex hull’’ we mean that, given
the initial function ’LðqÞ on a grid of Ntot points qj, which

defines a set of 3D points ðq1; q2; ’LÞj, we want to obtain

the subset of Nv vertices that belong to the lower convex
hull as well as its Nf triangular facets (which specifies how

the vertices are gathered into triplets, to form these facets;
note that each vertex can be a summit of several facets).
Clearly, this involves more information than the mere
knowledge of the values of ’ðqÞ on a grid, which explains
the different scalings with Ntot of these two problems (in
particular, once we know the facets of the convex hull it is
immediate to compute ’ðqÞ on any grid, while the con-
verse is not true). Note that this is a truly three-dimensional
problem.
In spite of the explicit expression (18), which gives the

direct Lagrangian map xðqÞ through the Legendre trans-
form of HðxÞ, we use in this article the explicit computa-
tion of the 3D convex hull (i.e. we compute the list of
its triangular facets) to obtain the direct Lagrangian map,
q � x. This is necessary to obtain the Lagrangian and
Eulerian-space tessellations and to follow the intricate
dynamics of shock nodes, which undergo both merging
and fragmentation events. These processes are described in
detail in [22], where we used for numerical computations
the algorithm that we describe in Appendix C 4 in
the present paper. If we only require snapshots of the
Lagrangian map and of the density field, as in the present
article, the faster Legendre transform (18) would be suffi-
cient as noticed above. However, in practice it introduces
an additional source of error in numerical computations.
Indeed, the function HðxÞ being defined as the Legendre
transform (16) and ’LðqÞ being defined on a set of discrete
points, it is piecewise affine. In fact, for the self-similar
initial conditions (26) this is not a numerical artifact due to
the discretization and the planar facets of HðxÞ, which
define the Eulerian-space Voronoi-like tessellation, corre-
spond to voids (i.e. empty regions) in the Eulerian density
field. Moreover, their typical size scales with time as the
characteristic scale LðtÞ defined in Eq. (51). However, if we
compute HðxÞ on a grid, using the Legendre transform
algorithm described above, it is clear that because of the
finite precision of real numbers in computers such planar
facets will show small wrinkles. Then, when we apply a
second Legendre transform to HðxÞ to compute ’ðqÞ, we
artificially split large voids into smaller voids and intro-
duce spurious matter concentrations (associated with the
contact points of these wrinkles with their convex enve-
lope) [72]. This is not necessarily a serious problem if one
is not interested in the properties of the Lagrangian and
Eulerian-space tessellations, as long as one makes sure to
discard these spurious low-mass shock nodes. However,
to be fully consistent with our previous work [22] and to
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avoid introducing unnecessary sources of numerical error
we prefer not to use this simple approach and to explicitly
compute the 3D lower convex hull ’ as well as the
Lagrangian and Eulerian-space tessellations.

Therefore, to obtain ’ (more precisely, the list of its
triangular facets) from the values ’LðqjÞ of the linear

Lagrangian potential on the 2D grid of Ntot points qj,

with Ntot ¼ N2, we need a 3D algorithm, which computes
the convex hull of a finite set of points in three dimensions.
A minor simplification is that we only require its lower
part, since ’ is the lower convex envelope of ’L. A brute-
force method, testing each triple of points as a possible
facet, takes a running time OðN4

totÞ, whereas a slight modi-
fication improves this to OðN3

totÞ by testing each pair of
points as a possible edge [73]. Gift-wrapping algorithms
[74,75] scale as OðNtotNfÞ (where Nf is the number of

output facets) by generating facets one at a time via im-
plicit searches. Incremental methods gradually update the
convex hull as initial points are inserted one after the other
and can achieve an optimalOðNtot lnNtotÞ expected running
time [76] by randomizing the insertion order (so as to beat
the OðN2

totÞ worst-case performance). Finally, the divide-
and-conquer method, proposed in [77] for 2D Voronoi
diagrams, and in [78] for 3D convex hulls was the earliest
algorithm to achieve optimal OðNtot lnNtotÞ running time.
As its name suggests, this algorithm divides the point set
into two halves by a vertical plane, recursively computes
the hull of each half, and merges the two hulls into one. As
usual, it is the bisection by two and the recursivity that
bring down a factor Ntot to lnNtot in the running time. Since
we need to compute many convex hulls ’, with typically
Ntot ¼ N2 ¼ 222 ¼ 4194304, in order to accumulate a
sufficiently large number of realizations and output times
to measure the statistical properties of the dynamics over
several regimes, it is necessary to use a fast algorithm that
scales as OðNtot lnNtotÞ.

We choose the 3D divide-and-conquer algorithm as
implemented by Chan [57]. This provides a transparent
interpretation of the method which is well suited to
our case, where the initial points are on a regular grid
and we only need the lower part of the 3D convex hull.
We describe this recursive algorithm in Appendix C 4.
This gives the triangular facets of ’ as well as the
Lagrangian-space triangulation at any time t. Moreover,
the slope ðx1; x2Þ of each facet gives the Eulerian-space
position x of the shock node which contains all the matter
associated with this Lagrangian-space triangle, with a mass
equal to the triangle area (setting again �0 ¼ 1). Then,
listing for instance in clockwise order the facets that have a
common vertex qc we obtain the Voronoi-like cell associ-
ated with qc, each of these facets giving a summit xj of

this Eulerian-space cell. These summits are shock nodes
whereas the cell itself is a void (i.e. with zero
matter density) and the cell boundaries are zero-mass
shock lines.

3. Comparison with previous numerical studies

To compare with previous works, let us first note that
some previous numerical studies [8,79,80] of the ‘‘adhe-
sion model’’ are not based on the Legendre transforms
of Sec. II B but on the standard continuity equation.
Thus, keeping the viscosity � small but finite, they first
compute the velocity field at all times through the Hopf-
Cole solution (9) and next integrate particle trajectories
over time using this velocity field. As we have recalled in
Sec. II B, the dynamics obtained in this fashion is in fact
not identical to the one studied in this article (and some
other works), as in the inviscid limit the behaviors of
particles on the shock manifold are different.
Other numerical works [26–28] have taken advantage of

the geometrical interpretation (12), in terms of first-contact
paraboloids, of the Hopf-Cole solution in the inviscid limit
to avoid integrations over time. Thus, by spanning the
Lagrangian q space with paraboloids (12) of Gaussian
curvature 1=t2 at the apex, one can separate Lagrangian
coordinates into ‘‘stuck’’ and ‘‘free’’ particles. Free parti-
cles are such that the paraboloid that makes contact with
the surface c 0ðqÞ at position q has no other intersections
with the initial velocity potential c 0ðqÞ. Therefore, such
particles have not experienced any shock yet, and their
Eulerian location x is given by the apex of this first-contact
paraboloid. Stuck particles are such that this paraboloid has
other intersections with c 0, which means that they have
already experienced shocks (and their Eulerian location is
no longer given by the apex of this paraboloid). As recalled
in Sec. II B, this geometrical construction in terms of
paraboloids, which only relies on the Hopf-Cole solution
(10), applies to all prescriptions (i.e. using the standard
continuity equation as well as using the ‘‘geometrical
model’’ (20)). It is sufficient to describe regular regions
(i.e. outside of shocks) associated with free particles,
where there is a one-to-one mapping q $ x. In our case,
for the power-law initial conditions (26), this gives the
Voronoi-like diagrams associated with empty regions
and their boundaries, see for instance Fig. 7 in [22] and
[4,26–28,48]. Next, scanning the Eulerian x space with
paraboloids, one obtains the Eulerian location of the par-
ticles that form the boundaries of the stuck Lagrangian
domains. Moreover, considering the paraboloids that have
three simultaneous contact points all the particles located
within the associated Lagrangian triangle are set to the
Eulerian location given by the apex of the paraboloid.
In this fashion one reconstructs the Lagrangian-space
triangulation associated with the ‘‘geometrical model’’
described in Sec. II B, without performing Legendre trans-
forms and convex hull constructions. However, this proce-
dure is rather intricate and the successive scans of the
Lagrangian and Eulerian grids by paraboloids introduce
some numerical inaccuracies.
Finally, the use of Legendre transforms and convex hull

constructions was introduced in [7,25], from the definition
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of the ‘‘geometrical model’’ described in Sec. II B. This
provides a very elegant method to obtain the direct
Lagrangian map, q � x, and the associated matter distri-
bution, without looking for first-contact paraboloids and
trying to invert the x � q map. Then, [7,25] first compute
the function HðxÞ through the Legendre transform (16),
which gives the inverse map, x � q, and the Eulerian
velocity field uðxÞ. Next, they obtain the direct map,
q � x, and the associated density field, from the second
Eq. (20), by computing the nonlinear Lagrangian potential
’ðqÞ fromHðxÞ through a second Legendre transform (18).

As explained above, our procedure differs in two re-
spects. For the first step, we also compute HðxÞ and the
velocity field from the Legendre transform (16), but as
described in Sec. C 1 we use a faster algorithm that scales
as OðN2Þ, instead of O½ðN lnNÞ2� in [7,25]. For the second
step, as described in Sec. C 2, we do not compute ’ðqÞ
through the second Legendre transform (18), to avoid
inaccuracies associated with numerical wrinkles in the
planar facets of HðxÞ. Rather, we directly compute ’ as
the convex hull of the linear Lagrangian potential ’L, from
Eq. (19), without reference to an intermediate Eulerian
grid. Note that this is a standard problem of computational
geometry, that we solve exactly using a convex hull algo-
rithm. Therefore, once the initial velocity potential c 0ðqÞ
is given on a grid, whence the linear Lagrangian potential
’L, no further sources of error are introduced by the use of
an Eulerian grid, since we compute the exact convex hull’
under the form of a list of triangular facets whose slopes
give the exact Eulerian locations of the shock nodes (with-
out reference to an Eulerian grid). Thus, both the Eulerian-
space Voronoi-like tessellation and the Lagrangian-space
Delaunay-like triangulation are exactly computed, without
introducing further inaccuracies (up to the precision with
which real numbers are represented by the computer). In
particular, this removes any source of ambiguities. As
noticed in Sec. C 2, although using the second Legendre
transform (18) would provide a faster algorithm that scales
as OðN2Þ, the exact convex hull algorithm that we use in
this article scales as OðN2 lnNÞ, which is still faster than
the method used in previous works.

4. Computation of the 3D lower convex hull ’

We describe here the 3D divide-and-conquer algorithm
that we use to compute the convex hull ’ (more precisely,
the list of its triangular facets) following the implementa-
tion introduced by Chan [57]. The main point is to trans-
form the 3D problem into a ‘‘kinetic’’ 2D problem, which
is easier to visualize. This proceeds by scanning the convex
hull ’ in order of increasing slope x2 along direction 2, so
that one only needs to study the evolution with ‘‘time’’ x2
of a curve zðq1Þ, as explained below.

The input is the set of 3D points fðq1; q2; ’LÞjg with

j ¼ 1; . . . ; Ntot. Let us choose a given slope x2 along the
direction q2 and consider the points fðq1; zÞjg in the 2D

plane ðq1; zÞ with z 	 ’L � x2q2. Thus, zj is the signed

vertical distance between the 3D point ðjÞ and the plane Px2

of equation ’L ¼ x2q2. Then, the convex envelope of the
set of 2D points fðq1; zÞjg gives the vertices of ’ that come

into contact with planes of slopes ðx1; x2Þ (i.e. of equation
’L ¼ x1q1 þ x2q2 þ c). As one goes from left to right, i.e.
in order of increasing q1, the slope x1 along the axis q1 also
increases (as for the 1D case studied in Appendix A 1).
This is shown in Fig. 18. The N data points with the same
coordinate q1 on the initial N � N grid appear on the same
vertical line in the ðq1; zÞ plane. By going from x2 ¼ �1
up to x2 ¼ þ1 one scans in this fashion all vertices of the
lower convex hull ’. Therefore, one obtains a movie,
running with time x2, where points of fixed abscissa q1
and varying height z ¼ ’L � x2q2 move along verticals at
different speeds �q2, so that the convex envelope in the
ðq1; zÞ plane evolves with time, as its vertices can appear
and disappear.
In addition, one obtains the triangular facets by record-

ing the insertion and deletion events. In an insertion event,
a new vertex C of abscissa qC1 appears at a time x�2 in the

convex hull zcðq1Þ, in-between vertices A and B (this
occurs when the point C crosses from above the segment
½AB� in the plane ðq1; zÞ). Then, the triplet fA; B; Cg is a
planar facet of ’ (with a slope x�2 along direction 2). In a

deletion event, a vertexC located between vertices A and B
of the convex hull zcðq1Þ disappears, and this again means
that the triplet fA; B; Cg is a planar facet of ’. In our case,
where the initial points are located on a regular N � N grid
over the ðq1; q2Þ plane, we also have exchange events, as a
new vertex C can replace an older vertex C0 that has the
same coordinate q1. At the crossing time x�2 these vertices
are located between two vertices A and B and we obtain

q

z

1

A B

C

FIG. 18 (color online). The projection of the 3D points
fðq1; q2; ’LÞjg onto the ðq1; zÞ plane. The convex hull of these

points gives the vertices of the 3D convex hull ’ observed from
planes of a given slope x2 along direction q2. As x2 increases the
points move in the plane ðq1; zÞ along verticals, with a ‘‘speed’’
equal to �q2, shown by the arrows for points A, B and C. For a
slightly larger value of x2 the point C will move below the
segment ½AB� and appear as a new vertex in the convex envelope
zcðq1Þ. This means that points fA; B; Cg are a triangular facet of
the 3D convex hull ’.
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two facets, fA;C;C0g and fB;C;C0g, of the convex hull ’.
We show in Fig. 18 a configuration just before an insertion
event, as the vertex C will soon move below the segment
½AB� (the arrows show the ‘‘velocities’’ �q2 of these
points). By computing analytically the successive crossing
times x�2 we move from one event to the next one.
Therefore, we do not need any discretization over x2 and
we obtain the exact list of the facets of the convex hull’, in
order of increasing slope x2. This fully defines ’.

The algorithm as described so far takes a running time
OðN2

totÞ. In order to achieve a fasterOðNtot lnNtotÞ perform-
ance, we adapt the divide-and-conquer method introduced
in [57]. Since the data points are given on a regular grid
over the ðq1; q2Þ plane, the columns along q2 at fixed q1
(which appear as vertical columns in the ðq1; zÞ plane as in
Fig. 18) are stored in increasing order of q1. Then, we
recursively create a movie for the left lower hull L of the
N=2 left columns and a movie for the right lower hull R of
the N=2 right columns. Next, we build a movie for the
lower hull of all columns by a merging process, described
in Fig. 19. This is done by identifying the common tangent
uv, called the bridge, and removing the part of L to the
right of u and the part of R to the left of v. Then, starting
from x2 ¼ �1, as time progresses events that take place
on either side of the bridge are recorded, whereas events
that take place in-between vertices u and v do not contrib-
ute. In addition, by paying attention to the neighbors of u
and v we update the position of the bridge.

As for the 2D Legendre transform (16) used to compute
HðxÞ and the velocity field, we first extend ’LðqÞ to the
larger grid�N=2 � j � N þ N=2� 2 (using periodicity)
and we compute the convex hull associated with this set of
points. This ensures that boundary effects are eliminated
for the points in the range 0 � j � N � 1we are interested
in. We obtain in this fashion the triangular facets of ’ over
this domain, which defines the Lagrangian-space triangu-
lation at a given time t. Moreover, the slope ðx1; x2Þ of
each facet gives the Eulerian-space position x of the shock
node which contains all the matter associated with this
Lagrangian-space triangle, with a mass equal to �0 times
the triangle area. Thus, from the list of the triangular facets
of ’ we obtain at once both the Lagrangian and Eulerian-
space tessellations, which fully define the distribution of
matter at a given time, see [22] for detailed descriptions.

APPENDIX D: SEPARABLE CASE
IN d DIMENSIONS

We describe here the factorizable solutions of the dy-
namics presented in Sec. V.

1. General index n

For the factorizable initial conditions presented in
Sec. V, defined by Eq. (76) with independent 1D
Gaussian fields along the different directions, the mass M
of a shock node is the product of the ‘‘1D masses’’ Mi

along directions i (since all directions are described by the
same index n we can work with the dimensionless scaling
variables as defined in (52), with a unique characteristic
length LðtÞ given by Eq. (51)). Then, the shock mass
function writes as

NðMÞ ¼
Z 1

0

Yd
i¼1

dMiN
ðiÞðMiÞ�D

�
M�Y

i

Mi

�
; (D1)

where NðiÞðMÞ is the 1D shock mass function along direc-
tion i. In our case all 1D mass functions are identical,

NðiÞðMÞ ¼ Nð1ÞðMÞ, whereNð1ÞðMÞ is the 1D mass function
associated with the index n studied in section B 2.

Introducing the Mellin transform N̂ðsÞ of the shock mass
function,

N̂ðsÞ ¼
Z 1

0
dMMs�1NðMÞ; (D2)

NðMÞ ¼
Z cþ1

c�i1
ds

2�i
M�sN̂ðsÞ; (D3)

(where c is an arbitrary real number within the fundamen-

tal strip of N̂ðsÞ), we obtain at once

N̂ðsÞ ¼ ðN̂ð1ÞðsÞÞd: (D4)

Assuming that the 1D mass functions show the low-mass
power-law tails (B3) without logarithmic prefactors (which
has only been proved for n ¼ 0 and n ¼ �2 but is con-
sistent with numerical simulations for other values of n, see
Figs. 1 and 3), we obtain

s ! �n� 1

2
: N̂ð1ÞðsÞ � 1

sþ ðn� 1Þ=2 ; (D5)

N̂ðsÞ �
�
sþ n� 1

2

��d
: (D6)

From the standard properties of the Mellin transform this
yields the low-mass asymptotic behavior (79). Thus, we
obtain for all dimensions d a low-mass power-law tail, with
the same exponent ðn� 1Þ=2, but with a logarithmic pre-
factor to the power (d� 1). The 1D high-mass cutoff (58)
gives the large-s behaviors (keeping only the leading-order
term)

s ! 1: N̂ð1ÞðsÞ � ss=ðnþ3Þ; N̂ðsÞ � sds=ðnþ3Þ; (D7)

whence the asymptotic tail (80). Thus, we obtain for all
dimensions d a high-mass modified-exponential cutoff, but
with an exponent ðnþ 3Þ=d that decreases at higher d.
The same analysis applies to the probability distribution,

PXð�Þ, of the overdensity within cubic cells of size X.
Indeed, we again have � ¼ Q

d
i¼1 �i, where �i is the ’’1D

overdensity’’ along direction i, and the density probability
distribution function writes as
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PXð�Þ ¼
Z 1

0

Yd
i¼1

d�iP
ðiÞ
X ð�iÞ�D

�
��Y

i

�i

�
: (D8)

This yields the Mellin transform

P̂ XðsÞ ¼ ðP̂ð1Þ
X ðsÞÞd: (D9)

As for the shock mass function this leads to the high-
density cutoff

� ! 1: lnPXð�Þ � �Xnþ3�ðnþ3Þ=d: (D10)

Again we recover the characteristic exponents (75) of the
isotropic case.

2. Index n ¼ �2

For n ¼ �2, where the 1D mass function Nð1ÞðMÞ and
density probability distribution Pð1Þ

X ð�Þ are given by the
simple expressions (B2) and (B5), we can derive explicit
expressions. Thus, the 1D Mellin transforms write as

n ¼ �2: N̂ð1ÞðsÞ ¼ 1ffiffiffiffi
�

p �

�
s� 3

2

�
; (D11)

P̂ ð1Þ
X ðsÞ ¼ 2

ffiffiffiffi
X

�

s
e2XKs�3=2ð2XÞ; (D12)

where K� is the modified Bessel function of the second
kind of order �. This gives the shock mass function and the
density probability distribution for all d through Eqs. (D4)
and (D9). At low dimensions it is simpler to use the
integrals (D1) and (D8), which gives for instance in 2D
the expressions (81) and (82). This yields the asymptotic
behaviors

d ¼ 2; M ! 0: NðMÞ � � lnM

�
M�3=2; (D13)

M ! 1: NðMÞ � 1ffiffiffiffi
�

p M�7=4e�2
ffiffiffiffi
M

p
; (D14)

and

d ¼ 2; � ! 0: lnPXð�Þ � �2X=
ffiffiffiffi
�

p
; (D15)

� ! 1: lnPXð�Þ � �2X
ffiffiffiffi
�

p
; (D16)

which agree with the general results (79), (80), and (D10).
We show our results in Figs. 9 and 20 for the shock

mass function NðMÞ and the probability distribution
PXð�Þ, in dimensions d ¼ 1, 2 and 3 and for the index
n ¼ �2. To see more clearly the intermediate power-
law regime we plot the product �2PXð�Þ in Fig. 20. In

FIG. 20 (color online). The product �2PXð�Þ, where PXð�Þ is
the probability distribution function of the overdensity � within
cubic cells of size X, for the separable dynamics with n ¼ �2.
Dimensions d ¼ 1 (solid line), d ¼ 2 (dashed line), and d ¼ 3
(dot-dashed line), are shown for two values of the cell size X.

q

z

1

u v

L

R

FIG. 19 (color online). Merging of the 2D convex hulls L and
R associated with the left and right halves of the points in the
ðq1; zÞ plane. The convex envelope of all the points is obtained by
determining the bridge between vertices u and v of the left and
right hulls. As x2 increases, changes to L and R on outer sides
of the bridge are recorded whereas changes to L and R within
�u; v½ do not contribute. In addition, as neighbors of u and v
cross the line ðuvÞ the bridge is modified.

PATRICK VALAGEAS AND FRANCIS BERNARDEAU PHYSICAL REVIEW D 83, 043508 (2011)

043508-28



agreement with Eq. (D10), for higher d the density proba-
bility distribution shows smoother high- and low-density
cutoffs and a broader peak, which again can be understood
as the result of a multiplicative process. As for the isotropic

case, at smaller scales an intermediate power-law regime
develops, as can be seen explicitly in Eq. (82) in 2D.
However, because of logarithmic prefactors it is more
difficult to see it in the figure for higher d.
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