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We describe a way to construct supergravity models with an arbitrary inflaton potential Vð�Þ and show
that all other scalar fields in this class of models can be stabilized at the inflationary trajectory by a proper

choice of the Kähler potential.
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I. INTRODUCTION

From a purely mathematical point of view, finding a
realization of the chaotic inflation in the theory of a
single scalar field� is a nearly trivial exercise. One simply
finds a function Vð�Þ which is sufficiently flat in some
interval of the values of the inflaton field [1]. The simplest
example of such a potential ism2�2=2, or one can take any
other function which approaches �n�

n for �> 1 where
Mp ¼ 1. If one wants to have inflation at �< 1, one can

consider a function with a sufficiently flat maximum or an
inflection point.

Finding a proper inflaton potential in supergravity is
more difficult. The scalar potential in supergravity is a
complicated function of the superpotential W and the
Kähler potential. Usually the potential depends on several
complex scalar fields. Therefore one has to investigate
dynamical evolution in a multidimensional moduli space
and verify stability of the inflationary trajectory. The main
problem is related to the Kähler potentialK. The simplest

Kähler potential contains terms proportional to � ��. The

F-term part of the potential is proportional to eK � ej�j2

and is therefore much too steep for chaotic inflation at

� � 1. Moreover, the presence of the terms like ej�j2

implies that the typical scalar masses are OðHÞ, too large
to support inflation even at �< 1.

From the point of view of an inflationary model builder,
there is also an additional problem. One can always find
Vð�Þ from W and K, but until the calculations are fin-
ished, one does not know exactly what kind of potential
one is going to get. As a result, it is very difficult to solve
the inverse problem: to find W and K which would pro-
duce a desirable inflationary potential Vð�Þ.

A partial solution to this problem was found in a recent
paper [2]. The main idea was to consider a theory of two
scalar fields S and �, with a Kähler potential which has a
flat direction corresponding to Re� and with a superpo-
tential W ¼ Sfð�Þ, where fð�Þ is an arbitrary holomor-
phic function. This class of models is a generalization of
the simplest model of chaotic inflation in supergravity
proposed long ago in [3]. It was shown in [2] that, for a

certain class of functions fð�Þ, the scalar field � ¼ffiffiffi
2

p
Re� plays the role of the inflaton field. Inflation occurs

at S ¼ Im� ¼ 0, and this inflationary trajectory can be

stabilized by a proper choice of the Kähler potential. In this
class of models, one has a functional freedom of choice of

the inflaton potential Vð�Þ ¼ jfð�=
ffiffiffi
2

p Þj2.
In this paper we will extend these results for a more

general class of Kähler potentials and explain how one can
solve the inverse problem discussed above and obtain an
arbitrary inflationary potential Vð�Þ using the superpoten-
tial W ¼ Sfð�Þ. We will also show that one can always
stabilize the inflationary trajectory S ¼ Im� ¼ 0 by a
proper choice of the curvature of the Kähler manifold.
We will identify the field S with the scalar component of

the Goldstino multiplet, and we will formulate the required
conditions of stability of the inflationary trajectory in terms
of the curvature of the Kähler geometry.

II. GENERAL INFLATIONARY POTENTIAL

Consider a supergravity model with the superpotential

W ¼ Sfð�Þ; (1)

where fð�Þ is a real holomorphic function such that
�fð�Þ ¼ fð�Þ. Any function which can be represented by
Taylor series with real coefficients has this property.
The real part of the field � will play the role of the

inflation field. Meanwhile the fields S and Im� will be
forced to vanish during inflation. As will be explained later,
the scalar field S in this class of models belongs to the
Goldstino supermultiplet; its fermionic partner is a
Goldstino.
One can impose certain simplifying conditions on the

Kähler potentialKð�; ��; S; �SÞ without affecting the infla-
tionary regime. In what follows, we will assume that the

Kähler potentialKð�; ��; S; �SÞ is separately invariant with
respect to the following transformations:

S ! �S; (2)

� ! ��; (3)

� ! �þ a; a 2 R: (4)

The Kähler potential is invariant under the first transfor-
mation, in particular, if it is a function of S2 þ �S2 and S �S. It
implies that KS ¼ K �S ¼ 0 at S ¼ 0 for all �, where
lower indices imply differentiation, e.g. KS �S ¼ @S@ �SK.
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One then can show that the scalar potential Vð�; ��; S; �SÞ
has an extremum with respect to S and �S at S ¼ 0, for all
�, i.e. @SV ¼ @ �SV ¼ 0 at S ¼ 0. The potential of the field
� at S ¼ 0 is given by

Vð�; ��Þ ¼ eKð�; ��;0;0Þjfð�Þj2K�1
S �S
ð�; ��; 0; 0Þ; (5)

where we took into account that W ¼ 0 and @�W ¼ 0 at
S ¼ 0. The matrix of the coefficients in front of the kinetic
terms in the Lagrangian is block diagonal at S ¼ 0, i.e.
KS �� ¼ K �S� ¼ 0.

The second assumption is satisfied, in particular, by any
Kähler potential which behaves as some function of

�2 þ ��2 and � ��. Because fð�Þ is a real holomorphic
function, the product jfð�Þj2 also has this symmetry.
Points with Im� ¼ 0 therefore correspond to extrema

with respect to Im�; i.e. the first derivative of Vð�; ��Þ
with respect to Im� vanishes at Im� ¼ 0. As we will see,
under certain conditions to be discussed later, the second
derivatives of the potential with respect to S and Im� along
the trajectory S ¼ Im� ¼ 0 are large and positive, which
means that it is stable with respect to the fluctuations of the
fields S and Im�. In this case, one can study inflation when
the field Re� plays the role of the inflaton field, and all
other fields vanish.

Next, using (3) and (4), the Kähler potential can be

written as a function of ð�� ��Þ2. Since K is flat in

Re�, the exponential factor eK is under control and the
potential along the inflationary trajectory can be rewritten
using the value of K at the origin:

V ¼ eKð0;0;0;0ÞjfðRe�Þj2K�1
S �S
ð0; 0; 0; 0Þ: (6)

Using Kähler invariance, one can always make a choice
Kð0; 0; 0; 0Þ ¼ 0, which corresponds to rescaling of fð�Þ.
One can also take KS �Sð0; 0; 0; 0Þ ¼ K� ��ð0; 0; 0; 0Þ ¼ 1.
This corresponds to canonical normalization of the fields
S and �, which can be achieved by rescaling of these
fields at the point S ¼ � ¼ 0. Finally, since the Kähler
potential does not depend on Re�, all fields remain can-
onically normalized along the inflationary trajectory S ¼
Im� ¼ 0, for all values of Re�. The inflationary potential
is therefore given by the amazingly simple and general
expression

V ¼ f2ðRe�Þ; (7)

where fð�Þ is an arbitrary real holomorphic function.
Another way to present the result is in terms of the real

canonically normalized fields s, �, �, and �, related to the
complex fields through

S ¼ 1ffiffiffi
2

p ðsþ i�Þ; � ¼ 1ffiffiffi
2

p ð�þ i�Þ: (8)

The potential of the inflaton field � is then

Vð�Þ ¼ f2ð�=
ffiffiffi
2

p Þ: (9)

There are two ways to use these results. First of all, one
can give a long list of all possible potentials Vð�Þ which
appear if one uses some simple real holomorphic function
fð�Þ, e.g. an arbitrary polynomial of � with real coeffi-
cients; see some examples in [2].
The second way to use these results is to find a super-

gravity theory that effectively behaves like single-field
inflation with an arbitrary potential Vð�Þ during slow-roll

inflation. This is done by defining a function fð�=2Þ ¼ffiffiffiffiffiffiffiffiffiffiffi
Vð�Þp

, expanding it in powers of �=
ffiffiffi
2

p
, and analytically

continuing this function. The part of the potential respon-
sible for the inflationary regime is very flat and smooth,
and the expansion should give an accurate answer there.

Therefore replacing
ffiffiffiffiffiffiffiffiffiffiffi
Vð�Þp

by a polynomial of a suffi-

ciently high degree in �=
ffiffiffi
2

p
and then performing the

analytic continuation should reproduce the correct physics
during inflation.
In general, it may require more work to find an analytic

continuation which accurately reproduces a given potential
Vð�Þ both during inflation and after inflation. However,
observations provide very limited information about Vð�Þ
after inflation because it does not affect the large scale
structure of the Universe. Therefore one may find a family
of many different functions fð�Þ which accurately repro-
duce the required shape of the potential Vð�Þ during
inflation and use only those of these functions which
satisfy some general requirements on the postinflationary
shape of the inflationary potential. One of these require-
ments is that fð�Þ must almost exactly vanish at the
minimum of the potential, to account for the smallness of
the cosmological constant. Another requirement is the
requirement of stability, which should be satisfied both
during inflation and after it.

III. STABILITYOF INFLATIONARY TRAJECTORY

Completing the investigation requires checking the
stability of the inflationary trajectory S ¼ Im� ¼ 0 with
respect to small fluctuations of the fields S and Im�. The
stability conditions have a particularly simple form when
the Kähler potential only depends on S �S, and this will be
assumed in what follows.1 Because the Kähler potential
now is a function of s2 þ �2, the mass of s and � must be
the same. Therefore, for investigation of stability it is
sufficient to study m2

s ¼ @2sV and m2
� ¼ @2�V at the point

s ¼ � ¼ � ¼ 0. After some algebra, one finds the masses
of all fields orthogonal to the inflaton direction �:

1For more general Kähler potentials where only (2) is imposed
m� is unchanged while the masses of S are split:

m2
s� ¼ �ðKSS �S �S � jKSSS �S �KSSjÞf2 þ ð@�fÞ2:

Terms like S2 þ �S2 in the Kähler potential thus make the field S
less stable. Similarly, adding terms �S3 to the superpotential
does not improve the stability.
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m2
� ¼ 2ð1�K� ��S �SÞf2 þ ð@�fÞ2 � f � @2�f;

m2
s ¼ m2

� ¼ �KSS �S �Sf
2 þ ð@�fÞ2;

(10)

where all functions and their derivatives are calculated at
the inflationary trajectory S ¼ Im� ¼ 0. Furthermore,
using

V ¼ f2 ’ 3H2;

�
@�f

f

�
2 ¼ �;

@2�f

f
¼ �� �; (11)

the masses can be rewritten as

m2
� ¼ 3H2½2ð1� K� ��S �SÞ þ 2�� ��; (12)

m2
s ¼ m2

� ¼ 3H2½�KS �SS �S þ ��: (13)

The absence of tachyonic instabilities along the inflation-
ary trajectory

m2
�;m

2
s ; m

2
� � 0 (14)

requires that

K� ��S �S þ
�

2
� � � 1; KS �SS �S � � � 0: (15)

There is an interesting regime where these masses are
not tachyonic, but some of them are much smaller than H.
Inflationary perturbations of these light fields will be pro-
duced, in addition to the usual perturbations of the inflaton
field �. These perturbations may result in dangerous iso-
curvature perturbations of the metric, but under certain
conditions they produce the usual adiabatic perturbations,
as in the curvaton scenario [4]. This scenario is more
complicated than the traditional single-field inflation sce-
nario, but it has some interesting features, such as a pos-
sibility to obtain large non-Gaussian perturbations of the
metric. To study this regime, one must keep all terms in
Eqs. (13), including the small slow-roll parameters. For
example, one may design the S field to play the role of the
curvaton and require that

0<m2
s 	 H2 ) �1

3 	 KS �SS �S � � � 0: (16)

Or, one may design the � field to play the role of the
curvaton and require that

0<m2
� 	 H2 ) �1

3 	 2ð1� K� ��S �SÞ þ 2�� � � 0:

(17)

On the other hand, if we want to have a standard single-
field inflationary scenario where only the fluctuations of
the inflaton field are generated, we must ensure that all
other scalar fields are heavier than H:

m2
�;m

2
s ; m

2
� * H2: (18)

During slow-roll single-field inflation �; � 	 1, the last
terms in the mass formula are often subdominant and can
be dropped:

m2
� 
 6H2ð1� K� ��S �SÞ; (19)

m2
s ¼ m2

� 
 �3H2KS �SS �S: (20)

In this case, the Kähler potential must obey the following
conditions:

K� ��S �S & 5
6; KS �SS �S & �1

3: (21)

It is easy to find Kähler potentials that satisfy these con-
ditions, as will be demonstrated in the next section.
In general, the behavior of the function f may be con-

strained by the requirement of stability of the trajectory
S ¼ Im� ¼ 0 after inflation, where the slow-roll parame-
ters become large. However, as we already mentioned in
the previous section, this would simply mean that one
should modify the function fð�Þ after inflation. This
does not affect the freedom of choice of Vð�Þ during
inflation, which is the main quantity that we need to
know to account for the observable consequences of
inflation.

IV. EXAMPLES

Let us consider some particular examples. We will start
with a simple polynomial Kähler potential that is a general-
ization of the potential used in Ref. [3]:

K ¼ S �S� 1

2
ð�� ��Þ2 � �ðS �SÞ2 þ�

2
S �Sð�� ��Þ2: (22)

Note that the stabilizing terms ��ðS �SÞ2 þ �
2 S

�Sð�� ��Þ2
were added to the Kähler potential of the model of [3]. This
Kähler geometry has K� ��S �S ¼ �� and KS �SS �S ¼ �4� , and
the stability conditions (21) during inflation are, for any
sufficiently flat fð�Þ, � * �5=6 and � * 1=12.
This can be verified for a simple model with fð�Þ ¼

��n, corresponding toH2 ¼ V=3 ¼ �2�2n=3. In this case
(10) gives

m2
� ¼ �2�2n�2ð2ð1þ �Þ�2 þ nÞ;

m2
s ¼ m2

� ¼ �2�2n�2ð4��2 þ n2Þ:
(23)

Inflation in these models happens for �2 * maxfn; n2g, in
which case

m2
� 
 6H2ð1þ �Þ; m2

s ¼ m2
� 
 12�H2: (24)

For � >�1, � > 0 both masses squared are positive and
the inflationary trajectory is free from tachyonic instabil-

ities even without the additional terms ��ðS �SÞ2 þ
�
2 S

�Sð�� ��Þ2. To avoid inflationary perturbations of these
fields one should have m2

�;m
2
s ; m

2
� * H2. These fluctua-

tions are suppressed for � * �5=6 and � * 1=12.
Meanwhile, for � 	 1=12 one hasm2

s ¼ m2
� 	 H2 during

inflation. In this case, inflationary perturbations of the
fields s and � are generated, which may allow us to realize
the curvaton scenario in this model [5].
As a next example, consider the logarithmic Kähler

potential which is used in the Jordan frame supergravity
[2,6–9]. The Kähler potential is
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K ¼ �3 log

�
1þ 1

6
ð�� ��Þ2 � 1

3
S �Sþ �ðS �SÞ2=3

� �

6
S �Sð�� ��Þ2

�
: (25)

In this caseK� ��S �S ¼ ��þ 1=3 andKS �SS �S ¼ �4� þ 2=3,
and the stability conditions with respect to the generation
of inflationary perturbations of the fields orthogonal to the
inflationary trajectory are � * �1=2 and � * 1=4.

Thus we found two different families of Kähler poten-
tials which lead to stabilization of the inflationary trajec-
tory, for any choice of the inflationary potential Vð�Þ.

V. GOLDSTINO AND THE GEOMETRIC
INTERPRETATION OF STABILITY

The results above may be quite sufficient for cosmolo-
gists and for model builders. However, there are two issues
which deserve additional discussion. First of all, when
we studied stability of the inflationary trajectory, we

used a particular representation S ¼ ðsþ i�Þ= ffiffiffi
2

p
, � ¼

ð�þ i�Þ= ffiffiffi
2

p
. However, one could represent these fields

in many other ways, e.g. S ¼ sei	=
ffiffiffi
2

p
, � ¼ �ei�=

ffiffiffi
2

p
. Is

there any invariant way to study stability of the inflationary
trajectory? Second, one may wonder what is the nature of
the field S, which plays such an important role in the
construction, but in the end vanishes.

Moreover, one may want to understand the results above
from a more general perspective of moduli stabilization in
the near de Sitter geometry when one of the fields, the
inflaton field, is light. Various aspects of generic super-
gravity and string theory moduli stabilization conditions in
de Sitter vacua and during slow-roll inflation were studied
before, in particular, in [10,11].

To answer these questions we take one step back and
rederive the results above in the covariant formalism. The
potential for N ¼ 1 supergravity can be written as

V ¼ eKðga �bð@a þKaÞWð@ �b þK �bÞ �W � 3jWj2Þ
¼ ga

�bFa
�F �b � 3eKjWj2; (26)

where Fa � Dae
K=2W ¼ eK=2ð@aW þKaWÞ, F

�b ¼
g
�baFb, and �Fa ¼ ga

�b �F �b. The covariant derivative on a
scalar is Da ¼ @a þ wKa, where w is the Kähler weight,2

and appropriate metric connections �b
ac(�

�b
�a �c) are added

when acting on tensors. For canonically normalized fields
the stability is determined by the eigenvalues of the mass
tensor

M ¼ �D �a@bV �D �a@ �bV
Da@bV Da@ �bV

� �
: (27)

The holomorphic-antiholomorphic part is

Ma �b ¼ ðga �bgc �d � ga �dgb �c � Ra �bc �dÞ �FcF
�d � 2ga �be

KjWj2
þDaFc

�D �b
�Fc: (28)

Supersymmetry is spontaneously broken when Fa � 0
and it defines the Goldstino direction in the field space

Ua � Fa=
ffiffiffiffiffiffiffiffiffiffiffiffi
FbF

b
p

, UaU
a ¼ 1. This can be seen from the

Goldstino fermion � ¼ Fa

a that is eaten by the gravitino.

A special role of the Goldstino direction in the moduli
space was explained in [11].
The class of models considered in this paper have,

during inflation, W ¼ 0 and spontaneously broken super-
symmetry FS ¼ fð�Þ � 0 and F� ¼ 0. This illuminates
the role of S; because the Goldstino is � ¼ Fa


a ¼
fð�Þ
S, S belongs to the Goldstino supermultiplet as it
is a superpartner of the Goldstino fermion. Furthermore, it
is the nonzero FS that generates the inflaton potential:

V ¼ FS
�FS ¼ 3H2: (29)

We now simplify (27) along the inflaton trajectory in the
limit where the slow-roll parameters � and � are negli-
gible. Then the termDaFc

�D �b
�Fc in (28) can be dropped and

the holomorphic-antiholomorphic part of the mass formula
simplifies:

M a �b ¼ ðga �bgc �d � ga �dg �bc � Ra �bc �dÞ �FcF
�d: (30)

A couple of points are to be made here. First, because the

Kähler potential is of the form KðS �S; ð�� ��Þ2Þ all
odd derivatives vanish along the inflaton path and �b

ac ¼
Ka ¼ 0. The Riemann curvature simplifies to

Ra �bc �d ¼ Kac �b �d � �e
abge �e�

�e
�c �d

¼ Kac �b �d: (31)

Thus both RS �SS �� and the off-diagonal MS �� vanish.
Second, using Ua a sectional Ricci tensor in the
Goldstino direction can be defined, namely,

R
FS

a �b
� Ra �bc �d

�UcU
�d ¼ Ra �bc �d

�FcFd

Fb
�Fb

¼ Ka �bS �S: (32)

This suggests that the constraints onKS �SS �S andK� ��S �S in
(15) and (21) should be interpreted as constraints on the
sectional curvature tensor. In terms of the sectional curva-
ture we have

M a �b ¼ ðga �b �Ua
�U �b � RF

a �b
ÞV: (33)

For S and � this simplifies to

M� �� ¼ ðg� �� � R
FS

� ��
ÞV; MS �S ¼ �R

FS

S �S
V; (34)

where the first two terms in the S �S mass formula (33)
canceled.

2The potential is invariant under the Kähler transformation

K ! Kþ fþ �f; W ! We�f:

An object that transforms as A ! Ae�ðf� �fÞ=2 has weight w. For
example, eK=2W has w ¼ 1=2 and V has w ¼ 0. The antiholo-
morphic derivative is D �a ¼ @ �a � wK �a.
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Finally, using the sectional curvature a necessary condi-
tion for the absence of the tachyons in de Sitter vacua can
be stated as a geometric constraint on the Kähler manifold
projected into a Goldstino direction:

RF
a �b

� ga �b �
Fa

�F �b

V
: (35)

We now turn to the off-diagonal block Mab. To lowest
order in slow-roll parameters fð�Þ is a constant and the

potential can be written in terms VðS �S; ð�� ��Þ2Þ. The
Uð1Þ invariance in S impliesMSS ¼ 0 and the mass matrix
for S is

MS �S 0
0 MS �S

� �
: (36)

Because V, for small slow-roll parameters, is an approxi-

mate function of ð�� ��Þ2 the derivatives are antisymmet-

ric in � and ��:

D�V ¼ �D ��V; M�� ¼ �M� ��; (37)

and the � mass matrix is

M� �� �M� ��

�M� �� M� ��

� �
) 2M� �� 0

0 0

� �
; (38)

where the arrow indicates diagonalization. Here the infla-
ton� is the nearly massless state while� has mass 2M� ��.
Using (33) we now have a geometric interpretation of the
results of Sec. III: �, s, and� are all stable with suppressed
inflationary perturbations for sectional curvatures satisfy-
ing [cf. (21)]

RFS

� ��
& �5

6; RFS

S �S
& �1

3: (39)

which provides that m2
�;m

2
s ; m

2
� * H2.

However, as already mentioned, one may also be inter-
ested in a regime where the supergravity fields orthogonal
to the inflationary trajectory are stable, but light, with
potentially big inflationary fluctuations [4,5]. In such a
case one would like to have the masses of these fields
significantly smaller than the Hubble scale. For example,
if one would like to have the S field light, one would
require that 0<m2

s 	 H2. The restriction on the Kähler
manifold curvature in such a case is [cf. (16)]

� 1
3 	 RFS

S �S
� � < 0: (40)

If one would like to have the field � light, 0<m2
� 	 H2,

the Kähler manifold curvature has to be restricted [cf. (17)]:

� 1
3 	 2ðRFS

� ��
� 1Þ � 2�þ �< 0: (41)

Thus, we derived the geometric stability conditions on
inflationary trajectory S ¼ Im� ¼ 0. These conditions in-
volve the curvature of the Kähler manifold projected into
the plane defined by the Goldstino direction S in the moduli
space. During inflation, supersymmetry is broken sponta-
neously in this direction, which is orthogonal to the infla-
ton. The scalar partner of a Goldstino vanishes during
inflation, which leads to a significant simplification of the
analysis of the potential and of the stability of the infla-
tionary trajectory.

VI. CONCLUSIONS

In this paper, we identified a class of supergravity mod-
els where one can obtain an arbitrary inflationary potential
Vð�Þ. All scalar fields along the inflationary trajectory
have canonical kinetic terms and minimal coupling to
gravity. One may wonder whether the stability conditions
for the inflationary trajectory could lead to some con-
straints on the choice of the inflationary potential.
Fortunately, in this class of models one can make func-

tional adjustments to the Kähler potential and stabilize the
inflationary trajectory without changing Vð�Þ. Here we
studied a few types of stability conditions.
To achieve a single-field inflation we require that all

scalar fields but inflaton should have masses greater than
H2. This is necessary to avoid a tachyonic instability and,
in addition, to avoid generation of long-wavelength per-
turbations of all fields except the standard inflaton pertur-
bations. We have found that these stability conditions do
not put any constraints on the choice of the potential Vð�Þ
during slow-roll inflation. They can be satisfied by the
choice of the Kähler geometry; see (21) and (39). Thus,
from a purely mathematical standpoint, one could use full
functional freedom to tune the inflaton potential in super-
gravity, if it is required by observations.
We also studied the possibility that not only the inflaton

field � but also some other scalar fields have positive mass
squared which is much smaller than H2. As shown in (16),
(40), (17), and (41), this can be achieved by tuning the
Kähler potential. This allows one to use the curvaton mecha-
nism and add a controllable amount of non-Gaussian adia-
batic perturbations generated by fluctuations of the light
scalar fields orthogonal to the inflationary trajectory.
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