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Future astrophysical data sets promise to strengthen constraints on models of inflation, and extracting

these constraints requires methods and tools commensurate with the quality of the data. In this paper we

describe MODECODE, a new, publicly available code that computes the primordial scalar and tensor power

spectra for single-field inflationary models. MODECODE solves the inflationary mode equations numeri-

cally, avoiding the slow roll approximation. It is interfaced with CAMB and COSMOMC to compute cosmic

microwave background angular power spectra and perform likelihood analysis and parameter estimation.

MODECODE is easily extendable to additional models of inflation, and future updates will include Bayesian

model comparison. Errors from MODECODE contribute negligibly to the error budget for analyses of data

from Planck or other next generation experiments. We constrain representative single-field models

(�n with n ¼ 2=3, 1, 2, and 4, natural inflation, and ‘‘hilltop’’ inflation) using current data, and provide

forecasts for Planck. From current data, we obtain weak but nontrivial limits on the post-inflationary

physics, which is a significant source of uncertainty in the predictions of inflationary models, while we

find that Planck will dramatically improve these constraints. In particular, Planck will link the inflationary

dynamics with the post-inflationary growth of the horizon, and thus begin to probe the ‘‘primordial dark

ages’’ between TeV and grand unified theory scale energies.
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I. INTRODUCTION

The last two decades have seen a sequence of break-
throughs in the understanding of the physical universe. The
detection of cosmic microwave background (CMB) anisot-
ropies by COBE in 1992 [1], evidence for dark energy in
the distance-luminosity relationship for Type Ia superno-
vae in 1998 [2,3], and the sequence ofWMAP data releases
[4–7], among others, mark turning points in our ability to
constrain—and falsify—specific cosmological models.
These advances begin to fulfill the long-standing promise
that astrophysical data can directly probe the first moments
after the big bang, while simultaneously constraining mod-
els of ultrahigh energy physics. Experiments underway and
now being developed guarantee that this progress will
continue well into the future. In particular, the Planck
satellite [8] has completed a full survey of the sky, and
this data should dramatically improve the constraints
on the free parameters in the so-called concordance
cosmology.

Given the quality of present-day data, the primordial
perturbations are fully described by two numbers (e.g.
Ref. [9]): the amplitude As and tilt ns of the power spec-
trum of density (scalar) perturbations. These quantities
form the basis of an inflationary sector in the concordance
model, if we postulate that their values can be traced back

to a phase of primordial inflation. Conversely, a complete
inflationary model must account for these numbers. As the
data improve, this set of parameters can easily expand to
include the properties of any primordial gravitational wave
background or departures from Gaussianity. Given the
tight agreement between the concordance model and cur-
rent data, the impact of any new parameters is necessarily
subleading. Consequently, additional parameters needed to
describe the primordial perturbations can be regarded as
fingerprints of specific inflationary models, in that most
of these quantities will be vanishingly small in most infla-
tionary models (see e.g. Ref. [10]).
Physically, inflation is characterized by a period of

accelerated expansion in the early universe, and an infla-
tionary model is defined by the mechanism that drives this
accelerated expansion. Simple models of inflation can
usually be described by the kinetic term and potential of
a single scalar degree of freedom (the inflaton), along with
this field’s coupling to gravity. In this paper we focus on
models where the field is minimally coupled to gravity
and has a canonical kinetic term, but will relax these
restrictions in future work.
The simplest approach to constraining inflation is to

specify the primordial perturbations in terms of the em-
pirical parameters

� emp ¼ fAs; ns; �s; . . . ; r; nt; . . . ; fnl; . . .g; (1)

where �s is the running of the scalar spectral index, r the
tensor-to-scalar ratio, nt the tensor spectral index, and fnl
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parametrizes non-Gaussianity. Further, �emp may be ex-

tended indefinitely to include higher-order terms in the
expansion of the scalar and tensor power spectra and
various deviations from Gaussianity. These additional pa-
rameters will generally be more difficult to measure in any
given data set than the basic empirical parameters As and
ns. In all cases, inflationary model predictions for the
values of the empirical parameters are to be compared
with the measured values of these parameters.

A second approach treats the determination of the
inflationary mechanism as an inverse problem, and thus
reconstructs the inflaton potential from the data [11–15].
For instance, slow roll reconstruction [16–19] uses a sys-
tematic expansion based on the slow roll hierarchy [20–25]
together with consistency conditions on the duration of
inflation, providing a minimally parametric approach to
the inverse problem. Variations to this scheme have been
widely discussed in the literature [26–33]. The inverse
problem does not have a unique solution, and typically
encodes basic assumptions regarding the general class of
inflationary models under consideration [34].

Here we adopt a third approach, in which we assume that
inflation was driven by a specific model (i.e. form of the
potential) with one or more free parameters,

� V ¼ fV1; V2; . . . ; Vn;�RHg; (2)

where the Vi parametrize the potential, while �RH parame-
trizes the post-inflationary reheating phase, as we discuss
later. These parameters replace the empirical inflationary
sector, �emp. We estimate their values alongside other

cosmological parameters, typically using Markov Chain
Monte Carlo (MCMC) analysis [35–41]. Following
parameter estimation for several different inflationary
models, Bayesian model selection [42–47] techniques
will allow us to compare the fidelity with which these
different models account for observations of the sky.

Working directly with inflationary models, we can com-
pute the power spectrum numerically without recourse to
the slow roll approximation. This removes a lingering
uncertainty from the analysis of the inflationary parameter
space, and allows us to constrain inflationary models with
complicated spectra not well described by �emp. While the

exact computation of the power spectrum is numerically
straightforward and has been used extensively for slow
roll-violating potentials previously [31,32,48–59], such
precision is only now becoming necessary with the arrival
of higher quality data from Planck.

Even when the slow roll approximation is accurate and
the spectra simple, there are advantages to working with
�V , rather than �emp. Empirical quantities such as As, ns, r,

etc. are computable functions of the free parameters of any
specific inflationary model, and thus constraints on �emp

can, in principle, be mapped into constraints on �V .
However, we will see that this approach is of limited use
in practice, while the opposite approach of inferring

constraints on �emp from constraints on �V (given the

underlying inflationary prior) is generally reliable.
Finally, �V explicitly accounts for the theoretical un-

certainty in inflationary predictions induced by the un-
known thermalization history of the post-inflationary
universe [17,18,60–63], in combination with the scale-
dependence of the spectral index. This uncertainty is
significant even when the running �s � dns=d lnk is not
itself observable. This apparent paradox arises because
when the running is included, �emp requires at least four

free parameters to fix the primordial spectra. Conversely,
�V may have only a single free parameter for the infla-
tionary potential and another for the reheating physics,
and these numbers can thus be determined with more
precision than those in �emp [64].

This paper has three primary objectives. The first is to
introduce MODECODE, a plug-in for CAMB and COSMOMC

[39,65]. MODECODE provides an efficient and robust nu-
merical evaluation of the inflationary perturbation spec-
trum, and allows the free parameters in the potential to be
estimated within an MCMC computation. Second, we use
this code to generate constraints on representative single-
field inflationary models using current data and give fore-
casts for the constraints that can be expected from Planck.
Finally, this analysis underlines the importance of assump-
tions regarding reheating and thermalization in studies of
inflation using data from the next generation of astrophys-
ical data sets. We will see that current data put weak but
nontrivial constraints on the reheating history given an
explicit inflationary model. Further, our forecasts suggest
that Planck will link the post-inflationary history with the
inflationary epoch, with significant implications for theo-
ries of particle physics between grand unified theory
(GUT) scales (� 1015 GeV) and TeV scales.

MODECODE computes both the scalar and tensor pertur-

bation spectra, via the algorithm described in Ref. [50]. A
number of common inflationary potentials are already in-
cluded, and new models are straightforward to incorporate
in MODECODE by supplying the potential and its deriva-
tives. Since the CMB angular power spectra and likelihood
are already expressed numerically, nothing is lost (other
than a relatively small computational overhead) by solving
directly for the mode amplitudes, rather than using an
analytic approximation. Attention has been given to ensur-
ing that the initial conditions for the background are
self-consistent and that the code ‘‘fails gracefully’’ for
unphysical parameter combinations, so that such points
are excluded from MCMC analyses. In addition, we accu-
rately compute the endpoint of inflation and the evolution
of the comoving horizon size during inflation, so as to
precisely match scales in the inflationary era with scales
in the present-day Universe.
In a follow-up paper, we will interface MODECODE with

MULTINEST [47], allowing us to compute the Bayesian

evidence for the models we analyze. In addition, it is
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straightforward to extend MODECODE to scenarios with
nonminimal kinetic terms [56,57], multifield models, or
even non-Gaussianity [66].

II. METHODS

A. Numerical solution

In many circumstances, the slow roll approximation
provides a sufficiently accurate description of the infla-
tionary power spectra and has the advantage of expressing
them as functions of the potential and its derivatives.
However, we want to avoid the slow roll approximation
to maintain full generality and accuracy, and instead com-
pute the initial curvature and tensor power spectra numeri-
cally given a specific inflaton potential Vð�Þ [48–50]. This
approach yields exact numerical results for arbitrary infla-
tionary potentials, up to the intrinsic accuracy of first order
gravitational perturbation theory.1

We begin by reviewing the formalism used for the
numerical solution of the mode equations. We describe
the scalar perturbations with the gauge invariant
Mukhanov potential u [67,68], which is related to the
curvature perturbation R:

u ¼ �zR; (3)

where z � _�=H, H is the Hubble parameter, and dots
denote derivatives with respect to conformal time. The
Fourier components uk obey [69–71]

€u k þ
�
k2 � €z

z

�
uk ¼ 0; (4)

where k is the modulus of the wave vector k. The power
spectrum is defined in terms of the two-point correlation
function

hRkR�
k0 i ¼ 2�2

k3
�2

RðkÞð2�Þ3�ð3Þðk� k0Þ; (5)

and is related to uk and z via

�2
RðkÞ ¼ k3

2�2

��������ukz
��������2

: (6)

In terms of the empirical parameters As, ns, and �s,

�2
RðkÞ ¼ As

�
k

kpivot

�
ns�1þð1=2Þ�s lnðk=kpivotÞþ���

; (7)

where kpivot denotes the pivot scale at which the power

spectrum is normalized.
Equation (4) depends on the background dynamics

through z and its derivatives. Since the logarithm of the
scale factor is a natural time coordinate for numerical
solutions of the inflationary mode equations, we express

the background equations in terms of lna. Denoting
d=d lna with a prime (0) and recalling that H ¼ d lna=dt
by definition, we write the Einstein equation forH0 and the
Klein-Gordon equation for � as follows:

H0 ¼ �M2
Pl

2
ð�0Þ2H; (8)

�00 þ
�
H0

H
þ 3

�
�0 þ 1

H2

dV

d�
¼ 0; (9)

where MPl is the reduced Planck mass. Conveniently, our
choice of independent variable gives �0 ¼ z, and with the
help of these background equations, the mode Eq. (4) can
be written as

u00k þ
�
H0

H
þ 1

�
u0k þ

�
k2

a2H2
�

�
2� 4

H0

H

�00

�0 � 2

�
H0

H

�
2

� 5
H0

H
� 1

H2

d2V

d�2

��
uk ¼ 0; (10)

where the term in square brackets is €z=ðza2H2Þ.
We begin the integration of the background equations

when the mode of interest is still deep inside the horizon
(i.e. k � 100aH). We set the initial field velocity to its
slow roll value, solving only the background equations,
ensuring that the (small) initial transient in the velocity is
damped away. When the mode is roughly 1=100th of the
horizon size, we start to evolve the two orthogonal solu-
tions that contribute to uk, and read off the asymptotic
value of juk=zj when the mode is far outside the horizon
and frozen, as explained in Ref. [50].
The usual mode equation for tensor perturbations,

€v k þ
�
k2 � €a

a

�
vk ¼ 0; (11)

becomes

v00
k þ

�
H0

H
þ 1

�
v0
k þ

�
k2

a2H2
�

�
2þH0

H

��
vk ¼ 0 (12)

after transforming the independent variable. The primor-
dial tensor power spectrum is

�2
t ðkÞ ¼ 4

�2

k3

M2
Pl

��������vk

a

��������2

; (13)

and the asymptotic value of jvk=aj is again taken from the
numerical solutions.

B. Matching and theoretical uncertainties

Ideally, a complete model of the early universe would be
predicted by a candidate theory of fundamental physics. In
that case, we would know the mechanism by which energy
is drained from the inflaton to (re)thermalize the Universe,
as well as the equation of state and expansion rate of the
primordial universe. Unfortunately, inflationary model
building is not mature enough for this to be done on a

1Second and higher-order mode-mode couplings lead to both
non-Gaussianity and loop corrections to the two-point functions.
For the models discussed here, these corrections are very small.
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routine basis and, as a consequence, the unknown expan-
sion history of the post-inflationary universe introduces a
theoretical uncertainty into the predictions of inflationary
models [64]. We must therefore introduce at least one
phenomenological parameter �RH to account for our igno-
rance of post-inflationary physics. For reasons explained
below, we work with N, the number of e-folds of inflation
between moment at which a specified mode leaves the
horizon (k ¼ aH) and the end of inflation, defined by the
instant at which d2aðtÞ=dt2 ¼ 0. Further, given a specified
pivot scale (kpivot) we can then specify a corresponding

Npivot. For a given inflationary model, Npivot is computed

from the matching equation [60,72,73].
The matching depends on the growth of the horizon

scale following inflation. This is a function of the detailed
composition of the primordial universe, which is not well
known, and the matching is thus intrinsically ambiguous.
The two things we know with certainty are that the
Universe is not thermalized at the end of inflation, and
that it must be thermalized by MeV scales, when primor-
dial nucleosynthesis occurs.2 Given that inflation can be a

GUT scale phenomenon, the energy (� �1=4) may change
by a factor of 1018 between inflation and nucleosynthesis—
a much larger factor than that between nucleosynthesis and
the present day.

A common assumption is that the Universe is effectively

matter-dominated (aðtÞ / t2=3) as the inflaton oscillates
about the minimum of the potential, thermalizes at some
temperature TRH (with �RH / T4

RH), and remains radiation-

dominated (aðtÞ / t1=2) until the matter-radiation transition
at z � 3150 [7]. Even for this assumed history, the uncer-
tainty in TRH allows a wide range in N. For example, a
universe which is effectively matter-dominated between
energies of 1015 GeV to 103 GeV needs 9 e-folds less
inflation after a given scale crosses the horizon than one
which thermalizes at 1015 GeV. In many simple inflation-
ary models, the running �s is a few times 10�4, so the
resulting uncertainty in the scalar spectral index ns is
�N�s � 5� 10�3, of the same order as the statistical error
expected from Planck [8,64]. However, far more extreme
possibilities for the post-inflationary expansion rate exist,

including kination [aðtÞ / t1=6] [74], frustrated cosmic
string networks [aðtÞ / t] [75], or even a short burst of
thermal inflation [76], and taking these scenarios into
consideration greatly magnifies the uncertainty in infla-
tionary predictions for a given model.

The truly fundamental variable which specifies the por-
tion of the inflaton potential being traversed as the pivot
mode leaves the horizon is simply �pivot—the value of the

inflaton as the kpivot leaves the horizon. However, � in-

creases in some potentials and decreases in others, while

the mapping � ! �þ�0 produces a new potential with
identical inflationary dynamics, so the numerical value of
� is not informative on its own. Conversely, Nð�Þ has the
same interpretation in all inflationary models and is a
monotonic (and usually simple) function of � for a given
potential. For these reasons, we take Npivot rather than

�pivot as a free parameter. The coupling between Npivot

and the post-inflationary universe simply reflects the physi-
cal reality that the observed inflationary perturbation spec-
trum is a function of the post-inflationary expansion
history, but our choice ensures that the primordial pertur-
bation spectrum is calculated solely in terms of parameters
that describe the inflationary epoch which generated it.3

As we pointed out above, Npivot depends on the detailed

expansion history of the post-inflationary universe.
However, there are a huge number of possible combina-
tions of phases in the early universe, and these can have
strongly degenerate predictions for Npivot.

4 One can imag-

ine that the unknown expansion history is replicated by an
effective barotropic fluid with equation of state ~w [63,64],
which is superficially equivalent to regarding Npivot as a

free parameter. Unfortunately, as explained in Ref. [64], ~w
is an ambiguous parameter. Given an explicit inflationary
potential, we can always determine the moment at which
inflation ends, but we cannot compute ~w without specify-
ing an energy scale at which the Universe has definitely
thermalized: the numerical value of ~w is a function of this
choice. Admittedly, Npivot has an analogous dependence on

the choice of kpivot. However, assuming slow roll, Npivot �
logðkpivotÞ=ð1� �Þ so this dependence is usually transpar-

ent. Further, for a given combination of data sets, it is
possible to determine an optimal choice of kpivot [17],

which is typically close to the geometric mean of the range
of scales contributing to the data set(s).
We note that there is a correlation between the spectral

amplitude at kpivot (As in the usual �CDM parameter set),

and Npivot. As an example, consider m2�2 inflation: to first

order,�end and Nð�Þ do not depend onm2, while lowering
m2 lowers As for fixed �. Consequently, Vend will also
decrease, ensuring that slightly less growth occurs between
the end of inflation and some fixed reference point, such as
nucleosynthesis or recombination. Given the precision
with which the spectral amplitude is now measured, this
effect is small. Moreover, a similar degeneracy arises with

2Recent evidence points to the existence of a cosmological
neutrino background [7], which freezes out at temperatures
slightly higher than those that apply during nucleosynthesis.

3This approach works for scalar perturbations, since modes at
astrophysical scales today remain outside the horizon until after
nucleosynthesis, at which point the thermal history of the
Universe is well constrained. However, primordial gravitational
waves seen by direct detection experiments can enter the horizon
during epochs for which the expansion history is not tightly
constrained, and for these we need the full transfer function
[77,78].

4For example, a long matter-dominated phase leads to the
same prediction for Npivot as a suitable combination of early
radiation-domination and a short secondary period of inflation.
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~w, since this parameter is also sensitive to changes in the
energy density at the end of inflation, if all other parame-
ters are held fixed.

Theoretical considerations put very broad constraints on
Npivot. First, in order to ensure that modes do actually

reenter the horizon, we need ~w 	 �1=3, so that �þ 3p 	
0 and €a 
 0. This is not incompatible with a secondary
period of inflation, but does require that the average ex-
pansion is not inflationary. Secondly, for a barotropic fluid,
� 	 p is required in order to avoid a superluminal sound-
speed, so ~w 
 1. We are free to estimate inflationary
parameters for a narrower range of ~w or Npivot, but it is

important to recognize that doing so amounts to imposing a
theoretical prior on the properties of the post-inflationary
universe.

In what follows, we constrain the free parameters of
inflationary potentials for two different reheating scenar-
ios, general reheating (GRH) and instant reheating (IRH).
In the latter case, we assume that the Universe thermalizes
instantaneously as inflation ends, and remains thermalized
until matter-radiation equality.5 In contrast, GRH assumes
only that the Universe is thermalized by nucleosynthesis
scales and that the average expansion is no slower than

radiation-dominated, or Npivot 
 NðIRHÞ
pivot , the value com-

puted assuming instantaneous thermalization. This prior
is analogous to stipulating that �1=3 
 ~w 
 1=3, which
implicitly rules out a long kinationlike phase. Lower values
of ~w correspond to smaller Npivot, which for the models

considered here leads to an increasingly red-tilted spec-
trum. Current data are thus more sensitive to lower values
of ~w for the models considered here.

C. MCMC methodology

Our Markov Chain Monte Carlo methodology is based
on a modified version of COSMOMC [39], using Metropolis-
Hastings sampling for basic parameter estimation, and
nested sampling via a MULTINEST [47] plug-in for the
calculation of Bayesian evidence (to be presented in a
forthcoming publication). The free parameters in the po-
tential Vð�Þ (plus the one reheating parameter in the GRH
case) are varied in the MCMC chains, along with the other
cosmological parameters of the concordance model, and
any nuisance parameters associated with the data sets.

For all MCMC analyses of current CMB data, we run
	 6 chains per model/data combination, requiring the
Gelman-Rubin [79] criterion on the eigenvalues of the
covariance matrix to be R� 1 & 0:01 for convergence.
For Planck simulation runs, we use 4 chains per model
which satisfy R� 1� 0:1. While this convergence crite-
rion is not as rigorous as that used in our main analysis, we
expect the resulting uncertainty in the estimated variances

to be exceeded by the foreground-removal uncertainties
[80] in the large-angle B-mode constraint, which are not
taken into account in these forecasts.

D. Initial conditions and reheating

We will now describe the implementation of the infla-
tionary initial conditions and the reheating scenarios in
MODECODE.

Initial conditions: Inflationary potentials differ in their
sensitivity to initial conditions (see Ref. [81], and refer-
ences therein). Thus, automatically setting self-consistent
initial conditions is a nontrivial issue. The initial value of
�0 is set according to the slow roll equations (i.e. the
inflaton is assumed to be initially on the slow roll attractor
solution). In addition, for a given set of potential parame-
ters, the algorithm must produce a starting field value �init

which corresponds to a time well before the modes of
interest leave the horizon. For the particular models we
consider here, the code produces a first guess for�init from
the field value needed to achieve Nð�initÞ ¼ 70 in the slow
roll approximation:

Nð�initÞ ¼ 1

M2
Pl

Z �init

�end

d�
V

V;�

; (14)

where �end is the field value at the end of inflation and
V;� � dV=d�. The code then iterates on this initial guess

until a self-consistent value of �init is found. For some
combinations of potential parameters, it is possible that no
set of self-consistent initial conditions exists. In such cases
we reject the parameter combination in the MCMC analy-
sis by assigning it a very small likelihood.
Reheating: MODECODE evolves the inflationary back-

ground solution through to the end of inflation, defined
by d2aðtÞ=dt2 ¼ 0 which corresponds to

�H � 2M2
Pl

�
H;�

H

�
2 ¼ 1; (15)

where �H is the first Hubble slow roll parameter.6 This
calculation yields the number of e-folds between the initial
conditions and the end of inflation. The matching equation
then gives the scale factor at the end of inflation, aend. We
connect a physical ‘‘pivot’’ wave number, kpivot, to a

particular epoch during inflation using

kpivot � apivotHpivot ¼ aende
�NpivotHpivot; (16)

where Hpivot is the Hubble scale corresponding to kpivot,

which leaves the horizon Npivot e-folds before the end of

inflation. In what follows, the pivot scale is set to kpivot ¼
0:05 Mpc�1. For a specific inflationary potential, we can

5In practice, ~w is not exactly 1=3, if the number of degrees of
freedom in the thermal bath is itself a function of temperature.

6The code also includes the capability to define the end of
inflation as corresponding to a particular �end, which would be
useful for implementing multifield models. However, with the
exception of the test in Sec. II E, we do not make use of this
feature in the present work.
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compute NðIRHÞ
pivot from the usual matching equation; the

post-inflationary expansion is known by hypothesis once
we assume instantaneous reheating and

NðIRHÞ
pivot ¼ 55:75� log

�
1016 GeV

V1=4
pivot

�
þ log

�V1=4
pivot

V1=4
end

�
; (17)

where the above expression is drawn from Eq. (20) of
Ref. [64], with appropriate substitutions.7 In the IRH

case we compute simply NðIRHÞ
pivot from this expression and

the Npivot is not an independent variable in the chains. In

the GRH case we set the prior 20<Npivot <NðIRHÞ
pivot . The

lower limit comes from requiring that cosmologically rele-
vant wave numbers are far outside the horizon when in-
flation ends. This is tacitly assumed by our computation of
the spectrum from the asymptotic mode amplitude in any
case, and values of N near this limit are excluded by the
data for all the models we consider here. The upper limit is
enforced by rejecting any step to a model for which

Npivot >NðIRHÞ
pivot .

E. Accuracy and timing

To test the accuracy of MODECODE, we compare its
output with the analytic solution for primordial perturba-
tions in the ‘‘power law inflation’’ model [82], where the
scale factor evolves as aðtÞ / tp during inflation and the
potential has an exponential form

Vð�Þ ¼ V0 exp

� ffiffiffiffi
2

p

s
�

MPl

�
: (18)

Power law inflation is one of the very few known models
for which the spectrum of primordial perturbations can be
computed exactly, making it an ideal test case for the
numerical solution of MODECODE.

Since the tensor-to-scalar ratio for this model is r ¼
16=p, we must take a large value of p to avoid violating
present upper limits on r; here we choose p ¼ 60. For
p > 1, power law inflation does not end via slow roll
violation [Eq. (15)], so we impose an end to the inflationary
expansion at �end ¼ MPl. We additionally assume
logðV0=M

4
PlÞ ¼ �8:8 and Npivot ¼ 50, yielding power

spectra that are reasonably consistent with observations.
In Fig. 1, we compare the MODECODE solution for scalar

modes with the exact solution from Ref. [13]. At all scales,
the numerical evolution of scalar perturbations matches the
exact solution with an accuracy of about 0.01% or better.
This test indicates that MODECODE does not introduce

significant error in the computation of CMB angular power
spectra by CAMB, which has a root mean square accuracy of
�0:3% in the configuration to be used for the Planck
analysis (A. Lewis, private communication).
In the course of previous work using MODECODE to

compute numerical power spectra for a potential with a
steplike feature [59], it was extensively compared with the
independent code of Ref. [50], yielding agreement to nu-
merical precision. It also agrees to similar precision with
the mode evolution code used for the same potential in
Refs. [53,83], once the nonstandard choice of initial con-
ditions in the latter work is accounted for.8

To compute the primordial power spectra at arbitrary
values of k in CAMB, MODECODE uses cubic spline interpo-
lation on a grid of k values spaced evenly in lnk. The extra
time required to run MODECODE with CAMB depends pri-
marily on the number of k values in this grid. For the default
setting of 500 grid points over 10�5 < k=Mpc�1 < 5,
which provides more than sufficient accuracy for smooth
primordial power spectra, using MODECODE with CAMB

typically requires & 15% more time per evaluation than
the default version of CAMB. The number of grid points can
be easily adjusted in the code to accurately deal with more
complicated potentials for which finer sampling in k is
required.

FIG. 1 (color online). Test of the accuracy of MODECODE for
power law inflation. Upper panel: comparison of the exact
analytic solution (solid red curves) and the MODECODE solution
(black points) for jukj as a function of conformal time �
(following Ref. [13], � is negative during inflation). For com-
parison, the evolution of jzj is plotted as a dashed green line.
Lower panel: percent error in the MODECODE solution for each of
the points plotted in the upper panel.

7This expression makes no allowance for the changing number
of relativistic degrees of freedom as the Universe cools or for
dark energy, and it assumes a sharp transition between radiation
and matter-dominated expansion. The resulting approximation
will not significantly bias our results using present data, but may
need to be addressed in the future. 8See Appendix A in Ref. [59] for details.
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F. Data

CMB Data:We use the v4 version of the 7-year WMAP
likelihood function with standard options [84], the ACBAR
bandpowers from Ref. [85] between 550 
 ‘ 
 1950, and
the Pipeline 1 QUaD bandpowers between 569 
 ‘ 

2026 from Ref. [86]. For IRH models, we consider con-
straints from the 7-year WMAP data (‘‘WMAP7’’) only. In
the GRH case, we present both WMAP7 results and con-
straints that additionally include data from QUaD and
ACBAR (‘‘WMAP7þ CMB’’).

Planck Simulation: For selected inflation models in the
GRH case, we use an unpublished simulation kindly pro-
vided by George Efstathiou and Steven Gratton. In this
simulation, the model for the ‘‘observed’’ power spectra
has four components: the primordial CMB power spectra,
unresolved point sources, unresolved Sunyaev-Zel’dovich
clusters, and instrumental noise. The input CMB power
spectra are computed from a random realization centered
on the ‘‘best fit’’ WMAP 5-year cosmological parameters,
including ns ¼ 0:963. In addition the simulation includes a
tensor component with r ¼ 0:1, close to the margin of
detectability by Planck [87,88]. The likelihood function
is described by an exact Wishart distribution, marginaliz-
ing over the Sunyaev-Zel’dovich model and the point
source model as nuisance parameters in the MCMC.
Note that while the fiducial model has r ¼ 0:1, the
particular realization used in the simulation is consistent
with a somewhat larger tensor amplitude that is closer to
r ¼ 0:14. The best fit values for the models we consider
reflect this larger tensor-to-scalar ratio.

G. Models and priors

In order to illustrate our methods, we derive constraints
on a variety of models. First, we consider a sequence of
‘‘single term’’ potentials,

V ¼ 	
�n

n
(19)

with n ¼ 2=3, 1, 2, and 4. The last two cases correspond
to the canonical quadratic and quartic chaotic inflation

models [89], and for n ¼ 2 we replace 	 with m2 in our
discussion. String motivated scenarios [90,91] can yield
potentials with the form Eq. (17) and noninteger values of
n at large �. We assume that these potentials are modified
for � 
 0 to ensure that Vð�Þ 	 0, if n is not an even
integer. For convenience, we will work with the simple
monomial term; to explicitly constrain the corresponding
stringy scenarios, we would instead have to work with the
full form of the potential, since the modification near the
origin changes �end and the matching between k and �.
For the single term potentials, the free parameter fixes

the height of the potential and the amplitude of the pertur-
bations (i.e. As). However, for these models the other
spectral parameters (ns, r, etc.) are well approximated by
combinations of slow roll parameters, which do not depend
directly on 	. When the potential has two or more free
parameters, the mapping between the explicit form of the
potential and the cosmological observables grows more
complicated, since these parameters affect both the height
and shape of the potential. We give constraints on axion-
motivated ‘‘natural inflation’’ [92] with

Vð�Þ ¼ �4

�
1þ cos

�
�

f

��
; (20)

and ‘‘hilltop inflation’’ [93–95] with

Vð�Þ ¼ �4 � 	

4
�4; (21)

for which r takes almost arbitrary values while ns remains
close to unity.
We show the model priors used in our MCMC analysis

in Table I. The model parameters correspond to unknown
scales in high energy particle physics, so it is natural to
sample them logarithmically. For the single parameter
models, we will see that the data constrain these scenarios
more strongly than the priors on the height of the potential.
On the other hand, the priors chosen for the natural and
hilltop inflation models are more restrictive. Both natural
and hilltop inflation have limits in which they are essen-
tially identical to a �n model, and one of their two free

TABLE I. Priors on model parameters and maximum likelihood (ML) values for WMAP7

GRH constraints. All GRH models include a uniform prior of 20<Npivot <NðIRHÞ
pivot .

Dimensionful quantities are expressed in units where the reduced Planck mass MPl is set to
unity. Values of n refer to specific cases of Eq. (19).

Model Priors ns;ML rML �2 lnLML

n ¼ 2=3 �11< log	 <�7:5 0.965 0.07 7475.2

n ¼ 1 �11< log	 <�7:5 0.969 0.08 7475.4

n ¼ 2 �12< logm2 <�8 0.964 0.14 7477.3

n ¼ 4 �13:4< log	 <�10:4 0.949 0.27 7488.7

Natural �5< log�< 0 0.962 0.08 7475.8

0:5< logf < 2:5
Hilltop �8< log�<�2:8 0.944 4� 10�5 7476.2

�13:3< log	 <�12
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Vð�Þ parameters is irrelevant [64,73]. For natural inflation,
this limit is f ! 1, such that

Vð�Þ � �4

2f2
ð���0Þ2 (22)

with �0 ¼ �f, which is a quadratic potential after a field
redefinition. In the hilltop case, if � is very large, the
astrophysically relevant portion of the potential is far
from the origin. In this limit,

Vð�Þ � 4�4

�
1� �

�0

�
; (23)

where �0 ¼
ffiffiffi
2

p
�=	1=4 is the field value at which the

potential crosses zero. A field redefinition yields a purely
linear potential with a single free parameter. Our priors are
chosen to avoid the regions of parameter space where
the two parameters of the natural or hilltop inflation model
are degenerate.

We stress that the goal of the current paper is to intro-
duce MODECODE, explore the ability of both current and
anticipated data sets to distinguish between different infla-
tionary models, and constrain the number of e-folds of
inflation required by specific inflationary scenarios.
Broader issues surrounding the choice of priors and model
selection will be addressed in a forthcoming paper.

III. RESULTS

A. Single term potentials

Figures 2–4 show the constraints from WMAP7 and
WMAP7þ CMB on log	 (or logm2 for n ¼ 2) and
Npivot for Vð�Þ ¼ 	�n=n with n ¼ 2=3, 1, 2 and 4, along

with the inferred constraints on ns and r. The limits on
log	 from current data are much stronger than the priors
listed in Table I. Stipulating IRH ensures that Npivot is

nearly independent of the other model parameters, and
only weakly dependent on the value of the exponent n:

NðIRHÞ
pivot � 57–59. In the GRH case, slow roll calculations

lead us to expect that Npivot, ns, and r are all effectively

functions of a single free parameter, and are thus strongly
correlated; these correlations are reflected in the more
accurate MODECODE constraints. The IRH upper limit
from the prior on Npivot creates a sharp cutoff in the dis-

tributions for ns and r. Given the prior on Npivot, each of

these models has a red tilt (ns < 1) and a ‘‘large’’ tensor-to-
scalar ratio, r� 0:1.

If Npivot is lower than its IRH value, or ~w< 1=3, 	 (or

m2) is larger than its IRH value: the overall range in this
parameter is typically a factor of �2–3. Lower values of
Npivot correspond to smaller ns and larger r, as does in-

creasing the exponent n for fixed Npivot. Specifically, the

slow roll approximation gives

Npivot þ n

4
�

�
3

2
n� 


n� 1

�
ð1� nsÞ�1 � 4n

r
; (24)

where 
 ¼ 0 for n ¼ 1 and 
 ¼ 1 otherwise. Thus upper
bounds on 1� ns and r from data can set lower bounds on
Npivot. Except for the n ¼ 4 case, the predicted value of r is

less than the current WMAP upper bound for all values of
Npivot allowed by the prior. For n ¼ 2=3 and n ¼ 1, the

constraint on Npivot appears to be driven largely by the

correlation between this parameter and ns—in all cases
ns < 0:94 is strongly excluded. For n ¼ 2, the larger value
of r found with smaller Npivot provides some additional

constraining power. Including CMB data on smaller angu-
lar scales from QUaD and ACBAR slightly strengthens

FIG. 2 (color online). Constraints on the quadratic potential
(n ¼ 2). Left: constraints on logm2 and Npivot for WMAP7 (large

gray contours) showing 68% CL (light shading) and 95% CL
(dark shading) contours. Green dashed curves show the contours
for WMAP7þ CMB data, and the small blue contours show
simulated Planck constraints. Right: marginalized 1D ns and r
distributions for WMAP7 (thick solid curve, black), WMAP7þ
CMB (dashed curve, green), and the Planck simulation (thin
solid curve, blue). In both panels, the sharp right edges of the
distributions correspond to the IRH constraints, for which the
values of Npivot (left), ns, and r (right) are nearly fixed. Here and

in Figs. 5 and 6, the input parameters for the Planck simulation
are ns ¼ 0:963 and r ¼ 0:1 (see Sec. II F).

FIG. 3 (color online). Same as Fig. 2 for the quartic potential
(n ¼ 4).
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these limits, relative to the WMAP7 constraints, but does
not significantly alter our conclusions.

Of the single term potentials we consider, the quartic
	�4=4 potential has the largest tensor amplitude and the
greatest deviation from scale invariance. In agreement with
previous analyses of CMB data (e.g. Ref. [51]), this model
is excluded by WMAP7 data. Specifically, �2 lnLML ex-
ceeds the values found for all of the other models consid-
ered here by* 12 (see Table I). Superficially, this does not
appear to be significantly stronger than the result obtained
with a single year of WMAP data [51]. However, the
analysis of Ref. [51] was carried out at fixed Npivot ¼ 50,

whereas Npivot is a free parameter in our chains. If we

impose the additional priorNpivot < 50, the maximum like-

lihood of the quadratic potential worsens to �2 lnLML ¼
7499:4. This is �24 larger than the overall best fit and
excludes such models with much greater confidence than
the first year of WMAP data alone.

In recent work, Martin and Ringeval [63] quote con-
straints on the reheating temperature following inflation
driven by a Vð�Þ ��n potential. The tightest constraints
they present imply that the reheat temperature is above the
TeV scale. However, this specific constraint is obtained for
a prior that renders the post-inflationary expansion rate a
function of n. Since scenarios for which Vð�Þ ��n at
large-field values can have very different shapes near the
origin, the prior could only be realized by a carefully tuned

potential, as Vð�Þ would need to be well approximated by
�n at energies far below the inflationary scale. Moreover,
this form of Vð�Þ must be modified near the origin if
Vð�Þ 	 0 for all �, and the potential does not have a
discontinuous first derivative at � ¼ 0 for n � 2 or 4.
Constraints using the simulated Planck likelihood show

that the uncertainties in parameters of these single term
potentials will be greatly reduced by the next generation of
cosmological data sets. For the quadratic potential, we see
from Fig. 2 that the simulated Planck constraints strongly
disfavor [at >95% confidence level (CL)] models with
ns & 0:96, corresponding to Npivot & 50 and logm2 *

�10:3. Recall that for quadratic inflation followed by a
matter-dominated phase and then thermal inflation, Npivot

is at least 10 less than the instant reheating value NðIRHÞ
pivot

[76]. Consequently, we predict that Planck can differen-
tiate between these two post-inflationary scenarios for
quadratic inflation.

B. Natural inflation

Figure 5 shows our constraints on the natural inflation
[Eq. (20)] parameter space and the derived empirical
parameters ns and r from MODECODE. The relationship
between the empirical parameters and the potential pa-
rameters for natural inflation is discussed in detail in
Ref. [96], along with parameter constraints derived from
the 3-year WMAP data set.
Unlike the single term potentials, current data permit a

wide range of natural inflation parameters and, as noted in
Sec. II G, there is a degeneracy between f and � in the
limit where these parameters are large. In this region of
parameter space, natural inflation overlaps with the qua-
dratic model. Our priors are chosen to exclude most of this
region; given the parametrization of the potential, if we
allowed arbitrarily large values of f and � (and given that
the quadratic potential is not currently excluded by data)
almost all points drawn by the chains would be in this
degenerate region. Our adopted priors on logf and log�
still allow a region of nearly-degenerate models that con-
tribute to the ‘‘ridge’’ seen in the right panels of Fig. 5;
these models closely match the values of ns and r seen in
the quadratic potential constraints. The marginalized con-
straints on ns and r depend strongly on the prior on logf
due to the projection of a large number of degenerate
models into this ridge. Thus, the apparent preference for
this region of parameter space over models with lower
values of r is largely due to this effect, and is not driven
by the data.

Instant reheating requires NðIRHÞ
pivot � 58, similar to the

constraint for the single term potentials, but the additional
inflationary degree of freedom in the potential permits a
larger range of ns and r. More generally, for fixed Npivot,

decreasing� and f reduces both ns and r. This is shown by
the MCMC samples with fixed Npivot plotted in the upper

FIG. 4 (color online). Constraints on single term potentials
with n ¼ 1 (top) and n ¼ 2=3 (bottom). Conventions match
Fig. 2.
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right panel of Fig. 5. Thus natural inflation models can have
lower values of r than the quadratic potential in Fig. 2,
without increasing ns and Npivot.

The lower panels of Fig. 5 show how the natural inflation
constraints improve with additional CMB data. As for the
single term potentials, the difference betweenWMAP7 and
WMAP7þ CMB constraints is small, but Planck is ex-
pected to yield a dramatic improvement. In particular, the
uncertainty in Npivot—which is visible in the width of

the log�� logf contours—is substantially reduced in
the Planck forecast. Since the Planck simulation we use
is not inconsistent with m2�2 inflation, the limit in which
natural inflation becomes indistinguishable from quadratic
inflation would not be excluded in this particular forecast.
Conversely, if quadratic inflation is disfavored by future
data, we will be able to put data-driven upper bounds on f
and � in addition to tightening the existing lower bound.

C. Hilltop inflation

Figure 6 shows the constraints on log�, log	, ns, and
logr for hilltop inflation. We impose an upper limit of �<
0:0015 to remove models where the field starts far from
� ¼ 0 and near the V ¼ 0 crossing point, as described in
Sec. II G. The remaining models have a small tensor

amplitude and relatively large deviations from scale invari-
ance. The MCMC samples plotted at fixed Npivot in Fig. 6

show that the number of e-folds is correlated with ns, but
not r, over most of the allowed region of parameter space.
Constraints on the hilltop inflation model from

WMAP7þ CMB data and from the Planck simulation
are compared with the (GRH) WMAP7 constraints in the
lower panels of Fig. 6. The values of ns and r allowed by
the hilltop model within our chosen priors are smaller than
those assumed in the Planck simulation, so the contours for
Planck are concentrated at the largest allowed values of
both parameters. In fact, for this particular forecast the
entire region of the hilltop inflation parameter space within
our priors would be strongly excluded by Planck, with
�2 lnLML � 75 larger than its value for the quadratic
and natural inflation models.
Unlike the other models considered here, current data

allow NðIRHÞ
pivot to cover a substantial range (roughly 10

e-folds), as illustrated in Fig. 7. The weak constraint on

NðIRHÞ
pivot is due to a special cancellation in the slow roll

expression for the scalar spectral amplitude, which leaves
As independent of the overall height of the potential.9

Meanwhile, the departure from scale invariance is

1� ns � 3=NðIRHÞ
pivot in the limit of small �. Other two-

parameter models can formally support inflation at low

FIG. 5 (color online). Top left: WMAP7 68% and 95% CL
constraints on natural inflation parameters log� and logf for the
GRH (large contours, gray shading) and IRH (small contours,
red shading) scenarios. Top right: constraints on ns and r; points
show random samples of models from the MCMC analysis for
which Npivot is within 0.25 of the values indicated in the plot.

Bottom: Predicted natural inflation GRH constraints from Planck
(small contours, blue shading) compared with current constraints
from WMAP7 (gray shading) andWMAP7þ CMB (dark green,
dashed contours).

FIG. 6 (color online). Same as Fig. 5 for the hilltop inflation
model with parameters log� and log	. Note the logarithmic
scale for r in the right panels; the prior here permits very small
values of r.

9In the more general class of hilltop potentials Vð�Þ ¼ �4 �
	�n=n, this situation only occurs for n ¼ 4 [93–95], so this
property is not generic.
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energy scales, but the spectra of such models are typically
far from scale-invariant and thus disfavored by the data. On
the other hand, hilltop inflation can have � � 1016 GeV,
which ensures that the tensor amplitude is very low, with-
out driving the spectral index to an observationally

excluded value. Consequently, both r and NðIRHÞ
pivot can vary

greatly, as we see in Fig. 6. Models with very low values of
� do have a lower likelihood, as the stronger breaking of
scale invariance in these models is at odds with the spectral
tilt allowed by the data. For IRH models there is effectively
only one free parameter in the potential after fixing As,
leading to a strong correlation between ns and r which is
absent in the GRH case.

D. Impact of model priors

For the single term potentials, the priors on the ampli-
tude of the potential 	 (or m2) listed in Table I are suffi-
ciently weak compared to the constraints from the data that
they have no significant impact on the estimated parameter
values and confidence regions. The upper limit on Npivot

corresponding to instant reheating, however, does signifi-
cantly reduce the allowed region in parameter space for
each of these models, thus restricting the possible values of
ns and r.

The resulting upper limit on ns and lower limit on r can
lead to tension with observations. For example, the
WMAP7 constraints are ns ¼ 0:982þ0:020

�0:019 (68% CL) and

r < 0:36 (95% CL) [84], treating these as empirical pa-
rameters without specifying a particular potential. For the
quartic 	�4=4 potential, the instant reheating limit on
Npivot and the nearly perfect correlation between Npivot,

ns, and r result in the limits ns & 0:95 and r * 0:27; since
both of these are in tension with the measured values, the
quartic potential provides a poor fit to the data relative to
the other single term potentials which can achieve larger ns
and smaller r.

On the other hand, as noted earlier the natural inflation
and hilltop inflation priors have been chosen specifically to
limit the extent of parameter degeneracies that would
otherwise be allowed by current data. In the limiting
regions that are truncated by the priors, these two models

are degenerate with specific monomial potentials, as dis-
cussed previously. Furthermore, the mapping between �V

and �emp for these models is significantly more compli-

cated than for the single term potentials, so the uniform
top-hat priors on �V can correspond to highly non-uniform
prior distributions for �emp. This mapping of the priors is

illustrated in Fig. 8, which shows the regions of the ðns; rÞ
plane obtained by uniform sampling within the priors on
�V specified in Table I for the natural inflation and hilltop
inflation models.
Because of the natural inflation degeneracy between

log� and logf, even in the absence of any data the priors
clearly favor models along the line r � 4ð1� nsÞ corre-
sponding to the approximately quadratic regime near the
minimum of the natural inflation potential. The WMAP7
GRH constraints in Fig. 5 are qualitatively described by the
intersection of the priors with the empirical constraints on
ns and r from WMAP7. Note that the upper limit on ns is

typically set by the Npivot 
 NðIRHÞ
pivot prior (the lower right

edge of the 95% CL region in the left panel of Fig. 8), while
the lower limit on ns—and thus Npivot—follows from the

FIG. 7 (color online). Marginalized one-dimensional distributions for Npivot from WMAP7 in the GRH case (thin black curves) and
IRH case (thick red curves). From left to right, the models are the quadratic potential, the quartic potential, natural inflation, and hilltop
inflation.

FIG. 8 (color online). The parameter space in ns and r corre-
sponding to uniform sampling within the priors on potential
parameters listed in Table I (unshaded curves, 68% and 95% CL
regions) for natural inflation (left) and hilltop inflation (right).
The WMAP7 GRH constraints from Figs. 5 and 6 are shown
again for comparison as shaded gray 68% and 95% CL regions.
Orange shading shows the 95% CL region for empirical
WMAP7 constraints with flat priors on ns and r.
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data. The 95% lower limit on r does not quite reach down
to the limit allowed by the prior because of marginalization
over the strong projection effect described in Sec. III B,
which favors models along the upper diagonal ridge of the
prior. With present data, the region in the ðns; rÞ plane
allowed by the priors is fully consistent with the measured
values of these parameters (and therefore the best fit ns and
r values in Table I are consistent with the WMAP7
empirical constraints), but upcoming measurements may
yet rule out the natural inflation model.

For the hilltop inflation model, the constraints on ns and
r are partially influenced by the priors on log� and log	
from Table I; in particular, the range of r allowed is limited
by the prior on log� (see Fig. 8). However, the distribution
of models allowed by the priors in the ðns; logrÞ plane is
much more uniform for hilltop inflation than it is for
natural inflation. As for natural inflation, the upper limit

on ns for hilltop inflation models is set by the Npivot 

NðIRHÞ

pivot prior, and the lower limit on ns is determined by the

data. Like the quartic potential, the upper limit on ns
corresponding to instant reheating is low compared with
the preferred value from WMAP7; however, in the case of
hilltop inflation, this is coupled with a small value of r,
which enables the hilltop inflation model to fit theWMAP7
data reasonably well since the empirical constraints on ns
and r are correlated.

E. Slow roll mapping

Many previous constraints on inflationary models have
been obtained by taking the empirical parameters �emp

(e.g. As, ns, and r) predicted by a given model and compar-
ing these with constraints on empirical parameters (see e.g.
[7,52]). Given current data, limits on As, ns, and r typically
dominate the constraints on simple inflationary models;
starting from constraints on these empirical parameters
allows constraints on a number of inflationary models to
be inferred from a single set of empirical Markov chains.

For the simplest inflationary models, this approach al-
lows one to quickly constrain many potentials at once. In
general, however, the mapping �emp ! �V is not one-to-

one; thus this method requires sampling within the space of
potential parameters and is no more efficient than directly
constraining these parameters from the data using
MODECODE. For any potential parametrized by �V , one

can compute the primordial scalar and tensor power spectra
(as described in Sec. II A, or otherwise) and find the values
of �emp by fitting to these power spectra. However, for any

given inflationary potential many values of �emp cannot be

obtained for any combination of �V . Likewise, as we saw
for the natural and hilltop scenarios, some models have
degenerate combinations of �V which correspond to the
same primordial power spectra, so the mapping �V ! �emp

is not always invertible. Further, models with sharp fea-
tures or other complexities do not produce a power

spectrum that is easily described by the usual empirical
parametrization.
Despite these problems, it is instructive to attempt to

derive constraints on �V from constraints on �emp for the

purposes of comparison with our main results in the pre-
vious sections. Here we perform these tests using the slow
roll approximation, although one could implement the
mapping using more precise methods. In Appendix we
describe the slow roll mapping for the quadratic potential.
Figure 9 shows that the constraints on logm2 and Npivot

obtained by mapping from empirical parameters agree
reasonably well with the direct MCMC constraints from
MODECODE. However, they are visibly noisy due to the

smaller number of MCMC samples, and are systematically
shifted toward lower values of logm2, due to the mapping
being done at lowest order in slow roll.
While this approach works well for the quadratic po-

tential (and can be expected to produce similar results for
the n ¼ 1 and n ¼ 2=3 cases), it is far less efficient for
the quartic (n ¼ 4) potential. Recall that this scenario
is disfavored by the data. Consequently, using the
Metropolis-Hastings algorithm to draw samples from the
ðns; rÞ parameter space results in very few (if any) ac-
cepted points in the relevant region for the quartic poten-
tial on the ðns; rÞ plane, and thus the contours of 	 and
Npivot are extremely noisy. Constraining the quartic po-

tential parameters using this method requires MCMC
sampling that is specifically designed to acquire samples
in the ðns; rÞ region spanned by this model.
Models with multiple parameters like natural inflation

and hilltop inflation face an additional problem in that the
mapping from �V to �emp is not invertible in regions where

there is a parameter degeneracy. For example, at fixed
values of �4f�2, all natural inflation models with large f
have nearly identical power spectra (see Sec. II G).
Therefore, a single point in �emp space cannot be simply

mapped to the corresponding values of �V in this degen-
erate region. Such a mapping would require an additional
MCMC run or some similar method of sampling in the �V

parameter space.

IV. DISCUSSION

In this paper we introduce MODECODE, a new, publicly
available numerical solver for the inflationary perturbation
equations. MODECODE is extendable, numerically efficient,
and integrated with CAMB and COSMOMC. We demonstrate
the use of MODECODE by constraining several single-field
inflationary models using current CMB data, confirming
that present-day data put useful constraints on the para-
meters of a number of interesting and well-motivated infla-
tionary models.
Using a simulated likelihood, we present forecasts for

the quality of the constraints that can be expected from
Planck, showing that these will greatly strengthen limits on
the inflationary parameter space and possibly exclude
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some simple inflationary models. In the Planck forecast
analysis, our aim was not to provide ‘‘Fisher’’ style fore-
casts for each model in turn, but to take the realization
provided by the simulation and analyze it with our pipeline
as we would the real sky. Given the level of tensors present
in this simulation, which is at the margin of detectability
with Planck, we find that small-field models would be
excluded with high significance as expected. Conversely,
in a scenario where Planck polarization measurements did
not find evidence of tensor fluctuations, we predict that
many large-field models would be either excluded or
limited to a small region of parameter space.

In our analysis we pay close attention to the interplay
between the post-inflationary expansion history and the
inflationary observables. These are connected by the
matching criterion, which determines the moment during
the inflationary epoch at which a given comoving scale
leaves the horizon. Inflation is often assumed to be a GUT
scale phenomenon, but the expansion rate and thermal state
of the post-inflationary universe is not directly constrained
until MeV scales, at which point the success of big bang
nucleosynthesis and evidence for a cosmological neutrino
background strongly suggest that the Universe was ther-
malized. Consequently, there is a huge range of energies
over which the composition and expansion rate of the
Universe are effectively undetermined.

For most inflationary models, the constraints on the total
number of e-folds since the pivot scale left the horizon,
Npivot, are noticeably tighter than the hard lower bound

(Npivot 	 20) assumed in our analysis. Thus we can be

confident that our constraints on Npivot are driven by the

data, although these currently eliminate only relatively
extreme post-inflationary scenarios. By contrast, the
Planck forecast suggests that the next generation of CMB
data will put much tighter constraints on the reheating
history, given a specific inflationary model. For instance,
for m2�2 inflation, Planck should discriminate between a
long matter-dominated phase that extends to the TeV scale
and instant reheating at perhaps the 2� level.

This correlation between the post-inflationary dynamics
and the inflationary epoch has significant consequences for
particle physics. For instance, many supersymmetric
scenarios predict that the primordial universe undergoes a
period of matter domination driven by heavy moduli (e.g.
[78,97]), for which Npivot differs substantially from the

instant reheating value, and post-Planck cosmology will
thus be increasingly concerned with the full evolutionary
history of the Universe. Moreover, inflationary model
builders will be able to definitively test scenarios which
include predictions for the post-inflationary expansion rate.
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APPENDIX A: SLOW ROLL MAPPING—
QUADRATIC POTENTIAL

Here we describe the procedure that produced the con-
straints on the quadratic potential shown in Fig. 9 by using
slow roll relations to map constraints on the empirical

FIG. 9 (color online). Approximate constraints on the qua-
dratic potential obtained by selecting MCMC samples from
standard WMAP7 �CDMþ tensor chains and mapping As,
ns, and r to logm2 and Npivot using the slow roll approximation.

The shaded gray contours are the WMAP7 GRH constraints
from Fig. 2, obtained by a direct MCMC estimate of m2 and
Npivot for quadratic inflation. The unshaded orange contours are

derived by sampling chains for As, ns, and r, from which we
selected only those points with j1� ns � r=4j< 0:005 to ap-
proximately match the slow roll relation between ns and r for the
quadratic potential.
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parameters �emp ¼ flnAs; ns; rg to constraints on the po-

tential parameters �V ¼ fNpivot; logm
2g. For the potential

V ¼ m2�2=2, the slow roll approximation gives

m2 � 24�2As�
2
V; (A1)

Npivot � 1

2
ð��1

V � 1Þ; (A2)

�V � 1

4
ð1� nsÞ � r

16
; (A3)

where �V � ðM2
Pl=2ÞðV;�=VÞ2.

We begin with constraints on �emp from a standard

MCMC analysis of WMAP7 data, which treats As, ns,
and r as free, independent parameters. We then postprocess
the empirical parameter chains to express the constraints in
terms of �V by first imposing new priors on �emp, and then

using Eqs. (A1)–(A3) to compute the values of �V for each
MCMC sample.

The first prior applied to �emp enforces the slow roll

relation between ns and r for the quadratic potential, r �
4ð1� nsÞ, by selecting only those points from the chains
that satisfy j1� ns � r=4j< �. The parameter � can be
adjusted either to match the slow roll relation more closely
in the limit � ! 0, or to retain more MCMC points for
better sampling of the likelihood function (and thus
smoother contours) by choosing a larger value of �; for

Fig. 9, we have chosen � ¼ 0:005. Note that the allowed
values of As are not restricted by specializing to the case of
the quadratic potential.
We additionally exclude points for which Npivot is large

enough that �RH is greater than ð3=2ÞVend, thus violating
energy conservation. (The factor of 3=2 arises because the
energy density at the end of inflation contains a significant
contribution from the kinetic energy.) That is, we require

Npivot 
 NðIRHÞ
pivot , where

NðIRHÞ
pivot ¼ lnðHpivot=kpivotÞ � 71:1� lnðV1=4

end=MPlÞ; (A4)

with Vend � m2M2
Pl for the quadratic potential.

For the MCMC samples that remain after applying the
cuts on ns, r, and Npivot, we multiply the likelihood of each

sample by r�2 to approximate flat priors on �V instead of
the original flat priors on �emp.

After including each of these priors and mapping the
MCMC parameters from �emp to �V using Eqs. (A1)–(A3),

the resulting constraints shown in Fig. 9 match the more
accurate constraints from MODECODE (Sec. III A) reason-
ably well, albeit with noisy contours due to poor sampling
along the line r � 4ð1� nsÞ. The remaining systematic
offset between the two sets of constraints is consistent
with the effects of second order corrections to the slow
roll approximation.
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