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A commonly adopted relational account of time evolution in generally covariant systems, and more

specifically in quantum cosmology, is argued to be unsatisfactory, insofar as it describes evolution relative

to observed readings of a clock that does not exist as a bona fide observable object. A modified strategy is

proposed, in which evolution relative to the proper time that elapses along the worldline of a specific

observer can be described through the introduction of a ‘‘test clock,’’ regarded as internal to, and hence

unobservable by, that observer. This strategy is worked out in detail in the case of a homogeneous

cosmology, in the context of both a conventional Schrödinger quantization scheme, and a ‘‘polymer’’

quantization scheme of the kind inspired by loop quantum gravity. Particular attention is given to

limitations placed on the observability of time evolution by the requirement that a test clock should

contribute only a negligible energy to the Hamiltonian constraint. It is found that suitable compromises are

available, in which the clock energy is reasonably small, while Dirac observables are reasonably sharply

defined.
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I. INTRODUCTION

Taken at face value, the canonical formulation of general
relativity seems to entail that time evolution is equivalent
to a gauge transformation, and should therefore be physi-
cally unobservable. Not surprisingly, this ‘‘problem of
time,’’ along with other related interpretational issues,
has attracted considerable attention over many years. The
situation in the early 1990s was comprehensively docu-
mented in [1,2]; a recent survey is presented in [3], and
textbook discussions can be found in [4,5]. Everyday ob-
servations suggest that things actually do changewith time,
and most investigators have concluded, in one way or
another, that this fact can be accommodated only by ref-
erence to physical clocks. Many different schemes for
implementing this general idea have been proposed, but
the notion of ‘‘relational,’’ ‘‘emergent’’ or ‘‘internal’’ time,
originating in the work of Rovelli [6–8], has been quite
widely adopted, especially in the context of quantum cos-
mology, where many explicit calculations have become
possible in recent years (see, e.g. [9–11] for reviews).
Roughly speaking, the relational-time approach involves
identifying, within the model considered, some quantity
that is to serve as a clock (in simple cosmological models,
this is typically a scalar field) and describing the evolution
of other quantities relative to putative values of this clock
variable, which thus serves as an ‘‘internal time.’’ In this
paper, we first argue that such accounts of time evolution,
while mathematically sound, are hard to interpret in a
consistent manner, and cannot be the whole story. We
then propose a modified account, which we of course
believe to be less unsatisfactory.

For concreteness, we discuss in Sec. II a particular
implementation of the notion of internal time given in
[12–14] (an amended version of the last of these papers
appears in [15], and a rather different implementation,
based on effective semiclassical dynamics, is proposed in
[16]) and explain in some detail why we believe it to be
deficient.1 In brief, this is because (i) the physical clock
does not appear as an observable object in the final theory,
so its putative readings cannot be interpreted as values
obtained by observation and have, indeed, no clear mean-
ing, and (ii) no account is available of the passage of time
as experienced by real observers.
In Secs. III and IV, we describe, in the context of two

different quantization schemes, how these difficulties
might be overcome, through the introduction of a ‘‘test
clock’’ associated with some specific observer (an idea
proposed some time ago in [17]). This makes it possible
to describe time evolution from the point of view of a
particular observer, with respect to the proper time that
elapses along that observer’s worldline. A test clock should
serve to reveal the time evolution of the model universe
while contributing negligibly to its energy content, and
this restricts the resolution with which the values of
time-dependent observables can be determined. For both
the conventional ‘‘Schrödinger’’ quantization scheme of
Sec. III and the loop-quantum-gravity-inspired scheme
of Sec. IV, we investigate this restriction, and find that

*i.d.lawrie@leeds.ac.uk

1We emphasize that this discussion is not intended as a
criticism of the work presented in [12–15]. On the contrary,
these papers describe an especially clear and thorough imple-
mentation of a view of time evolution that is now sufficiently
widespread to have something of an ‘‘official’’ status. We do, of
course, wish to suggest that this official view is not wholly
satisfactory.
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suitable compromises are possible. This proposal can be
seen as a variant of the general idea of relational time, and
we discuss its relation to other versions in Sec. V.

II. RELATIONAL TIME
IN QUANTUM COSMOLOGY

The homogeneous, spatially flat cosmological model
with no cosmological constant studied in [12–15] can be
specified classically by the action

S ¼
Z

dsNðsÞ�1

�
� 1

24�G

ð@svÞ2
v

þ 1

2
vð@s�Þ2

�
: (2.1)

Here, vðsÞ ¼ a3ðsÞ, where aðsÞ is the usual Robertson-
Walker scale factor, NðsÞ is a positive, but otherwise arbi-
trary, lapse function and s a correspondingly arbitrary time
coordinate, while the matter content is represented by the
massless scalar field �ðsÞ. We take this action to refer to a
fiducial cell of coordinate volume

R
d3x ¼ 1, and v, with

dimensions ðlengthÞ3 to be the physical volume of this cell.
In SI units, G ¼ GNc

�2, where GN is the usual Newton
constant. The momenta conjugate to v and � are

pv ¼ � 1

12�G

_v

v
; (2.2)

p� ¼ v _�; (2.3)

where the overdot denotes differentiation with respect to
the proper time

tðsÞ ¼
Z s

0
Nðs0Þds0; (2.4)

so _v ¼ N�1dv=ds, etc. Variation of the action (2.1) with
respect to N yields the constraint H0 ¼ 0, where

H0 ¼ �6�Gvp2
v þ 1

2
v�1p2

� (2.5)

is the generator of translations in t.
The problem of describing time evolution arises, as is

well known, from the fact that bona fide gauge-invariant
observables (Dirac observables) must commute with the
constraint, and must therefore be constants of the motion.
The solution to this problem is often taken to involve
identifying a variable within the theory which can serve
as a physical clock, and thus provide a notion of evolution
with respect to an internal or emergent time. In [12–15],
this relational picture is implemented in the quantum the-
ory by casting the constraint in the ‘‘deparametrized’’ form

iℏ
@�ð�;vÞ

@�
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂ðv; pvÞ

q
�ð�; vÞ; (2.6)

where
ffiffiffiffiffi
�̂

p
is the square root of a suitably defined operator

corresponding to the classical expression 12�Gv2p2
v. The

precise form of this operator depends on the particular

quantization scheme adopted. This is formally similar to
a nonrelativistic Schrödinger equation

iℏ
@�ðt; xÞ

@t
¼ Ĥðx; @xÞ�ðt; xÞ (2.7)

and appears to provide a notion of evolution with respect to
an internal time represented by the scalar field �. (A much
earlier study of quantum cosmology, also using a massless
scalar field as an internal time, was presented in [18].)
In particular, an operator such as

V̂ð�0Þ :¼ expð�i

ffiffiffiffiffi
�̂

q
ð���0Þ=ℏÞv̂expði

ffiffiffiffiffi
�̂

q
ð���0Þ=ℏÞ

(2.8)

[where v̂ acts by multiplication on �ð�; vÞ] is, for any
fixed value of the parameter �0, a gauge-invariant Dirac
observable: if �ð�; vÞ is a solution to the constraint equa-

tion (2.6), then V̂ð�0Þ�ð�; vÞ is another solution. In the

language introduced by Rovelli, V̂ð�0Þ is an ‘‘evolving
constant of the motion’’ [6], providing a 1-parameter
family of ‘‘complete observables’’ [8] labeled by �0. For
the model considered here, the classical solution for � is
always a monotonic function of t, so it is tempting to
interpret the constraint (2.6) as effectively describing evo-

lution with time, in such a way that V̂ð�0Þ represents ‘‘the
volume at the time when the scalar field has the value�0.’’
(Restrictions on the choice of variables that might serve as
internal time are discussed in [19].) For the reasons we are
about to present, we think that this interpretation has
significant limitations, and in subsequent sections we will
suggest how some of them might be overcome.
The limitations we have in mind are indicated by the

following interrelated observations:
(1) Despite their formal similarity, the constraint equa-

tion (2.6) and the Schrödinger equation (2.7) do not
mean the same thing. In the case of a nonrelativistic
particle, the wave function �ðt; xÞ is, for each fixed
value of t, an element of the physical Hilbert space
H phys ¼ L2ðR; dxÞ corresponding to a possible in-

stantaneous state of the particle. A solution of (2.7)
yields a sequence of such states, labeled by the
external time parameter t, and in that apparently
straightforward sense describes the time evolution
of the state of the 1-particle system. By contrast, the
physical Hilbert space of the cosmological model is
a space of solutions of the constraint equation (2.6);
a solution of this equation specifies not a sequence
of possible states, but a single state characterized
by a certain correlation between ‘‘partial observ-
ables’’ v and �.

(2) Rovelli [8] defines a partial observable as a quantity
for which a measurement procedure can be speci-
fied, in contrast to a complete observable, whose
value can be predicted by theory. He appears to take
the view that the time parameter t in (2.7) is, in this
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sense, a partial observable, but we disagree. The
parameter t does not refer to the reading of any
physical clock. It is an external parameter, more
like Newton’s ‘‘absolute, true and mathematical
time’’ or, as described by Unruh and Wald [20,21],
a ‘‘heraclitian time,’’ which ‘‘sets the conditions’’
for a measurement to be made. To be sure, the times
recorded in a laboratory notebook during the course
of an experiment intended to test the validity of (2.7)
will refer to the readings of some physical clock.
But then, according to standard quantummechanics,
the state of the combined system of a particle
(position x) and clock (pointer reading T, say) is
described by a wave function �ðt; x; TÞ, governed
by its own Schrödinger equation. Under suitable
conditions, a sequence of observed values of T
may closely approximate the corresponding values
of t at which the observations were made, and one
might derive an approximate version of (2.7) in
which t is replaced with T. However, this descrip-
tion is necessarily approximate, and there are well
known restrictions on the ability of a quantum-
mechanical clock to furnish a reliable measure of t
(see, e.g., [21–24]).2 Consequently, if the scalar field
� in (2.6) is taken as analogous to the reading T of
a laboratory clock, we should expect that equation
to be only approximately valid. That is not so,
however: (2.6) is an exact constraint equation, not
an approximate evolution equation.

(3) If the constraint equation (2.6) is to be regarded as
expressing evolution with respect to an internal
‘‘time’’ �, how is its solution, �ð�; vÞ, to be inter-
preted? A statement to the effect that j�ð�; vÞj2dv
is the probability of finding the volume to have a
value between v and vþ dv at ‘‘time’’ � (or a
similar statement that replaces dv with a more
appropriate measure if necessary) as in standard
quantum mechanics will not do, because the scalar
field is a physical quantity that has no definite value
until it is measured; � is not an external parameter

with the heraclitian property of setting the condi-
tions for a measurement of v. For the same reason,
the ‘‘Heisenberg-picture’’ operator (2.8) cannot be
construed as representing the volume at ‘‘time’’ �0.
Nor will it be possible to interpret j�ð�; vÞj2 in
terms of a joint probability for obtaining the pair
of values � and v from simultaneous measurements
of the scalar field and the volume. The reason is
that there are not enough physically meaningful
quantities available to be measured. Classically,
the four-dimensional kinematical phase space,
with coordinates (v, pv, �, p�), is reduced by the

constraint to a two-dimensional physical phase
space of distinct gauge orbits, with a single pair of
conjugate coordinates. Quantum mechanically, this
means that only one independent quantity is avail-
able to be measured. Equivalently, one cannot define

two independent operators v̂ and �̂ acting in the
physical Hilbert space; there is only one physical
degree of freedom, corresponding, for example, to

the complete observable V̂ð0Þ.3

It can be argued [25] that even in nonrelativistic quantum
mechanics the external time t is irrelevant to physics. After
all, a student who investigates the motion of a pendulum
has only a set of recorded position measurements and
stopwatch readings to work with in any subsequent analy-
sis. For generally covariant systems, the possibility of
describing physics entirely in terms of correlations be-
tween Dirac observables has been studied in some detail
in [26]. From a purely operational point of view, it is no
doubt true that substantive physics deals only with corre-
lations between measured quantities, but this seems to
offer an impoverished account of the world as it is actually
experienced. A student who forgets to bring a stopwatch to
the lab is not thereby prevented from seeing a pendulum
swing, and a statement such as ‘‘the stopwatch read 5 s
some three seconds after it read 2 s’’ seems not to be
entirely vacuous, regardless of whether it is checked for
accuracy with the use of a further clock. Moreover, while
the notion of time may be scarcely less nebulous in
Newtonian mechanics than it notoriously appeared to
Augustine [27], classical general relativity provides a con-
crete meaning for t as the proper time that elapses along an
observer’s worldline, even though it affords no experimen-
tal procedure for determining the actual values of t. That is,
it seems meaningful to regard the readings of a physical
clock as supplying an estimate (more or less reliable

2More precisely, a wave function that realizes an exact cor-
relation between T and t must have the form �ðt; x; TÞ ¼
�ðT � tÞc ðT; xÞ; at each instant t, it is an eigenfunction of the
pointer operator T̂ that acts by multiplication. The Schrödinger
equation admits solutions of this form only if the clock
Hamiltonian is its conjugate momentum, HT ¼ pT [23], which,
being unbounded below, is physically unrealistic. Moreover, this
wave function is not in the physical Hilbert space L2ðR2; dxdTÞ,
so even in this idealized case, the possibility of identifying
values of t with the results of measurements made on the clock
is doubtful. No real clock will exist perpetually in a sequence of
eigenstates of T̂, so a Schrödinger equation of the form
i@Tc ðT; xÞ ¼ Ĥðx; @xÞc ðT; xÞ gives at best an approximate,
effective description of the correlations exhibited by sequences
of measured values x and T, ignoring, for example, the loss of
unitarity resulting from the repeated measurements needed to
obtain these values [24].

3The same point can be phrased in terms of probability
measures: if j�ð�; vÞj2 is to be interpreted as a joint probability
density, it must be normalized with respect to a probability
measure d�ð�; vÞ on a two-dimensional configuration space.
However, the physical Hilbert space to which a solution of (2.6)
belongs is something like L2ðR; d�ðvÞÞ, the details depending
on the quantization scheme, with a�-independent inner product.
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according to the quality of manufacture) of the intervals of
geometrical proper time that elapse along its worldline,
even though we have no experimental means of checking
that this is actually so.

To summarize, the interpretation of the wave function
�ð�; vÞ that satisfies the constraint equation (2.6) presents
two related difficulties. On the one hand, there is no
heraclitian time variable that would allow us to make sense
of the theory in terms of our familiar sense of the passage
of time. The volume v and scalar field � are physical
quantities which, in principle, can be measured. (That is,
they are apparently the same sort of thing as electromag-
netic fields, and only the practical difficulty of constructing
an apparatus that couples to them stands in the way of
making such measurements.) It ought to be possible to
formulate questions such as ‘‘given that I have just deter-
mined the volume and scalar field to be v0 and �0, what is
the probability that I will find them to be v1 and �1 in an
hour’s time?’’ but the theory as it stands does not admit
such questions. On the other hand, if we rule that questions
of this kind are inadmissible, and confine ourselves to
studying correlations between measured values of v and
�, we find that this cannot be done either, because there are
not enough Dirac observables to be measured.

Of course, a more comprehensive theory will afford
more Dirac observables to be correlated, but that is not
of much help. For example, a theory with an extra scalar
field deals, apparently, with three measurable quantities, v,
� and c , say, but yields only two independent Dirac
observables, say, Vðc 0Þ and �ðc 0Þ, constructed along
the lines of (2.8). We still face the problem that the number
c 0 cannot be interpreted as the result of a measurement of
c , because there is no corresponding Dirac observable
available to be measured. Clearly, the same will apply to
theories with more than one geometrical variable, such as
the Bianchi I model studied in [28].

For the simple model studied here, the wave function
�ð�; vÞ computed in [12,13] looks as if it describes a
correlation between v and �, and seems to be peaked
along a classical trajectory ð�ðtÞ; vðtÞÞ. The problem is
that this appearance is at variance with the number of
observables to hand (or, equivalently, with the dimension
of the configuration space on which the wave function is
defined—see footnote 3).

In the remainder of this paper, we describe a possible
solution to these difficulties, based on a view of time
evolution proposed in [17]. It is useful to suppose that, as
in standard quantum mechanics, the wave function
�ð�; vÞ describes the state of a system from the point of
view of an observer external to the system itself. In our
case, the hypothetical observer is external to the entire
model universe, and any sense that this observer might
have of a ‘‘passage of time’’ is quite separate from what
passes inside the universe. The external observer has the
possibility of determining the value of only a single Dirac

observable; this one value completely specifies the state of
the universe–which means its entire history. The difficul-
ties identified above do not concern the information acces-
sible to the external observer, which is delivered by the
wave function �ð�;vÞ according to the usual quantum-
mechanical rules, but rather what might be observed by an
observer internal to the universe. To assess the latter, it is
necessary to include in our model a description of relevant
features of the physical system that does the internal ob-
serving: at a minimum, the clock from which this system
gains its sense of time. By doing this, as we shall illustrate,
it is possible to alleviate both of the difficulties. On the one
hand, we introduce a genuine heraclitian time �, corre-
sponding to the arclength of the observer’s worldline, not
to readings of a physical clock. Time evolution with re-
spect to � is described by a standard Schrödinger equation,
precisely analogous to (2.7), though in practice we will
deal with the corresponding Heisenberg-picture operators

V̂ð�Þ and �̂ð�Þ. (Unruh and Wald [21] argue that the
problems of interpretation are not alleviated by the intro-
duction of observers, but the role they envisage for these
observers is different from the one used here.) On the other
hand, the lack of a Dirac observable corresponding to the
reading of the physical clock can be understood by con-
sidering that this clock is internal to the observing appara-
tus, and thus in principle unobservable by the observer
from whose point of view the evolution is described.
Clearly, the idea of incorporating an observer’s clock

into our model is in some way akin to the notion of a
material reference frame, which has been widely studied
(see, for example, [1,2,7,29–35]). We think that the imple-
mentation of this general idea described below differs in
important respects from others to be found in the literature,
and will return to this point in Sec. V.

III. CONVENTIONAL QUANTIZATION

As a rule, cosmologists do not find it necessary to
include the energy content of their observing apparatus
explicitly in the Friedmann equation. Correspondingly,
we seek to modify the cosmological model defined by
(2.1) by introducing a test clock, which will serve to reveal
the time evolution of the volume and scalar field, while
disturbing the Hamiltonian constraint to a negligible ex-
tent. In this section, we consider the quantum theory of
such a model, using a conventional quantization scheme
similar, though not identical, to the ‘‘Wheeler–de Witt’’
scheme described in [12–15], within which most of the
analysis can be achieved exactly and explicitly. In Sec. IV,
we will consider a ‘‘polymer’’ quantization scheme of the
type employed in loop quantum cosmology, where we will
need to resort to approximations. In either case, we may
expect (naı̈vely, on the basis of an ‘‘energy-time uncer-
tainty relation’’) that restricting the energy of the clock
should place some limit on the resolution with which the
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value of a time-dependent Dirac observable can be deter-
mined, and we will investigate this issue in some detail.

A. Homogeneous cosmology with a test clock

Classically, consider a small clock, whose internal work-
ings are described by a Lagrangian ‘ð�Þ, localized on the
worldline4 x�ð�Þ, parametrized by its arclength �. Its con-
tribution to the action has, in general, the form

Sclock ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
jgðxÞj

q Z
d�‘ð�Þ�ðx; xð�ÞÞ (3.1)

¼
Z

d�‘ð�Þ; (3.2)

where � is a covariant delta function, with the propertyR
d4x

ffiffiffiffiffiffiffiffiffiffiffiffijgðxÞjp
�ðx; x0ÞfðxÞ ¼ fðx0Þ. In principle, the coordi-

nates x�ð�Þ are dynamical variables, but in order to con-
struct a simple cosmological model, we remove these
degrees of freedom, along with most of those in g��, by

taking the worldline to be that of a comoving observer in a
Friedmann-Robertson-Walker universe. Then the arclength
� coincides with t in (2.4) and the total action becomes

S ¼
Z

dsNðsÞ�1

�
� 1

24�G

ð@svÞ2
v

þ 1

2
vð@s�Þ2

þ NðsÞ2‘ðtðsÞÞ
�
: (3.3)

The Hamiltonian constraint now reads

H0 þ h ¼ �6�Gvp2
v þ 1

2
v�1p2

� þ h ¼ 0; (3.4)

where h is the Legendre transform of ‘, and is intended to
be very small compared with the matter term in H0, in the
same sense that a silicon chip on board WMAP is small
compared with the total energy content of the visible
universe. Since the action (3.3) is supposed to apply to a
homogeneous universe, it might be more consistent to
regard the last term as arising from a space-filling congru-
ence of clocks. However, if h is small enough, then it seems
very likely that, say, a spherically symmetric cosmology,
with the clock definitely localized on a single worldline,
but departing only to this tiny extent from a genuinely
homogeneous one, would be described by the action (3.3)
with negligible error. What is essential for our purpose is
that, because the clock (or each clock) is localized on a
single worldline, h is independent of the cosmological
variables ðv; pv;�; p�Þ. Having obtained the constraint,

we will dispense with the arbitrary coordinate s, and deal
only with the proper time t or, equivalently, setNðsÞ ¼ 1 so

that s and t coincide. Up to the choice of an origin, t has a
clear physical interpretation as the geometrical proper time
that elapses along the comoving observer’s worldline.
We will not be specific about the microscopic con-

stitution of the clock. Suppose that h depends on several
microscopic phase-space variables, which we denote col-
lectively by x, and that �xðx; tÞ is the phase-space trajectory
(the solution of @t �x ¼ f �x; hg) that passes through x at, say,
t ¼ 0. The reading of the clock is some function rðxÞ, and
we define the function t0ðxÞ as the solution of

rð �xðx; t0ÞÞ ¼ 0: (3.5)

(The clock is fit for purpose only if this equation has a
unique solution.)
For a given state of the clock, the quantity � ¼ t� t0 has

a classical interpretation as the interval of proper time
that has elapsed since the clock read 0. This fiducial
event provides a physical meaning for the origin � ¼ 0.
By contrast, the arclength parameter t is defined by (2.4)
only up to an arbitrary constant, because a change �NðsÞ in
the undetermined lapse function changes t by an additive
constant. Fixing an origin for � is the only essential role of
the physical clock. It is not hard to show that

ft0; hg ¼ �1 (3.6)

and this is the only property of the clock that will matter.
Finally, let w denote collectively the phase-space varia-

bles that appear in H0 [they are ðv; pv;�; p�Þ in the

present example, but the following result is general]. For
some quantity fðwÞ, let �fðw; tÞ be the solution of

@t �f ¼ f �f;H0g (3.7)

with the initial condition �fðw; 0Þ ¼ fðwÞ. Then
Fð�Þ :¼ �fðw; t0 þ �Þ (3.8)

is classically the value of f at a proper time � after
the clock read 0. Since h and t0 are independent of w,
and the vector field f�; hg is a linear differential operator, we
easily find

fFð�Þ; hg ¼ @�Fð�Þft0; hg ¼ �fFð�Þ; H0g; (3.9)

so for each f and �, Fð�Þ commutes with the constraint
H ¼ H0 þ h. Thus, Fð�Þ gives a 1-parameter family of
Dirac observables,5 and obeys the equation of motion

@�Fð�Þ ¼ fFð�Þ; H0g: (3.10)

For the model at hand, it proves convenient to define
y ¼ vpv. Then the Hamilton equations are

@t �v ¼ �12�G �y; (3.11)

4A more rigorous derivation than we attempt here would,
amongst other refinements, consider the clock to be localized
in a region somewhat larger than its Schwarzschild radius, but
we assume that such refinements are inessential to the issue of
time evolution that is our main concern.

5The construction of these observables is somewhat similar to
the construction of evolving constants of the motion proposed by
Rovelli [6], as mentioned above, and elaborated by others, but it
is not the same construction. We think the difference is impor-
tant, and discuss it in detail in Sec. V.
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@t �y ¼ H0; (3.12)

@t �� ¼ �v�1p�; (3.13)

@tp� ¼ 0; (3.14)

and they have the solutions

�vðtÞ ¼ v� 12�Gyt� 6�GH0t
2; (3.15)

�yðtÞ ¼ yþH0t; (3.16)

��ðtÞ ¼ �þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p ln

�
v� a�t
v� aþt

�
; (3.17)

where a� ¼ 6�Gy� ffiffiffiffiffiffiffiffiffiffi
3�G

p
p� arise from the factoriza-

tion �vðtÞ ¼ v�1ðv� aþtÞðv� a�tÞ. We can now define a
collection of basic Dirac observables

V ¼ v� 12�Gyt0 � 6�GH0t
2
0; (3.18)

Y ¼ yþH0t0; (3.19)

� ¼ �þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p ln

�
v� a�t0
v� aþt0

�
; (3.20)

P� ¼ p�: (3.21)

Of course, the form of the Hamiltonian is preserved,

H0 ¼ �6�Gv�1y2 þ 1

2
v�1p2

�

¼ �6�GV�1Y2 þ 1

2
V�1P2

�; (3.22)

the gauge-invariant variables V and Y inherit the Poisson-
bracket relations satisfied by v and y, namely,

fV; Yg ¼ V; fV;H0g ¼ �12�GY; fY;H0g ¼ H0;

(3.23)

and the equations of motion (3.10) have the obvious
solutions

Vð�Þ ¼ V � 12�GY�� 6�GH0�
2; (3.24)

Yð�Þ ¼ Y þH0�; (3.25)

�ð�Þ ¼ �þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G

p ln

�
V � A��
V � Aþ�

�
; (3.26)

P�ð�Þ ¼ p�; (3.27)

with A� ¼ 6�GY � ffiffiffiffiffiffiffiffiffiffi
3�G

p
P�.

B. Quantum Dirac observables

Formally, it is easy to construct quantum-mechanical
versions of the classical Dirac observables given above.

Introduce operators Ĥ0, f̂, ĥ and t̂0, which have, in par-
ticular, the commutators

½ĥ; t̂0� ¼ iℏ;

½Ĥ0; ĥ� ¼ ½f̂; ĥ� ¼ ½Ĥ0; t̂0� ¼ ½f̂; t̂0� ¼ 0:
(3.28)

Then it is straightforward to verify that the operator

F̂ð�Þ :¼ exp

�
i

ℏ
Ĥ0ðt̂0 þ �Þ

�
f̂ exp

�
� i

ℏ
Ĥ0ðt̂0 þ �Þ

�

(3.29)

commutes with the constraint, ½F̂ð�Þ; Ĥ0 þ ĥ� ¼ 0, and
obeys the Heisenberg equation of motion

@�F̂ð�Þ ¼ i

ℏ
½Ĥ0; F̂ð�Þ�: (3.30)

In line with previous notation, we write F̂ :¼ F̂ð0Þ.
There is no guarantee a priori that the solutions to (3.30)

will be simply related to the classical expressions (3.24),
(3.25), and (3.26). We will insist on the commutation
relations

½v̂; p̂v� ¼ ½�̂; p̂�� ¼ iℏ; (3.31)

with all other commutators amongst v̂, p̂v, �̂ and p̂�

vanishing, and choose for the Hamiltonian the operator
ordering

Ĥ 0 ¼ �6�Gp̂vv̂p̂v þ 1

2
v̂�1p̂2

�: (3.32)

Then define

ŷ ¼ 1

2
ðv̂p̂v þ p̂vv̂Þ; (3.33)

which also implies p̂v ¼ 1
2 ðv̂�1ŷþ ŷv̂�1Þ and leads to the

closed set of commutation relations

½v̂; ŷ� ¼ iℏv̂; ½Ĥ0; v̂� ¼ iℏ12�Gŷ; ½Ĥ0; ŷ� ¼�iℏĤ0:

(3.34)

We then indeed find

v̂ðtÞ ¼ v̂� 12�Gŷt� 6�GĤ0t
2; (3.35)

ŷðtÞ ¼ ŷþ Ĥ0t; (3.36)

from which V̂ and Ŷ can be defined by replacing t
with t̂0, and

V̂ð�Þ ¼ V̂ � 12�GŶ�� 6�GĤ0�
2; (3.37)

Ŷð�Þ ¼ Ŷ þ Ĥ0�: (3.38)

Since p̂� commutes with Ĥ0, we can also identify P̂�ð�Þ ¼
P̂� ¼ p̂�. The Dirac observable associated with� is more

difficult to write down, as might be expected from the
nonlinearity of the classical expression (3.17). However,
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this expression shows that e~�
��ðtÞ �vðtÞ, with ~� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

12�G
p

, is
quadratic in t, and it can be verified, by taking repeated

commutators with Ĥ0, that

e ~� �̂V̂ :¼ eiĤ0 t̂0=ℏe~� �̂v̂e�iĤ0 t̂0=ℏ

¼ e~� �̂

�
v̂þ ât̂0 þ 1

2
b̂t̂20

�
; (3.39)

where

â ¼ ~�p̂� � ~�2

�
ŷþ iℏ

2

�
;

b̂ ¼ ðâþ ~�2ŷÞv̂�1â� ~�2Ĥ0:

Sadly, we have not found any useful closed-form expres-

sion for �̂ð�Þ.

C. Physical Hilbert space

Take a kinematical vector space of wave functions

�ðv; p�; hÞ, in which operators v̂, p̂� and ĥ act by multi-

plication, while

p̂ v�¼�iℏ
@�

@v
; �̂�¼ iℏ

@�

@p�

; t̂0�¼�iℏ
@�

@h
:

(3.40)

The Hamiltonian Ĥ0 is

Ĥ 0� ¼
�
1

2
�2@vv@v þ 1

2
v�1p2

�

�
�; (3.41)

where �2 ¼ ~�2ℏ2 ¼ 12�Gℏ2, and the constraint reads

�
�2

2
v@vv@v þ 1

2
p2
� þ vh

�
�ðv; p�; hÞ ¼ 0: (3.42)

The change of variables

� ¼ 2ip�

�
; z ¼ 2

ffiffiffiffiffiffi
2h

p
�

v1=2 (3.43)

converts this into a standard form of Bessel’s equation

ðz@zz@z � �2 þ z2Þ� ¼ 0; (3.44)

and we find

v̂� ¼ �2

8h
z2�; (3.45)

ŷ� ¼ � iℏ
2
ðz@z þ 1Þ�; (3.46)

t̂ 0� ¼ �iℏh�1

�
1

2
z@z þ h@h

�
�; (3.47)

Ĥ 0� ¼ h

z2
ðz@zz@z � �2Þ�: (3.48)

The constraint equation (3.44) is solved by

�ðv; p�; hÞ ¼ c ðp�; hÞC�ðzÞ; (3.49)

where C�ðzÞ is some Bessel function, and c ðp�; hÞ is

arbitrary. (More generally, the solution is a linear combi-
nation of two independent Bessel functions of order �, but
these two sectors are not mixed by any operator of interest,
and we assume it is sufficient to keep just one.) Clearly, the
physical Hilbert space is the space of functions c ðp�; hÞ,
equipped with a suitable inner product. The operators
(3.45), (3.46), and (3.47) corresponding to partial observ-
ables do not, of course, have any well-defined action in this
space, but the Dirac observables do, and we easily verify
that

V̂c ¼ � 1

2
ð�2@hh@h þ h�1p�Þc ; (3.50)

Ŷc ¼ iℏh1=2@hh1=2c ; (3.51)

Ĥ 0c ¼ �hc : (3.52)

The operator �̂ is again harder to deal with. Note, in

particular, that, although its conjugate momentum P̂� is

just multiplication by p�, we cannot identify �̂ ¼
iℏ@=@p�, since it does not commute with Ĥ0. However,

a well-defined action of the Dirac observable (3.39) can be
found as follows. Acting on the Bessel function, we have

e ~� �̂C�ðzÞ ¼ e�2@=@�C�ðzÞ ¼ C��2ðzÞ: (3.53)

Then, repeated use of the standard recurrence relations that
connect C��nðzÞ and their derivatives suffices to verify that

e~� �̂V̂c ð�; hÞ ¼ �2

8h
½�ð�� 2Þ � 4ð�� 1Þh@h

þ 4h@hh@h�c ð�� 2; hÞ; (3.54)

where, as a shorthand, we use c ð�; hÞ to mean the same as
c ðp�; hÞ via (3.43).
Finally, make the change of variable

h ¼ 	e�
; (3.55)

where 	 is a positive constant that wewill later choose to be

close to hĥi. We find

V̂ ¼ � 1

2	
e��
ð@2
 þ p2

�Þ; (3.56)

Ŷ ¼ iℏ
�

e��
=2@
e
�
=2; (3.57)

Ĥ 0 ¼ �	e�
 ¼: �ĥ: (3.58)

Choosing the inner product
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ðc 1; c 2Þ ¼
Z 1

�1
dp�

Z 1

�1
d
e�
 �c 1ðp�; 
Þc 2ðp�;
Þ;

(3.59)

so H phys ¼ L2ðR2; dp�e
�
d
Þ, these three operators and

a fourth one derived from (3.54) are symmetric.6 It is worth
noting that this quantization scheme differs from the
Wheeler–de Witt scheme described in [13] not only by
the addition of the clock variable, but also because the
inner product is chosen to make the generator of displace-
ments in � self-adjoint, rather than the generator of dis-
placements in �.

D. Viability of the test clock

Awave function c ðp�; 
Þ in the physical Hilbert space

specifies the state of a system consisting of two physical
objects, the volume and the scalar field, represented by the

pairs of Dirac observables ðV̂; ŶÞ and ð�̂; P̂�Þ, respectively,
but the clock does not feature as an independent object;
it has been eliminated by solving the constraint. As dis-
cussed in the previous section, we interpret this state of
affairs by supposing that the clock is internal to an observer
(or, less anthropomorphically, an observing apparatus)
who is thereby debarred in principle from observing it.
The remaining Dirac observables describe the volume and
scalar field from the point of view of this observer, and
evolve precisely as in standard quantum mechanics with
respect to the heraclitian time �.

If this is to make sense, it must be possible to find states
in which the clock serves to reveal the time evolution of
the universe, while perturbing it to a negligible extent.
One way of ensuring this would be to model the clock as
an system whose energy is bounded. Thus, we might
attempt to realize the Dirac observables (3.50), (3.51), and
(3.52) as self-adjoint operators on, say, H phys ¼ L2ðR�
½0; 	�; dp�dhÞ. It is technically easier to retain our earlier

choice H phys ¼ L2ðR2; dp�e
�
d
Þ, on which the clock’s

energy ĥ is positive [see (3.55)], and restrict attention to
states in which this energy is small. It is not obvious that
one of these choices is physically less reasonable than the
other. Given the actual state of our world, the probability of
finding the energy content of, say, a small alarm clock to be
a significant fraction of the energy content of the visible
universe is (presumably) extremely small. Depending on
details of the clock’s construction, a state in which that
probability is appreciable might not be impossible in prin-
ciple, though it would bear very little resemblance to the
state that we actually have.

In the model universe, we thus want to find states in
which the probability of finding the clock’s energy to be a
significant fraction of the energy carried by the scalar field

is very small; that is, we need both the expectation value

	c :¼ hĥi and the variance ð�hÞ2 :¼ hðĥ� 	cÞ2i to be very
small. Then the following issue arises. A simple-minded
argument would suggest that, if �h is vanishingly small,

one has in effect an eigenstate of Ĥ0, say, Ĥ0j	ci ¼
�	cj	ci. In that state, the expectation value of any com-

mutator h	cj½F̂; Ĥ0�j	ci vanishes, and no time dependence
should be apparent. This argument is in fact too simple-
minded, because j	ci is not a normalizable state in H phys;

what does happen is that the Dirac observables V̂ð�Þ and
Ŷð�Þ have very large variances when �h is very small.
Their probability distributions cannot be sharply peaked
along some quasiclassical trajectory, and in that sense they
are not well-defined time-dependent observable quantities.
The important issue, then, is whether a useful compromise
exists, such that the clock contributes, with high probabil-
ity, only a negligible amount to the total energy of the
universe, while the time-dependent observables remain
reasonably well defined.
In any state, the expectation value of the time-dependent

volume operator (3.37) is

Vð�Þ :¼ hV̂ð�Þi ¼ V þ 3HV�þ �2

ℏ2
	c�

2; (3.60)

where

V :¼ hV̂i and H :¼ � �2

3ℏ2V
hŶi (3.61)

are the volume and Hubble parameter when the clock reads

0. [We emphasize that V̂ð�Þ is the volume when an interval
� of geometrical proper time has elapsed since that fiducial
event: it cannot be interpreted as the volume when the
clock reads �.] The first two terms in Vð�Þ follow the
classical solution in the absence of the clock. When � is
large enough, we have Vð�Þ � ð�2	c=ℏ2Þ�2, correspond-
ing to a scale factor að�Þ / �2=3. In this situation, the
energy density of the scalar field has become so dilute
that the energy content of the fiducial cell is dominated
by the clock, which in this model is equivalent to pressure-
less matter [see the remark following (3.3)]. At that point,
the clock has ceased to qualify as a ‘‘test’’ clock, but in a
suitably chosen state, this will occur too far in the future to
be a practical concern.
Consider a state of the form

c ðp�; 
Þ ¼ �ðp�Þe��
2þiq
; (3.62)

where �ðp�Þ is sufficiently sharply peaked at some value

that p� in (3.56) can be taken as just that value, which we

call simply p�. The wave number q is real; an imaginary

part corresponds to the constant 	 in (3.55). The clock’s
energy is

	c ¼ hĥi ¼ 	e3�
2=4� (3.63)

and we define

6We do not address the issue of self-adjointness; it is sufficient
for our illustrative purposes that these operators have well-
defined matrix elements between Gaussian wave functions.
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E� :¼ 1

2
V�1p2

�; (3.64)

which is the total scalar-field energy contained in the

volume V. Then the expectation value of V̂ turns out to be

V ¼ 1

2
	�1
c e�

2=2�

�
1

2
�þ q2 � p2

�

�
; (3.65)

which can be rearranged to yield

q2 ¼ 2VE�

�
1þ 	c

E�

e��2=2�

�
� 1

2
�; (3.66)

while the Hubble parameter defined by (3.61) is

H ¼ � �2

3ℏ2V
hŶi ¼ �q

3ℏV
: (3.67)

For the variances of the three operators (3.56), (3.57),
and (3.58), we find

�
�V

V

�
2 ¼ ðe�2=2�� 1Þþ e3�

2=2�

�
�

	cV

E�

	c

�
1þ 	c

E�

e��2=2�

�

þ 1

2

�2

	cV

E�

	c

�
1þ 	c

2E�

e��2=2�

�

þ 1

64

�
�2

	cV

�
2� 1

8

�
�

	cV

�
2
�
; (3.68)

�
�Y

Y

�
2 ¼ �

2q2
; (3.69)

�
�h

h

�
2 ¼ e�

2=2� � 1: (3.70)

If the clock energy 	c is to contribute a negligible amount
to the constraint, we need

	c
E�

� 1; (3.71)

and if the first term in ð�V=VÞ2 is to be small, we also need

�2

2�
� 1: (3.72)

With these approximations, we get

�
�V

V

�
2 � �2

2�
þ �

	cV

E�

	c
� 1

8

�
�

	cV

�
2
; (3.73)

and if this is to be small, we finally need

�

	cV
� 	c

E�

: (3.74)

If these conditions are met, then q2 � 2VE� and

ð�Y=YÞ2 � ð�=4	cVÞð	c=E�Þ is small. Also, the Hubble

parameter given by (3.67) becomes

H 2 �
�

�

3ℏV

�
2
2VE� ¼ 8�G

3

E�

V
:¼ 8�G

3
�� (3.75)

which is the classical Friedmann equation.
With the approximations (3.71), (3.72), and (3.74), the

variance of the time-dependent volume operator gives

�
�Vð�Þ
V

�
2 � �2

2�

�
1� 	c

4E�

ð3H �Þ2
�
2

þ �

	cV

E�

	c

�
1þ 	c

2E�

ð3H �Þ
�
2
; (3.76)

where, on the left-hand side, V in the denominator is hV̂i,
not Vð�Þ. As expected, this leads to the same physics as the
version of the Wheeler–de Witt equation studied in [13].
Namely, the singularity occurs when 3H � � �1, at
which point �Vð�Þ is substantially unchanged from its
value at � ¼ 0.
The compromise needed for the test clock to make sense

consists in satisfying the two inequalities

�2

2
� � � 	2cV

E�

(3.77)

simultaneously. For an essentially classical state at � ¼ 0,
this is indeed possible—and by a huge margin, as might be
expected. In SI units, we have, first of all,

�2 ¼ 12�GNℏ2

c2
� 3:1� 10�94 Jm3: (3.78)

Although our universe is not dominated by the energy
of a massless scalar field, for illustrative purposes we
take �� ¼ E�=V � 10�9 Jm�3 (roughly the observed

current energy density) and a clock with energy 	c ¼
1 kg:c2 � 1017 J. Then

	2cV

E�

¼ 	2c
��

� 1043 Jm3: (3.79)

Evidently, there should be no problem finding a � in the
range (3.77).
The time �c at which the scalar-field energy is so diluted

that the clock begins to perturb the evolution significantly
is given by (3.60) as

�c ¼ ℏ2

�2	c
3HV ¼ 2��V

	c
�0; (3.80)

where �0 ¼ ð3H Þ�1 is the age of the universe at the
fiducial time � ¼ 0. If V is the size of the observable
universe, say, V ¼ 1080 m3, we get �c � 1054�0, so the
last term in (3.60) can safely be ignored for practical
purposes, but that would clearly be true for much smaller
volumes too.
If �=	cV � 	c=E�, then the last term in (3.73) is

negligible, and the sum of the remaining terms is mini-
mized by
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� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2	2cV

2E�

vuut ; (3.81)

namely, the geometric mean of the two extreme values in
(3.77). It is possibly interesting to consider this compro-
mise in the context of the Robertson-Schrödinger uncer-
tainty relation [36]

ð�VÞ2ð�YÞ2 	 1

4
jh½V̂; Ŷ�ij2 þ 1

4
jhfV̂ � V; Ŷ � Ygij2:

(3.82)

With the three approximations (3.71), (3.72), and (3.74),
this inequality is saturated, both sides being given approxi-
mately by

ℏ2

4
V2

�
1þ 2�

�2

�

	cV

E�

	c

�
; (3.83)

and the value (3.81) of � makes the commutator and
anticommutator terms equal.

IV. LOOP QUANTUM COSMOLOGY
WITH ATEST CLOCK

A. Loop classical cosmology

The cosmological model treated in [12–15] arises, in
effect, from quantization of the classical Hamiltonian

H0 ¼ Hgravð�; 
Þ þHmatterð�; p�Þ; (4.1)

Hgrav ¼ �2B

4
�sin2ð2
Þ½sin
fcos
; j�jg

� cos
fsin
; j�jg�; (4.2)

Hmatter ¼ Bj�j�1p2
�: (4.3)

In terms of the volume v and its conjugate momentum pv

defined above, the new variables are given by

� ¼ 2Bsgnð�Þv; 
 ¼ � sgnð�Þ
2ℏB

pv; (4.4)

where B ¼ �ℏ3=2��3 and the numerical constant � ¼
21=235=4��3=2 is approximately equal to 48.24, when the
Barbero-Immirzi parameter � is given the value 0:2375 . . .
obtained from calculations of black-hole entropy in loop
quantum gravity [37,38]. Their Poisson bracket is

f
; �g ¼ ℏ�1: (4.5)

The motivation for this Hamiltonian is explained in detail
in [12–15] (see also [39]); here, we note only that the sign
of the volume variable � corresponds to the orientation of a
physical cotriad relative to a fiducial one, and that H0

reduces to the original form (2.5) in the limit ℏ ! 0.
By using the basic Poisson bracket (4.5) to evaluate

those in (4.2), we arrive at the Hamiltonian

HLCC ¼ ��2B

4
j�jsin2ð2
Þ þ Bj�j�1p2

�; (4.6)

which defines the classical theory that we will refer to as
‘‘loop classical cosmology.’’ It is straightforward to obtain
the classical equations of motion and the pair of solutions

�ðtÞ ¼ � 2p�

�

�
1þ �4B2

ℏ2
t2
�
1=2

; (4.7)

valid on the constraint surface HLCC ¼ 0, with the bound-
ary condition that the minimum volume occurs at t ¼ 0.
The maximum density

�max ¼
2B2p2

�

�2
min

¼ �2B2

2
¼

ffiffiffi
3

p
16�2�3G2ℏ

(4.8)

is the same as that found in [14] for the quantum theory,
while the characteristic time ℏ=�2B is of the order of the
Planck time.

B. Dirac observables

Polymer quantization schemes of the kind used in
[13,14] promote the Poisson bracket (4.5) to the commu-
tation relation

½ĥ; �̂� ¼ �ĥ; (4.9)

where h is the holonomy h ¼ ei
, and take the operators ĥ
and �̂ to act in a Hilbert space of functions �ð�Þ, which
have support on a countable subset of the real line,

�̂�ð�Þ ¼ ��ð�Þ; ĥ�ð�Þ ¼ �ð�þ 1Þ: (4.10)

The gravityþmatter system has the Hamiltonian

Ĥ 0 ¼ �2B

16
Ĉþ Bj�̂j�1p̂2

�; (4.11)

where, with a suitable ordering of noncommuting operators

in the quantized version of (4.2), the action of Ĉ is

Ĉ�ð�Þ ¼ j�þ 2j�ð�þ 4Þ þ j�� 2j�ð�� 4Þ
� ðj�þ 2j þ j�� 2jÞ�ð�Þ: (4.12)

As before, we want to add to this system a clock, with

Hamiltonian ĥ which, along with its conjugate variable t̂0,

commutes with �̂ and ĥ. Again, the total constraint is

Ĥ0 þ ĥ ¼ 0, and we would like to introduce time-
dependent families of Dirac observables (3.29) that com-
mute with this constraint. However, a direct construction of
these observables similar to that described in Sec. III B is
likely to be feasible only when their time dependence is
polynomial (or perhaps has some other simple form). Here
we adopt the following, somewhat less direct strategy.
We consider an auxiliary Hilbert space H aux ¼ H 0 


H clock where the Hilbert space associated with the clock
is, say, H clock ¼ L2ðR; dhÞ. The Hilbert space H 0 is a
space of functions�ð�; p�Þ, on which we again take p̂� to
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act by multiplication, and on which we need the

Hamiltonian Ĥ0 to be self-adjoint. This space can itself
be decomposed as H 0 ¼ H grav 
H �, with H � ¼
L2ðR; dp�Þ. In order for Ĥ0 to be self-adjoint on H 0,

we need both j�̂j and Ĉ to be self-adjoint on H grav.

They must, in particular, be symmetric, and this requires
the inner product

ð�1;�2Þgrav ¼
X
�

��1ð�Þ�2ð�Þ;

but again we will not attempt to establish their self-
adjointness. This inner product is different from the one

used in [13,14], namely, ð�1;�2Þ ¼
P

�j�j ��1ð�Þ�2ð�Þ,
which is needed for self-adjointness of the operator

�̂ ¼ �Ĉj�̂j whose positive square root is the generator
of displacements in the scalar field �, regarded as an
internal ‘‘time.’’

For any given value of p�, the Hamiltonian Ĥ0
0ðp�Þ,

obtained by replacing p̂� in (4.11) with its eigenvalue p�,

is a symmetric operator on H grav. We assume (with-

out attempting a rigorous proof) that it has a set of
�-normalized eigenfunctions �Eð�; p�Þ,

Ĥ0
0ðp�Þ�Eð�; p�Þ ¼ E�Eð�; p�Þ;

ð�E;�E0 Þgrav ¼ �ðE� E0Þ; (4.13)

and that any function in H aux can be expressed as

�ð�; p�; hÞ ¼
Z

dE�Eð�; p�Þc Eðh; p�Þ; (4.14)

with

c Eðh; p�Þ ¼ ð�Eðp�Þ;�ðp�; hÞÞgrav: (4.15)

Suppose that the action of an operator f̂ on H 0 (equiv-
alently, an operator on H aux that acts as the identity
on H clock) can be specified by a kernel fðE; p�;E

0; p0
�Þ.

That is,

f̂�ð�; p�; hÞ ¼
Z

dE�Eð�; p�Þc ðfÞ
E ðh; p�Þ; (4.16)

with

c ðfÞ
E ðh; p�Þ ¼

Z
dE0 Z dp0

�fðE;p�;E
0; p0

�Þc E0 ðh; p0
�Þ:

(4.17)

The action of the corresponding Dirac observable F̂ð�Þ
defined in (3.29) is easily found to be

c ðFð�ÞÞ
E ðh; p�Þ ¼

Z
dE0 Z dp0

�e
iðE�E0Þ�=ℏfðE;p�;E

0; p0
�Þ

� c E0 ðhþ E� E0; p0
�Þ: (4.18)

If �ð�; p�; hÞ is a solution of the constraint equation, then

the expansion coefficient in (4.14) has the form

c Eðh; p�Þ ¼ c ðE; p�Þ�ðEþ hÞ; (4.19)

the function c ðE; p�Þ specifying a particular solution.

Because F̂ð�Þ is a Dirac observable, its action (4.18) on
one solution of the constraint equation yields another
solution, specified by the function

c ðFð�ÞÞðE; p�Þ ¼
Z

dE0 Z dp0
�fðE; p�;E

0; p0
�Þ

� eiðE�E0Þ�=ℏc ðE0; p0
�Þ: (4.20)

Evidently, the physical Hilbert space H phys is a space of

functions c ðE; p�Þ, equipped with an inner product chosen
so as to confer self-adjointness on some class of operators,
and the action of the Dirac observables on H phys is speci-

fied by (4.20). If the kernel can be expressed in terms of a
differential operator F as

fðE;p�;E
0;p0

�Þ¼F ðE0;p0
�;@E0 ;@p0

�
Þ�ðE�E0Þ�ðp��p0

�Þ;
(4.21)

then c ðFð�ÞÞðE; p�Þ ¼ eiE�=ℏF e�iE�=ℏc ðE; p�Þ, and we

recover an algebra of differential operators analogous to
(3.50), (3.51), and (3.52), with h ¼ �E.

If f̂ is constructed from �̂, ĥ and p̂�, but does not contain

�̂, it can be construed as an operator on H grav that

depends parametrically on p�. Its kernel has the form

fðE; p�;E
0; p0

�Þ ¼ fðE; E0; p�Þ�ðp� � p0
�Þ, with

fðE; E0; p�Þ ¼ ð�Eðp�Þ; f̂�E0 ðp�ÞÞgrav; (4.22)

and we will use this expression to estimate the volume

operator V̂ð�Þ.

C. Eigenfunctions of Ĥ0
0ðp�Þ

As described in [14,15], the constraint equation

Ĥ0� ¼ 0 that applies in the absence of the clock can be
solved exactly if we restrict H grav to functions �ð�Þ that
have support only at � ¼ 4n, n 2 Z; the operator Ĉ in
(4.12) clearly has a well-defined action on this restricted
space. We will also restrict attention to this sector, but are
able to obtain only approximate solutions to the eigenvalue
equation (4.13) for nonzero eigenvalues E.
With the definition

�Eð�; p�Þ ¼ j�j
4

~�Eðn; p�Þ ¼ jnj~�Eðn; p�Þ (4.23)

the eigenvalue equation we wish to solve is

�2B

8
½ðnþ1Þð2nþ1Þ~�Eðnþ1Þþðn�1Þð2n�1Þ~�Eðn�1Þ

�4n2 ~�EðnÞ�þ
Bp2

�

4
~�EðnÞ¼Ejnj~�EðnÞ; (4.24)

where we suppress the argument p� of ~�E, and on taking

the Fourier transform
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~�EðnÞ ¼ 1

�

Z �

0
dke�i2nk�EðkÞ;

�EðkÞ ¼
X1

n¼�1
ei2nk ~�EðnÞ;

(4.25)

this becomes

Bð�2 sink@k sink@k þ p2
�Þ�EðkÞ ¼ Ej � 2i@kj�EðkÞ:

(4.26)

Finally, the change of variable sink ¼ 1= coshx yields
(with an obvious economy of notation)

ð@2x þ ��2Þ�EðxÞ ¼ ~Ej � 2i coshx@xj�EðxÞ; (4.27)

where we have defined � ¼ �=p� and ~E ¼ E=�2B. With

this parametrization, the inner product in (4.13) is

ð�E;�E0 Þgrav ¼ 1

4�

Z 1

�1
dx coshx@x ��EðxÞ@x�E0 ðxÞ:

(4.28)

In the form (4.27), the eigenvalue equation is trivial
when E ¼ 0, but hard to solve when E is nonzero. We
will obtain an approximate solution by means of an expan-
sion in powers of �, but our analysis will be largely devoid
of rigor. In practical terms, the approximation is likely to
be quite good; for example, we have �� 10�123 for the
state considered in Sec. III D. Consider the ansatz

�EðxÞ ¼ �i�N exp½i��1xþ ifEðxÞ þ �gEðxÞ�; (4.29)

where fEðxÞ and gEðxÞ are real functions expressible as
power series in �,

fEðxÞ ¼ f0ðxÞ þ �f1ðxÞ þ . . . ;

gEðxÞ ¼ g0ðxÞ þ �g1ðxÞ þ . . . :
(4.30)

The prefactor�i� is inserted for later convenience andN
is a normalization constant. We wish, of course, to deter-
mine the functions fEðxÞ and gEðxÞ by substituting this
ansatz into (4.27), but the absolute value of the volume
operator �̂ ¼ �2i coshx@x presents a difficulty. It is not
hard to show that this operator is positive on the space of
functions whose Fourier transforms

R
dxe�i!x�ðxÞ have

support only for !> 0 and vice versa, and that these two

spaces are orthogonal. Clearly, the function ei�
�1x lies in

the positive-volume space, and one might hope that the
same is true of the trial function (4.29), at least within the
expansion in powers of �, but we are not able to prove this.
We proceed by removing the absolute value symbol in
(4.27), and verifying a posteriori the positivity of �̂ on
the space spanned by the resulting set of approximate
eigenfunctions.

With this simplification, we find

fEðxÞ ¼ � ~E sinhxþ �

4
~E2ðcoshx sinhxþ xÞ þ Oð�2Þ;

(4.31)

gEðxÞ ¼ 1

2
~E coshx� �

4
~E2cosh2xþ Oð�2Þ: (4.32)

To make systematic use of this expansion, we construct the
polar representation of the function

�EðxÞ :¼ @x�EðxÞ ¼ �EðxÞei�EðxÞ; (4.33)

with the result

�EðxÞ ¼ N
�
1� �

2
~E coshxþ Oð�2Þ

�
; (4.34)

�EðxÞ ¼ ��1x� ~E sinhxþ�

4
~E2ðcoshx sinhxþ xÞþOð�2Þ:

(4.35)

An important check on the consistency of our procedure is
now to obtain the inner product

ð�E;�E0 Þgrav ¼ 1

4�

Z 1

�1
dxcoshx ��EðxÞ�E0 ðxÞ

¼ 1

4�

Z 1

�1
dxcoshx�EðxÞ�E0 ðxÞei½�EðxÞ��E0 ðxÞ�:

(4.36)

Self-adjointness of Ĥ0 requires that this be proportional to
�ðE� E0Þ, which in turn requires

ðE� E0Þ�1@x½�EðxÞ � �E0 ðxÞ� / coshx�EðxÞ�E0 ðxÞ;
(4.37)

in order that the final integral in (4.36) reduce toR
dseiðE�E0Þs. This can be checked order by order in �,

and is readily seen to hold at the order of our explicit
calculations. We find that ð�E;�E0 Þgrav ¼ �ðE� E0Þ, if
the normalization constant in (4.29) is N ¼ ð2=�2BÞ1=2.
Matrix elements of the volume operator are given by

ð�E; �̂�E0 Þgrav ¼ 1

4�

Z 1

�1
dx coshx ��EðxÞ�ð�Þ

E0 ðxÞ (4.38)

with

�ð�Þ
E ðxÞ ¼ @x½�̂�EðxÞ� ¼ �2i@x½coshx�EðxÞ�: (4.39)

To lowest order, we find

�ð�Þ
E ðxÞ ¼ 2��1 coshx�EðxÞ ¼ 2��1ð1� �4B2@2EÞ1=2�EðxÞ

(4.40)

and thus

ð�E; �̂�E0 Þgrav ¼ 2��1ð1� �4B2@2E0 Þ1=2�ðE� E0Þ:
(4.41)
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It follows, at this order of approximation, that �̂ is
positive, ð�; �̂�Þgrav > 0 on the space spanned by these

eigenfunctions; obviously, by starting with �EðxÞ ¼
expð�i��1xþ . . .Þ we would find a complementary space
on which �̂ is negative. The form of the series (4.34) and
(4.35) suggests that a similar approximation might be
obtained by expanding in the eigenvalue E, which we
also want to be small, since it is minus the energy of a
test clock. The leading terms of such an expansion do agree
with those obtained above, but we have not been able to
develop it in a wholly consistent manner.

D. Time evolution of the volume

The matrix element (4.40) together with (4.20), (4.21),
and (4.22) yields the expectation value of the Dirac ob-
servable associated with �̂ as

h�̂ð�Þi ¼
Z

dE
Z

dE0 Z dp�
�c ðE; p�Þc ðE0; p�Þ

�
Z 1

�1
ds

2�ℏ
e�iðE�E0Þs=ℏ 2p�

�

�
�
1þ �4B2

ℏ2
ðsþ �Þ2

�
1=2

; (4.42)

where we observe an obvious correspondence with the
classical solution (4.7).

We would again like to assess the viability of a test
clock, by restricting the clock’s energy �E to a small
range of values around a mean value 	c, which is itself
small. As in Sec. III D, we take the dispersion in p� to be

negligible and use the Gaussian wave function

c ðEÞ ¼
�~�
�

�
1=4

e�~�ðEþ	cÞ2=2: (4.43)

This state differs in detail from (3.62); roughly speaking,

the two variances are related by ~� ¼ �=�2	2c . Taking into
account the rescaling v ¼ ð2BÞ�1j�j, we find for the Dirac
observable V̂ð�Þ associated with the volume v̂� â3

Vð�Þ :¼ hV̂ð�Þi

¼ v0

1ffiffiffiffi
�

p
Z 1

�1
dse�s2½1þ ��2

P ð�þ
ffiffiffiffi
~�

p
ℏsÞ2�1=2;

(4.44)

where v0 ¼ p�=�B is the minimum (‘‘bounce’’) volume

attained in the classical solution, and �P ¼ ℏ=�2B �
6:8� 10�45 s is of the order of the Planck time. In this
state, the bounce occurs at � ¼ 0, but including a factor

e�i�0E=ℏ in the wave function (4.43) would displace it to
� ¼ ��0. We also need

hV̂ð�Þ2i ¼ v2
0

1ffiffiffiffi
�

p
Z 1

�1
dse�s2½1þ ��2

P ð�þ
ffiffiffiffi
~�

p
ℏsÞ2�

¼ v2
0

�
1þ

~�ℏ2

2�2P
þ �2

�2P

�
: (4.45)

If the clock’s energy is to be restricted to a small range

near 	c, we need ~� � 	�2
c , or � � �2, which reproduces

the first inequality in (3.77).
Now consider a late time, � � �P, at which it ought to

be possible to set up a quasiclassical state. If ~�ℏ2=�2P is not
too large (and we shall soon see that this quantity should be
small), the volume can be approximated as

Vð�Þ ¼ v0�

�P

�
1þ 1

2

�2P
�2

þO

�
�4P
�4

��
: (4.46)

This reproduces the second term of (3.60), linear in �, but
misses the last term proportional to �2 which, as discussed
earlier, is important at very late times when the clock
energy dominates that of the scalar field. One would expect
the large-volume evolution to be insensitive to the quanti-
zation scheme, and it is likely that the discrepancy indi-
cates a failure of the approximations (4.34) and (4.35) for
large values of E. With the approximation (4.46), we
estimate the dispersion in the volume at late times as

�
�V

V

�
2 � v2

0
~�ℏ2

2V2�2P
� �E�

2	2cV
; (4.47)

and requiring this to be small reproduces the second in-
equality in (3.77). At late times, therefore, the criterion for
the notion of a test clock to be viable is the same in the loop
quantum cosmology and Wheeler–de Witt quantization
schemes, as it should be.
At the bounce volume, which occurs at � ¼ 0, we might

expect this criterion to be modified. Assuming that ~�ℏ2=�2P
is small, we obtain the approximation

Vð0Þ ¼ v0

�
1þ 1

4

�~�ℏ2

�2P

�
� 3

32

�~�ℏ2

�2P

�
2 þ . . .

�
(4.48)

and

�
�V

V

�
2 � 1

8

�~�ℏ2

�2P

�
2
: (4.49)

In order to have this dispersion small, and to have the
clock’s energy close to 	c, we need

	�2
c � ~� � 	�2

P ; (4.50)

where 	P ¼ ℏ=�P � 1:6� 1010 J is about 10 times the
Planck energy. Evidently, independently of the quantum
state, the clock’s energy 	c must be much larger than 	P.
This condition might be regarded as satisfied by the 1 kg
clock considered in Sec. III D, but not by a huge margin.
Whether 	c is much smaller than the scalar-field energy
depends, of course, on the particular state considered.
For the quasiclassical state of a region of size 1080 m3

considered in Sec. III D, the constant p2
� ¼ 2V2�� is about

10151 Jm3. At its bounce volume, v0, this region contains a
scalar-field energy E� ¼ p2

�=2v0 ¼ 	Pp�=2� � 10122	P,

so the condition 	P � 	c � E� is not hard to satisfy.
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V. DISCUSSION

In Sec. II, we identified two features of a widely adopted
relational approach to time evolution in generally covariant
systems, which we believe to be shortcomings of this
approach. In the context of simplified time-reparametriza-
tion-invariant models such as the cosmological model
studied in this paper, evolution with respect to an internal
time is described by operators of the form (2.8).
These operators depend parametrically on some variable
(in this case �0) associated with a dynamical variable (in
this case a scalar field) which is regarded as a physical
clock. The shortcomings (in our view) of this account are
twofold: (i) it provides no heraclitian time that would
serve to make sense of, for example, the everyday experi-
ence that a well-constructed clock reads ‘‘10 s’’ about ten
seconds after it read ‘‘0’’; (ii) a parameter such as �0

cannot be interpreted as an observed value of the chosen
physical clock variable, because no dynamical quantity
exists that might be observed to have this value, either as
a function on the reduced classical phase space or as an
operator on the physical Hilbert space of the quantized
theory.

In Secs. III and IV, we described, within two standard
quantization schemes, a possible means of alleviating
these difficulties by introducing a test clock that is to be
regarded as internal to some specific observer (or observ-
ing apparatus). In this way, we could construct classical
Dirac observables, or ‘‘evolving constants of the motion’’
(3.9) and their quantum-mechanical counterparts (3.29).
These gauge-invariant quantities evolve with respect
to a heraclitian time �, their evolution being governed
exactly by the usual Hamilton or Heisenberg equations of
motion. Like the physical clocks in other relational
schemes, the test clock is not represented by any indepen-
dent Dirac observable. Intuitively, this makes sense,
insofar as the clock is internal to the observer from whose
point of view the time evolution is described, and thus
inaccessible to that observer. Problem (ii) above does not
arise, because � has the textbook interpretation of the
geometrical proper time that elapses along this observer’s
worldline, and does not correspond to any reading of the
clock.

It is worth emphasizing that more is at stake than inter-
pretation. In constructing the physical Hilbert space, one
naturally wants time evolution to be generated by a self-
adjoint operator. As noted earlier, different inner products,
and to that extent different quantum theories, are needed to
confer self-adjointness on the generator of evolution in the
scalar field � or on the original Hamiltonian H0, which
generates evolution in �. It seems to us that self-adjointness
ofH0 is a more natural requirement. Any specific choice of
an internal time variable is essentially an arbitrary matter,
and it seems unnatural that the resulting quantum theory
should depend on that arbitrary choice.

If the notion of a test clock is to make good sense, it
should be possible to restrict the clock’s energy to be a
negligible fraction of the total. This places limits on the
resolution with which the values of time-dependent ob-
servables might be determined, but we found in Secs. III D
and IVD that reasonable compromises are possible. That
is, one can take the clock’s energy to be reasonably small,
while leaving the time-dependent observables reasonably
sharply defined.
As noted in Sec. III A, our construction of time-

dependent Dirac observables is similar, but not identical,
to relational constructions adopted by several previous
authors, and it is worth comparing the two approaches in
some detail. For classical systems, the original idea of
Rovelli [6–8] has been developed in considerable general-
ity by Dittrich [40,41] (see [42–44] for a somewhat differ-
ent perspective), and the quantum theory obtained by
reduced-phase-space quantization is discussed in [45,46].
In models of the kind discussed here, these constructions
amount to replacing the function t0ðxÞ defined by (3.5) with
a function t1ðx; �Þ defined by

rð �xðx; t1ÞÞ ¼ �; (5.1)

and the Dirac observable Fð�Þ defined in (3.8) with

F1ð�Þ ¼ �fðw; t1ðx; �ÞÞ: (5.2)

It is again straightforward to show that ft1; hg ¼ �1 and
that, for each value of the parameter �, F1ð�Þ Poisson
commutes with the total constraint H0 þ h. Classically,
before the constraint is imposed, F1ð�Þ seems to be
interpretable as the value of f when the clock reading
rðxÞ has the value �. The operator (2.8) is a quantum
implementation of this Dirac observable for the case that
f is the volume and rð�Þ ¼ � the scalar field. Clearly, this
is a different construction from the one we have advocated,
and we have argued that it does not have a satisfactory
interpretation: before imposing the constraint, � seems to
be an observed value of the clock reading r, but no corre-
sponding observable R exists in the final, constrained
theory.
There is, however, a special case in which the net

results (3.8) and (5.2) of these two different constructions
are algebraically indistinguishable, namely, when the so-
lution of the equation of motion for r is linear in t, so that
t1ðx; �Þ ¼ �rðxÞ þ �. This is true for a special kind of
clock, whose Hamiltonian h ¼ pr is just the momentum
conjugate to r. In that case, the total constraint has the
deparametrized form H ¼ H0 þ pr, and the replacement
pr ¼ �iℏ@� yields a Schrödinger-like equation. It can be

argued (see, for example, [21,23]) that the Hamiltonian
h ¼ pr, which is unbounded below, cannot describe any
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physical clock.7 However, Brown and Kuchař [29] have
modeled a dust-filled universe by using a collection of
scalar fields, of which one, say, T, when the classical
equations of motion are satisfied, is linear in the proper
time along particle worldlines. This model has been
studied more recently by several authors from the
point of view of the relational formalism [33,34,46,47]
(see also [30,31]).

In particular, Amemiya and Koike [34] investigate the
quantum dynamics of a homogeneous universe whose
matter content comprises Brown-Kuchař dust together
with classical radiation and a cosmological constant.
Their Hamiltonian constraint has the form H0ða; paÞ þ
pT , where pT , the momentum conjugate to T, is essentially
the total energy of the dust content of a compact universe.
Quantization amounts to replacing pT with �iℏ@T and
pa with �iℏ@a to obtain the Schrödinger-like equation
iℏ@T�ðT; aÞ ¼ H0ða;�iℏ@aÞ�ðT; aÞ. More formally, the
relational formalism yields a family of Dirac observables
Að�Þ through the prescription (5.2), with t1ðT; �Þ ¼ �� T.
Reduced-phase-space quantization then promotes these to

Heisenberg-picture operators Âð�Þ on the physical Hilbert
space and the corresponding Schrödinger-picture wave
function �ð�; AÞ is governed by

iℏ@��ð�; AÞ ¼ H0ðA;�iℏ@AÞ�ð�; AÞ: (5.3)

We retain the symbol � here to emphasize that this variable
is a value assigned to the scalar field T, whose classical
equation of motion happens to have the solution �TðtÞ ¼
�Tð0Þ þ t, whereas our variable � is, up to a choice of origin,
the arclength t. Again, there is no operator on the physical
Hilbert space to represent the dust, so although � is a value
assigned to T, it cannot be regarded as the result of a
measurement of T, though in this special case it can be
loosely associated with proper time by appealing to the
classical equation of motion. Of course, the constraint
implies that the energy of the dust is given by �H0, but
this ought not to be the whole story: cosmologists expect to
verify the Friedmann equation through independent mea-
surements of the Hubble parameter and the distribution of
matter. This is a matter of some practical importance if the
Brown-Kuchař fields are used to model the actual non-
relativistic matter in our universe. In [34], the Schrödinger
equation (5.3) is solved for conditions corresponding to an
energy density of radiation much larger than is observed,
and yet their universe remains substantially unaffected by

this radiation at the earliest times, when classical cosmol-
ogy would lead one to expect a radiation-dominated uni-
verse. We suspect that this reflects a rather large value of
h�H0i corresponding to a large density of dust, whose
presence can be inferred only from the behavior of the
scale factor. Presumably, one could arrive at a closer
approximation to our universe by considering a state in
which h�H0i is small enough, but that would not solve
the interpretational problem that the dust is not directly
observable.
Alternatively, one can try to regard the Brown-Kuchař

‘‘dust’’ as being truly unobservable. This is the view taken
in [33], and in [47] these authors speculate that this dust
might be a candidate for dark matter, since it interacts only
gravitationally.8 On this view, one has to postulate that the
universe contains, in addition to ordinary detectable matter,
another species which is unobservable in principle, not
merely because it does not interact, but because it does
not feature in the physical phase space. This seems im-
plausible to us, because the dust appears in the first in-
stance on the same footing as any other matter, and it is
only as a matter of technical convenience that one chooses
to solve the constraints by eliminating the variables asso-
ciated with this, rather than some other species.
By contrast, the view proposed in this paper is that a

specific observer, say, O1, will account for time-dependent
observations made along her own worldline by describing
the physical phase space in terms of variables that do not
include a clock internal to herself. It does seem plausible to
us that she cannot, in principle, make measurements of
the reading of this particular clock. If the model is suffi-
ciently detailed, her description of the physical phase space
may include the variables corresponding to a clock that
is internal to a second observer, O2, whose readings she
might, in principle, be able to measure (if a socially accept-
able procedure could be agreed on). To account for time-
dependent observations made along his worldline, how-
ever, O2 will coordinatize the physical phase space using
variables that do not include his own internal clock, though
they would include the clock internal to O1.

9

We have, of course, substantiated this view of time
evolution only in the context of a greatly simplified cos-
mological model. Within this model, the time parameter �,
which has an unambiguous classical interpretation as the

7This objection is irrelevant to our construction, because our
clock is not required to provide a linear measure of proper time.
As implemented in Sec. III, the clock has a positive energy [see
(3.56)] and in Sec. IV its energy was allowed to be negative, with
small probability, purely as a matter of technical convenience.
The objection [21] that measured readings of a quantum-
mechanical clock with energy bounded below are not guaranteed
to increase monotonically with time also does not apply, because
our � does not represent any such measured values.

8In fact, it is claimed in these papers that the dust must have a
negative energy density, in order to yield a physical Hamiltonian
that is positive, but that this does not matter, because the dust is
unobservable. Amemiya and Koike [34] accept the negative
Hamiltonian implied by a positive energy density for their
dust, on the grounds that the original gravitational Hamiltonian
is in any case negative, and we think they are right to do so, at
least in the context of their homogeneous cosmology.

9In [47], the dust is described as a ‘‘test observer medium.’’
Taken literally, this would imply a space-filling congruence of
observers, who are unobservable not only to themselves but to
each other.
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proper time that elapses along an observer’s worldline,
survives quantization as a gauge-invariant c-number pa-
rameter, because the lapse function NðsÞ in (2.4) is not a
dynamical variable, and is not promoted to an operator in
the quantum theory.10 However, by considering only a

comoving observer, we have avoided dealing explicitly
with the dynamical variables x�ð�Þ in (3.1), which more
generally are needed to specify precisely what is meant, in
the final quantum theory, by ‘‘an observer’s worldline.’’ To
deal adequately with a genuinely localized observer in a
more general spacetime is a much more challenging enter-
prise, which we plan to explore in future work.
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