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Equation of state for the magnetic-color-flavor-locked phase
and its implications for compact star models
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Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired
quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and
transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of
state of the MCFL phase is self-consistently determined. This result is then used to investigate the
possibility of absolute stability, which turns out to require a field-dependent “‘bag constant” to hold. That
is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs
bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized
(self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.
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L. INTRODUCTION

Neutron stars are dense, compact astrophysical objects
which are one possible result of the evolution of massive
stellar progenitors. Determining which is the state of the
matter in the interior of these objects is still an open
question, and of the greatest importance for hadronic phys-
ics and stellar astrophysics alike. High-quality data pres-
ently being taken and analyzed offer for the first time a real
perspective to explore this domain of strong interactions.

It has been proposed that these stars are not composed of
neutron matter, but rather that, given the conditions of very
high density in their interiors, there could be a phase
transition from nuclear to quark matter [1,2]. Several au-
thors have considered an even more extreme possibility
[3,4]: the absolute stability of the deconfined phase (in
which case, self-bound strange stars would exist). If the
milder condition is realized, that is, the deconfined phase is
stable only at high pressure, stars with quark cores (hybrid
stars) would ensue.

An interesting twist to the stability problem was given a
decade ago (after an important precursor [5]), when paired
matter was studied [6-8] and the pairing energy was shown
to enlarge the window of stability in parameter space. The
phenomenon of color superconductivity, in which quarks
pair according to their color and flavor in a specific pattern,
would thus introduce a pairing gap in the free energy of the
system due to the attractive color-antisymmetric channel in
the interaction between quarks.

The most symmetric pairing state would be the color-
flavor-locked one (CFL) when quarks of all flavors and
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colors pair. This state can only be realized if the mass split
between the lightest quarks (up and down) and the strange
quark is small and/or the chemical potential w is high
enough, a condition usually written as u = m2/2A [9],
with m, being the strange quark mass and A the pairing
gap. When this condition does not hold, other states could
be realized (e.g., the Larkin-Ovchinnikov-Fulde-Ferrell
phase [10], kaon-condensate phase [11], single flavor color
superconductor [9,12], homogenous gluon condensate
phase [13], and gluon-vortex lattice [14], among others).
This is a subject under intense study.

Being a possible physical realization of dense matter
physics, a common characteristic of neutron stars is
their strong magnetization. Their surface magnetic fields
range from H = 1.7 X 108 G (PSRB1957 + 20) up to
2.1 X 1013 G (PSRBO0154 + 61), with a typical value of
10'2 G [15]. There is observational evidence of even
stronger magnetic fields in the special group of neutron
stars know as magnetars—with surface magnetic fields of
order B ~ 10'*-10"> G [16]. In the core of these compact
objects the field may be considerably larger due to flux
conservation during the core collapse or because of internal
mechanisms that can boost a preexisting seed field [17]. By
applying the equipartition theorem, the interior field
can be estimated to reach values H ~ 10720 G [18].
Therefore, if color superconducting QCD phases constitute
the interior matter of neutron stars, it is likely that a treat-
ment including high field values would be needed.

At this point, it is worth underlining a main difference
between a conventional electric superconductor and a spin-
zero color superconductor in regard to their behavior in the
presence of a magnetic field. Spin-zero color superconduc-
tivity, as that of the CFL phase and the two-flavor color
superconductor phase, does not screen an external mag-
netic field because even though the color condensate has
nonzero electric charge, there is a linear combination of the
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photon and the eighth gluon, Au = A, cosf — Gi sinf,
that remains massless [19]. This combination plays the
role of an in-medium or rotated electromagnetism with
the color condensate being always neutral with respect to
the corresponding rotated charge Q. Then, an external
magnetic field can penetrate the color superconductor
through its long-range, in-medium component H.
Furthermore, even though the diquark condensate is neu-
tral with respect to the rotated electromagnetism, some
quarks participating in the pairing are Q-charged, so they
can couple to a background magnetic field thereby affect-
ing the gap equations of the system [20-23]. Because of
this effect, the three-flavor color superconductor in a mag-
netic field exhibits a new phase that is known as the
magnetic-color-flavor-locked (MCFL) phase [20].
Although the CFL and the MCFL phases of three-flavor
paired quark matter are similar in that they both break
chiral symmetry through the locking of color and flavor
and have no Meissner effect for an in-medium magnetic
field, they have important differences too (for physical
implications of their differences see [24]).

At present, some of the best-known characteristics of
stellar objects are their masses and radii. The relation
between the mass and the radius of a star is determined
by the equation of state (EoS) of the microscopic matter
phase in the star. If one can find some features that can
connect the star’s internal state (nuclear, strange, color
superconducting, etc.) to its mass/radius relation, one
would have an observational tool to discriminate among
the actual realization of different star inner phases in
nature. From previous theoretical studies [8,25,26] the
mass-radius relationship predicted for neutron stars with
different quark-matter phases (color superconductor or
unpaired) at the core is very similar to those having had-
ronic phases, at least for the observed mass/radius range.
As a consequence, it is very difficult to find a clear obser-
vational signature that can distinguish between them.
Nevertheless, an important ingredient was ignored in these
studies: the magnetic field, which in some compact stars
could reach very high values in the inner regions.

As pointed out in [18], a strong magnetic field can create
a significant anisotropy in the longitudinal and transverse
pressures. One would expect then that the EoS, and con-
sequently the mass-radius ratio, would become affected by
sufficiently strong core fields. Given that we are beginning
to obtain real observational constraints on the EoS of
neutron stars [27], it is important to investigate the EoS
in the presence of a magnetic field for different inner star
phases to be able to discard those that do not agree with
observations.

In order to understand the relevance of the magnetic
field to tell neutron stars apart from stars with paired quark
matter, it is convenient to recall that when the pressure
exerted by the central matter density of neutron stars
(which is about 200—-600 MeV /fm?) is contrasted with
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that exerted by an electromagnetic field, the field strength
needed for these two contributions to be of comparable
order results in order ~10'® G [28]. On the other hand,
relevant relativistic quantum field effects (i.e., those due to
the Landau quantization of the particle energy modes) will
show up in the neutron/proton star matter when the parti-
cles’ cyclotron energy ehH /mc becomes comparable to its
rest energy mc?, which for protons means a field ~10% G.

However, for stars with paired quark matter, the situation
is rather different. Naively, one might think that compa-
rable matter and field pressures in this case would occur
only at much larger fields, since the quark matter can only
exist at even larger densities to ensure deconfinement. In
reality, though, the situation is more subtle. As argued in
[25], the leading term in the matter pressure coming from
the contribution of the particles in the Fermi sea, ~u*,
could be (almost) canceled out by the negative pressure of
the bag constant, and in such a case, the next-to-leading
term would play a more relevant role than initially ex-
pected. Consequently, the magnetic pressure might only
need to be of the order of that produced by the particles
close to the Fermi surface, which becomes the next-to-
leading contribution, ~u?A?, with A the superconducting
gap and w the baryonic chemical potential. For typical
values of these parameters in paired quark matter one
obtains a field strength ~10'® G. Moreover, the magnetic
field can affect the pressure in a less obvious way too, since
as shown in Refs. [20-22], it modifies the structure and
magnitude of the superconductor’s gap, an effect that, as
found in [29], starts to become relevant already at fields of
order 10'7 G and leads to de Haas—van Alphen oscillations
of the gap magnitude [30,31]. It is therefore quite plausible
that the effects of moderately strong magnetic fields in the
EoS of compact stars with color superconducting matter
will be more noticeable than in stars made up only of
nucleons, where quantum effects starts to be significant
for field 3 orders of magnitude larger. This is why an
evaluation of a magnetized quark phase is in order.

In this work, we perform a self-consistent analysis of the
EoS of the MCFL matter, taking into consideration
the solution of the gap equations and the anisotropy of
the pressures in a magnetic field. Our main goals are (1) to
investigate the effect of the magnetic field in the absolute
stability of strange stars made of paired matter in the
MCEFL phase; (2) to determine the threshold field at which
substantial separation between the parallel and transverse
pressures occurs in the MCFL matter; and (3) to explore
whether there is a range of magnetic-field strengths, within
the isotropic regime for the EoS, that can lead to observ-
able differences in the mass-radio ratios of stars with
MCEFL vs CFL cores.

The plan of the paper is the following. In Sec. II we
present the thermodynamic potentials for the color super-
conducting (CFL and MCFL) models used in our calcu-
lations throughout. Using them, the equations of state for
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the CFL and MCFL phases are then found in Sec. III. The
pressure anisotropy appearing in the MCFL case is graphi-
cally shown and the order of the field strength required for
the anisotropic regime to settle is determined. The stability
conditions for the realization of self-bound MCFL matter
are investigated in Sec. IV, where we find that the magnetic
field acts as a destabilizing factor for the realization of
strange matter and prove that only if the bag constant
decreases with the field, a magnetized strange star could
exist. In Sec. V, we apply the EoS of MCFL matter to
calculate the mass-radius relationship of self-bound and
gravitational-bound stellar models. The main outcomes of
the paper are summarized in Sec. VI. Finally, in the
Appendix, the dynamical bag constant in the chiral limit
at H # 0 is studied.

II. MODEL

As mentioned in the Introduction, a main goal of this
work is to carry out a self-consistent investigation of the
EoS of the MCFL phase. For the sake of understanding,
and for comparison with the case without magnetic field,
we are also going to find the EoS of the CFL phase using a
similar approach. With this aim in mind, we first need to
obtain the thermodynamic potential for each phase. The
CFL superconductor can be modeled by the three-flavor
Nambu-Jona-Lasinio (NJL) theory considered in [32] [see
Eq. (10) of that reference]. In our case, we neglect all the
quark masses so the color and electrical neutralities are
automatically satisfied and the only nonzero chemical
potential will be the baryonic chemical potential w. As
known, this effective model displays all the symmetries of
QCD which are relevant at high densities. Its four-fermion
point interaction contains the quark-quark attractive color
antitriplet channel that gives rise to the diquark condensate.

In the MCFL phase we assume a uniform and constant
magnetic field. The reliability of this assumption for neu-
tron stars, where the magnetic-field strength is expected to
vary from the core to the surface in several orders, is based
on the fact that the scale of the field variation in the stellar
medium is much larger than the microscopic magnetic
scale for both weak and strong magnetic fields [28].
Hence, when investigating the field effects in the EoS, it
is consistent to take a magnetic field that is locally constant
and uniform. This is the reason why such an approximation
has been systematically used in all the previous works on
magnetized nuclear [28,33] and quark matter [34].

A. Thermodynamic potential of the CFL phase

The mean-field thermodynamic potential of the CFL
phase is [32]

Q=—g§[

where the sum in n indicates the finite temperature sum in

A"IA"'I

G )

&3 |
(27:;3 Trlog(;S Yiw,, p)) +
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the Matsubara frequencies. The inverse full propagator

here is
+4 P,A
S—l — (p_ i n=n > 2
(p) PN p o 2)
with (P,)¢ = Cyse“*"e;;,, (no sum over 7) and P, =
y4P:r, 4. The gap is A, = (§ 7P, ) with quark field ¢
of colors (r, g, b) and flavors (u, d, s). The index 7 =
1, 2, 3 labels the d-s, u-s, and u-d pairing, respectively.
After summing in n and taking the zero-temperature
limit, one obtains

1 ()
Qcp = ——— [ dppre PN [16]e| + 16]2(]
4= Jo

I [ 2772 3A?
—— | dpp*e P N[2le!| + 218 ] + —-,
i [ dppe PN LI 20 + 2

3)

where

e = =(p — w2 + A2y,
= y(p+ p) + Ay,
g = xy/(p — W + 402,

g = i\/(p + u)? + 4A2CFL

are the dispersion relations of the quasiparticles. Here we
already took into account the well-known solution Acg, =
A, = A, = Aj, valid for the CFL gap at zero quark
masses. As in [30], in order to have only continuous
thermodynamical quantities, we introduced in (3) a smooth
cutoff depending on A.

B. Thermodynamic potential of the MCFL phase

Let us consider now the case with a rotated magnetic
field A, which couples to the charged quarks through the
covariant derivative of the NJL Lagrangian. The magnetic
interaction leads to the separation of the original (u, d, s)
quark representation into neutral, positively, and nega-
tively charged spinors according to the quark rotated
charges in units of & = e cosf, with € being the mixing
angle of the rotated fields,

d, s, g 8
011—100—100.(4)

Because of this separation, it is convenient to introduce
three sets of Nambu-Gorkov spinors that correspond to
positive-, negative-, and zero-charged fields. The details
of this procedure, as well as a discussion of Ritus’s method
[35], used to transform the charged spinor fields to mo-
mentum space in the presence of a magnetic field, can be
found in [21]. After integrating in the fermion fields, doing
the Matsubara sum, and taking the zero-temperature limit,
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we can write the MCFL thermodynamic potential as the
sum of the contributions coming from charged ({).) and
neutral () quarks.

Qicrr, = Q¢ + Qy (5)
with
eH & S,
QC - — —2 Z(l - 20)
n=0

% [m dp3e*(p§+25Fln)//\z[8|8(c)| + 8|g@|],  (6)
0

1 00
Oy = = [ appe N 61601 + 6160))
4= Jo

1 foo - (0) (0)
——5 | dpp*e /N Y2l + 218}"]]
472 Jo ~ J J

J

v 40 )

and

gl = i\/(\/pg +26Hn— p)?+ A%,
gl = i\/(\/pg +28Hn + p)? + A%,

e = 2y(p — ) + A%
80 = xy(p + ) + A%
R e
e = =\J(p — w2 + A2

being the dispersion relations of the charged (c) and neutral
(0) quarks. In the above we used the notation

1
A%, = A= YAZ + 8A2)2.

The MCFL gaps A and Ay correspond to the case where
the (d, s) pairing gap, which takes place only between
neutral quarks, is A; = A, while the (u, s) and (u, d) pair-
ing gaps, which receive contribution from pairs of charged
and neutral quarks, become A, = A; = Ay. The separa-
tion of the gap in two different parameters in the MCFL
case, as compared to the CFL, where A; = A, = Aj,
reflects the symmetry difference between these two phases
[20]. Here again, A-dependent smooth cutoffs were
introduced.

PHYSICAL REVIEW D 83, 043009 (2011)

The effects of confinement can be incorporated by add-
ing a bag constant B to both Q¢ and Qyycpp.. Besides, in
the magnetized system the pure Maxwell contribution,
H?/2, should also be added [18]. Hence, the thermody-
namic potential of each phase is given by

QO = QCFL + B, (8)

and

72
Qp = Quep, + B + 5 9

respectively.

While A and B must be given to solve the system, the
gaps Acpr, A, and Ay have to be found from their respec-
tive gap equations

dQcpr
=0, (10)
dAcrL
9 Qyicrr 90 ycrL
VR =), ——=0. 11
dA Ay (h

It is worth mentioning that if we take into account the
particle-antiparticle channels in the NJL model here con-
sidered, it is possible to claim that the bag pressure can be
explicitly calculated in the chiral limit of this model as an
effective bag “constant” that depends on the dynamical
masses and chiral condensates. This was done in [36] by
adopting a particular version of the NJL. model [37] that
had four- and six-point interaction terms. At the high
densities required for the realization of both the CFL and
MCEFL phases, the NJL-derived bag pressure contribution
to the thermodynamic potential would reduce to its zero
density value [36]. A natural question in the context of the
present work is whether the external magnetic field could
effectively modify the vacuum pressure found in [36]. It
turns out that no significant modification can occur for field
strengths below 10%° G, as shown in the Appendix.
Therefore for the range of fields relevant for our calcula-
tions, if one were to adopt the same model as in [36] the
field effects can be ignored.

We must also underline that the fact that this NJL-
derived bag constant is practically insensitive to the mag-
netic field for a realistic range of field strengths does not
prevent the “‘actual” bag constant in general to be signifi-
cantly sensible to the magnetic field. First of all, the bag
constant obtained within a NJL model is model-dependent.
Besides, a well-known shortcoming of the NJL theory is
that it cannot describe the confinement-deconfinement
transition, which is a basic feature of QCD and the one
most directly relevant for introducing a bag constant in a
model of unconfined quarks. On the other hand, it should
be highlighted that the CFL and MCFL phases can be also
found independently of any NJL model, using weak-
coupled QCD in the limit of asymptotically large densities.
In this case the bag pressure cannot be explicitly calcu-
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lated, so one has to rely on the MIT model analysis to
impose some restrictions on the range of values it can take.
Therefore, throughout the present paper we assume we
have an undetermined bag pressure B which may or not
depend on the magnetic field. Below, unless otherwise
specified, whenever a fixed value of the bag constant is
used, we take B = 58 MeV/fm?, which is compatible with
both the MIT model and the zero density value of B found
in [36].

III. EQUATIONS OF STATE

In this section we derive the EoS for the CFL and MCFL
phases using their respective thermodynamic potentials (8)
and (9), along with their gap solutions obtained from (10)
and (11), respectively. The values of the free parameters G
and A are chosen to produce a CFL gap Acg, = 10 MeV,
which is within the plausible range of values that A can
take in nature [38], and is small enough to decrease the
dependence of our results on the scale A [32]. Then,
throughout the entire analysis we take G = 4.32 GeV 2
and A =1 GeV.

As is known [39], the energy density and pressures can
be obtained from the different components of the macro-
scopic energy-momentum tensor. In the reference frame
comoving with the many-particle system, the system nor-
mal stresses (pressures) can be obtained from the diagonal
spatial components, the system energy density from the
zeroth diagonal component, and the shear stresses (which
are absent for the case of a uniform magnetic field) from
the off-diagonal spatial components. Then, the energy
density and longitudinal and transverse pressures of the
dense magnetized system are given, respectively, by

1 1 1
&= W<7-OO>’ P = W<7-33>’ pP1L = W<7~'J‘l>~
(12)

Here the quantum-statistical average of the energy-
momentum tensor is given by
Tr[;-p)te*B(H*uN)]

(7o) ==,

(13)
where

~pr _ [P 3 pA

P = dr | d>x7PM (1, x) (14)

0
and Z is the partition function of the grand canonical
ensemble given by
Z = TrePH—1N) (15)

with H denoting the system Hamiltonian, N the particle
number, and S the inverse absolute temperature.

In the CFL phase p| = p, = p, and following the
prescription (12), the pressure and energy density are
found as a function of the thermodynamic potential (8) as
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Q)
€cr = Qo — u——7,

o (16a)

per. = — 4, (16b)

while for the MCFL, due to the anisotropy introduced by
the uniform magnetic field, p; # p, and the energy den-
sity and pressures are found as a function of the thermody-
namic potential (9) as (see Ref. [18] for detailed
derivations of the formulas for the pressures and energy
density in a magnetic field)

90
emcrL = Oy — ,u—aMH, (17a)
Pyicr. = — Qs (17b)
_ 00
Pliep = —Qp + HTHH. (17¢)

Notice that in the MCFL phase, because of the presence
of the magnetic field, there is a splitting between the

parallel pR,ICFL (i.e., along the field) and the transverse
Piicrr. (€., perpendicular to the field) pressures. We call
attention that in Eq. (16) [Eq. (17)] the gap is a function of
w (u and H) found by solving Eqgs. (10) and (11). The
anisotropic nature of the system in the MCFL phase is an
important feature that will be discussed later in connection
to stellar models.

The magnetic-field dependencies of the parallel and
transverse pressures in (17) are plotted in Fig. 1.
Similarly to what occurs in the case of a magnetized
uncoupled fermion system at finite density [18], the trans-
verse pressure in the MCFL phase increases with the field,
while the parallel pressure decreases and reaches a zero
value at field strength of order = 10'° G for the density

1000 ———— —————
K=500 McV, B=58 MeV/fim?
800 PR
—_ R. /l
on ,
g 600 ~ -
s 0
"
2
S, 400 .
Il
200 4
0 T T T T T T L
10" 10" 10"
H (Gauss)
FIG. 1. Parallel and perpendicular pressures as a function of

the magnetic-field intensity for representative values of u and
bag constant B.
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under consideration (u = 500 MeV). We see from Fig. 1
that Q, and 0Q,/9H do not exhibit the de Hass—
van Alphen oscillations as happens with other physical
quantities in the presence of a magnetic field [30,31,40].
This is due to the high contribution of the pure Maxwell
term in ) and 9€);/dH, which makes the oscillations of
the matter part negligible in comparison.

The splitting between parallel and perpendicular pres-
sures, shown in the vertical axis of Fig. 2, grows with the
magnetic-field strength. Comparing the found splitting
with the pressure of the (isotropic) CFL phase, we can
address how important this effect is for the EoS. Notice that
for 3 X 10'® G the pressures splitting is ~10% of their
isotropic value at zero field (i.e., the one corresponding to
the CFL phase).

In the graphical representation of the EoS in Fig. 3 the
highly anisotropic behavior of the magnetized medium is
explicitly shown. While the magnetic-field effect is signifi-
cant for the € — pll relationship at H ~ 10'® G, with a shift
in the energy density with respect to the zero-field value of
~200 MeV /fm? for the same pressure, the field effect in
the € — pt relationship is smaller for the same range of
field values.

If we use

a0,

__ 0Oy _ N, (18)

oM op

to express the chemical potential w in terms of the baryon
number density N, plug it into gap equations (11) to find
the gaps in terms of the field A and N, and substitute
everything into the energy density (17a), we can see that

1.0 ——
11=500 MeV, B=58 MeV/fm>
0.8 -
S 06
<
&
= 04
K
S
0.2 -
0.0 ————
17 1
10 ’IO8 1019

H (Gauss)

FIG. 2. Splitting of the parallel and perpendicular pressures,
normalized to the zero value pressure [p(H = 0)], as a function
of the magnetic-field intensity for w = 500 MeV and B =
58 MeV/fm?.
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400 T T T T T T T T T T T T

B=58 MeV/fim®

300 .

200 ~

p" (MeV/fin’)

100 -

500 600 700 800 900 1000
& (MeV/fm?)
400 T T T T T T T T T T T T

300 400

B=58 MeV/fim>

300 - e

200 -

Pt (MeV/fmd)

100 -

300 400 500 600 700 800 900 1000

€ (MeV/fm’)

FIG. 3. Equation of state for MCFL matter considering parallel
(upper panel) and perpendicular (lower panel) pressures for
different values of H: zero field (solid line), 10'7 G (dashed
line overlapped to the solid line), and 5 X 10'® G (dotted line).
Note that the low value of H = 10'7 G is not distinguishable in
the plots, being merged with the zero-field curve. The value of
the bag constant was fixed to B = 58 MeV/fm?>.

the energy density per baryon number (Fig. 4) increases
with increasing magnetic field, in contrast to previous
claims based on a CFL model at H # 0 with only one
gap that was fixed by hand [41].

IV. STABILITY CONDITIONS

Having the EoS for MCFL matter, we can analyze the
conditions for this matter to become absolutely stable. This
is done by comparing the energy density at zero pressure
condition with that of the iron nucleus (roughly 930 MeV).
Depending on whether the energy density of the MCFL
phase is higher or smaller than this value, the content of a
magnetized strange star could be or not be made of MCFL
matter. If the energy of the MCFL phase is smaller than
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B=58 MeV/fm’, A,=10 MeV

1200 P

n, (MeV)

€,
‘system

1000

800 . . . . . .

n/n
FIG. 4. Energy per baryon number as a function of the bar-
yonic density of MCFL matter for different values of the
magnetic field, labeled as in Fig. 3. We see that increasing
the magnetic field increases the energy per baryon, thus making
the matter less stable.

930 MeV for only a specific range in pressure (or density),
this would imply metastability.

To find the maximum value of the bag constant required
for the stability to hold at zero magnetic field, and then use
it as a reference when considering the MCFL case, we will
start our analysis investigating the stability in the CFL
phase. We call to the reader’s attention that in all our
derivations we work within a self-consistent approach, in
which the solutions of the gap equations are substituted in
the pressures and energies of each phase before imposing
the conditions of equilibrium and stability.

A. H = 0 case

The stability criterion for CFL matter in the absence of a
magnetic field is very simple. Following Farhi and Jaffe’s
[42] approach, we can determine the maximum value of
the bag constant that satisfies the stability condition at zero
pressure. With this aim, we first impose the zero pressure
condition in Eq. (16) to get

B = —Qcp, (19)
Q0
€CFL = _M%- (20)

Taking into account that in the CFL phase each of
the three flavors has the same number density (which is
correct as long as one does not introduce the strange mass
and has to impose charge neutrality), we have n, =
$(n, + ng + ng) = 1N. Hence, the energy density per par-
ticle becomes

€CFL o _@ BQCFL

— Mo

wo Na

Nl =3up 2D

Mo

Ny ng op
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with uo denoting the chemical potential at zero pressure.
For the CFL matter to be absolutely stable, its energy
density per particle should be smaller than the lowest
energy density per baryon found in nuclei, i.e., that corre-
sponding to the iron nucleus. Hence,

€
—IL < ¢ (Fe%), (22)
ny

where €,(Fe’®) = s-m(Fe®®) = 930 MeV. This condition
constrains the maximum allowed value of the chemical
potential to be uo = 310 MeV. Using this result back in
(19) we can determine the value of the maximum bag
constant for absolute stability to hold. The obtained result
is shown in Fig. 5 (horizontal axis). This bag constant value
is within an acceptable range. Moreover, it is of the same
order as the one given in Ref. [8] for m; = 0.

B. H # 0 case

When H # 0O the situation is different. Now, both the
parallel and perpendicular pressures in Eq. (17) need to
vanish simultaneously. Therefore, the two equilibrium con-
ditions become

I H?
Pycr = ~Owmere — B — 5 =0, (23)
o) _ 0B |
Pl = Hial\gFL TH S H =0 24

Where we are assuming that the bag constant depends on
the magnetic field. It is not unnatural to expect that the
applied magnetic field could modify the QCD vacuum,
hence producing a field-dependent bag constant. One can
readily verify that Eqs. (23) and (24) are equivalent to
require pﬂ,[CFL = (0and 9 pL',ICFL /0H = 0 at the equilibrium
point.

1x10" A R

8x10" - .

H (Gauss)

4x10" 4 g

0 T T T T T T T
0 25 50 75 100

B (MeV/find)

FIG. 5. Stability window for MCFL matter in the plane H vs B.
The curve shown corresponds to the borderline value €/A =
930 MeV.
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Equation (24) can be rewritten as

. oB
H=M-—, (25)
oH
where M = —9Qycp/0H is the system magnetization. If

we were to consider that the vacuum energy B does not
depend on the magnetic field, we would need

M =H, (26)

to ensure the equilibrium of the self-bound matter, a con-
dition difficult to satisfy since it would imply that the
medium response to the applied magnetic field (i.e., the
medium magnetization M) is of the order of the applied
field that produces it. Only if the MCFL matter were a
ferromagnet would this be viable. The other possibility
for the equilibrium conditions (23) and (24) to hold
simultaneously is to have a field-dependent bag constant
capable of yielding nonzero vacuum magnetization M, =

— a_g ~ . From the discussion at the end of Sec. I and the

results of the Appendix, it is clear that this condition cannot
be satisfied if the bag constant were the one found in [36].
However, as argued before, such a bag constant is model-
dependent and was obtained within a theory that does not
exhibit confinement. Hence, we cannot discard the possi-
bility that the actual bag constant is much more sensitive to
the applied magnetic field. We must recall that in other
physical scenarios, bag constants depending on external
conditions such as temperature and/or density have been
previously considered [43]. Luckily, in the approach we
follow here we do not need to formulate a theory for the
H-modified vacuum, as we only need to know the relation
between B and A under equilibrium conditions.

The following comment is in order. The fact that the bag
constant needs to be field-dependent for self-bound stars in
a strong magnetic field is a direct consequence of the lack
of a compensating effect for the internal pressure produced
by the magnetic field other than that applied by the vacuum
(an exception could be of course if the paired quark matter
would exhibit ferromagnetism). For gravitationally bound
stars, on the other hand, the situation is different, since
their own gravitational field can supply the pressure to
compensate the one due to the field. For such systems,
keeping B constant in the EoS is in principle possible.
Under this assumption we considered a fixed B value in
Fig. 3.

To determine the maximum ‘“‘bag constant” allowed for
each magnetic-field value in the stable region, we need to
simultaneously satisfy the equilibrium equations (23) and
(24), as well as the stability condition in the presence of the
magnetic field

evcr. _ _ g 0Qvcr | _ H?
ny ng, ou uy  2NA
j72
=3us — 3ﬁ = €(Fe). 27)

PHYSICAL REVIEW D 83, 043009 (2011)

Notice that because the nucleons’ rest energy is modified in
the presence of a magnetic field, the energy density of iron
€;(Fe) is now field-dependent. Taking into account the
field interaction with the anomalous magnetic moment
[28], the nucleons’ energy spectrum at H # 0 is given by

2
E;, = \/[‘[c‘*m% +c(ph); + KiHO':I + ?p?, i=p,n.

(28)

For the proton (i = p), and neutron (i = n), the following
parameters hold, respectively:

m, = 938.28 MeV, K, = uy(g,/2 — 1),

(p2), =2leH,  1=0,12,..., 29
m, = 939.57 MeV,
Kn = N8n/2 (30)

(P1)n = Pt + p3.
In (29) and (30), uy = eh/2cmp is the nuclear magneton,
and the Lande g factors are given by g, = 5.58 and
g, = —3.82, respectively.
The proton and neutron rest energies can be obtained
from (28) at zero momentum
o ehH
EV = m,c* + E(gp/Z - l)m—pc,
3D
£ = mye+ g,/ M,
2 my,
It would take a magnetic-field strength larger than
10%° G to have the second terms in the right-hand side of
Eq. (31) comparable to the first ones. For the field range
considered in this paper (H = 10" G) it is then consistent
to neglect the field correction in the iron energy density,
thus making €;(Fe>®) = €,(Fe>®) = 930 MeV.
Then, finding g as a function of H in (27) and sub-
stituting it back in (23), we can numerically solve

B(H) = —Qyicr(p, H) — H?/2, (32)

to determine the stability window in the plane H versus B
for the MCFL matter to be absolutely stable (Fig. 5). The
inner region, which corresponds to smaller bag constants
for each given H, is the absolutely stable region.

Note that, contrary to Farhi and Jaffe [42], we did not
impose a minimum value for the bag constant because we
have no clear indication from experiments of the possible
behavior of this parameter when a magnetic field is applied
to a system.

As shown in Fig. 6, the value of the chemical potential
mg found from the stability condition (27) grows with
increasing H, in good consistency with our assumption
of zero quark masses and deconfined quark matter. In
summary, our results indicate that a condition for the
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5 " T

0 5x10"® 1x10"

ﬁ (Gauss)

FIG. 6. Baryonic density at zero pressure conditions for MCFL
matter as a function of the magnetic field H considering the field
dependence of the bag constant given in Eq. (32).

MCFL matter to be absolutely stable is to have a field-
dependent bag constant.

V. STELLAR MODELS

The most immediate application of the EoS for the
MCFL phase is to construct stellar models for compact
stars composed of quark matter. There are two distinct
possibilities: new magnetized ‘“‘strange stars,” if quark
matter in the MCFL phase is absolute stable (the possibility
explored in the last section) and hybrid stars, if the MCFL
matter is metastable (stars would contain a MCFL core
surrounded by normal matter).

As long as the magnetic-field strength is not much larger
than the threshold value ~10'® G, at which the pressure
anisotropy starts to become noticeable, both cases can be
investigated by integrating the relativistic equations for
stellar structure, that is, the Tolman-Oppenheimer-
Volkoff (TOV) and mass continuity equations,

dm

2 =47, 33
dr (33)

P A7 P 2m\ -1
_sz—e—T<1+—)(1+ il )(1——’”) . (34)
dr r € m r

written in natural units, ¢ = G = 1. Given that this set of
differential equations applies only to isotropic EoS, while
our results for the pressures indicate a rapidly growing
anisotropy of the EoS beyond the threshold field (Fig. 1),
our approach is probing the limits of the validity of spheri-
cal models based on isotropic EoS.

A. Magnetic CFL strange stars

Based on the analogy with Refs. [1,4], we construct
stellar models using the EoS with parameters inside the
stability window, that is, for a self-bound matter case.

PHYSICAL REVIEW D 83, 043009 (2011)

In Fig. 7 we present the mass-radius relation for two values
of the magnetic field, when the anisotropy is still small (a
few parts per thousand, see Fig. 3) and when the anisotropy
cannot be neglected (a few percent, Fig. 3). For each of
these values of the field we have calculated two curves, one
considering the pressure given by the parallel (dotted line)
and the other given by the perpendicular one (dashed line),
and compared them with the zero-field mass-radius rela-
tion in Fig. 7.

Even though the calculations in Fig. 7 should be con-
sidered as just an example, we see that the perpendicular
pressure provides a “‘harder EOS™ while the parallel is
“softer.” Therefore, the former choice renders a higher
maximum mass.

2.5 T T T T T T T T T T T T

2.0

1.5 1

M Mg

1.0 4

0.5 4

0.0

0 2 4 6 8 10 12 14

2.5 T T T T T T T T T T T T

2.0

1.5 1

M (Mp)

1.0

0.5

0.0

14

R (km)

FIG. 7. Mass-radius relation for magnetized strange CFL stars
and bag constant B = 58 MeV/fm?. The solid line indicates the
M-R relation for zero magnetic field, whereas the dashed and
dotted lines represent the M-R relation calculated with the
parallel and perpendicular pressures, respectively, for H =
1.7 X 10" G (upper panel) and A = 3 X 10'® G (lower panel).
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From those figures we conclude that one must restrict
oneself to weak magnetic fields, when the deviation from
spherical symmetry is very small (of order 0.001%), in
order to justify the use of Eqgs. (33) and (34). If the
magnetic field in these compact stars is too high, say, H =
10" G (at w = 500 MeV), the spherically symmetric
TOV equations cannot be employed because the deviations
become important and lead to significant differences with
respect to realistic axisymmetric models, which are yet to
be constructed taking into account the pressure asymmetry.
(This is why the M-R sequences in the lower panel of Fig. 7
should not be trusted, and we stress again that they should
be considered just as an example.) We shall address this
issue elsewhere.

Figure 8 compares our result for zero magnetic field EoS
with the one presented in Ref. [8]. It shows that the curves
calculated using NJL + B and the bag model with small A
are quite similar. Nonetheless, it is important to stress that
the calculations of the present work feature a self-
consistent gap parameter (not a constant), which varies
according to the particle density.

B. Hybrid stars

The construction of models for the so-called hybrid stars
faces the same problem as before when the magnetic-field-
induced pressure anisotropy is considered. Working out-
side the stability windows renders EoS’s which are valid
only above a certain critical density, not all the way down
to zero, since MCFL matter would be favored at high
density only. Thus, the stellar models belong to the so-
called hybrid type, in which a core of the high-density
matter is present. Again, the value of the magnetic field
induces an increasingly large anisotropy, which in turn

2.5 T T T T T T T T T T T T

2.0 1

1.5 +

M (M)

1.0 +

0.5

0.0

0 14

R (km)

FIG. 8. Mass-radius relation for the EoS given in [8] for CFL
matter without magnetic field for two different values of the gap
parameter, A = 0 (dashed line) and A = 100 MeV (dotted line),
and the results obtained here setting H = 0 (solid line).
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1.6 . . - ;

B=120 MeV/fin®

1.4 -

1.2 4

1.0 +

M (M)

0.8 -~

0.6

0.4 . T

R (km)

FIG. 9. Mass-radius relation for hybrid stars. The inner core is
composed of CFL matter with the corresponding magnetic field.
From the transition density to the surface of the star, we have
employed the zero-temperature Bethe-Johnson EoS. The stellar
sequences correspond to zero (solid line), 2 X 107 G (dashed
line), and 10'® G (dotted line) fields, respectively.

forces the construction of axisymmetric (not spherical)
stellar models. In this way, it can be modeled within the
isotropic TOV formalism only for relative pressure differ-
ences in the ballpark of ~1073.

Figure 9 displays a hybrid sequence obtained by employ-
ing the well-known Bethe-Johnson EoS for nuclear matter
and using the Gibbs criteria for determining the value of the
transition pressure between exotic and nuclear matter.
These curves were calculated using the perpendicular pres-
sure (for magnetized stars) as an example. As expected, the
appearance of an MCFL core softens the EoS, rendering
lower maximum masses than for “pure” hadronic models.
The main feature of considering the existence of a magnetic
field for hybrid MCFL stars is to switch the point where the
hybrid sequences begin, i. e., where the stars start exhibiting
a CFL core. Since the difference in the EoS for low field
MCFL matter and CFL matter is of just a few percent (see
Fig. 3), and because the star radius depends mainly on the
nuclear EoS, observational data of maximum mass and
minimum radii would not be able to distinguish the exis-
tence of low magnetic fields in these hybrid stars. Again, for
high magnetic fields (H = 10'® G) the results are still to be
analyzed, but differences in the maximum allowed mass
may arise, and therefore the results of spherical models
cannot be trusted. This is potentially important for the
identification of actual compact stars’ masses and radii
[44] (see the next section).

VI. CONCLUSIONS

We have shown that a magnetic field in CFL matter
(termed MCFL phase here) does not, generally speaking,
favor the stability scenario, and even forces a new
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condition (a field-dependent vacuum ‘“‘bag constant’)
which is perhaps physically reasonable but cannot be
verified as yet. However, absolute stability is not excluded
provided the vacuum is properly modified by the magnetic
field. On the other hand, in the absence of this dependence,
we conclude that there is no room for absolute stability of
CFL matter under the influence of a magnetic field within
the model. If this is the case, there could be no magnetized
“strange stars,” but only hybrid stars. Even before calcu-
lating stellar models in the anisotropic pressure regime, we
can state that the found stability conditions can impose a
maximum magnetic field that could be supported by self-
bound MCFL strange stars (that is, stars made of this
magnetized self-bound paired matter), a feature which, in
principle, could be compared with observations.

In the self-consistent approach used here for the gap
parameter, we do not find much difference in the stability
region at zero field as compared to the case in which the
gap parameter is parameterized (and extended to quite high
values) [8]. The EoS is still largely linear and substantially
modified only at sufficiently high fields where the magne-
tized medium becomes highly anisotropic. It is not surpris-
ing then that in the quasi-isotropic regime (H =< 10'® G)
the stellar sequences are not very different from the zero-
field case (see Fig. 7).

We should notice that the anisotropic pressure regime is
attainable at field values that are allowed in the core of
compact stellar objects [18]. From the heuristic arguments
presented in the Introduction, and then analytically and
numerically corroborated in the paper, field effects become
relevant in the EoS of MCFL matter for field strength
H = 10'"® G. Nevertheless, for that field range the system
asymmetry, expressed in terms of the pressure splitting
(Ap/pcr) ~ (H?/ u?A?%) ~ O(1), is significant, then in-
validating the use of the TOV formalism. Thus, to work in
the anisotropic regime, where the most interesting field
effects should occur, an entirely different stellar structure
formalism in agreement with the system cylindrical sym-
metry would be needed, since the spherical symmetry is
broken from the very beginning by the presence of the
strong magnetic field. We underline that the conventional
TOV equations were obtained by solving the Einstein equa-
tions for a general time-invariant, spherically symmetric
metric. That is, they were derived assuming a spherically
symmetric and isotropic medium in static gravitational
equilibrium. Hence, it becomes imperative to generalize
the TOV equations to an anisotropic medium employing a
metric with cylindrical symmetry [45] that can accommo-
date the splitting of the longitudinal and transverse pres-
sures appearing at strong enough magnetic fields. We
expect to address this issue in a future publication.

It is important to stress that recent works [44,46] have
exploited the increasing availability of high-quality data to
pin down masses and radii of selected stellar systems. Even
though the results and analysis are far from being defini-
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tive, there is evidence favoring a relatively soft EoS to
model 4U 1608-52, 4U 1820-30, and EXO 1745-248 [46],
at least in the region immediately above the saturation
density. Comparing the prediction of our hybrid EoS model
shown in Fig. 9 with the 1- and 2-o confidence contours for
the masses and radii of the three neutron stars in these
binary systems (shown in Fig. 1 of Ref. [46]), one can
easily see that for fields within the isotropic regime our
EoS is compatible with these observations.

On the other hand, recent measurements [47] of the
Shapiro delay in the radio pulsar PSRJ1614-2230 have
yielded a mass of 1.97 = 0.04M,. Even though such a
large mass calls for a stiffer EoS, it does not rule out color
superconductivity in the star’s core or a self-bound model
like the curves in Fig. 7. In fact, by using the phenomeno-
logical EoS for quark matter proposed in Ref. [48], the
authors of Ref. [49] showed that a large value of the star
mass is only compatible with strongly interacting quarks
paired in a color superconducting state. It is an interesting
open question to explore, within the self-consistent ap-
proach used in our calculations, whether there is a physi-
cally viable region of the parameter space of the MCFL
phase that can produce EoS curves compatible with the
PSRJ1614-2230 mass observation.

Even if the measured systems do not possess a notice-
able magnetic field, future determinations of SGR-AXN
radii and masses are foreseeable. For those systems, an
additional complication would arise with the consideration
of the magnetic field, as discussed above. The particular
case of MCFL elaborated here suggests that a full evalu-
ation that takes into account the pressure anisotropy may
be necessary to address masses and radii in the presence of
very strong magnetic fields.
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APPENDIX: DYNAMICAL BAG CONSTANT IN
THE CHIRAL LIMIT AT H # 0

Let us investigate the effect of an external magnetic field
on the bag pressure found in Ref. [36]. In the dynamical
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approach of Ref. [36] the bag pressure has its origin in the
spontaneous breaking of chiral symmetry. For our high-
density system the vacuum pressure contribution found in
[36] reduces to By = B, —, —, —o taken in the chiral limit
m;y = 0 with

3
B= 3 [; /()A Prdpfm? + p* = mly + p?)

i=u,d,s

- 2G(qiqi>] + AK(u)(dd)(5s). (A1)
Here m;, and m; are the current and dynamical quark
masses, respectively, G and K are quark self-interacting
constants with dimensions energy ~2 and energy >, respec-
tively, and (g,q;) are the quark condensates given as func-
tions of the corresponding quark dynamical masses by

_ 3 A m;
(7i9:) = ——2[ pdp
a

PrFi ,ml2 + p2

with pp; = (72n,)!/? being the Fermi momenta depending
on the densities n; = (q?q,»).

A magnetic field modifies the expressions for the bag B
and the chiral condensates in the following way:

(A2)

A%/q,H
By = i_uZ’d‘s[sff | /_qo o [ apsof + 77
oy + 77) = 26(Ga | + 4K G @y (55)
(A3)
and
(iqidn = — 32617;_12{ [A/Z%H] dn) | dp; L (A4
n=0 Pri m>+ p
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where we assumed a magnetic field along the x5 direction,
and used the notation p*> = p3 + 2¢,nH for the three-
momentum, with n labeling the discrete Landau levels,
n=0,12...; dln)=2~— 8,y for the spin degeneracy
of the n Landau level; ¢; for the corresponding quarks’
electric charges; and [...] for the integer part of the
argument.
Comparing the leading term of (A1),

3AZ2 )
[m (m? — mf) — 2G<C_]i%'>:|

b= 3

i=ud,s

+ 4K {iau)dd){ss), (AS)

with that of (A3),

3gHT A . _
bem 3 [ ot -0 20000

+ 4K i) {dd)y(3s) g, (A6)

and taking into account that g;H| [(}A—;] ~ A2, we have that

the difference between B and By is basically due to the
difference between the dynamical masses and condensates
at zero and nonzero fields. That a magnetic field modifies
the dynamical mass is a well-known result in the literature
[50]. However, as demonstrated in the NJL. model for quark
matter [51], and in the QCD chiral effective theory [52],
the field-induced change in the dynamical masses and the
chiral condensates is negligibly small for any field smaller
than 10%° G. This in turns translates into a negligible
modification of the vacuum pressure B, by magnetic fields
below 10%° G. Hence, for the range of fields of interest for
the astrophysics of compact stars, no significant field-
induced variation of the vacuum pressure found in the
framework of this approach will occur.
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