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Self-gravitating relativistic disks around black holes can form as transient structures in a number of

astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as

the core collapse of massive stars. We explore the stability of such disks against runaway and

nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general rela-

tivity using the THOR code. We model the disk matter using the ideal fluid approximation with a �-law

equation of state with � ¼ 4=3. We explore three disk models around nonrotating black holes with disk-

to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our

initial models contain an initial axisymmetric perturbation which induces radial disk oscillations.

Despite these oscillations, our models do not develop the runaway instability during the first several

orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical

time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called

intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number

m ¼ 1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the

growth rate of the m ¼ 1 mode in some cases. Overall, our simulations show that the properties of the

unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian

theory.
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I. INTRODUCTION

Thick relativistic accretion disks and tori around black
holes (BHs) can form as transient structures in several
astrophysical scenarios, including core collapse of massive
stars [1–12] and the merger of neutron star (NS) [13–27]
and NS-BH binaries [19,28–37]. Many models of gamma-
ray bursts (GRBs) rely on the existence of massive dense
accretion disks around BHs [1,3,38–40]. The observed
�1051 erg energy powering GRBs [39,41,42] is believed
to be coming from either the accretion disk and/or rotation
of the central object. If this energy comes from the disk,1

then—assuming that the efficiency of converting disk en-
ergy into that of a GRB can at most be �10% as in many
other astrophysical scenarios [46]—the accretion disk
should have a mass of* 0:01M�. Recent numerical simu-
lations have demonstrated that the mass of the disk result-
ing from binary NS-NS (BH-NS) mergers, which are
thought to be candidates for the central engine of short
GRBs (see, e.g., [40,47], but also [48]), can be in the range
of �0:01–0:2M� [13,19,20,33]. Because of their larger
initial mass, in core collapse of massive stars, which are

believed to be progenitors of long GRBs2 [1,2,6], signifi-
cantly more mass is available for forming disks [3,50].
The neutrino-annihilation mechanism for triggering

GRBs [40,51,52], in which neutrinos emitted by the disk
annihilate predominantly at the rotation axis to produce
eþ � e� pairs and deposit energy behind the jet, rely on
super-Eddington accretion rates, which can take place only
in high-density (�� 1012 g cm�3) disks. Moreover, the
efficiency of neutrino annihilation at the rotation axis and
the requirement of a small baryon load of the relativistic
ejecta [39,41,53] was shown to strongly favor a toroidal
structure for accreting matter [54,55].
The duration of prompt �-ray emission is >2 s (& 2 s)

for long (short) GRBs, while that of the later-time
non-�-ray emission can be as long as �105 s (e.g., [42]).
Recent observations of GRB afterglows have revealed a
variety of late-time emission processes, including x-ray
plateaus, flares, and chromatic breaks [42], some of which
can persist up to �105 s following the initial GRB prompt
emission (see, e.g., [42] for a recent review). The amount
of energy released in the late-time emission phase can be
comparable to or even larger than that produced during the

1In alternative models, the GRB is powered by the rotation
energy of the central object. If the latter is a BH, then the rotation
can be converted through the Blandford-Znajek mechanism [43].
If the central object is a NS, then its energy can be transformed
through magnetic fields [44,45].

2Note that although all of the long GRBs are believed to be
produced by core collapse of massive stars, not all of the latter
can produce long GRBs: In order to produce a GRB, a precol-
lapse star is probably required to be rapidly rotating [1,12,49].
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prompt emission phase. Both the prompt and the late-time
emissions can be explained as the result of the activity of
the central engine (see, e.g., [42,56]), although alternatives
models exist (see, e.g., [57–59]). If the emission energy
comes from the disk, such long durations of observed GRB
emission either require the disks to accrete in a quasistable
manner for a sufficiently long period of time or require the
engine to be restarted in some way.

Early studies of the stability of accretion disks have
revealed that they can be subject to several types of axi-
symmetric and/or nonaxisymmetric instabilities in a num-
ber of circumstances [60–66]. Instabilities can lead to
highly variable and unstable accretion rates, posing a seri-
ous challenge to the viability of ‘‘accretion-powered’’
GRB models. The so-called dynamical runaway instability
of thick accretion disks around BHs was first discovered by
Abramowicz, Calvani, and Nobili [60]. This instability is
similar to the dynamical instability in close binary systems,
when the more massive companion overflows its Roche
lobe. In such a case, the radius of the Roche lobe shrinks
faster than the radius of the companion, leading to a
catastrophic disruption of the latter. In diskþ BH systems,
a toroidal surface analogous to the Roche lobe can be
found. A meridional cut of this surface has a cusp located
at the L1 Lagrange point. If the disk is overflowing this
toroidal ‘‘Roche lobe’’, then the mass transfer through the
cusp will advance the cusp outwards inside the disk. This
can result in a catastrophic growth of the mass transfer and
disruption of the disk in just a few dynamical time scales.

Abramowicz, Calvani, and Nobili [60] studied the prop-
erties of mass transfer using many simplifying assumptions:
a pseudo-Newtonian potential for BH gravity [67], constant
specific angular momentum of the disk, and approximate
treatment of the disk self-gravity. They found that the run-
away instability occurs for a large range of parameters, such
as the disk radius and the disk-to-BH mass ratio MD=MBH.
Subsequent and somewhat more refined studies found that
the rotation of the BH has a stabilizing effect [68,69], and a
nonconstant radial profile angular momentum was found to
strongly disfavor the instability [69–72]. On the other hand,
studies using a Newtonian pseudopotential for the BH
[73,74] and relativistic calculations with a fixed spacetime
background [65,75] found indications of the self-gravity of
the disk to favor the instability. However, Montero, Font, and
Shibata [76] recently performed the first self-consistent and
fully general-relativistic simulations of thick accretion disks
around BHs in axisymmetry for a few dynamical time
scales. They found no signatures of a runaway instability
during the simulated time, perhaps implying that the self-
gravity of the disk does not play a critical role in favoring the
instability, at least during the first few dynamical time scales.

The problem of the existence and development of
nonaxisymmetric instabilities has a long history. For thin
Keplerian self-gravitating disks it was found that the Toomre
parameter [77–79] can be used to determine stability against

both local clumping or fragmentation, and formation of
global nonaxisymmetric modes. For thick pressure-
supported disks, Papaloizou and Pringle discovered [61]
the existence of a global hydrodynamical instability that
develops on a dynamical time scale in disks with negligible
self-gravity and constant specific angular momentum. A
follow-up publication [62] found this instability also in the
disks with power law distribution of specific angular mo-

mentum ‘ðrÞ ¼ ‘0ðr=rcÞ2�q for all q >
ffiffiffi
3

p
. Kojima [63,80]

found the Papaloizou-Pringle (PP) instability in equilibrium
tori on a fixed Schwarzschild background [81] using a
linearized perturbative approach.
Subsequent works clarified the nature of the PP insta-

bility [82–85], established how it redistributes specific
angular momentum [86], and discovered that accretion
has a stabilizing effect on the disk [87,88]. In particular,
Goldreich, Goodman, and Narayan [82] showed that the PP
modes are formed by two boundary wavelike perturbations
with energy and angular momentum of opposite signs that
are coupled across a forbidden region near the mode coro-
tation radius. For wide disks around BHs, the accretion
suppresses the development of the inner boundary wave
and therefore has a stabilizing effect on PP modes [87,88].
For slender disks, the development of PP modes is mostly
unaffected by accretion [88]. The PP instability itself am-
plifies accretion by exerting torques on the disk and redis-
tributing specific angular momentum [86].
When the self-gravity of the disk has been taken into

account, it was found [89–91] that two new types of
nonaxisymmetric instabilities appear, while the PP instabil-
ity disappears for most of the models except slender ones
with weak self-gravity. The first type of unstable modes
(J modes) appears in the strong self-gravity regime, and it is
an analog of the classical Jeans instability. The second type
of unstable modes was found in the strong and medium self-
gravity regimes [89]. The modes of this type are referred to
as intermediate modes (I modes) and represent elliptic
deformations of the disk (or triangular, square, etc., defor-
mations for higher azimuthal numbers—see, e.g., [91]).
Yet another type of instability, the so-called ‘‘eccentric

instability,’’ was discovered in [92] for thin nearly Keplerian
self-gravitating disks when the central mass was allowed to
move. An elaborate mechanism called ‘‘stimulation by the
long-range interaction in Newtonian gravity amplification’’
[93] was proposed to describe this instability. Subsequent
investigation [94] of this instability in thin disks suggested a
different mechanism and predicted that the system is dy-
namically unstable only when the mass of the disk exceeds
the mass of the central object.
Finally, Woodward, Tohline, and Hachisu [64] presented

an extensive parameter study of thick self-gravitating disks
in Newtonian gravity to determine the types, growth rates,
and pattern speeds of nonaxisymmetric modes. The central
mass in their simulations was allowed to move, and they
used 3D time evolutions of the disk models with a wide
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range of parameters, including disk-to-central object mass
ratios MD=Mc ¼ 0, 1=5, 1, and 1.

Several recent publications address accretion disks and
instabilities in these disks in the context of GRB central
engines. In [20], Rezzolla et al. studied the properties of
accretion disks resulting from binary NS mergers. They
obtained thin accretion disks with masses �0:01–0:2M�
and no evidence of growing nonaxisymmetric modes
or runaway instability. In [95], Taylor, Miller, and
Podsiadlowski used 3D smoothed-particle hydrodynamics
simulations with detailed microphysics and neutrino trans-
port to follow a collapse of an iron core up to the formation
of a thin massive accretion disk and development of global
nonaxisymmetric modes. They found that torques created
by the nonaxisymmetric modes provide the main mecha-
nism for angular momentum transport, leading to high
accretion rates of �0:1–1M�=s, which may create favor-
able conditions for powering GRBs.

The stability of disks to runaway and nonaxisymmetric
instabilities is a three-dimensional problem that has to be
addressed in the framework of full general relativity (GR).
One issue of importance is to understand if the runaway
instability is affected by nonaxisymmetric instabilities, and
vice versa. Despite significant theoretical and computa-
tional effort, previous studies of the runaway instability
do not give a definite answer to this question. To our
knowledge, only the work by Rezzolla et al. [20] explored
the stability of the disks in 3D and full GR (for the disks
that form in their binary NS merger simulations). However,
it is important to create a comprehensive overall picture of
the stability of accretion disks for a richer variety of disk
models, which would require investigating a wider range of
parameters. In our work, we study in detail the stability of
slender and moderately slender disks with constant distri-
bution of specific angular momentum, which are expected
to be more unstable to nonaxisymmetric instabilities
[87,88] compared to models of Rezzolla et al. [20], and
potentially unstable to the runaway instability [70,71]. Our
study is based on three-dimensional hydrodynamics simu-
lations in full GR.

We model our disks using the ideal fluid approximation
(i.e. without viscosity) with a �-law equation of state (EOS)
and � ¼ 4=3. We do not include additional physics such as
magnetic fields or neutrino and radiation transport due to
the complexity and computational cost of the resulting
problem. Nevertheless, the adopted approach will allow
us to identify GR effects which can operate in a more
complex setting that include more realistic microphysics,
neutrino and radiation transport, and magnetic fields. Also,
we limit ourselves to the case of nonrotating BHs, while the
case of rotating BHs will be studied in future publications.

Another aim of this paper is to estimate the detectability
of the gravitational waves (GWs) by the accretion disk
dynamics. The radial and/or nonaxisymmetric oscillations
of accretion disks can be a source of strong GWs.

If nonaxisymmetric deformations persist for a long enough
time, then the emitted GWs can be detectable by current
and future GW detectors [96], provided the source is not
too far away. Further work on the stability properties of the
accretion disk could shed more light on the number of
cycles a nonaxisymmetric deformation can persist and
thus on the prospects of detecting GWs from such systems.
This paper is organized as follows: Section II describes

the formulations and numerical methods used in this paper,
including multiblock grids (Sec. II A) and the formulations
used to evolve the general-relativistic (Sec. II C) and hy-
drodynamic (Sec. II B) equations. Section III describes the
grid setup, initial data construction procedure, and the
analysis techniques for the nonaxisymmetric instabilities.
Sections IV and V present the results of the time evolution
of self-gravitating disks and the analysis of nonaxisym-
metric instabilities.
Throughout the paper we use the centimeter-gram-

second (CGS) system and geometrized units G ¼ c ¼ 1.

II. NUMERICAL METHODS

The numerical time-evolution scheme used in our study
can be split into two main parts: the spacetime evolution
and the fluid dynamics equations. These two parts are
evolved in a coupled manner. The numerical code that
we use has been developed within the CACTUS computa-
tional infrastructure [97,98] and uses the CARPET mesh
refinement and multiblock driver [99,100]. A separate
module based on CARPET provides a range of multiblock
systems to represent a variety of computational domains
for 3D evolution codes [101]. The module for evolving the
GR hydrodynamics equations uses the THOR multiblock
code [102], which has been coupled to the multiblock-
based module QUILT for evolving the spacetime [103].
The latter implements the generalized harmonic formula-
tion of the Einstein equations in first-order form [104].
Below, we give a brief description of the methods imple-
mented in each module.

A. Multiblock approach

For mesh generation and parallelization purposes, we
employ the multiblock infrastructure developed by [101].
The multiblock approach is widely used in astrophysical
and numerical relativity simulations (see [36,105–123],
and references therein).
Figure 1 shows meridional cuts (cuts in the xz plane) of

the block systems that we use. The first two block systems
in Fig. 1 are the seven-block (also known as a ‘‘cubed
sphere’’ [124]) and the 13-block systems. They both have a
spherical outer boundary and no coordinate singularities.
The 13-block system additionally has spherical grid coor-
dinate surfaces in the outer layer of blocks, which is very
convenient for computing spherical harmonics and extract-
ing gravitational waves. The 13-block system is well
adapted for simulating processes that involve a small
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source of waves, surrounded by an extended spherical
wave propagation region. The central cubical block can
have a high resolution and can be used to model accurately
the dynamics of the source and the intermediate layer can
represent a near zone, while the outer layer of blocks model
the radiation zone, which can carry an outgoing radiation
using, e.g., constant angular and radial resolutions. These
two systems are used in the appendix for test evolutions of
rotating and nonrotating polytropic stars.

The remaining block systems in Figs. 1(c) and 1(d) are
six-block systems, and these systems are more suitable for
modeling configurations with a central black hole. The
block system displayed in Fig. 1(d) is similar to the block
systems that we use for simulating accretion disks around
black holes (see Sec. III C). These two block systems
contain an empty spherical region, which is used for ex-
cising the interior of the BH.

The multiblock approach has a number of additional
advantages, including a smooth excision boundary
[115,125,126], a smooth spherical outer boundary suitable
for radiating boundary conditions, a spherical wave propa-
gation zone, and the absence of coordinate singularities
such as those associated with spherical or cylindrical co-
ordinates. Also, multiblock systems such as displayed in
Fig. 1 allow one at low cost to extend the computational
domain far outwards in order to, e.g., causally disconnect
the system dynamics from the outer boundary and to allow
more accurate extraction of gravitational waves [103,127].

B. Hydrodynamics evolution

The evolution equations of a relativistic fluid are derived
from the covariant equations of conservation of rest mass
rað�uaÞ ¼ 0 and energy momentum rbT

ab ¼ 0, where
Tab has the following form for an ideal fluid [102,128]:

Tab ¼ ð�þ uþ PÞuaub þ Pgab;

where P is the fluid pressure, � is the rest-mass density, u is
the internal energy density,3 ua is the fluid’s four-velocity,
and gab is the spacetime metric in contravariant form. The
quantities f�; ui; ug form a set of primitive variables that
uniquely determine the state of a single-component rela-
tivistic fluid at every point in space.
Our evolution equations read

@tð ffiffiffiffiffiffiffi�g
p

�utÞ þ @ið ffiffiffiffiffiffiffi�g
p

�uiÞ ¼ 0;

@tð ffiffiffiffiffiffiffi�g
p

Tt
aÞ þ @ið ffiffiffiffiffiffiffi�g

p
Ti

aÞ ¼ ffiffiffiffiffiffiffi�g
p

Tc
d�

d
ac;

where t is the time coordinate, g � detðgabÞ is the
determinant of the spacetime metric, and �d

ac are the
Christoffel symbols associated with this metric. After in-
troducing a set of conserved variables fD � ffiffiffiffiffiffiffi�g

p
�ut;

Qa � ffiffiffiffiffiffiffi�g
p

Tt
ag, the equations can be cast into a flux-

conservative form (as in [131,132]; see details specific to
our particular scheme in [102]):

@tDþ @iD
i ¼ 0; @tQa þ @iQ

i
a ¼ Sa;

where Di and Qi
a are the fluxes of the conserved variables

D and Qa, respectively, while Sa are the source terms
for Qa.
These equations are solved on each block using a finite

volume cell-centered scheme in the local coordinate basis
of that block. The reconstruction of the primitive variables
on the cell interfaces is performed using the piecewise-
parabolic monotonous method [133,134], while the fluxes
through the interfaces are calculated using a Harten-Lax-
van Leer Riemann solver [135]. In order to compute fluxes,
source terms, and the stress-energy tensor Tab, the con-
servative variables need to be converted into primitive ones
at every time step. This is done using a Newton-Rhapson
iterative 2DW solver [136] with the nonisentropic �-law
EOS. If at a particular cell on the grid the procedure of
primitive variables recovery fails to produce physically
meaningful values (which can happen for a number of
reasons; see, e.g., [136]), we use a 1DP solver with an
isentropic polytropic EOS. The vacuum region outside the
disk is approximated by a low-density artificial atmo-
sphere, whose density is chosen to be 10�6–10�7 of the
initial maximum density in the system.
The boundary conditions for the hydrodynamics varia-

bles are imposed on the interblock boundaries using inter-
polation from neighboring blocks. The overlap regions

(b)(a)

(d)(c)

FIG. 1 (color online). Cross sections of the patch systems used
in this work in the xz plane: (a) seven-block system; (b) thirteen-
block system; (c) six-block system with straight coordinate lines;
(d) six-block system with distorted radial coordinate lines,
described in Sec. III C below.

3It is also common to define a specific internal energy " ¼
u=� [129,130].
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where interpolation is performed are created by adding
extra layers of grid points on each block face. At the outer
boundary and the inner excision boundary, we impose
outflow boundary conditions. Further details on this
numerical method of combining multiple blocks can be
found in [102].

C. Spacetime evolution

To evolve the spacetime metric gab we use a generalized
harmonic formulation of the Einstein equations in the first-
order representation developed by Lindblom et al. [104]. In
this formulation, the coordinate conditions are specified
using a set of four gauge source functions Ha, which need
to be prescribed a priori. In our simulations, we have
chosen the so-called ‘‘stationary gauge’’ [104,137], in
which the gauge source functions stay frozen at their initial
values,Haðt; xiÞ ¼ Haðt0; xiÞ. Such a choice of the gauge is
convenient for quasistationary spacetimes, such as per-
turbed BHs [103] or accretion disks around BHs.

The first-order representation that we use is linearly
degenerate, symmetric hyperbolic [138–140], and constraint
damping. Linear degeneracy guarantees that the system will
not develop gauge shocks during the evolution [141].
Symmetric hyperbolicity with boundary conditions imposed
on incoming characteristic fields is the necessary condition
for well-posedness of initial boundary value problems (see,
e.g., Chap. 6 of Gustafsson, Kreiss, and Oliger [142]).

Being constraint damping, which is one of the most
important advantages of the chosen formulation, means
that the constraints on the variables are included into the
evolution equations in such a way that they are exponen-
tially damped during evolution. Such a property not only
reduces the error in the solution but also eliminates a
variety of numerical instabilities associated with un-
bounded growth of the constraints.

The spacetime metric evolution equations are discre-
tized using finite differences on multiple grid blocks that
cover the computational domain [101,102]. This means
that the spacetime grid blocks are only subsets of the
hydrodynamics grid blocks; the overlap regions where
the hydrodynamics variables are interpolated are absent
in the spacetime grid blocks. The advantages of using
multiple blocks were outlined in Sec. II A above. The grids
on any two neighboring blocks in the system are designed
to share a 2D interface grid, where so-called penalty
boundary conditions are imposed [143]. For the spatial
numerical differentiation, we employ high-order conver-
gent finite-differencing operators that satisfy the summa-
tion by parts property [144]. The summation by parts
property together with penalty boundary conditions guar-
antees strict linear numerical stability [143]. All simula-
tions of self-gravitating disks with dynamical treatment of
relativistic gravity in the paper were performed with the
finite-differencing operators of eighth-order convergence
in the bulk of the grid and fourth-order convergence at the

boundaries. Time integration is performed with a third-
order accurate Runge-Kutta method that satisfies a total
variation diminishing property [145].

D. Code tests

Numerical methods for solving the general-relativistic
hydrodynamics equations and the spacetime equations are
inherently complex, and codes need to be thoroughly tested
before they can be successfully applied to physical prob-
lems (see, e.g., [146,147]). The hydrodynamics code THOR

was tested for fixed spacetimes by Zink, Schnetter, and
Tiglio in [102], where it was demonstrated that the code
can handle situations encountered in many astrophysical
scenarios, including relativistic shocks, rotating poly-
tropes, and equilibrium tori around BHs [81]. The space-
time evolution code QUILT was tested in [103,148].
We present results of our tests of the coupled hydro-

dynamics and spacetime evolution codes in the appendix,
Secs. 2 and 3. In particular, in Sec. 2 we report stable
convergent evolutions of a rapidly rotating polytropic star,
and in Sec. 3, we demonstrate that our code faithfully
reproduces fundamental frequencies of a nonrotating poly-
tropic star. Additionally, recently Zink et al. [149] have
used the coupled Thor þ Quilt code to measure the frequen-
cies of f modes and to study their neutral points in the
context of the Chandrasekhar-Friedman-Schutz instability.

E. Constraint damping

The constraint damping scheme for the spacetime evo-
lution mentioned above depends on two freely specifiable
parameters: � and �2. These parameters can be freely
chosen as a function of space and time; i.e. the system of
equations does not directly depend on their spatial or
temporal derivatives. Here we describe how these parame-
ters are specified in our simulations.
In the generalized harmonic formulation, the set u� ¼

fgab;�iab;�abg of dynamical fields consists of the
metric gab and linear combinations of its derivatives
�iab ¼ @igab, �ab ¼ �nc@cgab, where nc is a normal to
a t ¼ const hypersurface. The evolution equations for the
fields can be written in the following form:

@tgab ¼ Gabðxa; u�Þ; (1)

@t�iab ¼ F iabðxa; u�Þ � �2Ciab; (2)

@t�ab ¼ Pabðxa; u�Þ � �Cab � �2�
iCiab; (3)

where Cab and Ciab are the constraints, �i is the shift
vector, and Gab, F iab, and Pab are right-hand sides of
the formulation without the constraint damping terms. In
the continuum limit, the constraints are zero, and the
system (3) reduces to the original Einstein equations. At
the discrete level, the constraints can be nonzero, and
the constraint damping terms provide a nonvanishing
contribution to the right-hand sides of the system (3).
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Since constraint damping terms should act only as small
corrections to the evolution system, their contribution
should not exceed those of functions Gab, F iab, and Pab.
Otherwise, the evolution of the system will be dominated
by the numerical constraint violations.

We notice in our simulations that the functionsF iab and
Pab on the right-hand sides of (1) fall off as 1=r� with
�� 4 beyond r > rdisk, where rdisk is the approximate
outer radius of the disk. At the same time, the constraint
violations Cab and Ciab fall off as 1=r� with �� 1. This
means that, if we use constant values for �2 and �, the
constraint damping terms will dominate the dynamics of
the system for sufficiently large r. In order to avoid this
situation, the functions � and �2 must fall off with the
radius as �1=r3.

We find that the following radial profiles of � and �2

for our simulations lead to satisfactory results:

�ðrÞ ¼ ��
�
1� 2

�

�
r�

1þ r2�
þ arctanr�

��
; (4)

�2ðrÞ ¼ ��
�
1� 2

�

�
r�

1þ r2�
þ arctanr�

��
; (5)

where r� ¼ ðr� r0Þ=� and ��, ��, r0, and � are (positive)
constants. This radial profile approaches a constant value
of��� (or���) for r < r0 and falls off as�1=r3 for r �
r0. The parameter � determines the extent of the smooth
transition region between these two regimes. We use �� ¼
�� ¼ 4, r0 ¼ 12, and � ¼ 8 in our simulations. Such
profiles of the constraint damping coefficients allows im-
posing strong constraint damping near the BH and the disk
without introducing spurious dynamics far away from the
origin.

III. INITIAL SETUP

We set up initial equilibrium disk configurations by
solving Einstein constraints using a version of the RNS

solver [150] adapted to the problem of equilibrium tori.
The method of solution is similar to the one used in [151].
The spacetime is assumed to be stationary, axisymmetric,
asymptotically flat, and symmetric with respect to reflec-
tions in the equatorial plane. The metric is a general
axisymmetric metric in quasi-isotropic coordinates:

ds2 ¼ ��2dt2 þ e2�ðdr2� þ r2�d	2Þ (6)

þ B2=�2r2�sin2	ðd’�!dtÞ2; (7)

where ðt; r�; 	; ’Þ are the coordinates and �, �, B, and !
are metric potentials which depend only on r� and 	. The
RNS code implements the Komatsu-Eriguchi-Hachisu

(Stergioulas-Friedman) method [150,152], in which the
Einstein equations for the metric potentials �, B, and !
are transformed into integral equations [151] using Green’s
functions for the elliptical differential operators. The
remaining metric potential � can then be found by

integrating an ordinary differential equation, once the rest
of the potentials are known. The Komatsu-Eriguchi-
Hachisu (Stergioulas-Friedman) method uses compactified
radial coordinate s which maps the region ½0;1Þ into a
segment ½0; 1�:

s � r

rþ rþ
;

where rþ is the outer radius of the disk. The boundary
conditions are imposed at symmetry interfaces and at the
event horizon. The latter can always be transformed to a
sphere of compactified radius sh, while preserving the form
of the metric given above [151]. At the horizon, we impose
the boundary conditions for a nonrotating BH: � ¼ B ¼
! ¼ 0, and we set B=� ¼ e� at the symmetry axis. The
corresponding integral equations are then solved using
Newton-Raphson iterations [150] in the upper quadrant
	 2 ½0; �=2�, s 2 ½0; 1� of the meridional plane.
The resulting quasi-isotropic metric is degenerate at the

event horizon, which is very problematic for the evolution
with excision of the BH interior using the generalized
harmonic formulation, since this method requires coordi-
nates without pathologies at the event horizon. This situ-
ation is best illustrated by a conformal picture of the
complete spacetime, shown in Fig. 2. All quasi-isotropic
slices meet the horizon of the BH at its throat, which makes
the metric degenerate at the horizon. Regions II and IVare
not covered by the quasi-isotropic foliation. It is necessary
for our time-evolution methods to have a time-independent
foliation which penetrates the horizon and continues in
region II rather than region III.
There are several options to address this issue:
(1) solve the complete system of equations in horizon-

penetrating coordinates rather than quasi-isotropic
ones;

(2) use puncture initial data, as developed in [153], and
choose such a gauge for the evolution that after
some time the spatial slices move from region III

FIG. 2 (color online). Conformal Penrose diagram of an axi-
symmetric spacetime, consisting of a nonrotating BH, distorted
by a massive stationary disk around it. Each point on the diagram
corresponds to a spheroid, located at a given geodesic distance
from the BH horizon. Blue lines represent a quasi-isotropic
foliation of the spacetime, while red lines show a horizon-
penetrating foliation.
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to region II, similarly to what happens with punctu-
res in the Baumgarte-Shapiro-Shibata-Nakamura
formulation and 1þ log slicing [154];

(3) apply a spacetime coordinate transformation from
quasi-isotropic to horizon-penetrating coordinates.
Since there is still no solution provided in region II,
it needs to be extrapolated into that region.

We use option (3), since it is easier to implement in the
context of the generalized harmonic system and fits more
naturally in the gauge choice employed by RNS. Details on
the spacetime transformation that we apply to the initial
data can be found in the appendix.

A. Blending numerical and analytical metrics

We could not extrapolate the initial data produced by the
elliptic solver to region II inside the horizon, because
the data do not have enough smoothness near the horizon.
The problem with the initial data at the horizon seems to be
similar to the problem with Gibbs phenomena, when solu-
tions exhibit an oscillatory behavior and a lower order of
convergence near a stellar surface. To handle this problem,
we use an approximation, in which we replace the numeri-
cal metric in the region where it is not accurate with an
analytic Kerr-Schild solution of the same BH mass. We
blend the numerical metric gnumab and the Kerr-Schild metric

gKSab using the following prescription:

gab ¼ ð1� wðrÞÞgnumab þ wðrÞgKSab ;
where the weight function wðrÞ is defined as

wðrÞ ¼
8<
:
1; if r < b1;
cos2 �ðr�b1Þ

2ðb2�b1Þ ; if r 2 ½b1; b2�;
0; if r > b2;

and the segment r 2 ½b1; b2� determines a finite-size
blending zone between the two metrics. The weight func-
tion wðrÞ is nonconstant only in a narrow spherical layer
outside the horizon.

Blending two metrics introduces constraint violations at
the continuum level, but they subside rapidly in time due to
the constraint damping property of our evolution scheme.
The constraint damping scheme, however, does not neces-
sarily satisfy the conservation of mass, so after the con-
straint violations are suppressed, the system arrives at a
different state, which can be characterized as a close
equilibrium configuration with some axisymmetric gravi-
tational perturbation.

The location and size of the blending layer can be
adjusted to minimize the initial unphysical oscillation in
a BH mass. For the evolutions presented below, we used
blending in the range r 2 ½1:05rg; 1:15rg�, where rg is the
radius of the BH event horizon. Such a choice results in the
initial oscillation of the BH mass within � 12%, which
then settles down to a stationary value of ð97:5	 0:5Þ%
during the first orbital period [see Fig. 8(b) and related
discussion in Sec. IV].

B. Initial disk models

We have constructed three initial disk models with disk-
to-BH mass ratios MD=MBH ¼ 0:235, 0.174, and 0.108,
labeled A, B, and C, respectively. Model C is slender, which
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FIG. 3 (color online). Geometry of the initial disk models A
(top), B (middle), and C (bottom). Green lines represent the
contours of equal density, while red lines represent the contour
plots of W ¼ logjutj (as introduced in Sec. III B). The latter
quantity plays the role of the effective potential. The plots also
show the location of the Roche surface (thick black line) and the
last bound surface logjutj ¼ 0 (thick blue line).

STABILITY OF GENERAL-RELATIVISTIC ACCRETION DISKS PHYSICAL REVIEW D 83, 043007 (2011)

043007-7



means that its width is much smaller than the radius of the
torus, i.e. rc � rþ � r�. Models A and B are moderately
slender, i.e. for these models rc � rþ � r�. Figure 3 shows
the contour plots of the disk density in a meridional plane
along with the quantity W � logjutj, which plays the role
of the effective potential [81] in axisymmetric equilibrium
configurations (here ut refers to the specific energy of a test
particle on a circular orbit with given specific angular
momentum ‘). Notice that since the last bound surface
W ¼ 0 is located between the disk and the Roche lobe,
the latter is open in all three models. Therefore, for these
models the high angular momentum prevents the runaway
instability and the small amount of accretion is not suffi-
cient to change this situation. This situation cannot be
changed unless there is a significant amount of accretion.
All models are constructed using a polytropic EOS with
polytropic index � ¼ 4=3, constant specific entropy, and a
constant specific angular momentum distribution.

Table I lists physical and geometrical parameters of the
disk, including the ratio of disk-to-BH mass MD=MBH,
radial location of the cusp in equipotential surfaces rL,
the ratio of kinetic energy T to potential energyW, and the
self-gravity parameter 
. The latter can be defined as
�c=�sph, where �sph � �2

c=4�G is the density of a uni-

form sphere with radius rc that creates equivalent gravity at
that radius. Notice that T=jWj correlates to the ‘‘slender-
ness’’ of the disk r�=rþ. Also notice that in models A and
B the distance from the inner edge of the disk to the cusp
(�2:5rg) is smaller than that in model C (�5rg). This

makes the development of the runaway instability more
unlikely for model C (see Fig. 3). The value of specific
angular momentum ‘ is given in units of the BH mass.
These parameters allow us to make qualitative and quanti-
tative comparisons between our models and the models
studied in previous works [64,89–91,155].

C. Adapted curvilinear grid

In order to accurately resolve both the disk and the
BH while minimizing the computational cost, we have

designed a series of curvilinear multiblock grids adapted
to each of the disk models. To obtain such a grid, we start
from a six-block system [displayed in Fig. 1(c)] that was
previously used in QUILT for computationally efficient and
numerically accurate simulations of perturbed BHs [103].
We apply a radial stretching and an angular distortion to
the six-block system so as to create a uniformly high
resolution near the BH, nearly cylindrical grid near the
disk, and approach a regular six-block spherical grid in the
wave zone. These mappings are described in detail below.
Figure 1(d) shows an illustration of the grid distortion,
while Fig. 4(a) shows the actual curvilinear grid used in
some of our simulations.
A regular six-block system consists of two polar blocks

(near the z axis) and four equatorial blocks (near the xy
plane). We can assign quasispherical coordinates fr; 	; ’g
and fr; 	1; 	2g to the equatorial and polar blocks, respec-
tively. They can be related to the Cartesian coordinates
fx; y; zg by the following transformation:
(i) For an equatorial block in the neighborhood of the

positive x axis,

x ¼ r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan’2 þ tan	2

q
;

y ¼ x tan’;

z ¼ x tan	;

(ii) while for a polar block in the neighborhood of the
positive z axis,

x ¼ z tan	1;

y ¼ z tan	2;

z ¼ r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan	21 þ tan	22

q
:

(iii) The remaining blocks are obtained by applying
symmetry transformations.

We set the coordinate ranges for the polar blocks to be
r 2 ½Rmin; Rmax�, 	1; 	2 2 ½�	�; 	��, where the value of 	�

TABLE I. Physical parameters of the self-gravitating initial disk models, used in our simula-
tions.

Model A B C

Specific angular momentum ‘½MBH� 4.50 4.32 4.87

Polytropic constant K½1014 cm3 g�1=3 s�2� 1.28 1.04 0.519

Maximum density �c½1013 g=cm3� 1.23 1.17 0.755

Disk-to-BH mass ratio MD=MBH 0.235 0.174 0.108

Kinetic to potential energy T=jWj 0.479 0.497 0.499

Central radius rc=rg 6.51 6.10 8.75

Inner radius r�=rg 4.26 4.17 6.74

Ratio of inner to outer radius r�=rþ 0.385 0.438 0.580

Radial location of the cusp rL=rg 1.72 1.81 1.59

Orbital frequency at rc, �c½s�1� 1713 1912 1121

Self-gravity parameter 
 ¼ 4�G�c=�
2
c 3.52 2.68 5.04
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controls an opening angle of the polar blocks. For equatorial
blocks, r 2 ½Rmin; Rmax�, 	 2 ½� �

2 þ 	�; �2 � 	��, and’ 2
½� �

4 ;
�
4�. The size of the numerical grid for each block is

fixed by three numbers: Nr, N’, and N	. The equatorial

blocks have Nr 
 N’ 
 N	 cells, and the polar ones have

Nr 
 N	 
 N	 cells.
In order to obtain a variable radial resolution, we apply a

smooth one-dimensional radial stretching S: r ! �r that
yields the desired resolution profile �rðrÞ. This profile is
chosen based on several stringent requirements imposed by
an accuracy and available computational resources. First,
there need to be at least 8 grid points between the excision
radius and the BH horizon in order to prevent constraint
violations from leaving the interior of the BH (this question
is considered in some detail in [156]), as well as to allow
for some (restricted) BH movement. Second, our conver-
gence tests show that near the disk, the grid needs to allow
for at least 40 points across the disk in order to achieve a
global convergent regime in hydrodynamical evolutions.
For this purpose, the radial resolution profile is adapted to
have sufficiently high resolution near the disk as well.
Third, in the wave zone, there is no need to maintain
very high radial resolution. However, this resolution needs
to be uniform (rather than, for example, exponentially
decreasing) to be able to carry the radiation accurately
without dissipation. All these requirements result in the
radial resolution profile �rðrÞ shown in Fig. 4(b).

The resolution in the 	 direction �	 near the disk also
needs to have at least 40 points across the disk for

convergence. However, a simple increase of N	 in the six-
block system leads to a very small minimal grid step�min at
the excision radius Rmin that is too restrictive for the time
step due to the Courant factor limit condition. To increase
the grid resolution in the 	 direction near the disk only, we
apply a radial-dependent distortion to the angular coordi-
nates 	, 	1, and 	2:

	ð �	; rÞ ¼ �	

�
1� �ðrÞ cos2	�

�� 2	�

�
;

	ið �	i; rÞ ¼ �	i

�
1þ �ðrÞ sin2	�

2	�

�
; i ¼ 1; 2;

where the function �ðrÞ is the amplitude of the distortion,
chosen to have a Gaussian profile �ðrÞ ¼ �� expð�ðr�
r0Þ2=�2Þ, in which the parameters ��, r0, and � are
chosen to satisfy the above requirements. This distortion
bends diverging radial coordinate lines towards the equa-
torial plane around the radius r0, making the grid resemble
a cylindrical shape near that radius [as illustrated by
Fig. 4(a)]. Figure 4(b) shows the dependence of �	 on r
along the x axis (dotted black line) and along the z axis
(dash-dotted red line). The radial-dependent 	 distortion
increases�	 on the x axis at the expense of�	 on the z axis
near the disk. Away from the disk, the distortion vanishes
and �	 approaches the linear dependence �	ðrÞ / r.
Figure 4 shows an example of the resulting curvilinear

grid. For this example, 	� ¼ 30�, N	 ¼ 49, and N’ ¼ 25.

These parameters make the grid spacing approximately
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FIG. 4 (color online). Left panel (a): Meridional cut of an adapted curvilinear grid used in one of our simulations, combined with the
logarithmic density contours of the disk at t ¼ 0. The intersecting radial coordinate lines belong to the neighboring blocks in the
overlapping (interpolated) regions. The thick black circle marks the location of an apparent horizon of the BH. The inset in the lower
left corner of the plot shows the high-resolution grid around the BH, adapted in such a way that the resolution is uniformly high in
every direction. Right panel (b): Radial profile of the resolution in the r (red solid line) and the 	 (dotted lines) directions for the grid
shown in the top panel. The radial coordinate is plotted in the logarithmic scale. The top horizontal axis shows the values of the radius
in numerical units. The marks on the lower axis are rex is the radius of the BH excision sphere; rg is the gravitational radius of the BH;

r� and rþ are the inner and outer radii of the disk, respectively; rc is the radius of the density maximum; rW is the ‘‘wave extraction’’
radius; Rout is the outer radius of the domain. The black dotted line is the resolution in the 	 direction on the x axis, and the red dash-
dotted line is the resolution in the 	 direction on the z axis.
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uniform in the angular direction near the BH and at large r.
The inner (excision) radius is Rmin ¼ 1:3 and the outer one
is Rmax ¼ 500, while the minimum grid spacing is �min ¼
�	ðrminÞ � 0:06. The apparent horizon has a radius of �
1:7, so that as many as 8 grid points can be placed inside
the horizon without decreasing the minimum grid spacing.
Distortion parameters of the Gaussian have values r0 ¼ 12,
� ¼ 8, and �� ¼ 1:3, which is sufficient to concentrate
about 40 grid points across the disk in the vertical direc-
tion. The radial resolution is adapted to be ð�rÞBH � 0:06
at the excision sphere, ð�rÞdisk � 0:25 around the disk, and
ð�rÞWZ � 5:2 in the wave zone.

All of the time evolutions described in the next two
sections IV and V use adapted six-block curvilinear grids.
Table II summarizes dimensions and resolutions of the
grids for each of the simulations used in these two sections.
The first column lists simulation names, which consist of
two or three symbols. Models K1–K6 are considered in
Sec. VA. In the rest of the model names, the first letter
denotes the initial disk model (A, B, or C), and the second
letter signifies whether the simulation is evolved in the full
GR (F) or the Cowling (C) approximation (see correspond-
ing Secs. VC and VB). The next number (if present) is the
azimuthal number m of an added nonaxisymmetric pertur-
bation (as explained in Sec. V). Simulations AFc, AF, and
AFf represent disk model A evolved in full GR using
coarse, medium, and fine resolution grids, respectively.
These models are used in Sec. IV for convergence studies.
Finally, note that the adapted curvilinear grid example
above (displayed in Fig. 4) corresponds to the grid used

in simulation AF, and the grids of simulations AFf and AFc
are obtained by increasing and decreasing, respectively, the
resolutions in the AF grid by a factor of 3=2.

D. Data analysis

To identify and characterize nonaxisymmetric instabil-
ities, we will adopt an approach commonly used in linear
perturbative studies of accretion disks (e.g., in [64,80]).
Namely, we analyze the first few terms in the Fourier
expansion in angle ’ of the disk density �ðr; ’Þ on a
sequence of concentric circles in the equatorial plane:

�ðt; r; ’Þ ¼ ��ðt; rÞ
�
1þ X1

m¼1

Dme
�ið!mt�m’Þ

�
;

where �� is a ’-averaged density at a given radius. The
quantity Dm represents the (complex) amplitude of an
azimuthal mode m, and the real part of the quantity !m

determines a mode pattern speed, while its imaginary part
determines a mode growth rate. Following [64,157], we
quantify the growth rate and the pattern speed of a non-
axisymmetric mode by two dimensionless parameters y1
and y2, defined as

y1ðmÞ ¼ Reð!mÞ
�orb

�m; y2ðmÞ ¼ Imð!mÞ
�orb

:

We calculate a value of the parameter y2ðmÞ from a slope of
logjDmj versus t line at an arbitrary radius, while y1ðmÞ is
obtained from a slope of the mode phase angle ’m ¼
’mðtÞ. Notice that because the modes that we consider

TABLE II. Parameters of numerical grids for all the simulations of accretion disks used in this study. The naming convention of the
simulations is explained in the main text in Sec. III C on adapted curvilinear grids. All resolutions and linear dimensions are given in
computational units. The first column, which lists the values of the BH gravitational radius rg, allows one to convert all quantities from

computational to CGS units. The remaining columns contain: Rmin and Rmax are radial extents of the computational domain; Nx is the
number of grid points in the horizontal x or y direction; Nz is the number of grid points in the vertical direction; Nr is the number of
grid points in the radial direction; �min is the minimal grid step size, in the 	 direction at the excision sphere; ð�rÞdisk is the resolution
in the r direction at radius rc; ð�	Þrc;x is the resolution in the 	 direction on the x axis at radius rc; ð�	Þrc;z is the resolution in the 	

direction on the z axis at radius rc; ð�rÞWZ is the radial resolution in the wave zone (not used for simulations on a fixed background).

Model rg Rmin Rmax Nx 
 Nz 
 Nr �min ð�rÞdisk ð�	Þrc;x ð�	Þrc;z ð�rÞWZ

K1 2.0 4.0 30 25
 49
 96 0.07 0.25 0.32 0.72 � � �
K2 2.0 4.0 25 25
 49
 96 0.07 0.25 0.32 0.72 � � �
K3 2.0 4.0 22 25
 49
 96 0.09 0.20 0.17 1.28 � � �
K4 2.0 6.0 17 25
 49
 96 0.08 0.18 0.13 1.68 � � �
K5 2.0 7.0 16 25
 49
 96 0.03 0.10 0.05 0.50 � � �
K6 2.0 8.0 14 25
 49
 96 0.02 0.08 0.03 0.53 � � �
AC, AC1, AC2 1.760 1.7 25 37
 73
 144 0.05 0.17 0.21 0.48 � � �
BC, BC1, BC2 1.806 1.7 25 37
 73
 144 0.05 0.17 0.21 0.48 � � �
CC, CC1, CC2, CC3 1.812 1.7 25 37
 73
 144 0.05 0.17 0.21 0.48 � � �
AF, AF1, AF2 1.760 1.3 500 25
 49
 280 0.06 0.25 0.22 0.95 5.2

AFc 1.760 1.3 1000 17
 33
 180 0.09 0.37 0.33 1.43 7.8

AFf 1.760 1.3 1000 37
 73
 420 0.04 0.17 0.15 0.62 3.4

BF, BF1, BF2 1.806 1.3 1000 25
 49
 280 0.06 0.25 0.22 0.95 5.2

CF, CF1, CF2, CF3 1.812 1.3 1000 25
 49
 280 0.06 0.22 0.22 1.01 5.2
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are global, their growth rates and pattern speeds do not
depend on a radius.

We use the parameter y1ðmÞ to obtain the value of a
corotation radius rcr for a given mode: Using the mode
pattern speed

�p ¼ �orb

�
1þ y1ðmÞ

m

�

and the radial profile � ¼ �ðrÞ of a fluid angular velocity
in the disk, we can calculate rcr from the equation
�ðr ¼ rcrÞ ¼ �p.

In those simulations where the disk is oscillating radi-
ally, the values of the mode amplitudeDm at a given radius
oscillate due to disk oscillations, which makes it more
difficult to extract the mode growth rates from Dm. In
such cases, we have found that more accurate growth rates
can be obtained if we use normalized root mean squared
(rms) mode amplitudes Gm, defined as:

Gm ¼ hDmi2=hD0i2;
where the angle brackets h. . .i2 denote an rms value over
radii from r� to rþ:

hDmi2 � 1

rþ � r�

�Z rþ

r�
jDmj2dr

�
1=2

IV. TIME EVOLUTION

In this section, we present the results of the fully
general-relativistic time evolution of the initial data for
reference model A, constructed as described above in
Sec. III. Overall, the dynamics of model B is qualitatively
similar to that of A, while model C exhibits a qualitatively
different time evolution. The BH initial mass in all of our
models is 2:5M�, as in some of the previous works
[66,72,158], and the disk rotational period tc ¼ 3:667 ms
is used as a unit of time in all of the plots in this section.

At the beginning of time evolution, the metric blending
procedure (described earlier in Sec. III A) introduces axi-
symmetric constraint-violating perturbation to the space-
time near the BH, causing an unphysical oscillation in the
BH mass, which damps out in about one orbital period of
the disk. We discard the first orbital period when analyzing
simulation data and drawing physical conclusions about
the system dynamics.

In the meanwhile, the axisymmetric perturbation prop-
agates outwards and triggers axisymmetric disk oscilla-
tions. Disk oscillations lead to formation of shock waves,
which transform kinetic energy of the shock to thermal
energy, resulting in damping of the oscillations, as well as
short episodes of accretion. We discuss different aspects of
the dynamics of the disk in more detail below.

After about three orbital periods, the disk develops an
m ¼ 1 nonaxisymmetric mode, which we have identified
as PP type instability [61,62] (discussed in more detail
below in Sec. V). The same type of mode develops in

model B, while the more slender model C develops an
m ¼ 2mode of an intermediate type (see Sec. VC). As the
m ¼ 1 mode grows, the center of mass of the disk drifts
away from its initial position along a spiral-like trajectory,
as shown in Fig. 5 (red squares). As a result of gravitational
interaction between the deformed disk and the BH, the
latter also starts spiraling away, mirroring the motion of the
disk center of mass, as shown in Fig. 5 (black line). This
plot also shows dashed lines that connect the positions of
the center of mass of the BH and the disk at different
moments of time. As we can see, all of these lines intersect
with each other at one point at the initial location of the
center of mass of the disk-BH system, implying that the
center of mass of the system does not move, as should be
the case for BH motion caused by physical interaction with
the disk (but not gauge effects).
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FIG. 5 (color online). Trajectories of the center of mass of the
accretion disk (red line) and the BH (black line). Dashed lines show
four consecutive simultaneous locations of the two centers of mass,
and a small red circle at the origin marks the location of their
common center of mass. The spiral motion of the BH is caused by
the development of the nonaxisymmetricm ¼ 1 mode in the disk.
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FIG. 6 (color online). Time evolution of the amplitude jD1j of
the nonaxisymmetric m ¼ 1 mode in the disk and the length
of the BH position vector rBH=rg. The growth of these quantities

is correlated; i.e. they develop at the same time and with the
same rate.
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Figure 6 shows the time evolution of the amplitude jD1j
of the m ¼ 1 PP nonaxisymmetric mode and the distance
rBH (normalized to rg) from the BH center to its initial

position. As we can see, both jD1j and rBH have the same
growth rate. This feature provides another evidence that the
BH motion is a result of the physical interaction with the
m ¼ 1 disk deformation but not due to gauge effects.

We point out that, as a result of the interaction of the
m ¼ 1 deformed disk with the BH, the latter acquires
significant orbital angular momentum from the disk.
Figure 7 illustrates how angular momentum of the disk
(JD), BH (JBH),

4 and BHþ disk system (JBH þ JD)
changes with time with respect to initial disk angular
momentum (J0). The total angular momentum of the
diskþ BH system decreases by �1:5% in �7 orbital
periods due to numerical errors such as interpolation at
the block boundaries and evaporation to the artificial at-
mosphere in the case of medium resolution. As a result of
angular momentum transfer, JD=J0 additionally decreases
by �1:5%, which is completely compensated by the
�1:5% increase of JBH=J0.

Unfortunately, the continued outspiraling motion of the
BH ultimately leads to the intersection of the apparent

horizon with the excision boundary. At this point, the inner
excision boundary conditions become ill-posed, and we
have to terminate our simulations.
Similarly to the findings of [20,76], we did not observe

runaway instability in all three models. This is perhaps not
surprising, because the inner boundary of the disk is
located at a considerable distance from the cusp in
equipotential surfaces for all three models that we study.
Short periodic episodes of mass transfer in models A and B
caused by strong nonlinear oscillations do not lead to
significant advancement of the cusp towards the disk.
Moreover, the damping of radial disk oscillations in
models A and B reduces and eventually completely termi-
nates this mass transfer from the disk to the BH, preventing
onset of runaway instability. Therefore, we do not expect
this instability to occur at a later time. In the most likely
scenario of the subsequent evolution, the development of
nonaxisymmetric instabilities will redistribute disk angular
momentum and lead to a profile of specific angular
momentum that increases outwards [86,91].
To determine howmuch our results depend on numerical

resolution, we have performed simulations of this model
for three different resolutions with grid cell size scaling as
1:1:5:1:52. We refer to these as the coarse, medium, and
fine resolutions, respectively, hereafter. The curvilinear
geometry of the blocks was chosen to be the same for all
of the three resolutions. We list the parameters of the
resulting coarse, medium, and fine (denoted as AFc, AF,
and AFf, respectively) grid models in Table II.
Figure 8(a) shows the L1 and L1 norms of Hamiltonian

constraint violation for the coarse, medium, and fine reso-
lution simulations. This plot shows that there are two dis-
tinct regimes in the evolution of the constraints: an initial
exponential decrease and a subsequent steady plateau. The
latter is due to the constraint damping mechanism of our
evolution scheme, in which the rate of production of dis-
cretization errors is balanced by the rate of constraint
damping. Since the discretization error depends on grid
cell size, the value of the plateau decreases with increasing
resolution. In the case with the highest resolution, the
‘‘plateau regime’’ is not reached during the time span of
the simulation. Figure 8(a) also shows that there is a small
region of a rapid growth of the constraints at the very end of
the simulations. This increase is caused by the approach of
the BH apparent horizon too close to the inner excision
boundary as a result of the interaction of the BH with the
m ¼ 1 deformation of the disk described above.
Figure 8(b) shows the time evolution of the BH mass.5

Because the constraint violations due to the metric blend-
ing are introduced at the continuum limit, the BH mass
shows an unphysical oscillation that does not converge
away with resolution but which completely damps out in
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(JD + JBH - J0)/J0

FIG. 7 (color online). Illustration of the angular momentum
transfer from the disk to the BH. The solid (red) line shows the
orbital angular momentum of the BH JBH, the dotted (magenta)
line shows the decrease in the angular momentum of the disk
JD � J0, and the dashed (blue) line shows the total decrease of
the angular momentum of diskþ BH ðJD þ JBHÞ � J0. All
quantities are divided by the initial value of angular momentum
of the disk J0. The noticeable angular momentum transfer can
only be seen in the last orbital period, when the m ¼ 1 distortion
reaches significant amplitude. The gradual decrease in total
angular momentum is due to the mass loss at the interpolation
boundaries. This is a numerical artifact which converges away
with resolution.

4We calculate the total angular momentum of the disk using
the expression JD ¼ R

d3x
ffiffiffiffiffiffiffi�g

p
Tt
’ [159], while the orbital an-

gular momentum of the BH is calculated using a simple
Newtonian estimate: Using the BH speed r _’ and its distance
from the origin r, we get JBH ’ MBHr

2 _’.

5We measure irreducible BH mass MBH using the area of
apparent horizon [160].
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about one orbital period. The BH mass then stabilizes at
ð97:5	 0:5Þ% of its initial value and remains near this
value until the end of the simulation. The glitch in the
BH mass by the very end of the simulation is caused by
the growth of constraint violations due to the approach of
the BH to the inner excision boundary as a result of out-
spiraling motion.

Figure 9(b) shows the relative differences in the maxi-
mum rest-mass density of the disk �max between the coarse
and medium resolutions (thick red line), as well as medium
and fine resolutions (thin black line). The latter quantity is
scaled by a factor of 1.5. As can be seen from the plot, the
two curves agree up to� 4:5 orbital cycles, which implies

that the convergence is of first order during that period.
This order of convergence for hydrodynamical quantities
such as �max is expected, both because of the presence of
shocks in our simulations and because the hydrodynamical
method that we use is only first-order convergent at local
extrema of the density (see, e.g., Chap. 13 of [161]). At
t > 4:5torb the two curves start diverging. Such behavior is
due to the development of nonaxisymmetric instabilities,
which are seeded by numerical errors and start to grow at
different times for different resolutions.
The parameters y1 and y2 that characterize nonaxisym-

metric modes (introduced in Sec. III D and discussed in
more detail below in Sec. V) for medium and fine resolu-
tion models agree up to the measurement accuracy.6

Specifically, the values of y1 and y2 for simulation AF
are �0:17ð5Þ and 0.300(8), respectively, while for the
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FIG. 8 (color online). Time evolution of the constraints and the
BH mass for simulations with the coarse, medium, and fine
resolution grids. (a) L1 and L1 norms of the Hamiltonian
constraints as a function of time. For the coarse and medium
resolution cases, the plot shows that the constraints are reduced
down to the discretization error level during the first orbital
period (see the main text for more detailed discussion). (b) Time
evolution of the BH mass (measured from the area of apparent
horizon, normalized by its initial value). After the initial transi-
tional oscillatory phase, the BH mass settles down to ð97:5	
0:5Þ% of its initial value. The oscillation in the first orbital period
is caused by the constraint violations due to blending procedure
in the construction of our initial data (see Sec. III A).
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FIG. 9 (color online). Top: Time evolution of the maximum
rest-mass density �maxðtÞ and the location of a rest-mass density
maximum rc ¼ rð�maxÞ. Bottom: Relative differences of �maxðtÞ
between the coarse and medium resolutions (thick red line) and
between the medium and fine ones (thin black line), scaled to the
first-order convergence.

6The error in measurement of these parameters stems from the
uncertainty in determining the time segment where the insta-
bility exhibits clear exponential growth.
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simulation AFf they are �0:17ð3Þ and 0.30(1), respec-
tively. The values for the coarse resolution simulation
AFc [y1 ¼ �0:13ð5Þ and y2 ¼ 0:33ð1Þ] depart from the
values in higher resolution simulations by a small amount.

We now proceed to the analysis of the axisymmetric disk
oscillations induced by the metric blending procedure
(described in Sec. III A). Figure 9 shows the time evolution

of the maximum disk density �max (solid line) and the
radial position of the disk center rc

7 (dashed line), normal-
ized to their values at t ¼ 0. As can be seen from this plot,
the evolution of both �max and rc is dominated by a single

FIG. 10 (color online). Meridional cuts of the disk and the BH horizon in the xz plane at several different phases ’ 2 ð0� 2�Þ of
the radial oscillation. Each frame shows six density contours, equally spaced in the logarithmic scale between the initial maximum
density �maxð0Þ and 10�6�maxð0Þ. Also shown are the velocity field in the meridional plane and the location of the density maximum.
The bottom two frames also show the position of the shock wave that is propagating outwards (thick black line). The last frame shows
a brief episode of accretion.

7We define the radius of the disk center rc to be the radius,
where the ’-averaged disk density reaches its maximum.
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mode of oscillation. The disk expands while moving away

from the BH and contracts while moving towards the BH.

This can also be seen in Fig. 10, which shows meridional

cuts of the disk in the xz plane in different phases of the

oscillation.
The radial oscillation of the disk has a frequency of

�164 Hz, a value that is slightly smaller than the epicyclic
frequency � ¼ 201 Hz at r ¼ rc for a Schwarzschild BH
of the same mass.8 Rezzolla, Yoshida, and Zanotti [163]
studied relativistic axisymmetric oscillations of accretion
disks in the Cowling approximation using disk models that
have the same � (¼ 4=3) and (constant) specific angular
momentum profile as the ones studied here. They found
that the disks with rc ¼ 3:860rg have the radial oscillation

frequency of ’ 261 Hz ( ¼ 0:020 17 for their c2 model in
normalized units [163]), which is higher than the�164 Hz
frequency that we obtain in our case. Part of this difference
stems from the difference in the disk models: While the
model of [163] has rc ¼ 3:860rg, our disk model A has

rc ¼ 6:51rg (cf. Table I). Rezzolla, Yoshida, and Zanotti

[163] have found that the oscillation frequency f depends
on the disk extent L in a particular way. Namely, f
decreases with increasing L, and in the limit of very thin
disks (L ! 0), f approaches the local value of the epicy-
clic frequency � (see Fig. 4 of [163]). If we assume this
dependence fðLÞ to hold for any rc, we can obtain the value
of radial oscillation frequency for a disk with the same L
and rc as our model. This frequency turns out to be
�168 Hz, which is very close to f ¼ 164 Hz that we
obtain in our simulations. This result might indicate that
for the disks that are similar to the ones considered here,
the disk self-gravity does not significantly affect the fre-
quencies of the radial oscillations. Note that in the case of
NSs, the frequency of the fundamental quasiradial modes
was found to differ by a factor of�2 between the Cowling
and full GR simulations [146,164], perhaps implying that
the self-gravity plays a more important role in the case of
NSs. However, since it is unclear whether such dependence
of f on L holds exactly for other values of rc, this result
should be taken with caution. We will revisit this issue in a
future publication.

The disk oscillations are damped due to formation of
shock waves that convert the kinetic energy of the oscil-
lations into the thermal one. At the end of the contraction
phase of the disk, the high-density inner part of the disk
bounces back earlier than the lower-density outer part. The
collision of the former with the still-infalling lower-density
outer material leads to formation of an outward-
propagating shock wave (see the two bottom panels in
Fig. 10). The shock accelerates during propagation and
reached relativistic velocities of�0:3c in the rarefied outer

disk shells. In order to quantify the amount of the shock
dissipation, we evolve this model also with the isentropic
polytropic EOS with the same � ¼ 4=3 (in addition to the
evolution with the nonisentropic �-law EOS), which does
not allow entropy changes and thus shock heating. In this
case, the oscillations exhibit little damping, while in the
case of evolutions with the �-law EOS, the amplitude of
�max decreases by a factor of �2 in �4 orbital periods.
Since the relative differences in �max for different resolu-
tions converge away [as illustrated by Fig. 9(b)], the oscil-
lation damping is independent from resolution and as such
cannot be caused by numerical errors. Note that dissipation
of oscillation kinetic energy into heat by shocks has been
found to operate in many other astrophysical scenarios,
including damping of NS oscillations in a migration from
an unstable to a stable branch [165,166] and in phase-
transition-induced collapse of NSs [167], as well as damp-
ing of ring-down oscillations of nascent proto-NSs formed
in core-collapse supernovae (e.g., [168]) and accretion-
induced collapse of white dwarfs (e.g., [169]).

V. NONAXISYMMETRIC INSTABILITIES

In this section, we discuss nonaxisymmetric instabilities
in the disks. First, we test our method by reproducing
results obtained by Kojima [80] for thick tori with negli-
gible self-gravity on a Schwarzschild background. In the
next two sections we analyze the nonaxisymmetric insta-
bilities in our models first on a fixed background and then
with a fully dynamical general-relativistic treatment.
In various astrophysical scenarios, the disk might be

formed with different nonaxisymmetric structures, leading
to preferential excitation of specific unstable nonaxisym-
metric modes. In order to account for these possible sce-
narios, in our work we evolve initial disk models with
added small nonaxisymmetric perturbations at t ¼ 0.
We expect [63,64,84] our thick disk models A and B to

be dominated by nonaxisymmetric unstable modes with
azimuthal numbers m ¼ 1 and m ¼ 2, while for the more
slender model C instabilities with m ¼ 3 and m ¼ 4
should also play an important role. In our simulations
without initial perturbations, these modes are triggered
by numerical errors and start to grow at a random moment
in time. In order to explore the evolutionary scenario in
which a particular mode is excited initially, we add a small
density perturbation of the form ~� ¼ �½1þ A cosmð’�
’0Þ� to our initial disk models. We use a perturbation
amplitude A ¼ 0:001, which we have found to be both
large enough to trigger the instability and sufficiently small
to remain in the linear regime. The amount of constraint
violations due to these artificial perturbations, which is
quickly suppressed by our constraint damping scheme, is
too small to significantly affect the subsequent evolution of
the disk.
For each initial disk model A, B, and C we have com-

pleted a sequence of evolutions both in the Cowling and in

8The relativistic epicyclic frequency for the Schwarzschild

metric is given by � ¼ 1
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGM=r3Þ½1� ð3rg=rÞ�

q
[162].
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the full GR treatment. As explained in the end of Sec. III C,
corresponding simulations are referred to by two- or three-
letter notation (such as AC, AC1, AC2, AF, etc.), in which
the first letter denotes the initial disk model (A, B, or C),
the second letter is either C for the Cowling or F for the full
GR treatment, and the third one is the azimuthal numberm
of the initial perturbation (absent if evolved without initial
perturbation).

A. Comparison with previous work

Below, we present the growth rates of PP instability in
evolutions of equilibrium tori in the Cowling approxima-
tion and compare them to the results obtained by Kojima
[80], who studied PP instability in thick disks around
Schwarzschild BHs using a linear perturbative approach.
Kojima analyzed tori with constant distribution of specific
angular momentum, constructed in a relativistic frame-
work using the Abramowicz-Jaroszynski-Sikora prescrip-
tion [81]. Kojima calculated the m ¼ 1 mode growth
parameter y2 for several sequences of disk models with
different values of specific angular momentum ‘ (¼ 3:8,
4.0, 4.2). In particular, [80] found that, due to relativistic
redshift effects, y2 for GR models is generally smaller than
in the Newtonian case [63].

We have constructed a sequence of Abramowicz-
Jaroszynski-Sikora tori of varying radial extent with the
same physical parameters as in [80]. All these models have
polytropic index � of 4=3 and specific angular momentum
‘ of 4.0. The mass of the BH is set toMBH ¼ 1. The models
in this sequence are labeled as K1–K6, and their parame-
ters are listed in Tables III and IV. To excite the m ¼ 1
mode, we add a small nonaxisymmetric perturbation as
described above and evolve the disk in the Cowling ap-
proximation, using a curvilinear grid (as described in
Sec. III C), adapted to each of the models. Parameters of
the curvilinear grids for each model are listed in Table II.
We then measure the growth rate y2 as described in
Sec. III D above and compare it with the results of Kojima.
Figure 11 shows the values of y2 as a function of the disk

radial extent for our models and for those of Kojima. As we
can see, y2 for our models are within estimated error bars
from the values, calculated by Kojima in [80], as it should
be the case.

B. Fixed background

In this section, we analyze nonaxisymmetric instabilities
which develop when our initial disk models are evolved in
the Cowling approximation. We find that all of our models
develop the PP instability. More specifically, for models A
and B the fastest growing mode is m ¼ 2, while for the
more slender model C it is m ¼ 3. This is expected from
the Newtonian considerations [63,64,84]. Below, we first
describe instabilities in models A and B, after which we
focus on model C. As mentioned above, we evolve our
models with and without artificial density perturbations.
For models A and B, we add m ¼ 1; 2 and for model C
we add m ¼ 1; 2; 3 perturbations. Notice that all simula-
tions contain a spurious m ¼ 4 perturbation which is a
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FIG. 11 (color online). Comparison of the m ¼ 1 PP-mode
growth rates y2 obtained by Kojima [80] in the linear perturbative
approachwith the values measured from the evolutions of the same
initial data models in the Cowling approximation. The abscissa
represents the ratio of the inner radius of the disk r� to the radius of
the maximum disk density rc. Note that the error bars of the
measured growth rates originate from the uncertainty in determin-
ing the time span of a clear exponential growth of the mode.

TABLE III. Physical parameters of the initial disk models,
used for comparison with calculations by Kojima [80]. Here,
rc=rg is the location of the density maximum in units of the BH

gravitational radius rg, r� (rþ) is the inner (outer) radius of the
torus, and �max is the maximum density. For all models, the mass
of the BH is M�, and specific angular momentum has constant
value ‘ ¼ 4:0 and polytropic constant K ¼ 0:06 (the latter two
quantities are given in the normalized system of units, in which
G ¼ c ¼ M� ¼ 1).

Model rc=rg r�=rc rþ=r� �max

K1 5.236 0.60 3.952 1:715
 10�4

K2 5.236 0.65 2.956 5:321
 10�5

K3 5.236 0.70 2.351 1:472
 10�5

K4 5.236 0.75 1.939 3:522
 10�6

K5 5.236 0.80 1.640 5:809
 10�7

K6 5.236 0.85 1.419 8:682
 10�8

TABLE IV. Parameters of the m ¼ 1 PP instability, measured
for the dynamical evolutions of Kojima disk models K1–K6. y1
and y2 are the pattern speed and growth rate parameters, re-
spectively, �p is the mode pattern speed, and rcr is the mode

corotation radius.

Model y1 y2 �p=�c rcr=rc Type

K1 �0:174 0.097(6) 0.826 1.136 PP

K2 �0:147 0.124(3) 0.853 1.112 PP

K3 �0:113 0.153(3) 0.887 1.083 PP

K4 �0:084 0.145(4) 0.916 1.041 PP

K5 �0:048 0.120(3) 0.952 1.060 PP

K6 �0:011 0.093(5) 0.989 1.007 PP
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numerical artifact of interpolation at the boundaries be-
tween four blocks near the equatorial plane. The evolutions
without artificial perturbation are therefore similar to the
ones in which an m ¼ 4 density perturbation is added.

To analyze the nonaxisymmetric modes, we adopt an
approach from Woodward, Tohline, and Hachisu [64].
Namely, we expand the disk density in the equatorial plane
in a Fourier series, as explained in Sec. III D above. Then
we construct and analyze the following four diagrams:

(i) The Dm � t diagram shows a logarithm of the nor-
malized mode amplitude Dm as a function of time at
some radial location close to the disk density maxi-
mum rc. The slope of this curve yields the growth
rate y2.

(ii) The Dm � r diagram represents a radial profile of
the normalized mode amplitude Dm. This diagram
will be helpful in identifying the type of nonaxisym-
metric instabilities [64].

(iii) The ’m � t diagram displays a phase angle of the
nonaxisymmetric modem as a function of time at a
specified radius. The slope of this function deter-
mines the mode pattern speed and parameter y1 that
is related to it.

(iv) The ’m � r diagram represents the mode phase
angle as a function of radius. This diagram also
provides a convenient way to identify the type of
the mode [64]. In all our ’m � r diagrams, the disk
rotates counterclockwise.

We found that instabilities which develop during evolu-
tions of models A and B are very similar. Therefore we
present the properties of these instabilities on the example
of model A, while the case of model C will be described
separately.
Figure 12 shows the four mode diagrams for the case of

model AC1, which represents time evolution of initial disk
model A in the Cowling approximation with an added
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FIG. 12 (color online). The behavior of the dominant nonaxisymmetric modes and the radial character of the m ¼ 1 ð0; 0) PP mode
in the simulation AC1: (a) The Dm � t diagram shows the time evolution of the mode amplitudes Dm for m ¼ 1–6; (b) the Dm � r
diagram shows the radial character of the m ¼ 1 mode amplitude (in the logarithmic scale); (c) the ’m � t diagram shows the time
evolution of the Fourier angle ’m, which allows one to determine a pattern speed and a corotation radius for each mode; (d) the ’m � r
diagram shows the dependence of the mode Fourier angle from the radius r in equatorial plane at t=torb ’ 4. The Dm � r and ’m � r
diagrams in (b) and (d) also show the locations of the mode corotation radius.
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m ¼ 1 nonaxisymmetric density perturbation. Figure 12(a)
shows theDm � t diagram for the first six nonaxisymmetric
modes with m ¼ 1; 2; . . . ; 6. The three lowest-m modes
exhibit clear exponential growth, with m ¼ 1 being the
dominant mode throughout the time span of the simulation
(the first � 6:5 orbital periods). This is the case because an
m ¼ 1 perturbation is artificially added from the beginning
and has more time to grow and to remain the dominant
mode. The mode m ¼ 2 has a higher growth rate but
appears subdominant, since it is triggered later than the
m ¼ 1mode and has less time to develop. It may eventually
overshoot them ¼ 1mode at a later time, when both modes
reach the nonlinear regime (not covered in this work; this
will be a subject of our future publication). Notice that the
relatively high values of them ¼ 4 mode amplitude are due
to the effect of interpolation errors on four interblock
boundaries of the grid near the equatorial plane.

Figures 12(b) and 12(d) demonstrate the radial structure
of the m ¼ 1 mode at t ¼ 4torb, when it is sufficiently
developed. The Dm � r diagram in Fig. 12(b) represents
the radial profile of the amplitude of the mode. This
amplitude is highest near the edges of the disk, it does
not have nodes (does not become zero), and it reaches its

minimum near the radius of corotation. Previous works on
PP instability in Newtonian gravity [61,84] suggest that
such radial behavior is a characteristic of the principal PP
mode, or a mode of ð0; 0Þ type in the classification of Blaes
and Hawley [88]. The ’m � r diagram in Fig. 12(d) has a
specific S-shaped structure, which is also a well-known
feature of the PP instability, discovered in previous
Newtonian works [64,84].
Finally, Fig. 12(c) shows the ’m � t diagram for the

m ¼ 1–3 modes. It shows that while all modes initially
have arbitrary phases and pattern speeds, they eventually
settle to the pattern speed of the dominant m ¼ 1 mode
possibly due to nonlinear interaction between the modes.
The pattern speed of the m ¼ 1 mode is slightly below the
speed of the disk at rc, which means that the mode coro-
tation radius rcr lies just outside rc. The close proximity
of the mode corotation radius to the radius of the disk
density maximum is also typical for PP nonaxisymmetric
instabilities, as discovered in previous Newtonian works
[61,64,82]. All these features allow us to conclude that the
observed m ¼ 1 mode is indeed the PP instability.
Figure 13 shows the set of four diagrams for simulation

AC2, in which an m ¼ 2 density perturbation is added
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FIG. 13 (color online). The behavior of the dominant nonaxisymmetric modes and the radial character of the m ¼ 2 ð0; 0Þ PP mode
in the simulation AC2 (see the caption of Fig. 12 for details).
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initially. Figure 13(a) represents theDm � t diagram for the
modes with m ¼ 1–6. In this case, only the mode with
m ¼ 2 exhibits pronounced exponential growth. The rest
of the modes either remain stable or are not excited, show-
ing rapid growth only in the very end of the simulation,
when the amplitude of the m ¼ 2 mode reaches the non-
linear regime and coupling between the modes becomes
important. Figures 13(b) and 13(d) show the radial profile
and azimuthal shape of the mode. These are again typical
for the principal ð0; 0Þ type PP instability with m ¼ 2.
Figure 13(c) shows the ’m � t diagram for the m ¼ 1–3
modes. The dominantm ¼ 2mode rotates uniformly in the
same direction with the disk, while the other two modes do
not exhibit clear rotation pattern until after �4 orbital
periods, when they align in phase with the m ¼ 2 mode.
The pattern speed of the dominant mode inferred from this
plot corresponds to the corotation radius just outside of rc.
Similarly to the simulation AC1 above, all these features
are typical of the PP instability, studied in previous works in
the Newtonian approximation [61,64,82].

While unstable modes in model B are very similar to
those of model A, in model C higher-order PP modes
become dominant. This is expected [63] since model C is
more slender than models A and B. Indeed we observe that
the most unstable mode for model C is them ¼ 3 PPmode,
while m ¼ 2 and m ¼ 4 have comparable but smaller
growth rates. The four diagrams for m ¼ 3; 4 modes are
not qualitatively different from those for the m ¼ 1; 2
modes in simulations AC1 and AC2 above. They also
exhibit all the features typical of the PP instability de-
scribed above.

We can therefore conclude that the PP instability with
various values of azimuthal number m is observed in all of
our disk models in the Cowling approximation. For the
reader’s reference, the parameters of unstable modes cal-
culated for all of our simulations are summarized in
Table V.

C. Dynamical background

We now turn to the analysis of nonaxisymmetric insta-
bilities, which develop when the disks are evolved in a
fully dynamical general-relativistic framework. We again
consider evolutions with and without artificial density
perturbation, adding m ¼ 1; 2 perturbations for models A
and B andm ¼ 1; 2; 3 perturbations for model C. While we
observe PP-type instabilities in the Cowling case, in the
fully dynamical GR case we observe two distinct types of
instabilities: the PP type and a GR analog of the so-called
intermediate type (I type) instability [89,91]. As in the
Cowling case, instabilities in the moderately slender
models A and B have very similar properties, so it suffices
to present the result only for the case of model A. Model C
is more slender and therefore favors instabilities with
higher azimuthal numbers than those of models A and B,
so we consider this model separately.
For the analysis of nonaxisymmetric modes we adopt the

same approach as in Sec. VB above for simulations on a
fixed background, with one exception: For evaluating mode
growth rates y2, instead ofDm, we use quantities Gm intro-
duced in Sec. III D above. This is necessary because the
values of the mode amplitudesDm at a fixed radial location
oscillate due to disk oscillations, making it hard to infer

TABLE V. Quantitative characteristics and types of the nonaxisymmetric modes for the simulations studied in Sec. V. For each of the
simulations, the table lists one or two dominant unstable modes.

Cowling Full GR

Model m Type y1 y2 �p=�0 rcr=rc Model m Type y1 y2 �p=�0 rcr=rc

AC 2 PP �0:10ð5Þ 0.21(1) 0.89(2) 1.07(1) AF 1 PP �0:17ð5Þ 0.300(8) 0.83(5) 1.12(4)

AC1 1 PP �0:08ð4Þ 0.17(1) 0.93(2) 1.04(1) AF1 1 PP �0:18ð5Þ 0.294(8) 0.82(5) 1.11(4)

AC2 AF2 1 PP �0:17ð3Þ 0.30(1) 0.83(3) 1.12(3)

2 PP �0:09ð5Þ 0.22(1) 0.95(2) 1.03(1) 2 I �0:6ð1Þ 0.17(3) 0.68(5) 1.26(6)

BC 1 PP �0:04ð5Þ 0.16(1) 0.96(5) 1.03(3) BF 1 PP �0:16ð5Þ 0.28(3) 0.84(5) 1.12(4)

2 PP �0:12ð6Þ 0.18(1) 0.94(3) 1.04(2)

BC1 1 PP �0:06ð5Þ 0.16(1) 0.94(5) 1.04(3) BF1 1 PP �0:12ð5Þ 0.270(8) 0.88(5) 1.08(4)

BC2 1 PP �0:04ð5Þ 0.17(1) 0.96(5) 1.03(3) BF2 1 PP �0:13ð5Þ 0.29(2) 0.87(5) 1.09(4)

2 PP �0:08ð6Þ 0.17(1) 0.96(3) 1.03(2) 2 I �0:5ð1Þ 0.11(2) 0.75(5) 1.19(5)

CC 3 PP �0:06ð5Þ 0.21(2) 0.98(2) 1.01(1) CF

4 PP �0:04ð5Þ 0.14(1) 0.99(2) 1.00(1) 4 I �0:84ð8Þ 0.16(1) 0.79(2) 1.14(2)

CC1 3 PP �0:04ð5Þ 0.24(1) 0.99(2) 1.00(1) CF1 1 PPa? ?? ?? - -

4 PP �0:04ð5Þ 0.16(2) 0.99(2) 1.00(1) 4 I �0:84ð8Þ 0.15(1) 0.79(2) 1.14(2)

CC2 2 PP �0:04ð5Þ 0.20(1) 0.99(2) 1.00(1) CF2 2 I �0:6ð1Þ 0.279(7) 0.66(5) 1.26(5)

3 PP �0:06ð5Þ 0.22(1) 0.98(2) 1.01(1) 4 I �0:8ð2Þ 0.16(1) 0.80(5) 1.14(4)

CC3 3 PP �0:07ð5Þ 0.23(1) 0.98(2) 1.01(1) CF3 3 I �0:7ð1Þ 0.318(8) 0.76(3) 1.17(3)

4 PP �0:04ð5Þ 0.15(2) 0.99(2) 1.00(1) 4 I �0:80ð8Þ 0.16(2) 0.80(2) 1.14(2)

aFor the simulation CF1, it was not possible to accurately determine the growth rate and pattern speed of the m ¼ 1 mode. We
classified this mode as a PP type due to the character of its ’m � r and Dm � r diagrams, which are typical for the PP modes.
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accurate growth rates of the modes. We have found that
mode growth rate y2 can be calculatedmore accurately from
a time behavior of Gm, because it is expressed in terms of
integrals over the radius and as such it is much less affected
by radial oscillations. With this exception, we follow the
same approach as described in Sec. VB to determine mode
types, growth rates, and pattern speeds. These quantities for
all models are tabulated in Table V for reference.

In most of the simulations with fully dynamical GR, the
BH responds to the excitation of the m ¼ 1 mode by
developing an outspiraling motion, as described earlier in
Sec. IV. The position vector �rBH of the BH starts to rotate
with approximately constant angular velocity �BH, while
the length of this vector grows exponentially. In order to
characterize this motion and study it in the context of the
development of nonaxisymmetric modes, we plot the time
evolution of the BH position vector length rBH=rg and

phase angle ’BH on the Gm � t and ’m � t diagrams,
respectively. From these plots we can calculate the quan-
tities�BH=�0 and y2ðBHÞ that can be directly compared to
those of nonaxisymmetric modes. These quantities are also
listed in Table V.

Figure 14 shows the time evolution and radial profiles of
the amplitudes and Fourier angles of the dominant unstable
modes for the simulation AF1, which represents fully
dynamical GR evolution of the initial disk model A with
an added m ¼ 1 density perturbation. The top left panel
contains the time evolution of Gm for m ¼ 1–4 and the
normalized coordinate length of the BH position vector
rBH=rg. The diagram shows that the m ¼ 1 mode is the

dominant one. It also shows that the BH responds to the
growth of them ¼ 1mode and the distance from the BH to
the origin grows exponentially at the same rate as the
dominant m ¼ 1 mode.
Figure 14(c) shows the time evolution of the Fourier

phase angles ’m for m ¼ 1; 2; 3, measured at a fixed radial
coordinate location near the inner edge of the disk r�. The
phase of the dominant m ¼ 1 mode after a short initial
readjustment exhibits almost uniform linear growth.
Readjustment of the mode happens because the added
artificial perturbation initially does not have the right shape
of the mode and needs some time (less than one orbital
period) to readjust itself. Similar behavior is observed
in the corresponding Cowling simulation, but it is less
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FIG. 14 (color online). The behavior of the dominant nonaxisymmetric modes and the radial character of the m ¼ 1 ð0; 0Þ PP mode
in the simulation AF1 (see the caption of Fig. 12 for details).
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pronounced [see them ¼ 1 phase angle during the first half
orbit in Fig. 12(c)]. Phases of the rest of the modes initially
do not show uniform linear growth, but as the amplitude of
the m ¼ 1 mode increases, the higher-order modes start to
align in phase with the dominant m ¼ 1 mode, most likely
due to nonlinear mode interaction. Notice that the pattern
speed of the m ¼ 1 mode calculated from this diagram is
lower compared to the Cowling case.

Figures 14(b) and 14(d) show the radial and angular
profiles of the dominant m ¼ 1 mode at t ¼ 2:5torb. The
location of r�, rþ, and rc shown in the plot refers to the
same time. Because the disk undergoes radial oscillations,
special care must be taken when calculating the mode
corotation radius rcr, which is an important quantity that
characterizes nonaxisymmetric modes. To find rcr, we
solve an equation between the mode pattern speed �p

and the disk angular velocity: �ðrcrÞ ¼ �p. The latter

changes during the evolution of the disk, so strictly speak-
ing the value of rcr will also depend on time. However, we

have found that in all our simulations the change of the
profile of � in the course of the evolution is very small;
therefore within the measured accuracy the corotation
radius is independent of time. The values of rcr=rc, calcu-
lated in this way for all simulations on a dynamical back-
ground, are also listed in Table V. For simulation AF1, rcr
lies outside of rc with rcr=rc � 1:17. Such a value of rcr=rc
is typical for a PP instability and comparable to the values
observed in previous Newtonian studies with a moving
central object and a massive self-gravitating disk [64].
Similar to the Cowling case, the radial profiles of Dm

and ’m show structural features that are typical for a PP
instability of ð0; 0Þ type in the Blaes and Hawley classifi-
cation [88]. In particular, the mode amplitude displayed in
Fig. 14(b) is higher near the edges of the disk and has a
minimum near corotation rcr. The mode amplitude does
not vanish anywhere in the disk, which characterizes the
mode as having type ð0; 0Þ. The profile of the Fourier angle
of the mode, shown in Fig. 14(d), has a specific S-shaped
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FIG. 15 (color online). The behavior of the dominant nonaxisymmetric modes and the radial character of the m ¼ 2 I mode in the
simulation AF2 (see the caption of Fig. 12 for details).
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structure that consists of a trailing spiral pattern outside the
corotation radius,9 a leading spiral pattern inside the coro-
tation radius, and a short segment near rcr that connects the
two spiral patterns.

However, compared to the Cowling approximation, the
growth rate of the m ¼ 1 mode is amplified by almost a
factor of �1:5, and there are reasons to believe that the
outspiraling motion of the BH is responsible for this am-
plification. The mechanism which drives the unstable out-
spiraling motion of the BH is similar to the one described
in [94]. The disk creates a hilltop potential, which has a
maximum at the origin, so the BH initially is located at the
point of unstable equilibrium. The BH can reduce its
potential energy by converting it into kinetic energy of

orbital motion around the common center of mass of the
diskþ BH system. Such orbital motion requires angular
momentum which can be borrowed from the disk through
the development of a nonaxisymmetric m ¼ 1 mode.
Because the orbital motion of the BH requires a compen-
sating displacement of the disk center of mass, removing
angular momentum from the disk increases the amplitude
of the m ¼ 1 mode, which in this case is the PP mode.
Next we consider the dominant nonaxisymmetric modes

that develop in the simulation AF2, in which an m ¼ 2
density perturbation was added. Figure 15 presents the
time evolution and radial profiles of Gm and ’m of these
modes. Comparing Fig. 15 to Fig. 12, which presents the
same set of diagrams for the Cowling simulation AC2, we
can see that the type of the m ¼ 2 mode in this simulation
is quite different from the PP one observed in the simula-
tion AC2. First, in the Dm � r diagram in Fig. 15(b), the

FIG. 16 (color online). A sequence of four successive snapshots of the disk density in the equatorial plane, combined with the
corresponding ’m � r diagrams for them ¼ 1 andm ¼ 2modes for the simulation AF2. The radial character of them ¼ 1 andm ¼ 2
modes is represented by a sequence of red and blue dots, respectively.

9We remind the reader that the disk rotates counterclockwise
on all ’m � r diagrams.
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minimum of Dm lies inside rc, unlike the case of the PP
mode where such a minimum is located close to the mode
corotation radius rcr. Second, the ’m � r diagram of the
m ¼ 2 mode in Fig. 15(d) consists only of trailing spirals
and does not have a leading spiral pattern inside corotation,
as would be the case for PP modes. Finally, as Fig. 15(d)
illustrates, the mode phase angle makes an abrupt turn by
�=2 radians near rc, which would be the case when the
disk were subjected to an elliptic (barlike) deformation.

Overall, this mode looks very similar to the so-called
intermediate type (I type) modes found in earlier studies
using Newtonian gravity (see [64,89–91]). In particular,
[64] observed the I modes in their 3D Newtonian simula-
tions of self-gravitating disks with various disk-to-central
object mass ratios MD=Mc and values of parameter T=jWj
(see Sec. 4 in [64]). A subset of their models that develop
the I-mode instability (namely, E31 and E32) have parame-
ters MD=Mc ¼ 0:2, T=jWj � 0:47, and 4�G�=�c � 4,
which are comparable to those of our models A or B (listed
in Table I). Notice that in this simulation the m ¼ 1 mode
is also excited, as can be inferred from Fig. 15(a). The
growth rate and pattern speed of this mode is the same as in

simulation AF1 (cf. Table V). The m ¼ 1 mode develop-
ment is again correlated in timewith outspiraling motion of
the BH, which is apparent in Fig. 15(a). The analysis of the
mode character, similar to the one performed abov, con-
firms that in this simulation the m ¼ 1 mode has the same
ð0; 0Þ PP type as in the simulation AF1. It grows faster than
the m ¼ 2 mode, so that both modes become of compa-
rable amplitude by the end of the simulation. The radial
character of the two coexisting modes is also depicted in
Fig. 16, which shows a sequence of snapshots of the
’m � r diagrams at different times, superimposed with
the disk density in equatorial plane.
In the case of model C, we used artificial density per-

turbations with m ¼ 1; 2; 3 and observed the development
of four unstable modes. The same analysis that we have
done before for models A and B reveals that only the
m ¼ 1 mode has PP type, while the modes with
m ¼ 2; 3; 4 have I type. The I modes with m ¼ 3 and
m ¼ 4 represent triangular and square deformations of
the disk, respectively. Such modes were previously ob-
served in Newtonian simulations of narrow self-gravitating
annuli [90]. Figure 17 shows the time behavior of Gm and
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FIG. 17 (color online). Gm � t diagrams for modes with m ¼ 1–4 in simulations with disk model C.
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rBH=rg for simulations of model C with different added

perturbations. As can be seen from these plots, the fastest
growing mode is the I mode with m ¼ 3, while the slowest
one is them ¼ 1 PP mode (cf. Table V). The latter remains
subdominant in all simulations, its growth does not show
clear exponential behavior, and it is poorly correlated with
the motion of the BH. This happens because the m ¼ 1
mode does not form a global coherent pattern. In this case,
the quantity Gm does not correspond to the amplitude of a
global mode but rather to some combination of local
m ¼ 1 Fourier harmonics. However, as soon as the ampli-
tude of the m ¼ 1 mode reaches Gm � 10�4, it shows a
better correlation with the motion of the BH, as can be seen
in Fig. 17 for simulations CC1 and CC3.

In model C, the m ¼ 1 mode starts growing when the
other modes with higher m have already reached signifi-
cant amplitudes (Gm � 0:1). Moreover, the growth rate of
the m ¼ 1 mode has different values depending on which
of the higher-mmodes dominates the dynamics of the disk.
For example, in models CF1, CF2, and CF3, in which the
modes with m ¼ 4, m ¼ 2, and m ¼ 3 reach the largest
amplitudes, the m ¼ 1 mode has the growth rates of 0.11,
0.23, and 0.28, respectively. Such behavior of the growth
rates is likely to be a result of nonlinear interaction be-
tween these modes. In other words, the m ¼ 1 mode is
never linearly independent from the m> 1 modes, making
it hard to explore unambiguously the influence of the BH
motion on the growth rate of the m ¼ 1 mode.

Finally, we need to point out that the comparisons with
the Cowling simulations presented in this section should be
taken with a grain of salt. The initial perturbation intro-
duced by the blending of two metrics in the initial data
changes the BH mass by a small amount (� 2:5%), which
not only drives the disk out of equilibrium but also changes
the equilibrium configuration itself. Therefore, strictly
speaking, the disks in Cowling and full GR represent
different objects and cannot be directly compared. As a
result, these disks will have different evolutionary paths
not only due to dynamical GR effects but also due to
differences in BH masses. However, because the latter is
small, we believe that the differences in evolution are
mainly caused by the former, while the latter should not
affect the time evolution significantly. For example, for
models A and B which have different disk-to-BH mass
ratios (0.24 vs 0.17), we do not observe qualitative differ-
ences in time evolution, and quantitative differences are
small (e.g., the differences in the growth rates are within
6%). Therefore, we conclude that most of the differences
between our Cowling and full GR simulations are caused
by the effects of GR.

D. Gravitational wave detectability

As mentioned before in Sec. IV, all of our disk models
are unstable to nonaxisymmetric modes. Once formed,
these modes start growing exponentially until they reach

a saturation regime due to nonlinear effects. This process is
accompanied by a redistribution of the angular momentum
of the disk until the profile of the specific angular momen-
tum becomes steep enough for the disk to be stable to
nonaxisymmetric instabilities (see the related discussion
in [86,91]). Before the angular momentum is redistributed,
and even after the disk becomes stable, the amplitude of
nonaxisymmetric modes in the disk is likely to remain high
(possibly near the saturation level) [86]. The presence of
nonaxisymmetric deformations in the disk leads to emis-
sion of potentially detectable gravitational radiation.
Below, we give estimates of the detectability of the GW

signal from saturated nonaxisymmetric instabilities in our
disk models. We make our estimates based on the
Newtonian quadrupole formula for the initial disk models
with an added m ¼ 2 mode with an amplitude Dm ¼ 0:1.
We calculate an approximate number of cycles that the
instability needs to remain at that amplitude in order for the
emitted GW to be detectable. These numbers are listed in
Table VI for an event at a distance of 10 kpc (our Galaxy)
and 18 Mpc (a distance to the Virgo cluster), for models A
and C. The table shows that an event in our Galaxy will be
detectable with the current Laser Interferometer
Gravitational-Wave Observatory (LIGO) detector even
with a single cycle of the nonaxisymmetric mode. An event
in the Virgo cluster, on the other hand, is unlikely to be
detectable with the current LIGO detector, since it would
require an unrealistically large number (> 106) of cycles.
Second- and third-generation detectors such as the
Advanced LIGO and the Einstein Telescope can detect
such events if nonaxisymmetric modes persist for
�104–105 and �40–150 cycles, respectively. Finally, we
point out that it is currently unclear how long a nonaxi-
symmetric mode in a given disk model will persist in the
nonlinear regime. This is likely to depend on the details of
nonlinear mode properties, accretion rate, magnetic fields
and the thermodynamic state of the disk matter [86].

VI. CONCLUSION

In this paper we have explored nonaxisymmetric
instabilities in self-gravitating disks around BHs using

TABLE VI. Minimal number of wave cycles needed for gravi-
tational waves from nonaxisymmetric instabilities to be detect-
able by LIGO, Advanced LIGO, and Einstein Telescope (ET). It
is assumed that the value of the amplitude of the instability is at
least Dm ¼ 0:1 during this time. Estimates are given for the
sources with parameters of models A and C, located at distances
10 kpc and 18 Mpc.

Source LIGO Adv. LIGO ET

A at 10 kpc 1 1 1

C at 10 kpc 2 1 1

A at 18 Mpc 1:7
 106 7900 40

C at 18 Mpc 6:4
 106 80 000 150
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three-dimensional hydrodynamical simulations in full GR.
We studied several moderately slender and slender models
with disk-to-BH mass ratio ranging from 0.11 to 0.24. The
parameters of these models are listed in Table I.

To obtain a self-consistent equilibrium disk model out-
side a BH, we solve the coupled system of Einstein
constraints and Euler equations using an iterative Green
functions approach, implemented in the RNS code [150]. To
avoid coordinate singularities, we transform the stationary
initial data outside the BH horizon from quasi-isotropic to
nonsingular horizon-penetrating coordinates. We set the
data inside the BH horizon to the analytic Kerr-Schild
solution and smoothly blend it with the computed data
outside the horizon.

We evolve the metric using a first-order form of the
generalized harmonic formulation of the Einstein equa-
tions with adaptive constraint damping. The metric evolu-
tion equations are discretized on multiblock grids and
solved using eighth-order finite difference operators.
We evolve the matter with relativistic hydrodynamics
equations in flux-conservative form, using a finite volume
cell-centered discretization scheme. We use a �-law equa-
tion of state to model disk matter. Our numerical approach
makes extensive use of the curvilinear mesh adaptation in
order to achieve desired resolutions in different parts of the
domain.

We did not observe the runaway instability in our mod-
els. This is perhaps not surprising because in our models
the Roche surface is open and the inner edge of the disk is
widely separated from the cusp in equipotential surfaces
(see Fig. 3). Brief episodes of accretion that we observed
do not transfer enough mass to change the configuration of
the Roche lobe. Therefore, the absence of the runaway
instability is mainly the consequence of the particular
choice of models and does not exclude the possibility
that the instability develops in models with different initial
parameters, especially in models with smaller specific
angular momentum.

In all models that were explored we observed unstable
nonaxisymmetric modes. We have performed detailed
analysis of these modes to determine their types, growth
rates, radial profiles, and pattern speeds (see Table V). For
all simulations in the Cowling approximation we observe
the development of the PP instability withm ¼ 1–4. In this
case, the azimuthal number m of the fastest growing mode
depends on the disk slenderness: For moderately slender
models A and B such a mode is m ¼ 2, while for the more
slender model C, it ism ¼ 3. In the simulations in full GR,
we observe two distinct types of instabilities. The unstable
mode with m ¼ 1 has PP type, similar to the one observed
in the Cowling case. Unstable modes with m> 1 become
the intermediate modes (I modes), representing elliptical,
triangular, or square deformations of the disk. In full GR,
the fastest growing mode is m ¼ 1 in models A and B and
m ¼ 3 in model C.

In the full GR case, the development of the m ¼ 1 PP
mode is accompanied by an outspiraling motion of the BH.
The distance from the BH center to its initial position has
the same growth as that of the m ¼ 1 mode amplitude. We
find that due to this motion, the growth rate of the m ¼ 1
mode is amplified by a factor of � 1:5 compared to the
Cowling case for massive models A and B. This amplifi-
cation makes the m ¼ 1 PP mode the fastest growing one
in models A and B, while in the case of the less massive
model C, this mechanism is not as efficient. The overall
picture of the unstable modes in full GR is qualitatively
similar to and consistent with the Newtonian case
[64,80,90].
Evolution of nonaxisymmetric instabilities in the non-

linear regime will be associated with the emission of high-
frequency gravitational radiation. In Table VI, we give
rough estimates of the detectability of this radiation in
terms of the number of cycles that a nonaxisymmetric
deformation must persist in order to be detectable. While
even a single cycle of gravitational radiation from this
deformation is detectable if it occurs in our Galaxy, for
more reasonable distances such as the Virgo cluster it is
only detectable with Advanced LIGO, and only in the case
that the disk deformation persists for thousands of cycles
(see Table VI). It is currently unclear how long a non-
axisymmetric deformation can persist in the nonlinear
regime.
Finally, we would like to point out limitations of our

current simulations. We use simplified initial disk models
and do not include realistic microphysics, neutrino cooling,
and magnetic fields. Future studies of nonaxisymmetric
instabilities should take into account these effects, as
well as consider a larger set of parameters, such as non-
constant angular momentum distribution, various disk
sizes, masses, BH spins, etc. The properties of the disk in
the nonlinear regime, such as the persistence of nonaxi-
symmetric structures in realistic disk models, should also
be addressed.
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APPENDIX

1. Transforming initial data to
horizon-penetrating coordinates

Here we present the transformation of the stationary
axisymmetric initial data in quasi-isotropic coordinates to
time-independent horizon-penetrating coordinates which
is used in Sec. III in order to remove the degeneracy at
the BH horizon. In our initial data, the metric is given in
general form (6) and represents an axisymmetric deforma-
tion of a Schwarzschild BH by a massive equilibrium torus.
The sought transformation has to satisfy the following
requirements:

(i) The metric in the new coordinates is time-
independent;

(ii) the metric does not have pathologies (degeneracy or
divergence) at the event horizon;

(iii) the three-metric on t ¼ const foliation is positive
definite (i.e. the t ¼ const foliation is spacelike).

We build our transformation by analogy with the trans-
formation from isotropic Boyer-Lindquist coordinates
[170] to horizon-penetrating Kerr-Schild coordinates
[171] of Schwarzschild spacetime (see also [172] for a
general case of a rotating BH). In this case, the line element
has the following form:

ds2is ¼ �
�
1�m=2r�
1þm=2r�

�
2
dt2 þ c 4ðdr2� þ r2�d�2Þ;

where m is the BH mass, r� is the isotropic radius,
d�2 � d	2 þ sin	2d’2 is the solid angle element, and
c � 1þ m

2r�
is the conformal factor. At the event horizon

r�;h ¼ m=2 the determinant of the isotropic metric is zero.

In the horizon-penetrating Kerr-Schild coordinates, the
line element will be

ds2ks¼�ð1�HÞd�t2þ2Hd�tdrþð1þHÞdr2þr2d�2;

where H � 2m=r and r � r�ð1þm=2r�Þ2 is the
Schwarzschild radial coordinate.

The Jacobian of the transformation from the isotropic
ðt; r�; 	; ’Þ to the horizon-penetrating coordinates
ð�t; r; 	; ’Þ has the following form:

Dðt; r�; 	; ’Þ
Dð�t; r; 	; ’Þ ¼

1 � H
1�H 0 0

0 r�
r
ffiffiffiffiffiffiffiffi
1�H

p 0 0
0 0 1 0
0 0 0 1

2
6664

3
7775:

The metric in the new coordinates remains independent
of time, which is also true for an arbitrary transformation
with the following Jacobian:

Dðt; r�; 	; ’Þ
Dð�t; r; 	; ’Þ ¼

1 fðr; 	Þ hðr; 	Þ 0
0 gðr; 	Þ pðr; 	Þ 0
0 0 1 0
0 0 0 1

2
6664

3
7775; (A1)

where the functions ff; g; h; pg do not explicitly depend on
time and are only constrained by the regular Jacobian
integrability conditions:

@fðr; 	Þ
@	

¼ @hðr; 	Þ
@r

;
@gðr; 	Þ

@	
¼ @pðr; 	Þ

@r
:

For the case of a general axisymmetric spacetime, the
metric in quasi-isotropic coordinates is given by

g is �
gtt 0 0 �!g’’
0 e2� 0 0
0 0 r2e2� 0

�!g’’ 0 g’’

2
6664

3
7775;

where gtt � ��2 þ!2g’’ and g’’ � B2��2r2� sin	2. We

can select the set of functions ff; g; h; pg in the Jacobian
(A1) above to construct a transformation from the quasi-
isotropic to horizon-penetrating coordinates, which satis-
fies the above requirements for an arbitrary stationary
axisymmetric deformation of Schwarzschild if we choose

fðr;	Þ¼1�1=�2ðr;	Þ; gðr;	Þ¼e��ðr;	Þ=�ðr;	Þ:

Since the metric potentials �ðr�; 	Þ and �ðr�; 	Þ are known
as functions of r� and not r, we need to express the new
radial coordinate r in terms of r�. The required relations in
the following differential form are obtained by inverting
the Jacobian (A1):

�
@r�
@r

�
	¼const

¼ 1

gðr�; 	Þ ;
�
@r�
@	

�
r�¼const

¼ 0:

These need to be integrated along the radial coordinate
from r�;h to r� for each 	:

rðr�; 	Þ � rh ¼
Z r�

r�;h

d�

gð�; 	Þ ¼
Z r�

r�;h
�ð�; 	Þe�ð�;	Þd�;

where rh is the radius of the event horizon in new coor-
dinates. The remaining two unknown functions h and p can
be calculated by 1D integration of the Jacobian integra-
bility conditions:

hðr; 	Þ ¼
Z r

rh

dr0
@fðr0; 	Þ

@	
¼ 2

Z r�

r�;h

�0
	ð�; 	Þe�ð�;	Þ
�2ð�; 	Þ d�;

pðr; 	Þ ¼
Z r

rh

dr0
@gðr0; 	Þ

@	

¼ �
Z r�

r�;h

�
�0
	ð�; 	Þ þ

�0
	ð�; 	Þ
�ð�; 	Þ

�
d�:

After the transformation, the metric in the new horizon-
penetrating coordinates has the following form:
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gks

�

gtt fgtt hgtt �!g’’

. . . e2�g2þgttf
2 fhgttþe2�gp �!fg’’

. . . . . . h2gttþe2�ðp2þr2�Þ �!hg’’

. . . . . . . . . g’’

2
666664

3
777775;

where ellipsis indicate matrix elements which can be
filled in by symmetry. In the limit of r ! rh, the
functions f and g tend to infinity, while h and p vanish.
The resulting metric at the horizon remains finite and
nondegenerate:

lim
r!rh

gks �
0 1 0 0
1 2 C 0
0 C e2�r2� 0
0 0 0 g’’

2
6664

3
7775;

where C � limr!rh½fhgtt þ e2�gp� is a finite constant.

2. Stable evolution of a uniformly rotating polytrope

In this section, we present results of testing the time
evolution of a uniformly rotating polytropic star for nu-
merical stability and convergence. In our tests, we use
geometrized units based on the solar mass, in which G ¼
c ¼ M� ¼ 1. The parameters of the star in the geome-
trized and CGS units are summarized in Table VII. We use
a 13-block cubed sphere system that was described in [102]
[see Fig. 1(b) and the related discussion in Sec. II A above].
For the current setup, we fix the sizes of the blocks by
choosing r0 ¼ 2:5, r1 ¼ 9, and r2 ¼ 14 (see Sec. 4 of
[102] for the definition of r0, r1, and r2), with each block
having an equal number of N3 grid cells. The sizes of the
domain and its blocks are selected in such a way that the

star occupies � 90% of the entire domain in the radial
equatorial direction, and the inner seven blocks of the
system lie inside the star. This setup allows one to test
how much the accuracy and convergence of our numerical
scheme are affected by interpolation errors on the inter-
block boundaries which thread the bulk of the star.
The stability of the numerical scheme for evolving the

spacetime metric depends on the numerical dissipation
parameter � [144] and the constraint damping coefficients
� and �2 (see Sec. II E). In general, higher values of
numerical dissipation restrict the time step, while lower
values are undesirable because they do not provide enough
suppression of the numerical noise, which needs to be
dissipated for stability [173]. For the current setup, we
choose � ¼ 0:2 and � ¼ �2 ¼ 0:1. Values of the constraint
damping parameters higher than � 0:5 lead to numerical
instabilities in our simulations of stars.
Initial data for the time evolution are generated by the

RNS code [150], which uses the Komatsu-Eriguchi-Hachisu

(Stergioulas-Friedman) method [150,152] to produce equi-
librium models of stationary rotating relativistic stars.
Since RNS is a 2D solver which uses its own grid that is
different from the 3Dmultiblock grid of our time-evolution
code, we interpolate the data from the 2D grid to the 3D
multiblock grid using fourth-order Lagrange interpolation.
Also, because the variables in the generalized harmonic
formulation contain first derivatives of the metric and
because the resolution on the 2D grid is usually much
higher than on the multiblock 3D grid, we perform nu-
merical differentiation on the 2D grid. The resulting de-
rivatives are then interpolated onto the 3D grid. Note that
the interpolation procedure is not consistent with the
Einstein constraint equations and hence produces numeri-
cal noise.

TABLE VII. Physical parameters of the uniformly rotating polytropic star used for the code
tests, in geometrized and CGS units, where Rp=Re is the ratio of the polar to equatorial radii of

the star, J=M2 is its angular momentum, normalized with the square of the ADMmass of the star
M, and T=jWj is the ratio of the kinetic to binding energy of the star.

Geom. CGS

Polytropic scale K 100 1:46
 105 cm5 g�1 s�2

Polytropic index � 2 2

Central rest-mass density �c 0.001 6:17
 1014 g cm�3

Ratio Rp=Re 0.7 0.7

ADM mass M 1.49 1.49

Rest mass M0 1.59 1.59

Equatorial radius Re 12.32 1:823
 106 cm

Angular momentum J 1.32 1:16
 1049 g cm2 s�2

Normalized ang. mom. J=M2 0.59 0.59

Kinetic/binding en. T=jWj 0.0748 0.0748

Angular velocity � 0.0215 4300 s�1

Keplerian angular velocity �K 0.0286 5801 s�1

Rotational period P 292.1 1:44
 10�3 s
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The system is evolved up to t ¼ 350, which corresponds
to 1.73 ms or 10 dynamical time scales of the star.10 In
vacuum regions outside the star, we use an artificial atmo-
sphere, which has a density of �atm ¼ 10�7�maxð0Þ, where
�maxð0Þ is the maximum density at t ¼ 0. If during the
evolution the density in a cell drops down below a thresh-
old value set to �thr ¼ 2�atm, the density in this cell is reset
to the artificial atmospheric value. To estimate the accuracy
of our code, we have performed a convergence study using
three different resolutions with N3 ¼ 20
 20
 20, 40

40
 40, and 80
 80
 80 grid points in each block. We
have analyzed various integral norms of the errors in all
evolved variables, including 50 spacetime variables, 5
primitive variables, and 5 conserved variables. We have
also analyzed integral norms of the Hamiltonian and mo-
mentum constraints, as well as the behavior of conserved
integral quantities such as total rest mass and total angular
momentum.

In all cases, we observe the expected second-order con-
vergence. As an example, Fig. 18 (top panel) shows the

time evolution of the L1 norm of the normalized density
deviation 
� � ½�ðtÞ � �ð0Þ�=�maxð0Þ for the three reso-
lutions. Because of accumulation of truncation errors, this
deviation exhibits a steady growth (modulo small varia-
tions because of oscillations of the star) throughout the
entire evolution. The deviation for N ¼ 40 is larger than
that for N ¼ 80 by a factor of � 4, which is a clear
signature of second-order convergence. However, the de-
viation for N ¼ 20 is larger than that for N ¼ 40 by a
smaller factor of � 1:5, which means that the resolution
N ¼ 20 is insufficient for achieving a convergent regime.
A similar convergent behavior is observed for integral
norms of the deviations of all of the rest of the variables.
Figure 18 (bottom panel) shows the plot of the L1 norm

of the Hamiltonian constraint violation as a function of
time. This quantity is not zero at t ¼ 0, since initial con-
ditions were interpolated from the 2D grid and interpola-
tion errors were introduced. However, because of the
constraint damping scheme, the Hamiltonian constraint
violation significantly drops for medium and high resolu-
tions within the first 0.2 ms. During subsequent evolution
the value of the Hamiltonian constraint remains stable and
clearly shows second-order convergence with resolution;
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FIG. 18 (color online). Time evolution of L1 norms of the
Hamiltonian constraint (top) and density solution error

�=�maxð0Þ (bottom) for three different resolutions.

 0.992

 0.994

 0.996

 0.998

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

m
/m

0

time, ms

20x20x20
40x40x40
80x80x80

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

l/l
0

time, ms

20x20x20
40x40x40
80x80x80

FIG. 19 (color online). Time evolution of the total rest mass
(top) and the total angular momentum (bottom) for three differ-
ent resolutions. Both quantities are normalized to their values at
t ¼ 0.

10The dynamical time tD is defined as tD ¼ Re

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Re=M

p
, where

Re is a proper equatorial circumferential radius and M the
Arnowitt-Deser-Misner (ADM) mass of the star. It corresponds
to the inverse of the orbital frequency � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

M=R3
e

p
at Re.
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i.e. the values of the Hamiltonian constraint for N ¼ 20,
40, and 80 are in an approximate ratio 16:4:1. Momentum
constraints show a similar behavior.

Figure 19 demonstrates time evolution of the total rest
mass (upper panel) and total angular momentum (lower
panel) of the star. In our numerical simulations these
quantities are not conserved mostly due to interpolation
errors on the interblock boundaries that pass through the
bulk of the star. By the end of the simulation, for N ¼ 20,
40, and 80, the total rest mass decreases by 0.88%, 0.84%,
and 0.25%, respectively, while the total angular momentum
decreases by 0.07%, 0.12%, and 0.05%, respectively. These
numbers show that the smallest necessary resolution for the
convergent regime isN ¼ 40, which amounts to� 70–100
points across the star.

3. Fundamental modes of a Tolman-Oppenheimer-
Volkoff (TOV) star

As another test of the coupling between the GR and
hydro parts of the code, we evolved a TOV solution on a
seven-block system and measured the frequencies of its
fundamental oscillations both in the Cowling approxima-
tion and in full GR. In these tests, we use geometrized units
in whichG ¼ c ¼ M� ¼ 1. We choose a star with � ¼ 2,
K ¼ 100, and the value of rest-mass density in the center
�c ¼ 1:28
 10�3. These parameters produce a TOV star
with gravitational mass M ¼ 1:4 and circumferential ra-
dius Re ¼ 9:8. This system has already been extensively
studied in the literature and used for the assessment of
relativistic hydrodynamical codes (e.g., [165,174]).
The seven-block cubed sphere system that we used [see
Fig. 1(a)] has the outer radius R ¼ 12, which makes the
star occupy 82% of the domain in the radial direction and
leaves extra room for small oscillations. The size of the
cubical block in the center is a ¼ 4:8, placing it com-
pletely inside the star. The bulk of the star is therefore
threaded by interpolation boundaries between the blocks.
The cubical block contains N3 volume cells, and the outer

blocks have N2 
 ð2NÞ cells. For the tests, we used reso-
lutions N ¼ 20, 40, and 80, which roughly correspond to
40, 80, and 160 points across the star.
To observe and measure the fundamental mode, we

artificially add a small initial perturbation, roughly corre-
sponding to the shape of the mode:


�

�
¼ A cos

�r

2Re

:

The amplitude was chosen to be A ¼ 0:005. Figure 20
displays the resulting oscillatory behavior of the rest-
mass density in the center of the star for three different
resolutions. The left and right panels correspond to fixed
(Cowling approximation) and dynamical spacetime
geometries, respectively. Oscillations of the density are
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FIG. 20 (color online). Time evolution of the density �cðtÞ at the center of a TOV star, normalized by its initial value �0, for three
different resolutions. Left: The Cowling approximation. Right: The fully dynamical GR case.
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FIG. 21 (color online). Power spectrum of the density oscil-
lations �cðtÞ at the center of a TOV star for the highest resolution
simulations in the Cowling approximation (red solid line) and in
full GR (green solid line). Also shown are derivatives of the
power spectrum with respect to the frequency, obtained using the
central finite-differencing scheme. The derivatives allow one to
localize peaks in the power spectrum more accurately. The
vertical axis has arbitrary units.
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accompanied by a secular drift, which reflects accumula-
tion of truncation errors and converges away with resolu-
tion at approximately second-order convergence rate.
Conserved quantities such as the total rest mass and the
total angular momentum (not shown) also exhibit
the second-order convergence, as expected. In particular,
for the Cowling approximation case, the simulation con-
tinued up to 20 ms, and the final rest mass is conserved up
to 8.3%, 3.7%, and 1.1% for resolutions with N ¼ 20, 40,
and 80, respectively. For the full GR case, the simulation
continued for 6 ms and the rest mass is conserved up to
3.2%, 1.3%, and 0.4%, respectively, for the same three
resolutions. This shows that the rate of the mass loss in
the Cowling and full GR simulations is approximately the
same, as expected. Because the bulk of the star is threaded
by interpolation boundaries between the blocks, the mass
loss is significantly higher in this setup than in the case of a
regular Cartesian grid, where we normally observe that the
mass is conserved up to 7–8 significant digits for a similar
resolution.

A Fourier transform of �cðtÞ allows one to measure the
frequencies of the dominant oscillation modes. Figure 21
shows the Fourier power spectrum of �cðtÞ in the Cowling
and full GR cases for simulations with the highest resolu-
tion N ¼ 80. Both spectra contain three easily identifiable
peaks corresponding to the fundamental radial modes F,
H1, and H2. The same plot also shows derivatives of the
spectral power with respect to the frequency, computed
using the central finite-differencing scheme. Zeros of these
numerical derivatives provide accurate estimates of the
location of frequency peaks. The frequency of the F
mode in the Cowling approximation is �ðFÞ ¼
2:684ð40Þ kHz, which is in agreement with the value of
2.706 kHz, found in [165]. In the fully general-relativistic
case, we obtain the frequency �ðFÞ ¼ 1:440ð50Þ kHz,
which also agrees with the value 1.458 kHz, found in
[164]. Note that the error in the values of fundamental
frequencies above is estimated as the distance between
the root of the power spectrum derivative and the nearest
point with a nonzero value.
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