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Long wavelength oscillations (Tkachenko waves) of the triangular lattice of quantized vortices in

superfluid neutron stars have been suggested as one of the possible explanations for the timing noise

observed in many radio pulsars, in particular, for the 100–1000 day variations in the spin of PSR 1828-11.

Most studies to date have, however, been based on the hydrodynamics developed for superfluid Helium. In

this paper we extend the formulation to a two-fluid neutron and proton system, relevant for neutron star

interiors and include the effect of chemical coupling, compressibility and mutual friction between the

components. In particular we find that chemical coupling and compressibility can have a drastic effect on

the mode structure. However, for the slower pulsars rotating at 1–10 Hz (such as PSR B1828-11), most

choices of parameters in the equation of state lead to Tkachenko oscillations with frequencies in the

correct range to explain the timing noise. We also investigate the case of more rapidly rotating pulsars

(above 100 Hz) for which we find that there is a vast portion of parameter space in which there are no

Tkachenko modes, but only modified sound waves at much higher frequencies.
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I. INTRODUCTION

A growing number of radio pulsars have now been
observed for over a decade (some for more than 30 years)
and are, in general, very stable rotators. However,
many pulsars also exhibit timing irregularities, such as
‘‘glitches,’’ which are sudden increases in the rotation
rate, and ‘‘timing noise,’’ a general term which refers to
low frequency quasiperiodic structures that appear in the
timing residuals, once the ‘‘regularly’’ pulsating solution
has been removed. In particular, while the irregularities in
younger pulsars are dominated by the recovery from glitch
events, for a handful of older pulsars there is growing
evidence for long-period (� 100–1000 days) oscillations
in the timing residuals [1]. In some cases these periodici-
ties, and the correlated pulse shape changes, can be par-
tially explained by neutron star free-precession, and one of
the best examples of this is PSR B1828-11, which shows
significant periodicity at �256 days and �511 days [2].
However, there are theoretical arguments stating that mu-
tual friction between the interior superfluid components of
the star would damp out any precessional motion on a short
time scale [3,4] (although Glampedakis et al. [5] have
shown that short wavelength instabilities in the pinned
superfluid could cast an element of doubt on such conclu-
sions). Furthermore, recent work shows that some pulsars
may be switching abruptly between two different states
with different spin-down rates, thus giving rise to the
observed timing behavior [6].

Noronha and Sedrakian [7], following earlier sugges-
tions by Ruderman [8], indicated that an alternative expla-
nation for the observed long term periodicity could be the
propagation of Tkachenko waves in the star. In fact, it has

been suggested that Tkachenko waves excited by glitches
may be driving precession in one of the X-ray Dim Isolated
Neutron stars (XDINs), RX J0720.4-3125 [9].
Neutron star interiors are expected to contain charge

neutral superfluids that rotate by forming an array of
quantized vortices. In their lowest energy state the vortices
form a two-dimensional triangular lattice that can support
elastic oscillations, Tkachenko waves [10], that have been
studied extensively, both theoretically and experimentally,
in superfluid 4He (see e.g. [11] for a review) and recently in
Bose-Einstein condensates (BECs) (see e.g. [12,13]). The
undamped propagation of Tkachenko waves in a neutron
star would lead to periodic variations in the angular mo-
mentum of the superfluid which, due to coupling to the
crust, would lead to variations in the observed rotation rate.
In order to ascertain if this is a viable hypothesis, it is
crucial to understand how the detailed microphysics of
neutron star interiors affects the propagation of the modes.
Most studies to date have been based on the hydrodynam-
ical theory of Tkachenko waves developed by Baym and
Chandler [14,15] for superfluid 4He. In this case, the fluids
can be treated, to a good degree of approximation, as
incompressible, given that the rotation rate is always
well below the sound wave frequency (note, however,
that in BECs, compressibility has a strong effect, due to
the interactions being much weaker and the sound speed
much lower than in Helium), and the system can be de-
scribed as a condensate (the ‘‘superfluid’’) coupled to a
‘‘normal’’ fluid which consists, loosely speaking, of the
thermal excitations of the system.
In a realistic neutron star, on the other hand, one must

take into account not only the effects of rapid rotation, but
also the presence of several massive fluids, describing the
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flow of electrons, protons, superfluid neutrons (and their
excitations at finite temperature) and possibly exotic
particles such as hyperons or deconfined quarks, which
cannot, in general, be assumed to be incompressible.
Furthermore, one must consider various dissipative pro-
cesses that damp out the oscillations. It is well known that
in a multifluid system there will, in general, be many more
dissipation channels than in a simple one-fluid flow de-
scribed by the Navier-Stokes equation [16,17].

Solving the full problem is clearly a daunting task, so in
this paper we shall make a series of simplifying assump-
tions. We take a system of two fluids: the superfluid
neutrons and a charged component of protons and elec-
trons, which are locked by the Coulomb interaction on a
much shorter time scale than the dynamical time scales
considered here. This assumption is justified as the fre-
quencies of the modes we calculate (Tkachenko waves,
sound waves and inertial waves) are always significantly
lower than the electron-proton cyclotron and plasma fre-
quencies, i.e. lower than � 1015 Hz ([18]). Both fluids are
assumed to be compressible, and we shall assume some
simplified analytic models for the equation of state, derived
from Haskell et al. [19]. Furthermore, we will only con-
sider the damping due to superfluid mutual friction, which
has been found to have a significant effect on the mode
propagation [4].

The paper is structured as follows. In Sec. II, we present
the formalism for studying the oscillations of a two-fluid
neutron star with mutual friction and vortex lattice elastic-
ity. In Sec. III, we perform a plane wave analysis of the
oscillation spectrum in the incompressible case, and in
Sec. IV we present the more realistic compressible case.
As we shall see, compressibility and chemical coupling
between the components can profoundly alter the nature
of the Tkachenko waves, leading in some cases to much
shorter periods of oscillation, close to the rotation period of
the star, which are not consistent with the observed perio-
dicities in pulsar timing residuals. Finally, in Sec. V we
outline our conclusions.

II. TWO-FLUID EQUATIONS OF MOTION

Our starting points will be the multifluid formulation of
superfluid hydrodynamics of Andersson and Comer [17],
and the Baym-Chandler formalism for including the effects
of vortex lattice elasticity in the study of superfluid 4He
[14]. We thus intend to move beyond the standard picture,
which considers oscillations of a condensate coupled to its
excitations (which is an accurate description of superfluid
Helium, for which the formalism in [14] was originally
developed), to a model which considers several massive
fluids and a vortex mediated interaction, which is a more
appropriate description of a neutron star. As already men-
tioned, we shall consider the formulation of [17] (see also
[18,20–22]). Note that this formulation, in the case of a
condensate coupled its excitations, has been shown (see

e.g. [17,22,23]) to be completely equivalent to the standard
superfluid formalism as described e.g. in [24]. Let us
consider a two fluid system of neutrons and protons (which
we assume locked to the electrons [18]) and write the Euler
equations for the neutrons, in a frame rotating with the star
at fixed angular velocity � and in the absence of external
forces and mutual friction. Following [17], this takes the
form

ð@t þ vn
jrjÞðvn

i þ "nw
pn
i Þ þ 2�ijk�

jvk
n þrið ~�n þ�Þ

þ "nw
j
pnriv

n
j ¼ 0: (1)

Where vn
i is the neutron velocity, wpn

i ¼ vp
i � vn

i , with vp
i

the proton velocity, "n is the entrainment parameter for the
neutrons [22], ~�n is the chemical potential per unit mass of
the neutrons and � is the gravitational potential. Note that
we assume summation of repeated indices and assume
the neutron and proton masses equal, mn ¼ mp ¼ m. In

the above equation, we have not yet imposed that the
neutrons be superfluid. To do this, we must require that
the fluid rotates by forming an array of singly quantized
vortices, and that averaging over a large number of such
vortices gives rise to the macroscopic vorticity !i of the
fluid via the relation

!i ¼ �nv�̂
i ¼ 1

m
�ijkrjðvn

k þ "nw
pn
k Þ; (2)

where �̂i is a unit vector along the direction of the vortex
array, � ¼ h=2mn ¼ 1:99� 10�3 cm2 s�1 is the quantum
of circulation and nv is the number of vortices threading a
unit surface. It is important to remark here that the quan-
tization condition on the circulation is a condition on the
momentum of the neutron fluid pn

i ¼ mðvn
i þ "nw

pn
i Þ, and

not on its velocity vn
i (which will not in general be aligned

with pn
i due to the entrainment). From Eq. (2), one can

derive the equation of motion for the circulation

@t!i þ �ijk�
klmrj!lv

v
m ¼ 0; (3)

and a conservation equation for the vortex number

@tnv þriðnvvi
vÞ ¼ 0; (4)

with vi
v the macroscopically averaged vortex velocity. It is

possible to show ([25]) that, in order for Eqs. (3) and (4) to
be satisfied, it is necessary to add a ‘‘Magnus force’’ term
to the right-hand side of Eq. (1), which thus takes the form

ð@t þ vn
jrjÞðvn

i þ "nw
pn
i Þ þ 2�ijk�

jvk
n þrið ~�n þ�Þ

þ "nw
j
pnriv

n
j ¼ �nv�ijk�̂

jðvk
n � vk

vÞ: (5)

It is clear from Eq. (5) that in the absence of other forces,
the vortices will be forced to move with the superfluid
neutron condensate. The presence of vortices will, how-
ever, also affect the proton fluid, which will experience a
drag force of the form �n�nvRðvi

v � vi
pÞ, where the exact

nature of the process giving rise to the drag is encoded in

B. HASKELL PHYSICAL REVIEW D 83, 043006 (2011)

043006-2



the dimensionless parameterR. In a neutron star there are,
in fact, a variety of mechanisms that can produce a
dissipative drag: scattering of electrons off vortex cores
is likely to be the dominant process in the core (see e.g.
[26–32], while in the crust the main contribution is due to
interactions with the lattice phonons [33] and the excitation
of vortex Kelvin waves [34,35]. The diverse nature of these
processes leads to the drag parameter spanning several
orders of magnitude in the different regions of a neutron
star interior (from as low as R � 10�10 to R � 1). We
shall thus treat R as a free parameter and investigate how
its variations affect the modes.

The Euler equations for the proton fluid take the form

ð@t þ vp
jrjÞðvp

i � "pw
pn
i Þ þ 2�ijk�

jvk
p þrið ~�p þ�Þ

þ "pw
j
npriv

p
j ¼ �nv

ð1� xpÞ
xp

Rðvv
i � vp

i Þ; (6)

where xp ¼ �p=ð�n þ �pÞ. ~�p and "p are now the chemical

potential per unit mass and entrainment parameter of the
protons, such that "p ¼ "nð1� xpÞ=xp [22]. We also need

an equation of motion for the vortex lines which, if we
assume that they have negligible inertia, takes the form of a
force balance between the Magnus force, the drag force
and the elastic force exerted by the lattice [14]:

�n�nv�ijk�̂
jðvk

v � vk
nÞ þ �n�nvRðvp

i � vv
i Þ � �n�i ¼ 0;

(7)

where �i represents the contribution due to lattice elastic-
ity and takes the form

�i ¼ �v

�n

½2r?
i ðrj

?�jÞ � ðr2
?Þ�i�; (8)

where �i is the displacement of the vortex line from its

equilibrium position, rj
? is the gradient perpendicular to

the direction of the array and �v ¼ �n�
2nv=16� is the

shear modulus of a triangular vortex lattice [10]. Note that
the above expression only describes the linear order cor-
rections in the lattice displacements, which are assumed to
be small. Furthermore, we are neglecting the contribution
of vortex bending, which would give rise to Kelvin waves
propagating along the vortex lines. Note that this could be
accounted for by including a vortex ‘‘tension’’ term in �i,
which we denote �T

i , of the form

�T
i ¼ ��n�

2nv
8�

ln

�
b

a

�
@2�i
@z2

; (9)

where a is the vortex core radius, b is the intervortex
spacing for a triangular lattice and the z axis is taken along
the rotation axis of the star.

The continuity equations for neutrons and protons take
the form

@t�n þrið�nv
n
i Þ ¼ 0 (10)

@t�p þrið�pv
p
i Þ ¼ 0; (11)

and the gravitational potential obeys the Poisson equation

r2� ¼ 4�Gð�n þ �pÞ; (12)

where G is the gravitational constant. Finally, to solve the
problem we need to supply an equation of state for
the system. As we shall examine different cases, we delay
the discussion of the equation of state to the following
sections and move on to discussing perturbations of the
multifluid equations of motion presented above.

A. Perturbations

In order to keep the problem tractable, we shall consider
linear perturbations of a background in which the two
fluids rotate together with uniform angular velocity �.
For such a background, Eq. (2) takes the form

�nv ¼ 2�; (13)

and the perturbed Euler equations can be written, in a
frame corotating with the star, as

@tð�vn
i þ "n�w

pn
i Þ þ 2�ijk�

j�vk
n þri� ~�n

¼ �2�Rð�vv
i � �vp

i Þ � �i (14)

@tð�vp
i � "p�w

pn
i Þ þ 2�ijk�

j�vk
p þri� ~�p

¼ 2�
ð1� xpÞ

xp
Rð�vv

i � �vp
i Þ; (15)

where we have made the Cowling approximation, i.e.
neglected the perturbations of the gravitational potential
��. Note that as a consequence of the extra elastic term in
the force balance equation for the vortices (17), the forces
on the right-hand side of the Euler equations are no longer
symmetric and the vortex elasticity term only acts on the
neutron superfluid. The elastic force �i can be written as

�i ¼ c2T½2r?
i ðrj

?�jÞ � ðr2
?Þ�i�; (16)

where we have defined the Tkachenko wave speed c2T ¼
��=8� and are assuming the vortices to be in equilibrium
in the background, such that �BKGj ¼ 0. We assume all

vortex displacements to be perturbed quantities, and write
�i in place of ��i, unless otherwise specified, and thus
consider �i to also be a perturbed quantity. As we are
dealing with linearized elasticity and the displacement
vectors �i, it would be natural to consider Lagrangian
perturbations of the two-fluid equations of motion, given
that in general one would have that �vi

v ¼ @t�
i
v. However,

given that we are working in a rotating frame, and have
assumed that the fluids (and thus the vortices) are moving
together in the background, one has that �vi

v ¼ �vi
v. We

can thus continue to work with Eulerian perturbations,
which simplifies somewhat the problem.
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The equation of force balance for the vortices (7) can be
cast in the form

�vv
i ¼ �v

p
i þ

R
1þR2

�ijk�̂
j�wk

pn � R
2�ð1þR2Þ�i

þ �̂i

1þR2
ð�wpn

j �̂jÞ � �wpn
i

1þR2
� �ijkk̂

j�k

2�ð1þR2Þ ;
(17)

and the perturbed continuity equations, in the absence of
reactions, take the form

@t��n þrið�n�v
n
i Þ ¼ 0 (18)

@t��p þrið�n�v
p
i Þ ¼ 0: (19)

Following [36], we can combine Eqs. (15) to obtain
an Euler equation for the ‘‘total’’ velocity vi ¼
ð1� xpÞvn

i þ xpv
p
i :

@t�vi þ 1

�
ri�p� ��

�
ripþ 2�ijk�

j�vk

¼ �ð1� xpÞ�i; (20)

and one for wpn
i :

ð1� �"Þ@twpn
i þri�	

¼ �2�~B0�ijk�̂j�wk
pn þ 2�~B�ijk�̂

j�klm�̂l�w
pn
m þ �i;

(21)

where we have defined the total pressure, such that riP ¼
�nri ~�n þ �pri ~�p, the entrainment parameter �" ¼ "p þ
"n, �	 ¼ � ~�p � � ~�n and the mutual friction parameters
~B0 ¼ 1�R2=½xpð1þR2Þ� and ~B ¼ R=½xpð1þR2Þ�.
The perturbed continuity Eqs. (18) and (19) can be cast
in the form

@t��þrið��viÞ ¼ 0 (22)

@t�xp þ 1

�
rj½xpð1� xpÞ��wj� þ �vjrjxp ¼ 0 (23)

As we shall see in the following, this formulation can be
advantageous when discussing the compressible problem.

III. THE INCOMPRESSIBLE CASE

In order to make contact with previous results, let us
consider first of all the case of incompressible fluids, such
that �� ¼ 0 and the continuity equations reduce to

ri�vp
i ¼ ri�vn

i ¼ 0: (24)

We consider plane waves, such that a perturbed quantity
�fiðx; tÞ takes the form �fiðx; tÞ ¼ �fi expðikixi � i!tÞ,
with �fi a constant amplitude. Without loss of generality,
we choose our coordinate system such that the z axis points
along the rotation axis and such that the wave vector ki lies
in the x-z plane, i.e. k ¼ ðk sin
; 0; k cos
Þ. The equations
of motion can thus be written as

� i! �vn
i ð1� "nÞ � i!"n �v

p
i þ 2�ijk�

j �vk
n þ iki ��n

¼ 2�Rði! ��i þ �v
p
i Þ � ~�i (25)

� i! �vp
i ð1� "pÞ � i!"p �v

n
i þ 2�ijk�

j �vk
p þ iki ��p

¼ �2�
ð1� xpÞ

xp
Rði! ��i þ �v

p
i Þ (26)

� i! ��i � �v
p
i �B�ijk�̂

jwk
pn þB~�i � �̂i

ð1þR2Þw
pn
j �̂j

þ w
pn
i

ð1þR2Þ þ
�ijk�̂

j ~�k

ð1þR2Þ ¼ 0 (27)

kjv
j
p ¼ kjv

j
n ¼ 0; (28)

where we have defined B ¼ R=ð1þR2Þ, ~�i ¼ �i=2�
and to simplify notation we have defined ��x as the ampli-
tude of � ~�x, with x ¼ n, p. Finally, the vortex elasticity
contribution takes the form

� ¼ q � � with q ¼ ð�ðcTk sin
Þ2; ðcTk sin
Þ2; 0Þ:
(29)

In order to obtain the dispersion relation for the modes of
the system, we thus need to solve the characteristic equa-
tion detjKijj ¼ 0, where Kij follows from Eqs. (25)–(28)

and is given in Eq. (A1).
In the undamped case, neglecting the effect of entrain-

ment ("n ¼ "p ¼ 0), one obtains, as expected, two families

of modes, the inertial modes

!2 ¼ 4�2ðcos
Þ2; (30)

and the Tkachenko waves

!2 ¼ 4�2ðcos
Þ2 þ c2Tk
2ðsin
Þ4 � 1

4

c4Tk
4

�2
ðsin
Þ4

� 4�2j cos
j2 þ c2Tk
2ðsin
Þ4; (31)

where we are assuming that c2Tk
2 � �2. This will always

be the case if we consider typical pulsar spin rates from
a few Hz to a few hundred Hz and long wavelength
oscillations across the whole superfluid region, such that
k � 10�5 � 10�6 cm�1. For propagation perpendicular to
the rotation axis ( cos
 ¼ 0), one then obtains the well-
known Tkachenko wave dispersion relation

! ¼ �cTk: (32)

A. The effect of entrainment

Let us now still consider undamped propagation of the
modes, but include the effect of entrainment. Clearly, in-
troducing coupling between the two fluids profoundly
alters the nature of the modes and leads, in the c2Tk

2 �
�2 limit, to two families of mixed inertial-Tkachenko
waves:
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!2 � 4�2ðcos
Þ2 þ ð1� xpÞc2Tk2ðsin
Þ4 (33)

!2 � 4�2ðcos
Þ2
�

xp

"n � xp

�
2 þ c2Tk

2
x2p

ð"n � xpÞ ðsin
Þ
4:

(34)

In the limit xp ! 1 and "n ! 0, one has again "p ¼ "n ¼ 0

from the relation "p ¼ "nð1� xpÞ=xp, the two fluids de-

couple and we have the two separate families of modes of
Eqs. (31) and (32).

B. Mutual friction

We now consider the dissipative terms due to mutual
friction, i.e. to the drag parameter R. In order to keep the
results tractable, we take "n ¼ "p ¼ 0. It is still, however,

impractical to consider the whole solution, so let us first
of all consider modes propagating along the z axis (
 ¼ 0).
In this case, one has two families of inertial modes, one
which is undamped with dispersion relation

! ¼ �2�; (35)

and one which is affected by mutual friction

! ¼ �2�~B0 � i2�~B; (36)

where we remind the reader that ~B0 ¼ 1�R2=½xpð1þ
R2Þ� and ~B ¼ R=½xpð1þR2Þ�. The results in (35) and

(36) agree well with those of [36], in which the authors
show that there is one class of inertial modes that corre-
sponds to the fluids comoving and is undamped (in the
absence of chemical coupling) and another class of
counter-moving modes that is rapidly damped by mutual
friction.

Let us now examine the case of Tkachenko waves
propagating perpendicular to the rotation axis
( cos
 ¼ 0). In Fig. 1, we plot the frequency of the modes
for k ¼ 10�6 and �star ¼ 10 Hz, as a function of R in the
weak drag regime. For large values of the proton fraction
xp, we recover the solution of [7], in which the real part of

the frequency vanishes and the damping becomes large for
values of the drag parameter such that the mutual friction
damping time scale �m � 1=2�R is approximately
equal to the Tkachenko wave period PT ¼ 2�=!T with

!T ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��=�

p
. In fact, close to this value the mode has

an extra purely imaginary root, as found by [7]. In our
model we are, however, accounting for two massive fluids,
and can thus vary the proton fraction. For smaller (and thus
more realistic for our neutron star model) values of the
proton fraction, we see that the pathological behavior
disappears and even though the damping is stronger
when the mutual friction time scale is close to the period
of the modes, the real part does not vanish, the mode is
always oscillatory, and there are always only two purely
imaginary roots.

C. Perfect pinning

Up to now we have assumed that the vortex lines are free
to move and experience a drag force as they do so.
However, it is commonly believed that vortex lines can
interact strongly with lattice points in the neutron star crust
and ‘‘pin’’ to them, in such a way that they are forced to
move with the charged components of the star [37–41].
The nature of such a pinning force is well beyond the scope
of this paper, but to study the propagation of Tkachenko
waves in this scenario, it is sufficient to consider an
unspecified force fpin acting on the vortices such that

FIG. 1 (color online). We plot the real part of the modes and the modulus of the imaginary part (dotted lines), for xp ¼ 0:96 and
xp ¼ 0:1. We take k ¼ 10�6. For xp ¼ 0:96, we recover the results of [7]: the real part of the mode vanishes when the mutual friction

damping time scale is close to the mode period, and there is an extra purely imaginary root. For the more realistic, but still large, value
of xp ¼ 0:1 we see that, on the other hand, the mode is always oscillatory, although the imaginary part is larger when the damping time

scale and mode period are similar. For higher values of the drag, the frequency of the mode is reduced to� 25% of the original value.
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they are forced to move with the proton fluid, i.e. such
that

�vi
v ¼ �vi

p: (37)

In this case, the equation of force balance for vortices takes
the form

�n�nv�ijk�̂
jð�vk

p � �vk
nÞ � �n�i þ fpin ¼ 0; (38)

where there is no drag force acting, as the vortex lines flow
with the protons. If we now consider the neutron and
proton fluid, there will be a reaction force �fpin acting
on the protons and the Magnus force acting on the neu-
trons. Making use of Eq. (38), we can thus cast the Euler
equations in the form

@tð�vn
i þ "n�w

pn
i Þ þ 2�ijk�

j�vk
n þri� ~�n

¼ �2��ijk�̂
jð�vk

p � �vk
nÞ (39)

@tð�vp
i � "p�w

pn
i Þ þ 2�ijk�

j�vk
p þri� ~�p

¼ 2�
ð1� xpÞ

xp
�ijk�̂

jð�vk
p � �vk

nÞ �
ð1� xpÞ

xp
�i; (40)

which lead to

� i! �vn
i ð1� "nÞ � i!"nbarv

p
i þ 2�ijk�

j �vk
n þ iki ��n

¼ �2��ijk�̂
jð �vk

p � �vk
nÞ (41)

� i! �vp
i ð1� "pÞ � i!"p �v

n
i þ 2�ijk�

j �vk
p þ iki ��p

¼ 2�
ð1� xpÞ

xp
�ijk�̂

jð �vk
p � �vk

nÞ �
ð1� xpÞ

xp
�i: (42)

The characteristic equation given by the equations in (42),
together with the condition in (37) can be obtained by
calculating the determinant of the matrix Kij given in

(A12)–(A18). This leads to two families of modes:

!2 ¼ 4�2ðcos
Þ2
�
1� xp
xp

�
2 þ c2Tk

2ðsin
Þ4 ð1� xpÞ2
xp

(43)

!2 ¼ 4�2ðcos
Þ2 þ c2Tk
2ðsin
Þ4ð1� xpÞ: (44)

These are once again mixed inertial-Tkachenko waves, but
we see that in the limit xp ! 1, the Tkachenko waves

disappear and we are left with only one family of inertial
modes. This resembles the situation in superfluid 4He, in
which even a small amount of pinning swamps the con-
tribution due to lattice elasticity and transforms the
Tkachenko waves into inertial waves [42].

IV. COMPRESSIBLE NEUTRON STAR MATTER

It is well known from the study of superfluid 4He that
compressibility can have a drastic effect on the mode
structure [43]. Including compressibility in the equations
of motion for the superfluid leads to a dispersion relation of
the form [42]

!2 ¼ � c2Tc
2
sk

4

4�2 þ c2sk
2
; (45)

where cs is the sound speed. In the long wavelength limit
(k � �=cs), the nature of the mode is thus profoundly
altered and the dispersion relation is no longer linear in k,
but rather parabolic, leading to the so-called ‘‘soft’’
Tkachenko wave frequency

! � � cTcs
2�

k2: (46)

In the study of 4He, the long wavelength limit is, however,
mainly of theoretical interest, as one would need containers
of several hundreds of meters in diameter to explore it
experimentally. The situation is very different for BECs as,
in contrast with a strongly interacting Bose liquid such as
4He, they are weakly interacting Bose gases with low
sound speeds for which the effect of compressibility is
important at high rotation rates. For BECs, the compress-
ible Tkachenko wave spectrum has thus been studied both
theoretically [12,13,44] and experimentally [45].
Let us now consider a realistic neutron star. The situation

is clearly quite complex as not only can we be in the long
wavelength limit (� � csk) for the more rapidly rotating
pulsars, but one also has to account for multifluid effects
and chemical coupling between the different constituents
via the equation of state. One cannot, in general, assume
incompressibility for the proton and neutron fluids, and it is
clearly of great interest to adapt our formalism to include
the effects of compressibility and chemical coupling. To
study this problem, it is now advantageous to write the
perturbation equations in the form of Eqs. (20)–(23).
In the plane wave approximation, the Euler equations
take the form (in the Cowling approximation)

� i! �vi þ i
ki
�

�p� ��

�
ripþ 2�ijk�

j �vk ¼ �ð1� xpÞ�i

(47)

� i!ð1� �"Þ �wi þ iki �	þ 2�ijk�
j �wk

¼ �2�
R
xp

ði! ��i þ �vi þ ð1� xpÞ �wiÞ þ �i; (48)

and the continuity equations can be written as

� i! ��þ i�kj �v
j þ �vjrj� ¼ 0 (49)

� i! �xp þ ixpð1� xpÞkj �wj þ �wjrj½�xpð1� xpÞ� ¼ 0;

(50)

while the equation of force balance still takes the form in
(27). As we are now considering compressible matter, we
will also need an equation of state for the perturbations.
Choosing to work with the density ( ��) and proton fraction
( �xp) perturbations, one can write
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�p ¼
�
@p

@�

�
��þ

�
@�

@xp

�
�xp (51)

�	 ¼
�
@	

@�

�
��þ

�
@	

@xp

�
�xp: (52)

Ideally, the partial derivatives of the thermodynamical
variables in Eq. (52) should be derived from a fully con-
sistent multiparameter equation of state, which should
also allow us to calculate the entrainment parameters and
the superfluid gaps for neutrons and protons. However, not
only is such an equation of state not currently available, but
its use would also be beyond the scope of our simplified
plane wave analysis. In order to keep the problem tractable,
we shall assume that our background model is described by
an n ¼ 1 polytrope, and use for the perturbations two
simplified analytic equations of state that are essentially
extensions of a single-fluid n ¼ 1 polytrope.

First of all, we shall consider the equation of state of
[19], which we refer to as model A. In this case, we have�

@p

@�

�
¼ c2s ;

�
@p

@xp

�
¼ �c2s

xp
(53)

�
@	

@�

�
¼ c2s

�xp
;

�
@	

@xp

�
¼ c2s

x2p
; (54)

where cs is the sound speed of the background. We shall
then consider a second model, in order to understand the
importance of the chemical coupling on the mode struc-
ture. This model, which we refer to as model B, is essen-
tially areparametrization of the model II equation of state
in [46] (also used in [47], where it is denoted as model B0),
and takes the form�

@p

@�

�
¼ c2s ;

�
@p

@xp

�
¼ 

�c2s
xp

(55)

�
@	

@�

�
¼ 

c2s
�xp

;

�
@	

@xp

�
¼ �

c2s
x2p

: (56)

We can thus study the behavior of the solutions to our
problem as we vary the parameters and �. Clearly, model
A corresponds to the case  ¼ 1, � ¼ 1.

The sound speed in the background, for an n ¼ 1 poly-
trope, takes the form

cs ¼ 2K�; (57)

where K ¼ 2GR2=� depends only on the stellar radius.
However, in our plane wave approximation we shall as-
sume that the background quantities vary over a length
scale greater than that of the oscillations, and thus take
them to be constant and neglect their gradients. This ap-
proximation is not necessarily justified, as in the crust the
density and pressure vary by several orders of magnitude
over a length scale of approximately 1 km, which is

comparable with the longest wavelengths we consider for
our Tkachenko waves. It is, however, a reasonable approxi-
mation for shorter wavelengths and in the neutron star core.
The sound speed will thus be a constant in our formulation
and specifically we take cs ¼ 109 cm s�1. We also take the
proton fraction, which in a rigorous description should also
be derived from the equation of state, as a constant and
will study the effect that varying it can have on the modes.
Needless to say, future work should aim to relax this
approximation and consider a fully stratified neutron star.
Finally, let us remark that for simplicity we take �" ¼ 0

in the following discussion. We have experimented with
varying the parameter �" between �0:8 and 0.8, but it is
found to have very little effect on the dispersion relation.

A. Undamped propagation

1. Model A

Let us consider, first of all, the undamped propagation of
waves in a neutron star. We thus take R ¼ 0 and, to keep
the problem tractable, �" ¼ 0, and solve the characteristic
equation obtained form the determinant of the matrix Kij

given in (B1). As a first step, we focus on model A. The
results are two families of modes, such that

!2 ¼ 4�2 � c4Tk
4ðsin
Þ4
4�2

(58)

!2 ¼ � 1

2
ð4�2 þ k2c2sÞ

þ 1

2xp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2c2s þ 4�2xpÞ2 � xpð4�kcs cos
Þ2

q
: (59)

As we can see, we obtain sound waves and rotationally
corrected Tkachenko waves, for which the main contribu-
tion to the frequency is now given by the stellar rotation
frequency. This result is somewhat surprising, as in this
limit the classical Tkachenko waves no longer exist and the
vortex elasticity simply provides a small correction to what
is, in essence, the frequency of an inertial wave. In this
case, for a pulsar rotating at � 1 Hz, the frequency of the
Tkachenko waves would be much too high to explain
the observed periodicities of 100� 1000 days observed
in the timing residuals. Such a drastic modification in the
dispersion relation clearly needs to be investigated in more
detail. We have, after all, used a simplified version of the
equation of state, so let us turn our attention to model B in
order to understand how varying the parameters (and thus
the coupling between the components) can affect the mode
structure and whether there is a reasonable set of parame-
ters for which one can still obtain the usual Tkachenko
waves.

2. Model B

In the case of model B, the extra parameters make it
necessary to solve the characteristic equation numerically,
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but they also allow us extra freedom to explore different
regimes for the equation of state. First of all, let us elimi-
nate all chemical coupling by setting  ¼ 0. In Fig. 2, we
plot the mode frequency for varying � at different rotation
rates. We see that in this case there is a mode with the
frequency of the classical Tkachenko mode and further-
more varying � has very little effect on its frequency. If we
now keep � fixed and vary the rotation rate of the star, we
see in Fig. 3 that for low rotation rates the frequency of the
Tkachenko mode is the classical one. For higher rotation
rates, the classical frequency increases but the frequency of
the Tkachenko mode tends to that of the so-called soft

Tkachenko mode cTcsk
2=2�. The result is thus that, for

longer wavelength of order the stellar radius, there is al-
ways a Tkachenko mode with periods consistent with the
100–1000 day variability typical of pulsar timing noise.
This picture is clearly very different from that of the
previous section, in which the Tkachenko waves had es-
sentially disappeared, so let us investigate how reinstating
the chemical coupling and varying the parameter  can
affect the mode structure.
In Fig. 4, we plot the mode frequency for a stellar

rotation frequency of 10 Hz varying  while keeping �
fixed. The result is now much more intriguing as one still

FIG. 2 (color online). We plot the frequencies of the modes we obtain, normalized to the classical Tkachenko wave frequency, for
two different rotation rates of the star and for a varying parameter �, while keeping  ¼ 0. We take xp ¼ 0:05. We can see that we

have two families of high frequency sound waves and then the Tkachenko waves, the frequency of which is shifted from the classical
value at higher rotation rates. This is expected, as for higher rotation rates the effects of compressibility become more important.
Furthermore, it is clear from the graph that, although varying � has a small effect on the frequency of the sound waves, it has no effect
on the frequency of the Tkachenko waves. In these plots, we have set �" ¼ 0, k ¼ 10�6 and taken � ¼ 1:5.

FIG. 3 (color online). We plot the frequencies of the Tkachenko waves we obtain numerically and compare them to the classical
Tkachenko wave frequency cTk and to the soft Tkachenko wave frequency cTcsk

2=2�. As we can see, the frequency tends to that of
the soft mode for higher rotation frequencies (in the millisecond range, which is that of the fastest known pulsars) and is slightly
modified by multifluid effects for high values of xp. In these plots, we have set �" ¼ 0 and taken k ¼ 10�6.
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has one family of sound waves, but there is then an avoided
crossing between the second family of sound waves and the
Tkachenko waves, with the frequency of the sound wave
becoming that of a classical Tkachenko wave as we vary .
The real part of frequency of the Tkachenko wave, on the
other hand, vanishes after the avoided crossing and one
obtains two purely imaginary roots.

Summarizing, there is a vast portion of parameter space
in which one has a mode close to the frequency of a
classical Tkachenko wave, but there exists a small region
(which thus includes model A for which  ¼ � ¼ 1)
where the avoided crossing occurs, in which the

Tkachenko mode is not oscillatory in nature and the fre-
quency of the sound waves is too high to account for the
slow variability of pulsar timing residuals. If we now
increase the stellar rotation rate, we can see from Fig. 5
that the region in which the Tkachenko mode is not oscil-
latory becomes even larger, allowing for vast portions of
parameter space in which there is no mode close to the
Tkachenko frequency. However, we have not yet consid-
ered the impact of mutual friction damping, which could
potentially limit even more the range of parameters for
which one has long-lived Tkachenko oscillations. Let us
thus move on to consider the full problem.

FIG. 4 (color online). For a stellar rotation rate of 10 Hz, we plot the frequency of the modes, normalized to the classical Tkachenko
mode frequency, for varying values of the parameter . We see that there is still a family of sound waves (indicated as p1), but there is
now an avoided crossing between the second family of sound waves (p2) and the Tkachenko waves (Tk), with the frequency of the
sound wave becoming that of a classical Tkachenko wave. There is thus a vast portion of parameter space in which one has a mode
close to the frequency of a classical Tkachenko wave, but there exists a small region where the mode crossing occurs, in which the
Tkachenko mode is not oscillatory in nature and the frequency of the sound waves is too high to account for the slow variability of
pulsar timing residuals. Once again we have set �" ¼ 0 and taken k ¼ 10�6.

FIG. 5 (color online). We plot the frequencies of the modes we obtain (sound waves p1 and p2 and Tkachenko waves Tk),
normalized to the classical Tkachenko wave frequency, for two different rotation rates of the star and for a varying parameter , while
keeping � ¼ 0:8. We take xp ¼ 0:05. We can see that as the rotation rate increases, not only does the Tkachenko wave frequency

decrease as expected, but there is also a vast region of parameter space in which the Tkachenko mode disappears. In these plots, again,
we have set �" ¼ 0 and taken k ¼ 10�6.
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B. Mutual friction

The inclusion of mutual friction makes the problem
considerably more complicated, and once again the char-
acteristic equation must be solved numerically. The picture
that emerges is, however, not very different from that of the
previous section. One still finds a high frequency family of
sound waves, largely unaffected by mutual friction, then a
second family of sound waves at lower frequency and a
family of Tkachenko waves. In addition, one has two
purely imaginary roots to the characteristic equation. Let
us focus on the Tkachenko waves and on the lower fre-
quency sound waves. As we can see in Fig. 6, the behavior
of the modes depends strongly on the chemical coupling.
For 	>  and slow rotation of the star one has Tkachenko
waves close to the classical frequency, while for	< one
has an avoided crossing between the second family of
sound waves and the Tkachenko waves. In both cases
the waves oscillating close to Tkachenko frequency are

strongly damped by mutual friction in a narrow range of
the parameter R for large values of xp, exactly as in the

incompressible case. For more realistic values of xp we find

that, as expected, the damping is negligible.
If we now increase the rotation rate in the case 	> ,

one finds that the frequency of the Tkachenko waves
approaches that of the soft mode and mutual friction only
weakly damps the mode for realistic values of xp. The

picture is considerably different if we take 	<, as can
be seen from Fig. 7. For a rotation rate of 60 Hz, one has a
sound wave close to the classical Tkachenko wave fre-
quency and a highly damped soft Tkachenko wave for low
values of R. However, if we increase the rotation rate to
100 Hz, the frequency of the soft mode becomes purely
imaginary and the sound waves return to being high
frequency modes, weakly damped by mutual friction.
The picture that emerges is thus that, while for low rotation
rates of order of a few Hz, one has long-lived Tkachenko

FIG. 6 (color online). We plot the Tkachenko and second sound waves for a rotation rate of 10 Hz, for k ¼ 10�6, �" ¼ 0 and
cos
 ¼ 0. In the top panel, we take  ¼ 0:8 and 	 ¼ 1:2; in the bottom panel we take  ¼ 0:8 and 	 ¼ 1:2. For 	>  and slow
rotation of the star, one has Tkachenko waves close to the classical Tkachenko frequency, while for 	<  one has an avoided crossing
between the second family of sound waves and the Tkachenko waves. In both cases, the waves oscillating close to Tkachenko
frequency are strongly damped by mutual friction in a narrow range of the parameter R and for large values of xp. As expected, the

mutual friction damping is weak in both cases for lower, more realistic values of xp.
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oscillations for a vast range of plausible parameters (except
for the particular case of  ¼ 	 ¼ 1 as in model A), for
higher rotation rates, approaching 100 Hz, the situation is
radically different and for several choices of parameters
there are no Tkachenko modes at all.

C. Perfect pinning

Finally we examine, as in Sec. III C, the case of perfect
pinning. The Euler equations can be written as

� i! �vi þ i
ki
�

�p� ��

�
ripþ 2�ijk�

j �vk ¼ �ð1� xpÞ�i

(60)

� ið1� ��Þ! �wi þ iki �	� 2
ð1� xpÞ

xp
�ijk�

j �wk

¼ �ð1� xpÞ
xp

�i: (61)

Together with the pinning condition �i!�i ¼ �vp
i ¼ �vi þ

ð1� xpÞ �wi. In the limit of no entrainment ( �" ¼ 0) for

purely transverse propagation ( cos
 ¼ 0), one finds
that, as in the incompressible case, the spectrum depends
heavily on the value of the proton fraction xp. For slow

rotation rates (of the order � 10 Hz), one always has a
Tkachenko mode for low values of the proton fraction (less
than xp � 0:3). However, the situation changes for higher

FIG. 7 (color online). We plot the frequency of the Tkachenko modes and of the sound waves for  ¼ 1:2 and 	 ¼ 0:8. For a
rotation rate of 60 Hz, one has a sound wave close to the classical Tkachenko wave frequency and a highly damped soft Tkachenko
wave for low values of R. At 100 Hz, the frequency of the soft mode becomes purely imaginary and the sound waves return to being
high frequency modes, weakly damped by mutual friction.

FIG. 8 (color online). Mode structure for a rotation rate of 100 Hz and varying xp in the case of perfect pinning. We consider purely
transverse propagation, k ¼ 10�6 and �" ¼ 0. For the (possibly more realistic) case of small values of xp, one has a Tkachenko mode

only for � > . However, for larger values of xp the opposite is true and the Tkachenko mode only exists in the limit � < , but its

frequency vanishes for xp � 1.
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rotation rates. For a stellar rotation rate of 100 Hz, one can
see from Fig. 8 that, for the possibly more realistic case
of small values of xp, one has a Tkachenko mode only for

� > . However, for larger values of xp, the opposite is

true and the Tkachenko mode only exists in the limit
� < . If � ¼  ¼ 1 (model A) one has, as expected, no
Tkachenko waves for any value of the proton fraction.

V. CONCLUSIONS

In this paper we present a formalism for the inclusion of
vortex lattice elasticity in the multifluid hydrodynamics of
superfluid neutron stars. As a first step, we consider in-
compressible neutron and proton matter, in order to make
contact with the well-known results for superfluid 4He. We
obtain the standard dispersion relation for Tkachenko
waves and find that, in the limit in which �n � �p, mutual

friction completely damps out the oscillations in less than a
period when the damping time scale due to the drag is close
to the mode period (as found by [7]). However, in a neutron
star one will, in general, have that �p � �n, and in this

case we always find weakly damped oscillatory solutions.
It should be stressed that a more realistic model should
include other sources of damping, such as shear and
bulk viscosity (note that the effect of shear viscosity was,
in fact, considered by [7] for the incompressible case)
and the calculation should be performed for global modes
in spherical symmetry, without assuming constant back-
ground quantities.

Furthermore, one should account for the different phases
that are present in a neutron star (NS). In the crust, the
protons will be associated with ions arranged in a lattice,
which leads to additional elastic terms in the hydrody-
namic equations (see e.g. [48]) and has been shown to alter
the vortex dynamics [49]. The inner core, on the other
hand, is also likely to harbor exotic particles, such as
muons, hyperons or deconfined quarks (for a review, see
e.g. [50,51]), which will require the extension of our
formalism to several more massive fluids (Haskell et al.
in preparation), thus clearly leading to a system with much
richer dynamics.

The main focus of this work is on the effect of com-
pressibility and chemical coupling on the mode spectrum.
We find that for slow rotation rates (a few Hz) one can, in
general, obtain solutions that correspond to low frequency
Tkachenko waves and could explain the timing noise in
older pulsars. However, for particular choices of the equa-
tion of state (EOS) parameters, such as model A, there are
no Tkachenko waves, but only modified inertial waves and
sound waves, that oscillate at frequencies that are too high
to have any connection with the timing noise. Finally, the
situation is considerably more complicated for more rap-
idly rotating NSs (above 100 Hz) for which there is now a
large portion of parameter space for which there are no
propagating Tkachenko waves. It is thus clearly imperative
to obtain more stringent constraints on the EOS from

nuclear physics, in order to understand if the regions of
parameter space in which one has no Tkachenko waves are
of physical significance or not. In the light of these un-
certainties, it is still very much an open question whether or
not the period of Tkachenko waves in a realistic neutron
star could explain the observed periodicity of � 256 days
in the timing residuals of PSR B1828-11 (which is rotating
at � ¼ 2:469 Hz) and the timing noise in other pulsars, or
if it is likely to power low frequency precessional motion
of the star. Our results, however, indicate that for a large
range of physical parameters, long-period Tkachenko
waves can in fact propagate in an NS interior and are likely
to play a role in the dynamics of the system. In fact, if the
presence of long-period Tkachenko waves in radio pulsars
were confirmed, this could allow us to rule out the presence
of strong (R � 1) mutual friction coupling in the NS
interior.
Finally, let us remark that we have considered perturba-

tions of a co-moving background. While this is not a bad
approximation in many situations, it is possible that if the
vortices are pinned to the crust, a significant lag could build
up between the charged component and the superfluid
neutrons. This can lead to a series of short wavelength
instabilities ([52,53]) that are likely to have an impact on
pulsar glitches and on the stellar response to external
torques, such as those experienced by neutron stars in
accreting systems. We plan to relax the assumption of a
co-moving background and explore the consequences on
these physical scenarios in future work.
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APPENDIX A: CHARACTERISTIC EQUATION:
THE INCOMPRESSIBLE CASE

For the incompressible case, the equations of motion
(25)–(28) can be cast in the form

Kij ¼
An

ij Cnpij En
ij

Cpnij Ap
ij Ep

ij

W n
ij W p

ij T ij

0
B@

1
CA V j

n

V j
p

�j

0
B@

1
CA; (A1)

where

V j
n ¼ ð �vj

n; ��nÞ and V j
p ¼ ð �vj

p; ��pÞ; (A2)

and we recall that the displacement �j only has compo-
nents in the plane perpendicular to the vortices, i.e. the x-y
plane in our formulation. The components of the matrixKij

take the explicit form
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A n
ij ¼

�i!ð1� "nÞ �2� 0 ik sin

2� �i!ð1� "nÞ 0 0
0 0 �i!ð1� "nÞ ik cos


k sin
 0 k cos
 0

0
BB@

1
CCA; (A3)

A p
ij ¼

�i!ð1� "pÞ þ 2R�

�
1�xp
xp

�
�2� 0 ik sin


2� �i!ð1� "pÞ þ 2R�

�
1�xp
xp

�
0 0

0 0 �i!ð1� "pÞ þ 2R�

�
1�xp
xp

�
ikcos


k sin
 0 k cos
 0

0
BBBBBBBBB@

1
CCCCCCCCCA
; (A4)

C np
ij ¼

�i!"n � 2R� 0 0 0
0 �i!"n � 2R� 0 0
0 0 �i!"n � 2R� 0
0 0 0 0

0
BB@

1
CCA; (A5)

C pn
ij ¼

�i!"p 0 0 0
0 �i!"p 0 0
0 0 �i!"p 0
0 0 0 0

0
BB@

1
CCA; (A6)

W n
ij ¼

� 1
1þR2 �B 0

B � 1
1þR2 0

 !
; (A7)

W p
ij ¼

� R2

1þR2 B 0

�B � R2

1þR2 0

 !
; (A8)

E n
ij ¼ �c2Tðk sin
Þ2 � 2i!R� 0

0 c2Tðk sin
Þ2 � 2i!R�

� �
; (A9)

E p
ij ¼

2i!R ð1�xpÞ
xp

� 0

0 2i!R ð1�xpÞ
xp

�

0
@

1
A; (A10)

T ij ¼
�i!� c2T ðk sin
Þ2B

2� � c2T ðk sin
Þ2
2�ð1þR2Þ

� c2T ðk sin
Þ2
2�ð1þR2Þ �i!þ c2T ðk sin
Þ2B

2�

0
@

1
A; (A11)

where we recall the definition B ¼ R=ð1þR2Þ. The characteristic equation then follows from the determinant of the
matrix Kij.

1. Perfect pinning

In the case of perfect pinning, the elements of the matrix Kij are modified in the following way:

A n
ij ¼

�i!ð1� "nÞ 0 0 ik sin

0 �i!ð1� "nÞ 0 0
0 0 �i!ð1� "nÞ ik cos


k sin
 0 k cos
 0

0
BB@

1
CCA; (A12)
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A p
ij ¼

�i!ð1� "pÞ 2�

�
1�2xp
xp

�
0 ik sin


�2�

�
1�2xp
xp

�
�i!ð1� "pÞ 0 0

0 0 �i!ð1� "pÞ ik cos

k sin
 0 k cos
 0

0
BBBBBBB@

1
CCCCCCCA
; (A13)

C np
ij ¼

�i!"n �2� 0 0
2! �i!"n 0 0
0 0 �i!"n 0
0 0 0 0

0
BBB@

1
CCCA; (A14)

C pn
ij ¼

�i!"p �2�

�
1�xp
xp

�
0 0

2�

�
1�xp
xp

�
�i!"p 0 0

0 0 �i!"p 0
0 0 0 0

0
BBBBBBB@

1
CCCCCCCA
; (A15)

W p
ij ¼ 1 0 0

0 1 0

� �
; T ij ¼ i! 0

0 i!

� �
: (A16)

E n
ij ¼ 0 W n

ij ¼ 0; (A17)

E p
ij ¼

� ð1�xpÞ
xp

c2Tðk sin
Þ2 0

0
ð1�xpÞ
xp

c2Tðk sin
Þ2

0
@

1
A: (A18)

APPENDIX B: CHARACTERISTIC EQUATION: THE COMPRESSIBLE CASE

In the compressible case, we need to cast the equations of motion (25)–(28) in the form

Kij ¼
AT

ij CTCij ET
ij

CCTij AC
ij EC

ij

W T
ij W C

ij T ij

0
B@

1
CA V j

T

V j
C

�j

0
B@

1
CA; (B1)

where

V j
T ¼ ð �vj

T; ��TÞ and V j
C ¼ ð �vj

C; �xpÞ: (B2)

The components of the matrix Kij take the explicit form

A T
ij ¼

�i! �2� 0 ik sin
 c2s
�

2� �i! 0 0
0 0 �i! ik cos
 c2s

�

i�k sin
 0 i�k cos
 �i!

0
BBB@

1
CCCA; (B3)

A C
ij ¼

�i!ð1� �"Þ þ 2R�

�
1�xp
xp

�
�2� 0 ik sin
 c2s

x2p

2� �i!ð1� �"Þ þ 2R�

�
1�xp
xp

�
0 0

0 0 �i!ð1� �"Þ þ 2R�

�
1�xp
xp

�
ik cos
 c2s

x2p

ixpð1� xpÞk sin
 0 ixpð1� xpÞk cos
 �i!

0
BBBBBBBBB@

1
CCCCCCCCCA
; (B4)
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C TC
ij ¼

0 0 0 ik sin
 c2s
xp

0 0 0 0
0 0 0 ik cos
 c2s

xp

0 0 0 0

0
BBBB@

1
CCCCA; (B5)

C CT
ij ¼

2�R
xp

0 0 ik sin
 c2s
�xp

0 2�R
xp

0 0

0 0 2�R
xp

ik cos
 c2s
�xp

0 0 0 0

0
BBBBB@

1
CCCCCA; (B6)

W T
ij ¼ �1 0 0

0 �1 0

� �
; (B7)

W C
ij ¼

�ð1� xpÞ þ 1
1þR2 B 0

�B �ð1� xpÞ þ 1
1þR2 0

 !
; (B8)

E T
ij ¼

�ð1� xpÞc2Tðk sin
Þ2 0

0 ð1� xpÞc2Tðk sin
Þ2
 !

; (B9)

E C
ij ¼

2i!R
xp
�þ ð1�xpÞ

xp
c2Tðk sin
Þ2 0

0 2i!R
xp
�� ð1�xpÞ

xp
c2Tðk sin
Þ2

0
@

1
A; (B10)

T ij ¼
�i!� c2T ðk sin
Þ2B

2� � c2T ðk sin
Þ2
2�ð1þR2Þ

� c2T ðk sin
Þ2
2�ð1þR2Þ �i!þ c2T ðk sin
Þ2B

2�

0
@

1
A: (B11)

1. Perfect pinning

In the case of perfect pinning, for a compressible model, the elements of the matrix Kij are modified in the following

way:

A T
ij ¼

�i! �2� 0 ik sin
 c2s
�

2� �i! 0 0
0 0 �i! ik cos
 c2s

�

i�k sin
 0 i�k cos
 �i!

0
BBB@

1
CCCA; (B12)

A C
ij ¼

�i!ð1þ �"Þ 2�

�
1�xp
xp

�
0 ik sin
 c2s

x2p

�2�

�
1�xp
xp

�
�i!ð1þ �"Þ 0 0

0 0 �i!ð1þ �"Þ ik cos
 c2s
x2p

ixpð1� xpÞk sin
 0 ixpð1� xpÞk cos
 �i!

0
BBBBBBBB@

1
CCCCCCCCA
; (B13)

C TC
ij ¼

0 0 0 ik sin
 c2s
xp

0 0 0 0
0 0 0 ik cos
 c2s

xp

0 0 0 0

0
BBBB@

1
CCCCA; (B14)

C CT
ij ¼

0 0 0 ik sin
 c2s
�xp

0 0 0 0
0 0 0 ik cos
 c2s

�xp

0 0 0 0

0
BBBB@

1
CCCCA; (B15)
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W T
ij ¼ �1 0 0

0 �1 0

� �
; W C

ij ¼
�ð1� xpÞ 0 0

0 �ð1� xpÞ 0

� �
; (B16)

E T
ij ¼

�ð1� xpÞc2Tðk sin
Þ2 0

0 ð1� xpÞc2Tðk sin
Þ2
 !

; (B17)

E C
ij ¼

� ð1�xpÞ
xp

c2Tðk sin
Þ2 0

0
ð1�xpÞ
xp

c2Tðk sin
Þ2

0
@

1
A; (B18)

T ij ¼ �i! 0
0 �i!

� �
: (B19)
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