
CMB temperature lensing power reconstruction

Duncan Hanson,1 Anthony Challinor,1,2,* George Efstathiou,1 and Pawel Bielewicz3,4

1Institute of Astronomy and Kavli Institute for Cosmology Cambridge, Madingley Road, Cambridge CB3 OHA, United Kingdom
2DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 OWA, United Kingdom

3Institut d’Astrophysique de Paris, 98bis, Boulevard Arago, 75014 Paris, France
4Centre d’Etude Spatiale des Rayonnements, 9 av du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France

(Received 26 August 2010; published 16 February 2011)

We study the reconstruction of the lensing potential power spectrum from CMB temperature data, with

an eye to the Planck experiment. We work with the optimal quadratic estimator of Okamoto and Hu,

which we characterize thoroughly in an application to the reconstruction of the lensing power spectrum.

We find that at multipoles L < 250, our current understanding of this estimator is biased at the 15% level

by beyond-gradient terms in the Taylor expansion of lensing effects. We present the full lensed trispectrum

to fourth order in the lensing potential to explain this effect. We show that the low-L bias, as well as a

previously known bias at high L, is relevant to the determination of cosmology and must be corrected for

in order to avoid significant parameter errors. We also investigate the covariance of the reconstructed

power, finding broad correlations of � 0:1%. Finally, we discuss several small improvements which may

be made to the optimal estimator to mitigate these problems.
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I. INTRODUCTION

The CMB provides us with a picture of the Universe at
the time when neutral atoms first formed, some
400 000 years after the big bang. TheOð10�5Þ anisotropies
in its temperature characterize the density perturbations at
that time, and from them we have been able to learn a good
deal about the properties of our Universe (see Ref. [1] for
the most up-to-date constraints). The CMB is a powerful
tool because it is largely free of astrophysical complica-
tions. Its features may be derived from initial conditions
using linear physics, and to a good approximation it may be
treated as a Gaussian random field statistically character-
ized by a single power spectrum.

At a high level of sensitivity and resolution, however,
one expects to find small deviations from Gaussianity.
These are expected at some level both from the
high-energy physics which generated the primordial per-
turbation, thus seeding the CMB anisotropies, and from
secondary astrophysical effects after the CMB was re-
leased at recombination (see Ref. [2] for a review). One
of the most important astrophysical non-Gaussianities is
that introduced by gravitational lensing of the CMB (see
Ref. [3] for a review). We view the distant Universe
through the intervening matter of our Hubble volume, the
gravitational potential of which distorts the paths of the
CMB photons. In essence, we view the CMB through
bubbled glass. This blurs the features of the underlying
anisotropies [4] and introduces non-Gaussianity into the
observed sky [5]. In some sense, lensing of the CMB is a
nuisance as it provides a potential contaminant for mea-
surements of intrinsic non-Gaussianity in the early

Universe [6,7], with which we hope to be able to discrimi-
nate between fundamental theories. From another perspec-
tive, however, CMB lensing is a tool which provides us
with a new perspective on the contents of our Universe
[8,9]. By studying the warping effect which large-scale
structure has on the paths of CMB photons, we may
make integrated measurements of the matter power spec-
trum at intermediate redshifts. This provides us with addi-
tional powers to refine parameter measurements, and to
break degeneracies in measurements of the primary CMB
[10–12]. With Planck lensing data, for example, we expect
to be able to constrain the sum of neutrino masses to
sub-eV levels [13].
The effect of lensing is predominantly a simple remap-

ping of the temperature distribution of the underlying,
unlensed CMB by the lensing deflection. To leading order,
the deflection is the gradient of a lensing potential� which
is an integrated measure of the intervening gravitational
potential along the unlensed line of sight (e.g. [3]). We may
write the remapping on the sphere as

�ðn̂Þ ¼ ~�½n̂þr�ðn̂Þ�; (1)

where ~�ðn̂Þ is the unlensed CMB temperature in the
direction n̂ and �ðn̂Þ is the observed lensed temperature.1

On the scales which we shall be considering, �ðn̂Þ is well
approximated as a Gaussian random field, and can be

characterized solely by its power spectrum C��
L in har-

monic space. This power spectrum is calculable for a given
cosmology (see [3] for details) and can be compared to
measurements in order to constrain parameters.

*adc1000@ast.cam.ac.uk

1Equation (1) is rather symbolic; the remapping is by a
distance jr�j along the geodesic tangent to r� through n̂ [14].
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We can gain insight into the effects of lensing by con-
sidering the Taylor expansion of Eq. (1):

�ðn̂Þ ¼ ~�ðn̂Þ þ ri�ðn̂Þri ~�ðn̂Þ þ � � � ; (2)

from which we can see that the effect of lensing is to
introduce dependence on the higher derivatives of the
unlensed CMB temperature into the CMB itself. These
additional terms can couple to give non-Gaussian effects
on the sky. To the extent that the lensing deflections are
small, the first-order term in Eq. (2) is sufficient to describe
the lensing (but see [15] for a discussion of circumstances
where this approximation fails). Therefore, one expects
that an estimator of the form

dr�ðn̂Þ / �ðn̂Þr ~�ðn̂Þ (3)

will give a reasonable reconstruction of the deflection field.
Taking the expectation value over CMB realizations, we
can see that if properly normalized this estimator recovers
the deflection field in the mean (at first order in the lensing
expansion). The reconstruction is clearly quite noisy, how-
ever, as for any particular realization there will be some

spurious ~�r ~� correlation. This term is zero in the mean,
but contributes significant variance to the estimator.
A further issue is what field to use as a proxy for the
unlensed CMB.

We can achieve a somewhat better overall reconstruction
than that in Eq. (3) by taking the correlation between
filtered fields. For an isotropic survey covering the full
sky with uniform noise, the minimum-variance lensing
reconstruction has been worked out by Okamoto and Hu
[16]. We write their estimator here as

�̂ LM ¼ AL

Z
d�Y�

LMðn̂Þri½Vðn̂ÞriUðn̂Þ�; (4)

where AL is a multipole-dependent normalization, and
Vðn̂Þ and Uðn̂Þ are the filtered maps, given as

Vðn̂Þ ¼ X
LM

1

C��
‘;expt

�‘mY‘mðn̂Þ; (5)

Uðn̂Þ ¼ X
LM

C
~� ~�
‘

C��
‘;expt

�‘mY‘mðn̂Þ: (6)

Here, �‘m are the multipoles of the measured sky tem-
perature (after correcting for the instrumental beam) and
C��
‘;expt is the ensemble-averaged power spectrum for the

measured temperature, nominally C��
‘ þ NTT

‘ , where C��
‘

is the (lensed) CMB power spectrum and NTT
‘ is the power

spectrum of the experimental noise. In this work, as a
notational aid we will tend to use L to denote a multipole
of the lensing potential, and ‘ to denote a multipole of

temperature. The power spectrum C
~� ~�
‘ in the filter for the

Uðn̂Þ field is of the unlensed temperature. This estimator
has a nice interpretation. It is a correlator of the inverse-

variance-weighted temperature map Vðn̂Þwith the gradient
of the Wiener reconstruction Uðn̂Þ of the unlensed
CMB, which agrees with the intuition above. The
inverse-variance weighting reduces the magnitude of the

Gaussian noise, i.e. chance ~�r ~� correlations, which con-
tributes variance to the estimator. The divergence operation
in the integrand of Eq. (4) serves to extract the gradient part
of the estimated deflection field.
The approach of Eq. (4) has already been used success-

fully to find evidence for lensing effects in the Wilkinson
Microwave Anisotropy Probe data by cross correlation
with external data sets [17,18]. The next step in the study
of CMB lensing will be an entirely internal detection. It is
expected that this will be possible in the near future with
data from the Planck satellite. Planck noise levels should
enable us to measure the lensing power spectrum with
S=N > 1 over the multipole range ‘ ¼ 10–300. This will
prove cosmologically interesting. For example, massive
neutrinos should have percent-level effects on the lensing
power spectrum if the sum of their mass eigenstates is
�0:1 eV [19]. This is close to the lower limit on the
summed neutrino masses inferred from oscillation data,
and so Planck will at the very least be able to place useful
upper limits [13].
For the purpose of obtaining internal parameter con-

straints we require not �, but an estimate of its power

spectrum C��
L . A straightforward approach to obtaining

this is to form the estimator

C�̂ �̂
L ¼ 1

2Lþ 1

XL
M¼�L

�̂LM�̂
�
LM: (7)

Apart from the well-known bias in this estimate associated
with the statistical noise in the reconstruction of �, there
are several intrinsic complications which are usually ne-
glected. The first is that, although Eq. (4) recovers the
lensing potential �LM when averaged over CMB realiza-
tions, the actual reconstruction for a single realization is
sensitive to the lensing potential over a variety of multi-
poles. In the power spectrum reconstruction of Eq. (7)
these modes may couple to give additional biases. The
magnitude of these terms was first pointed out on the flat
sky in [20].
A second and more general point of concern is that

Eq. (4) only reconstructs �LM to first order. The lensing
expansion of Eq. (2) does not generally converge as fast as
one would expect given the small size of the lensing
deflections, and modern observations already test its accu-
racy. An accurate calculation of the lensed power spectrum
C��
L , for example, was given in [15]. There, it was found

that working only to leading order inC��
L [i.e. retaining the

first two nontrivial terms in the Taylor expansion in Eq. (2),
which is necessary for a consistent calculation of the power

spectrum toOðC��
L Þ] is only accurate at the 5%–10% level

relative to the true lensing corrections for multipoles
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‘ ¼ 1000–2000. It is quite reasonable to find a partial
breakdown of the low-order Taylor expansion in this re-
gime—at these multipoles the typical angular scale of the
CMB fluctuations is 5–10 arcmin, whereas the magnitude
of the deflection jr�j is typically 3 arcmin. Things are not
quite as bad as these arguments would suggest, since it is
only the relative displacement of points that matters for the
statistics of the lensed CMB; however, it is still the case
that there is a general need for care when working with the
lensing expansion of Eq. (2). Indeed, some numerical work
has already been carried out [21] which shows the effects
of higher-order terms from Eq. (2) in flat-sky power spec-
trum reconstruction, although that work only found serious
biases introduced at high multipoles where astrophysical
non-Gaussianities also begin to gain importance.

Finally, related to both of the first two issues, there exist
intrinsic correlations between the multipoles of the recon-
structed power spectrum, even on the full sky. These are to

be expected since the �̂ reconstruction is non-Gaussian,
being quadratic in the lensed CMB temperature (which is
itself mildly non-Gaussian). The magnitude of these cor-
relations was investigated in the flat-sky limit in [20]. They
found negligible correlations of Oð<10�4Þ for all multi-
pole pairs inside L < 2000. Their calculation treated the
lensed CMB as Gaussian, however, and numerical verifi-
cation that the non-Gaussianities introduced by lensing
(which couple much more readily) are negligible would
be useful.

In this paper, we use numerical simulations backed up
by analytical work to check that the current understanding

of the reconstruction C�̂ �̂
L is adequate. We do this for the

simplest possible case: on the full sky with homogeneous
noise and no secondary effects other than lensing. Our
simulations are discussed in Sec. II. In Sec. III we discuss
power spectrum biases. Our principle new result is that
higher-order terms from the expansion of lensing effects
significantly suppress power at low L in the reconstruction

ofC�̂ �̂
L . We provide simple analytic approximations for the

bias which capture the majority of the effect seen in our
simulations. In Sec. IV we give our results on the covari-
ance of the reconstructed power spectrum, and derive
further simple formulas which accurately describe the co-
variances on the full sky. Finally, we conclude with a
discussion of the cosmological relevance of all of these
complications, and discuss improvements to the usual
lensing estimator which can largely remove them.
Appendixes provide technical details on the harmonic-
space form of the lensing Taylor expansion and a flat-sky
calculation of the main results in Sec. III.

II. SIMULATIONS

Our simulation procedure is as follows. We start with

Gaussian realizations of � and ~� from spectra for a
�CDM cosmology with h ¼ 0:73, �bh

2 ¼ 0:022,

�mh
2 ¼ 0:127, ns ¼ 0:95, �8 ¼ 0:743 and three species

of massless neutrinos, up to ‘inp ¼ 3000. Our lensing

power spectrum C��
L , for example, is shown in Fig. 1.

We neglect the C
~��
L correlation induced on large scales

by the integrated Sachs-Wolfe effect. The low-‘ tempera-
ture multipoles play a negligible part in the lensing recon-
struction, and this choice has no effect on our results. We

proceed to lens our ~�ðn̂Þ realization using the LENSPIX

framework [22]. This takes the gradient of � using a fast
spin-1 transform and remaps the temperature with the
resulting deflection field, using cubic interpolation to ap-
proximate Eq. (1) accurately. We obtain a lensed HEALPIX

map at resolution Nside ¼ 2048, which we convolve with a
Gaussian beam of full-width at half-maximum �FWHM ¼
7 arcmin. We then add uncorrelated Gaussian pixel noise
with standard deviation �N ¼ 27 �K-arcmin. Finally, we
deconvolve the experimental beam and harmonically trans-
form our map back into multipole space, dropping all
multipoles past ‘max ¼ 2750. We drop higher multipoles
because the lensed power spectrum C��

L results from a
convolution in multipole space of width �L & 250, and so
the lensed multipoles simulated with an ‘inp ¼ 3000 cutoff

are not cosmically accurate above this ‘max. We have
verified that for the noise level which we use, the contri-
bution of information in these high multipoles to the lens-
ing reconstruction is sufficiently small that the location of
our cutoff has a negligible effect on our results. The power
spectra of our lensed maps agree well with those expected,
namely [23],

FIG. 1 (color online). Simulations of lensing (deflection)

power spectrum recovery C�̂ �̂
L . The ðþÞ symbols mark the

average power estimate for 1000 simulations, and the gray boxed
regions indicate the standard deviation for one realization (with
binning over the multipoles corresponding to the width of the
box). The black solid line is the input lensing spectrum, and the

dashed lines are analytical calculations of the bias terms Nð0Þ
L

(black), Nð1Þ
L (red), and Nð2Þ

L (orange). These are derived in

Sec. III.
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C��
‘;expt ¼ C��

‘ þ
�
�N

TCMB

�
2
e‘ð‘þ1Þ�2

FWHM=8 ln2; (8)

where C��
L is the lensed power spectrum theoretically

predicted by CAMB [24], using the prescription of [15].
For lensing reconstruction, we perform Eq. (4). The

gradient operations are again made with spin-1 transforms.
The filtering operations are performed in harmonic space,

withC
~� ~�
‘ our input unlensed power spectrum andC��

‘;expt as

given above.

III. POWER SPECTRUM BIASES

To determine the expectation value of C�̂ �̂
L it is most

natural to work in harmonic space. Here the lensing
expansion becomes somewhat more complicated, but the
underlying idea is the same as in real space. Schematically,
we have

�‘m ¼ ~�‘m þ ��‘m þ �2�‘m þ �3�‘m þ � � � ; (9)

where the power of � denotes the order in �. Simplified
expressions for the expansion terms are given in
Appendix A. In harmonic space, the Okamoto and Hu
[16] estimator becomes

�̂ LM ¼ AL

X
‘1‘2

ð�1ÞM ‘1 ‘2 L
m1 m2 �M

� �
g‘1‘2ðLÞ�‘1

�‘2
;

(10)

where the symbol in braces is the 3j symbol and from here
onward we use the compact notation that ‘i ¼ f‘i; mig. The
weight function g‘1‘2ðLÞ gives the filtered maps and per-

forms the gradient operation:

g‘1‘2ðLÞ ¼
f‘1L‘2

2C��
‘1;expt

C��
‘2;expt

¼ C
~� ~�
‘2

F‘1L‘2 þ C
~� ~�
‘1

F‘2L‘1

2C��
‘1;expt

C��
‘2;expt

;

(11)

where the function F‘1L‘2 describes the rotationally invari-

ant part of the coupling between the three multipoles
ð‘1; ‘2; LÞ and is given by

F‘1L‘2 ¼ ½�2
L ��2

‘1
þ�2

‘2
��‘1L‘2ð16�Þ�1=2

� ‘1 L ‘2
0 0 0

� �
: (12)

Note that F‘1L‘2 is symmetric in its last two indices.

For later convenience, we have introduced the compact
notation

�a���n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 1Þ � � � nðnþ 1Þ

p
; (13)

�a���n � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2aþ 1Þ � � � ð2nþ 1Þp
: (14)

In terms of these, the estimator normalization is

A�1
L ¼ 1

�2
L

X
‘1‘2

f‘1L‘2g‘1‘2ðLÞ; (15)

which ensures that the average of �̂LM over the CMB
fluctuations for fixed lenses is the true �LM.
Averaged over realizations of the CMB and lenses, we

can now see that our reconstructed power spectrum has an
expectation value given by

hC�̂ �̂
L i ¼ A2

L

�2
L

X
‘1‘2‘3‘4

X
M

ð�1ÞM l1 l2 L
m1 m2 �M

� �

� l3 l4 L
m3 m4 M

� �
g‘1‘2ðLÞg‘3‘4ðLÞ

� h�‘1
�‘2

�‘3
�‘4

i: (16)

Thus, we need to determine the four-point function of the
lensed CMB. The dominant term is from the disconnected
part, which is derived under the assumption that the lensed
CMB is a Gaussian random field on the sphere:

Nð0Þ
L ¼ A2

L

�2
L

X
‘1‘2

½g‘1‘2ðLÞ�2½2C��
‘1;expt

C��
‘2;expt

� ¼ AL; (17)

where the last equality holds only when the weights are
chosen (optimally) as in Eq. (11). Here we have taken up

the notation that NðpÞ
L gives the power spectrum bias with

order p dependence on the lensing power spectrum C��
L ,

exempting terms where it enters as a component of the
lensed CMB power spectrum.
In Fig. 1 we show simulated reconstructions of the

lensing power spectrum. We can see that the Nð0Þ
‘ noise

bias is the dominant source of error in the reconstruction.
The noise bias in the deflection power spectrum

LðLþ 1ÞC��
L is approximately scale invariant for

L < 100. We can understand this behavior by noting that

the dominant contribution to Nð0Þ
L is from chance correla-

tions between modes near the resolution limit of the ex-
periment. For low L, we can therefore approximate
L 	 ‘1, ‘2 in Eq. (17). Provided L is small compared to
the acoustic scale, we can Taylor expand the C‘2 power

spectra in g‘1‘2ðLÞ about ‘1 to give

g2‘1‘2ðLÞC��
‘1;expt

C��
‘2;expt

��2
‘1‘2L

16�

‘1 L ‘2

0 0 0

 !
2� C

~� ~�
‘1

C��
‘1;expt

�
2

�
�
�2

Lþ
ð�2

‘2
��2

‘1
Þ2

4�2
‘1

dlnC
~� ~�
‘1

dln‘1

�
2
:

(18)
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Summing over ‘2, the leading-order terms for ‘1 
 L give

X
‘2

g2‘1‘2ðLÞC��
‘1;expt

C��
‘2;expt

� �2
‘1L

�4
L

16�

� C
~� ~�
‘1

C��
‘1;expt

�
2
�
1þ d lnC

~� ~�
‘1

d ln‘1
þ 3

8

�d lnC ~� ~�
‘1

d ln‘1

�
2
�
:

(19)

Substituting into Eq. (17) and summing over ‘1 gives

½LðLþ 1Þ�2Nð0Þ
L =ð2�Þ ¼ 2� 10�7, in good agreement

with the large-scale plateau in Fig. 1. The rough scaling
with sensitivity and resolution is

½LðLþ 1Þ�2Nð0Þ
L =ð2�Þ � 1=‘2max; (20)

where, here, ‘max is an effective maximummultipole below
which the measurement of the CMB power spectrum is
cosmic-variance limited. Note that ‘2max defines the effec-
tive number of modes and that the noise power scales
inversely with this number.

While Nð0Þ
L gives the dominant bias, higher-order terms

do have significant effects. This is illustrated more clearly

in Fig. 2, where we plot C�̂ �̂
L � Nð0Þ

L � C��
L . We therefore

now set out to investigate the non-Gaussian terms which
arise from the connected part of the four-point function—
h�‘1

�‘2
�‘3

�‘4
iC. To calculate these terms, it is useful to

have a system for encoding the constraints which symme-
try places on their form. The formalism for doing this has

been worked out by [25], and we briefly review the nota-
tion here.
Statistical isotropy demands that the connected four-

point function takes the form

h�‘1
�‘2

�‘3
�‘4

iC ¼ X
LM

‘1 ‘2 L
m1 m2 �M

� �
� ‘3 ‘4 L

m3 m4 M

� �
ð�1ÞMT‘1‘2

‘3‘4
ðLÞ:
(21)

The term T‘1‘2
‘3‘4

ðLÞ is known as the trispectrum. Inserting

this template for the four-point function into Eq. (16) leads
to the simplified expression

hC�̂ �̂
L iC ¼

�
A2
L

�4
L

� X
‘1‘2‘3‘4

g‘1‘2ðLÞg‘3‘4ðLÞT‘1‘2
‘3‘4

ðLÞ: (22)

The trispectrum contains additional symmetries due to our
ability to reorder ‘1 � � � ‘4. These may be explicitly en-
coded by taking

T‘1‘2
‘3‘4

ðLÞ ¼ P‘1‘2
‘3‘4

ðLÞ

þ�2
L

X
L0

�
ð�1Þ‘2þ‘3

(
‘1 ‘2 L

‘4 ‘3 L0

)
P
‘1‘3
‘2‘4

ðL0Þ

þ ð�1ÞLþL0
(
‘1 ‘2 L

‘3 ‘4 L0

)
P‘1‘4
‘3‘2

ðL0Þ
�
: (23)

There are eight remaining symmetries in the partially

reduced trispectrum representation P‘1‘2
‘3‘4

ðLÞ—reorderings

within the pairings and exchange of upper and lower
indices. We may again explicitly symmetrize with respect
to pair reorderings via the reduced trispectrumT , such that

P‘1‘2
‘3‘4

¼ T ‘1‘2
‘3‘4

þ ð�1Þ�UT ‘2‘1
‘3‘4

þ ð�1Þ�LT ‘1‘2
‘4‘3

þ ð�1Þ�Uþ�LT ‘2‘1
‘4‘3

; (24)

where �U ¼ ‘1 þ ‘2 þ L and �L ¼ ‘3 þ ‘4 þ L. Finally,
we may satisfy the remaining upper/lower symmetry with

the fully reduced trispectrum T‘1‘2
‘3‘4

such that

T ‘1‘2
‘3‘4

¼ 1
2

h
T‘1‘2
‘3‘4

þ T‘3‘4
‘1‘2

i
: (25)

The quantity T‘1‘2
‘3‘4

ðLÞ is an arbitrary function of its argu-

ments, and its use enforces all of the symmetry require-
ments of the trispectrum. These considerations greatly
simplify the computation of the lensed trispectrum from
the expansion of Eq. (9), as they make it straightforward to
differentiate between terms which are related by symme-
tries, and terms which are genuinely independent.

FIG. 2 (color online). Biases in C�̂ �̂
L . The points are the

average of 1000 simulations and the boxes give the measured
error in the reconstruction for one realization (with binning over
the multipoles corresponding to the width of the box). The biases

calculated in Sec. III are also shown: Nð1Þ
L [dotted (red) line], Nð2Þ

L

[dashed (orange) line], and their sum [solid (blue) line]. These
calculated biases provide a good fit to the observed power in
simulations.
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In terms of the fully-reduced trispectrum, we can write

h�‘1
�‘2

�‘3
�‘4

iC ¼ 1

2

X
LM

‘1 ‘2 L

m1 m2 �M

 !
‘3 ‘4 L

m3 m4 M

 !
� ð�1ÞMT‘1‘2

‘3‘4
ðLÞ þ perms:; (26)

which includes a sum over all 24 permutations of
‘1, ‘2, ‘3, and ‘4. This form is particularly convenient
for theoretical calculations of the trispectrum from given
physical effects. It should be noted that the fully reduced
trispectrum is only specified up to the equivalence class

that gives the same trispectrum T‘1‘2
‘3‘4

ðLÞ under the opera-

tions in Eqs. (23)–(25). Expanding the trispectrum in
Eq. (22) in terms of the fully reduced trispectrum and using
the symmetry of the weights g‘1‘2ðLÞ and that they enforce
e.g. ‘1 þ ‘2 þ L ¼ even, we have

hC�̂ �̂
L iC ¼

�
4A2

L

�4
L

� X
‘1‘2‘3‘4

g‘1‘2ðLÞg‘3‘4ðLÞ

�
�
T‘1‘2
‘3‘4

ðLÞ þ�2
L

X
L0

(
‘1 ‘2 L

‘4 ‘3 L0

)

� ðð�1Þ‘2þ‘3T‘1‘3
‘2‘4

ðL0Þ þ ð�1ÞLþL0
T‘1‘3
‘4‘2

ðL0ÞÞ
�
:

(27)

With this considerable array of notation behind us, we are
now in a position to calculate the effects of non-Gaussian

couplings on the value of hC�̂ �̂
L i.

A. Oð�2Þ terms

At second order in �, the connected trispectrum term
is due entirely to correlations of the form
h��‘1

��‘2
�‘3

�‘4
i. It has the fully reduced form [25]

T ‘1‘2
‘3‘4

ðLÞ ¼ C��
L C

~� ~�
‘2

C
~� ~�
‘4

F‘1L‘2F‘3L‘4 : (28)

Inserting the primary ðP‘1‘2
‘3‘4

Þ form of this term into Eq. (22)

[or using Eq. (27) directly] results in

hC�̂�̂
L iC ¼ C��

L

�
AL

�2
L

X
‘1‘2

g‘1‘2ðLÞf‘1L‘2
�
2 ðprimary termÞ:

(29)

For any choice of weights, this reduces toC��
L which it was

our intention to reconstruct, provided that the estimator is
normalized so that the map-level reconstruction is un-
biased, i.e. Eq. (15) is satisfied. The normalization requires
knowledge of the unlensed CMB power spectrum, and any
error in the fiducial spectrum used leads to a multiplicative
bias in the reconstructed power. Inserting the other pairings
into Eq. (22), on the other hand, results in the first-order

power spectrum bias Nð1Þ
L :

Nð1Þ
L ¼ 2

�
AL

�L

�
2 X
‘1‘2‘3‘4L

0
ð�1Þ‘2þ‘3g‘1‘2ðLÞg‘3‘4ðLÞ

�
�
‘1 ‘2 L

‘4 ‘3 L0

�
C��
L0 f‘1L0‘3f‘2L0‘4 : (30)

This Nð1Þ
L term is the all-sky analogue of the Nð1Þ

��;��ðLÞ
noise bias of Kesden, Cooray, and Kamionkowski [20]
(KCK hereafter; see also Appendix B). In practice, we
find that the flat-sky result gives a good description of
the biases found in our simulations. This is a reasonable

result, as the magnitude of the Nð1Þ
L bias is non-negligible

only at large multipoles and here flat-sky calculations
converge with their harmonic counterparts. For the remain-

der of this paper, we will calculate Nð1Þ
L using the flat-sky

expression, with all-sky power spectra as input.

In Fig. 1 we plot the Nð1Þ
L bias. At low multipoles it is an

insignificant contribution, but at L > 250 it produces an
Oð10%Þ effect. At L > 1000 it begins to dominate over the

C��
L term which it was our intention to reconstruct. We

show in Fig. 2 that at highmultipoles theNð1Þ
L bias provides a

good fit to the excess power seen in our simulation results.
There are a number of ways to account for this behavior.

Hu showed that for lensing, the primary ðP‘1‘2
‘3‘4

Þ component

of the trispectrum dominates over the other couplings when
minð‘1; ‘2; ‘3; ‘4Þ 
 L [25] The primary terms represent
flattened quadrilaterals with the short diagonal of length L
supported by lensing, the power of which is strongly
peaked at low multipoles. A heuristic (but frequently use-
ful) way of rephrasing this argument such that it is specific
to lens reconstruction comes from considering the effect of
the weights g‘1‘2ðLÞ. For ‘1 
 L, the weights are only

nonzero for ‘2 in a narrow range of width 2L centered on

‘1 (due to the triangle constraint). The Nð1Þ
L term imposes

couplings between two weight terms, and so the region of
ð‘1; ‘2; ‘3; ‘4Þ space over which it can accumulate a signal
is correspondingly suppressed. In general, at low L the

dominant trispectrum terms which bias C�̂ �̂
L are therefore

those which factor maximally under the weights. At high
L, which terms will dominate is less clear. The eventual

dominance of the Nð1Þ
L bias was explained by KCK as the

interference of lensing modes at L0 < L on the reconstruc-
tion. It appears that in this case the cross-coupling nature of
the nonprimary terms, which suppresses their contribution

at low L, allows them to dominate later on. As C��
L is very

red, the coupling of the Nð1Þ
L term to C��

L power at lower L
allows it to increase relative to the primary term.

B. Oð�4Þ terms

At second order in the power spectrum, there are several
fundamental groupings of �n� and unlensed terms in the
lensing expansion which contribute to the fully reduced
trispectrum. These are all contained in four fully reduced
trispectra:
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T
��������‘1‘2

‘3‘4ðLÞ ¼
1

2

X
‘a‘b‘c‘d

�
ð�1ÞLþ‘2þ‘3�2

L

�
‘1 ‘2 L

‘a ‘b ‘c

��
‘3 ‘4 L

‘a ‘b ‘d

�
F‘1‘b‘cF‘2‘a‘cF‘3‘b‘dF‘4‘a‘dC

~� ~�
‘a

C
~� ~�
‘b

C��
‘c

C��
‘d

�
;

T
�2��2�~� ~�‘1‘2

‘3‘4ðLÞ ¼ ð�1ÞLþ‘1þ‘22�2
L�‘1‘2‘3‘4�‘2‘4

X0

‘a‘b

�
�‘a‘b�‘a‘b

16�

�
2
C

~� ~�
‘2

C
~� ~�
‘4

C��
‘a

C��
‘b

�‘1‘2
‘a‘b

ðLÞ �‘3‘4
‘a‘b

ðLÞ;

T
�2�����~�‘1‘2

‘3‘4ðLÞ ¼ �C��
L Rð�2

‘1
C

~� ~�
‘1

F‘2L‘1ÞðC ~� ~�
‘3

F‘4L‘3Þ

þ C��
L

�
F‘2L‘1

X
‘a‘b

C
~� ~�
‘a

C��
‘b

ðF‘1‘a‘bÞ2
��2

‘1
þ�2

‘a
��2

‘b

�2
‘1
�2

‘1

��
ðC ~� ~�

‘3
F‘4L‘3Þ

þ 1

8�

X0

‘a‘b‘c

�
ð�1Þ‘1þ‘2þ‘cC

~� ~�
‘3

C
~� ~�
‘c

C��
‘a

C��
‘b

F‘1‘b‘cF‘2‘a‘c�
2
L�‘3‘4‘a‘b�‘3‘a‘c �‘4‘3

‘b‘a
ðLÞ

�
‘1 ‘2 L

‘a ‘b ‘c

��
;

T
�3���~� ~�‘1‘2

‘3‘4ðLÞ ¼ �C��
L R½ð�2

‘1
� 2=3ÞC ~� ~�

‘1
F‘2L‘1�ðC ~� ~�

‘3
F‘4L‘3Þ: (31)

Here, the value R is half of the mean-square deflection,

R ¼ 1

2

X
‘1

ð�‘1�‘1Þ2
4�

C��
‘1

; (32)

and the �‘1‘2
‘3‘4

ðLÞ function is given in Appendix A. The

summation
P0
‘a‘b

in the second grouping is restricted to ‘a

and ‘b such that ‘a þ ‘b þ ‘1 þ ‘2 ¼ even and ‘a þ ‘b þ
‘3 þ ‘4 ¼ even, thus enforcing the parity constraint ‘1 þ
‘2 þ ‘3 þ ‘4 ¼ even. Similarly, the summation

P0
‘a‘b‘c

in

the third grouping is restricted such that ‘3 þ ‘4 þ ‘a þ
‘b ¼ even.

Many of these terms are difficult to calculate numeri-
cally. Fortunately, the dominant subset is calculable:

T
dom‘1‘2

‘3‘4ðLÞ¼C��
L ðC ~� ~�

‘3
F‘4L‘3ÞF‘2L‘1

�X
‘a‘b

C
~� ~�
‘a

C��
‘b

ðF‘1‘a‘bÞ2

�
��2

‘1
þ�2

‘a
��2

‘b

�2
‘1
�2

‘1

�
�2Rð�2

‘1
�1=3ÞC ~� ~�

‘1

�
: (33)

The choice of the terms in Eq. (33) is motivated by the
discussion of the previous subsection, in that these terms
are the subset of Eq. (31) which maximally factor under the
weights for the primary trispectrum coupling. Calculating

the effect of T
dom‘1‘2

‘3‘4ðLÞ through the primary trispectrum

coupling results in a low-‘ bias at Oð�4Þ:

Nð2Þ
L � 2C��

L

�
A2
L

�4
L

�X
‘1‘2

g‘1‘2ðLÞF‘2L‘1

�X
‘a‘b

C
~� ~�
‘a

C��
‘b

ðF‘1‘a‘bÞ2

�
��2

‘1
þ�2

‘a
��2

‘b

�2
‘1
�2

‘1

�
� 2Rð�2

‘1
� 1=3ÞC ~� ~�

‘1

�
�
�X
‘1‘2

g‘3‘4ðLÞf‘3L‘4
�
: (34)

We plot these dominant terms to the Nð2Þ
L bias in

Figs. 1 and 2. Overall, they contribute a negative bias to

the reconstructed power spectrum which is� 15% of C��
L

for the concordance cosmology which we use. They pro-
vide a good fit to the negative bias seen in our simulations
for L < 200.
The dominant terms that we have retained in Eq. (34)

share a common origin: they are due to correlations of the

gradient-order potential reconstruction of �̂LM with
higher-order terms. Equivalent terms arise, for example,

if one calculates hC��̂
L i—the cross spectrum between the

input and reconstructed lensing potentials. If we write the

reconstructed �̂LM as 2

�̂ LM ¼ nð0ÞLM þ�LM þ nð1ÞLM þ nð2ÞLM þ nð3ÞLM þ � � � ; (35)

where, for example, nð2ÞLM is the statistical noise in the
reconstruction that is second order in � and arises from
~��2� and ���� terms; then the OðC��

L Þ contribution to

hC��̂
L i is from�LM only (since hnð1ÞLMiCMB ¼ 0 by construc-

tion) and the O½ðC��
L Þ2� contribution is from nð3ÞLM. Correct

to fourth order in �, we find

hC��̂
L i ¼ C��

L þ 1

2
N
domð2Þ

L ; (36)

where N
domð2Þ

L ¼ 2h��
LMn

ð3Þ
LMi is given by the right-hand side

of Eq. (34) with one factor of the normalization eliminated
with Eq. (15).

We can develop a useful approximation to Nð2Þ
L on large

scales by noting that the sum over ‘1 and ‘2 is dominated
by small-scale modes near the resolution limit of the

experiment. Since C��
L is so red, ‘b 	 ‘a � ‘1 in the

remaining summation and we can approximate

2We are grateful to Antony Lewis for suggesting this approach.
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X
‘a‘b

C
~� ~�
‘a

C��
‘b

ðFL‘a‘bÞ2
½�2

L þ�‘a ��2
‘b
�

�2
L�

2
L

� 2
X
‘a‘b

C
~� ~�
‘a

C��
‘b

ðFL‘a‘bÞ2
�2

L

: (37)

Noting further that the second-order result for the change
in the temperature power spectrum due to lensing is [26]

�C��
L ¼ C��

L � C
~� ~�
L

� ��2
LRC

~� ~�
L þ X

‘a‘b

C
~� ~�
‘a

C��
‘b

ðFL‘a‘bÞ2
�2

L

; (38)

we can approximate

Nð2Þ
L � 4C��

L

�
AL

�2
L

�
2
�X
‘3‘4

g‘3‘4ðLÞf‘3L‘4
�

� X
‘1‘2

g‘1‘2ðLÞF‘2L‘1�C
��
‘1

: (39)

The fractional Nð2Þ
L bias is therefore largely determined by

the difference between the lensed and unlensed power
spectra. We can use similar methods to those which gave

Eq. (19) to approximate Nð2Þ
L further at low L:

Nð2Þ
L �C��

L

AL�
4
L

4�

X
‘1

�2
‘1

ðC��
‘1;expt

Þ2
�
C

~� ~�
‘1

�C��
‘1

þ 1

2

d

d ln‘1
ð�C��

‘1
C

~� ~�
‘1

Þþ 3

8

dC
~� ~�
‘1

d ln‘1

d�C��
‘1

d ln‘1

�
; (40)

where we have used Eq. (15) for the normalization. The
only L dependence is in the prefactor, but Eqs. (17) and

(19) show that AL�
4
L ¼ const at low L so the Nð2Þ

L bias is a
constant fractional bias there. Numerically, the dominant
contribution to Eq. (40) is from the final term and the bias
evaluates to �20%, in reasonable agreement with the full
evaluation of Eq. (34) reported in Fig. 2. The bias becomes
less important for surveys with lower resolution: for an
experiment limited to a maximum multipole ‘max ¼ 750,
we find the bias reduces to �4%.

We have seen that the dominant terms in the Oð�4Þ
trispectrum provide a good explanation of the low-‘ bias
seen in our simulation results. Figure 2 provides empirical
evidence that higher-order terms do not bias the recon-
structed power further by more than �3%. This seems
plausible given Eq. (39). Replacing �C��

‘1
by its nonper-

turbative equivalent (see e.g. Ref. [15]), the change in
�C��

‘1
is around 20% at ‘1 � 2000. To the extent that

this replacement mimics the nonperturbative generaliza-
tion of the low-L bias (see Appendix B for further

justification), we should expect higher-order terms to pro-
duce a fractional bias �0:15� 0:2 ¼ 0:03.

IV. POWER SPECTRUM COVARIANCE

We now proceed to investigate the covariance of our
power spectrum estimates. A similar calculation has been
performed on the flat sky by [20]; however, the full-sky
calculation is somewhat cleaner.
We are interested in the covariance of the reconstructed

power spectrum which is given by

Cov ðC�̂ �̂
L ; C�̂ �̂

L0 Þ ¼ hC�̂ �̂
L C�̂ �̂

L0 i � hC�̂ �̂
L ihC�̂ �̂

L0 i: (41)

The cross term,

hC�̂�̂
L C�̂�̂

L0 i¼
�
ALAL0

�LL0

�
2 XL
M¼�L

XL0

M0¼�L0

X
‘1‘2‘3‘4

X
‘5‘6‘7‘8

ð�1ÞMþM0

� ‘1 ‘2 L

m1 m2 M

 !
‘3 ‘4 L

m3 m4 �M

 !

� ‘5 ‘6 L0

m5 m6 M0

 !
‘7 ‘8 L0

m7 m8 �M0

 !
�g‘1‘2ðLÞg‘3‘4ðLÞg‘5‘6ðL0Þg‘7‘8ðL0Þ
�h�‘1

�‘2
�‘3

�‘4
�‘5

�‘6
�‘7

�‘8
i; (42)

requires us to calculate the eight-point lensed correlation
function. Since the lensed CMB has zero mean, and we are

ignoring the low-‘ C
~��
‘ correlation and hence all odd

connected correlations, the eight-point function can be
expressed in terms of the connected two-, four-, six-, and
eight-point functions. The latter two of these are at least
Oð�4Þ [27] and so we neglect them on the grounds that
they should be subdominant.
We first consider those contributions to the eight-point

function that involve the trispectrum. There are 70 terms
involving products of two trispectra and a further 210
involving the product of a trispectrum with two two-point
functions. Guided by our experience with the power spec-
trum, it seems likely that the dominant couplings are those
which factor most under the weights. This motivates us to
consider only those terms with trispectra which couple
terms between two weights, e.g. h�‘1

�‘2
�‘3

�‘4
iC.

There are three such terms involving a product of trispectra
and 18 involving a single trispectrum. It is convenient to
reexpress these in terms of the full four-point functions and
their Gaussian (disconnected) parts, so their contribution to
the eight-point function is

h�‘1
�‘2

�‘3
�‘4

ih�‘5
�‘6

�‘7
�‘8

i � ðh�‘1
�‘2

ih�‘3
�‘4

i
þ 2 permsÞðh�‘5

�‘6
ih�‘7

�‘8
i þ 2 permsÞ

þ ð34 $ 56Þ þ ð34 $ 78Þ: (43)
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The four-point terms make simple contributions to
Eq. (42):

h�‘1
�‘2

�‘3
�‘4

ih�‘5
�‘6

�‘7
�‘8

i!hC�̂�̂
L ihC�̂�̂

L0 i;
h�‘1

�‘2
�‘5

�‘6
ih�‘3

�‘4
�‘7

�‘8
i!�LL0 hC�̂�̂

L i
�hC�̂�̂

L0 i=ð2Lþ1Þ;
h�‘1

�‘2
�‘7

�‘8
ih�‘3

�‘4
�‘5

�‘6
i!�LL0 hC�̂�̂

L i
�hC�̂�̂

L0 i=ð2Lþ1Þ:
(44)

For L ¼ L0 this leads to a dominant variance of

Var ðC�̂ �̂
L Þ ¼ 2

2Lþ 1
hC�̂ �̂

L i2; (45)

which agrees with the results of [20] on the flat sky. It also
justifies the assumption of [28] that the statistical noise in

the �̂ reconstruction behaves predominantly like Gaussian
noise giving the usual cosmic-variance result for the power
spectrum variance. This is a slightly different version of
cosmic variance than we usually deal with, however, in that

the terms in C�̂ �̂
L arise from correlations between a large

number of multipoles.
We now consider the disconnected part of the eight-

point function and the remaining two-point terms in
Eq. (43). As we shall see, these generate a covariance
between the power spectrum estimates. The disconnected
part of the eight-point function involves 105 terms, but 45
of these are zero (for L and L0 � 0) because they correlate
one or more pairs of � that are jointly weighted, which

isolates h�̂LMi ¼ 0 when averaged over realizations of
large-scale structure. The remaining 60 nonzero terms
are characterized by four fundamental pairings, with terms
within each pairing giving equal contributions to the co-
variance by symmetry:

The first and second pairings cancel with the 12 nonzero
two-point terms in Eq. (43). The third pairing results in a
covariance of

hC�̂ �̂
L C�̂ �̂

L0 ia ¼ 32

�
ALAL0

�LL0

�
2X
‘1

1

�2
‘1

ðC��
‘1;expt

Þ2

�
�X

‘2

g2‘1‘2ðLÞC��
‘2;expt

�

�
�X

‘3

g2‘1‘3ðL0ÞC��
‘3;expt

�
: (47)

The final pairing is more tightly coupled, and results in

hC�̂�̂
L C�̂�̂

L0 ib¼16

�
ALAL0

�LL0

�
2 X
‘1‘2‘3‘4

�
ð�1ÞLþL0

�
L ‘1 ‘2

L0 ‘3 ‘4

�
�C��

‘1;expt
C��
‘2;expt

C��
‘3;expt

C��
‘4;expt

�g‘1‘2ðLÞg‘3‘4ðLÞg‘1‘4ðL0Þg‘2‘3ðL0Þ
�
: (48)

We expect that the terms of Eq. (47) should be dominant, as
they factor most under the weights, and so from here on we
consider them only. In Fig. 3 we plot the correlation matrix

R ðL; L0Þ ¼ CovðC�̂ �̂
L ; C�̂ �̂

L0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðC�̂ �̂

L ÞVarðC�̂ �̂
L0 Þ

q : (49)

The agreement between the measured and theoretically
approximated correlations is excellent. Using the approxi-
mation in Eq. (19), the correlation matrix for low L and L0

should scale as RðL; L0Þ � ffiffiffiffiffiffiffiffi
LL0p

=l2max in agreement with
the arguments in Ref. [20]. Note that the correlations
decrease as the resolution of the experiment increases.
While the shape of our numerical covariance agrees with
[20], the magnitude we find is at least one order larger. The
correlations are at a level of <1%, although we note that
this correlation is for unbinned spectra. With such broad
correlations, binning increases the correlation roughly in
proportion to the bin width. The binned spectra in Fig. 1,
for example, have correlations of Oð1%Þ for ‘ < 1000,
where logarithmic binning is used, and of Oð10%Þ for
‘ > 1000, where the bins are rather wide. In the discussion

FIG. 3 (color online). Covariance RðL; L0Þ calculated ap-
proximately using Eq. (47) (solid blue lines) and estimated

from 1000 simulations using the standard (constant) Nð0Þ
L bias

term of Eq. (17) (dashed red lines) and the realization-dependent
modified expression of Eq. (53) (solid gray lines).
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which follows, however, we will show how these correla-
tions may be almost entirely eliminated in practice.

V. DISCUSSION

We have identified three complications with the usual
lensing estimator:

(1) the Oð�2Þ Nð1Þ
L excess power bias,

(2) the Oð�4Þ Nð2Þ
L power suppression, and

(3) a small intrinsic covariance between the estimated

C�̂ �̂
L .

We will discuss the implications of each of these terms and
their remediation in turn.

We begin by investigating the relevance of the bias terms
for cosmological parameter determination with a Fisher
matrix approach. Our implementation follows closely that
of [29], and we refer the interested reader there for details.

The incorporation of C��
L reconstruction into a parameter

analysis allows one to produce dramatically improved
constraints on the ‘‘dark’’ parameters which affect the
late-time evolution of the Universe [19]. With Planck, for
example, a factor of 2 improvement over what is achiev-
able without lensing reconstruction is forecasted for the
determination of the (summed) neutrino mass in simple
models, and rather more in models with additional parame-
ters such as dynamical dark energy [13,29]. We begin by

asking which region of the C��
L power spectrum this

determination is made from. We use the fiducial cosmol-
ogy given in Sec. II, but take ��h

2 ¼ 0:006 (i.e.
P

�m� ¼
0:6 eV). This is large enough that it would be detected with
significance by Planck, which is important to prevent the
hard ��h

2 � 0 prior from corrupting the Fisher analysis.
In the top panel of Fig. 4 we plot the relative constraints on
��h

2 for our simplified version of Planck, assuming that

the reconstructed C��
L power spectrum is ignored above

some value of L. We can see from this figure that for
Planck, most of the constraining power of lensing on
neutrino masses comes from the multipole range 100<
L< 700, which will receive large contributions from both
bias terms.

We now consider (pessimistically) the effect of the Nð1Þ
L

and Nð2Þ
L biases if completely uncorrected. We can relate

biases in the ‘‘observed’’ lensing power spectrum to pa-
rameter biases by perturbing the Fisher-approximated like-
lihood, finding that

��i ¼ F�1
ij

X
AB;CD

½@CAB=@�j�½�ĈCD�½Cov�1�AB;CD; (50)

where �i indexes a cosmological parameter, Fij is the

Fisher matrix, �ĈCD is the power spectrum bias, and
[Cov] is the covariance matrix of the measured spectra.
The labels A, B, C, and D run over the observable fields
T, E, and�. In the lower panel of Fig. 4 we assume that the

bias is uncorrected for L < ‘ and perfectly removed for
L> ‘. We can see that neglecting either bias leads to 1�
errors in the determination of the neutrino energy density.

The Nð2Þ
L bias suppresses the reconstructed power, particu-

larly at low ‘, and this partly mimics the effect of massive
neutrinos, leading to an overestimate of ��h

2. This is
particularly worrisome if we are placing an upper limit

on the neutrino mass, as neglecting theNð2Þ
L bias would lead

to a spurious (albeit marginal) detection of massive neu-
trinos. We conclude that an accurate treatment of both
biases must be made in order to obtain accurate parameter
constraints, and so now we turn to ways of mitigating
these.

For the Nð1Þ
L bias, the suggestion for removal has been to

perform iterative estimation and subtraction [20,21]. An
additional approach, which is perhaps conceptually more

straightforward, is to view Nð1Þ
L as a normalization effect

which results in an estimator which is a convolution over
the true lensing power spectrum rather than a direct esti-
mate. The kernel of this convolution can be calculated and

inverted to produce an unbiased estimate of C��
L . We note

that this kernel depends on the true unlensed CMB power
spectrum. In practice, our uncertainty in this quantity

therefore determines the extent to which the Nð1Þ
L bias

may be treated. Because of the large noise with which
upcoming experiments will reconstruct the lensing poten-
tial, both of these procedures are likely to be unstable
unless we can take the shape of the lensing power to be

FIG. 4 (color online). Relationship between C��
L reconstruc-

tion and parameter constraints for Planck. Top panel: constraints

on ��h
2 assuming that the C��

L reconstruction is discarded for

L > ‘, divided by the constraint if the full reconstruction were
included. Inclusion of lens reconstruction improves constraints
on��h

2 by a factor of 2, consistent with e.g. [13]. Bottom panel:
bias in the determination of ��h

2, as a fraction of the random

error, induced by the Nð1Þ
L (black solid line) and Nð2Þ

L (red dashed

line) biases, assuming that the biases have been completely
removed for L > ‘.
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characterized by some small set of numbers (such as the
cosmological parameters of interest).

Experimental realism introduces additional difficulties,
however. In particular, we note that for a realistic experi-
ment with inhomogeneous sky coverage, the normalization
of a quadratic lensing estimator must generally be deter-

mined with simulations [17]. To treat the Nð1Þ
L bias using

off-diagonal entries in a normalization matrix would re-
quire that we be able to determine these elements by
Monte Carlo simulations—a difficult task. In this case,

the Nð1Þ
L bias will most likely need to be absorbed into

the normalization. Suppose, for example, that the normal-
ization is determined with lensed realizations of the CMB

using some fiducial C��
L spectrum, as in [17]. At each L, a

normalization AL is determined from the ratio of the
Monte Carlo average of the reconstructed power (after

correction for the Nð0Þ
L noise) to the fiducial power there.

Assuming that the shape of the fiducial C��
L matches the

underlying lensing power, this results in an unbiased esti-
mator at the power spectrum level, albeit with slightly
greater variance than would exist in the absence of the

Nð1Þ
L bias. The quality of our assumptions about the under-

lying C��
L shape would then need to be quantified and

folded into the systematic-error estimate.

Treatment of the Nð2Þ
L bias presents further difficulties

due to its nonlinearity in C��
L . It is particularly trouble-

some in the case where the normalization is determined by
Monte Carlo simulations, as care must be made to deter-

mine the normalization over a small range of C��
L power,

to ensure that the estimator response is approximately

linear. The Nð2Þ
L bias would then appear as an offset which

could be subtracted in a fiducial model with simulations

using the fiducial C��
L power. This would clearly be a

cumbersome procedure. We find, however, that a small
modification of the optimal estimator can effectively re-
move this bias prior to normalization. Our starting point is

the approximate expression for the Nð2Þ
L bias in Eq. (37). In

terms of this, we have

hC�̂ �̂
L i ¼ C��

L

�
AL

�2
L

�
2
��X

‘1‘2

g‘1‘2ðLÞf‘1L‘2
�
2

þ 2
X
‘1‘2

g‘1‘2ðLÞf‘1L‘2
X
‘3‘4

g‘3‘4ðLÞf�‘3L‘4
�

þ Nð0Þ
L þ Nð1Þ

L

� C��
L

�
AL

�2
L

�
2
�X
‘1‘2

g‘1‘2ðLÞðf‘1L‘2 þ f�‘1L‘2Þ
�
2

þ Nð0Þ
L þ Nð1Þ

L ; (51)

where f�‘1L‘2 ¼ �C��
‘2

f‘1L‘2 þ �C��
‘1

f‘2L‘1 and, recall,

�C��
‘ is the change in the CMB power spectrum due to

lensing. We now see that if we modify the weights to

�g ‘1‘2ðLÞ ¼
f‘1L‘2 � f�‘1L‘2
2C��

‘1;expt
C��
‘2;expt

; (52)

where f�‘1L‘2 is computed for some fiducial C��
L , the qua-

dratic part of the estimator response to power C��
L be-

comes linear times the difference between the true lensed
CMB power and that in the fiducial model. The estimator
normalization, for an ideal survey, is still given by Eq. (17)
using the original weights. In practice, the normalization
could be obtained by Monte Carlo simulations using the

fiducial C��
L and the modified weights in the reconstruc-

tion. The cost of this modification is an increase in the
estimator variance of �15% for L < 300; however, this is
most likely justified given the improved bias properties of
the estimator. Additionally, this technique makes it clear
that our ability to debias the estimator is determined by our

understanding of C��
L only through the lensed and un-

lensed CMB temperature power spectra, a simplicity which
one would not necessarily expect for a higher-order bias.
This insight makes the assessment of systematic errors due
to uncertainties in cosmology much more straightforward.
Another, more straightforward method of treating the

bias is motivated by the recent work of Lewis et al. [30],
who point out that, to a good degree of approximation, the
response of the lensed CMB covariance to changes in the
lensing potential is determined by lensed power spectra.
This is in contrast to the first-order formula used to derive
the quadratic estimators of Okamoto and Hu [16], which
contains an unlensed spectrum. Incorporating this insight
into the quadratic derivation, one would obtain the same
estimator, but with lensed rather than unlensed spectra in
the filtering of Eq. (11). Because these appear twice in the
estimator normalization [Eq. (15)], this is in fact equivalent
atOð�4Þ to the correction described above. This method of
debiasing is even simpler to implement than the one pro-
posed above.
Finally, we consider the covariance of the lensing power

reconstruction. The loss of information which this covari-
ance represents increases the effective error bars of the
reconstruction, although we have not quantified this here,
as we find that an improved, internally calibrated estimator
does a good job of reducing this covariance. Similar ideas
were put forward by Dvorkin and Smith in the context of
optical-depth reconstruction [31]. For lens reconstruction,
the modified estimator for the power spectrum is as fol-

lows. Instead of removing the Nð0Þ
L bias by direct subtrac-

tion, we subtract 2N̂ð0Þ
L � Nð0Þ

L , where N̂ð0Þ
L involves the

observed total power spectrum in our realization of the

Universe, Ĉ��
‘;expt:

N̂ ð0Þ
L ¼ A2

L

�2
L

X
‘1‘2

½g‘1‘2ðLÞ�2½2C��
‘1;expt

Ĉ��
‘2;expt

�: (53)
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By construction, N̂ð0Þ
L is quadratic in the observed tempera-

ture and has hN̂ð0Þ
L i ¼ Nð0Þ

L . Subtracting 2N̂ð0Þ
L � Nð0Þ

L is very
successful in reducing the intrinsic covariance of the esti-
mator, while preserving the expectation value of the
power.3 This is because the dominant terms of

CovðC�̂ �̂
L ; N̂ð0Þ

L0 Þ þ CovðC�̂ �̂
L0 ; N̂ð0Þ

L Þ are identical to those

of Eq. (47), and the dominant terms of CovðN̂ð0Þ
L ; N̂ð0Þ

L0 Þ
are 1=4 of those in Eq. (47). Their combination therefore
cancels the dominant contribution to the off-diagonal co-

variance from hC�̂ �̂
L C�̂ �̂

L ia. With this improved estimator,
we find that the covariance is reduced to a level which is
unmeasurable in our simulations ð<0:05%Þ. For an experi-
ment with only partial sky coverage, N̂ð0Þ

L can be deter-
mined by simulations for each of which the quadratic �
reconstruction is performed by correlating independent

Gaussian CMB maps drawn from Ĉ��
‘;expt and C��

‘;expt,

respectively.
As we move toward experimental realism, the number of

quantities which are determined by Monte Carlo simula-
tions becomes increasingly worrisome, although some

sanity checks are available. The accuracy of the Nð0Þ
L sub-

traction, for example, may be assessed by a jackknife test
in which one reconstructs the lensing power using two �
estimates: one which correlates only even multipoles, and
one which correlates only odd multipoles. For parity-
symmetric sky coverage, this results in an estimate of

C��
L which is free from the Nð0Þ

L bias, providing a useful
consistency check.

VI. CONCLUSIONS

We have thoroughly investigated the behavior of the
optimal quadratic lensing estimator, both analytically and
with simulations. We have discovered a new bias in the
reconstructed power spectrum, and presented the lensed
CMB trispectrum at Oð�4Þ to explain it. This bias has a
physical interpretation as an anticorrelation between the
first-order reconstruction of � and higher-order terms, and
so it will also be relevant for cross-correlation studies. We
suggest that the following estimator provides a good basis

for the reconstruction of C��
L :

Ĉ
��
L ¼ AL0

L
�C�̂ �̂
L0 � 2N̂ð0Þ

L þ Nð0Þ
L ; (54)

where �C�̂ �̂
L0 denotes the usual optimal estimator of Eq. (7)

with a slight modification of the weights, given by Eq. (52).
This estimator has a slightly larger variance than the stan-
dard optimal estimator at low L; however, it is effectively

free from contamination by higher-order lensing terms and
has negligible covariance. Uncertainty in the underlying
cosmology leads to the potentially imperfect removal of
the biasing terms; however, we find analytically that this
possibility is completely characterized by our understand-
ing of the lensed and unlensed temperature spectra.
In the near future, CMB lensing will make the transition

from detection to precision science, and the concerns
which we have addressed will be increasingly important.
The reconstruction of the large-scale lensing potential is a
demanding task; however, the new window which it will
open onto the contents of the Universe will most certainly
provide a worthwhile view.
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APPENDIX A: SIMPLIFICATION OF
EXPANSION TERMS

We wish to calculate the connected part of the trispec-
trum to Oð�4Þ, which requires a third-order expansion
of the lensing effect. In harmonic space, these terms are
given by

��‘m ¼ X
‘1‘2

�‘1
~�‘2

Imm1m2

‘‘1‘2
;

�2�‘m ¼ 1

2

X
‘1‘2‘3

�‘1
�‘2

~�‘3
Jmm1m2m3

‘‘1‘2‘3
;

�3�‘m ¼ 1

6

X
‘1‘2‘3‘4

�‘1
�‘2

�‘3
~�‘4

Kmm1m2m3m4

‘‘1‘2‘3‘4
;

(A1)

where

Imm1m2

‘‘1‘2
¼
Z
d�Ym�

‘ ðriY
m1

‘1
ÞriYm2

‘2
;

Jmm1m2m3

‘‘1‘2‘3
¼
Z
d�Ym�

‘ ðriY
m1

‘1
ÞðrjY

m2

‘2
ÞrirjYm3

‘3
;

K
mm1m2m3m4

‘‘1‘2‘3‘4
¼
Z
d�Ym�

‘ ðriY
m1

‘1
ÞðrjY

m2

‘2
ÞðrkY

m3

‘3
ÞrirjrkYm4

‘4
:

(A2)

We may simplify the covariant derivatives in Eq. (A2) by
exploiting their relationship with the spin-raising and low-
ering operators [32]. Their application thus results in the
generation of spin-s spherical harmonics, which are de-
fined by the application of the spin-raising and lowering
operators to the ordinary (spin-0) harmonics [33,34].

3This modification to the estimator is also what one finds if one
constructs a quartic estimator in the observed temperature for
C��
L based on an approximate maximization of the likelihood for

the lensed temperature (truncated at trispectrum order).
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Following the derivation in [16], it is straightforward to
show that

rkðsYm
‘ e

ðnþÞþ eðn�Þ� Þ ¼ �1
2e

ðnþÞþ jeðn�Þ� ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘� sÞð‘þ sþ 1Þp
� ½sþ1Y

m
‘ �ek� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þ sÞð‘� sþ 1Þp

� ½s�1Y
m
‘ �ekþÞ; (A3)

where n� � nþ ¼ s, the (null) spin basis is given in
terms of the unit polar and azimuthal basis vectors, e �
ðê�  iê�Þ, and we have defined eðnÞ ¼ ei1e

i2 � � � ein.
Repeated applications of r reduce to applications of
Eq. (A3). We now proceed to simplify the expansion terms
individually.

1. Imm1m2

‘‘1‘2

The simplification of Imm1m2

‘‘1‘2
has been given in the

general case by [25]. Expanding the gradients of the
spherical harmonics and then contracting indices gives

Imm1m2

‘‘1‘2
¼ �1

2�‘1‘2

Z
d�Ym�

‘ ð1Ym1

‘1 �1Y
m2

‘2
þ �1Y

m1

‘1 1Y
m2

‘2
Þ:

(A4)

This vanishes by parity unless ‘þ ‘1 þ ‘2 ¼ even. Now
we may use an identity for integration over three spherical
harmonics [35],

Z
d�sY

m�
ls1
Ym1

l1s2
Ym2

l2
¼ ð�1Þmþs

�‘‘1‘2ffiffiffiffiffiffiffi
4�

p ‘ ‘1 ‘2

s �s1 �s2

 !

� ‘ ‘1 ‘2

�m m1 m2

 !
; (A5)

and the following result from the recursion relations be-
tween the 3j symbols [35]:

‘1 ‘2 ‘3

1 �1 0

 !
¼ 1

2

‘1 ‘2 ‘3

0 0 0

 !��2
‘3
��2

‘1
��2

‘2

�‘1‘2

�
ð‘1 þ ‘2 þ ‘3evenÞ; (A6)

to show that

Imm1m2

‘‘1‘2
¼ ð�1Þm ‘ ‘1 ‘2

�m m1 m2

� �
F‘‘1‘2 ; (A7)

where the parity constraint is enforced by F‘‘1‘2 . This

simple result for Imm1m2

‘‘1‘2
also follows rather more directly

by repeatedly integrating by parts in Eq. (A2).

2. J
mm1m2m3

‘‘1‘2‘3

It follows from parity that Jmm1m2m3

‘‘1‘2‘3
vanishes unless

‘þ ‘1 þ ‘2 þ ‘3 ¼ even. When this is satisfied, we have

Jmm1m2m3

‘‘1‘2‘3
¼�‘1‘2‘3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘3þ2Þð‘3�1Þ

q
�
Z
d�Ym�

‘ �1Y
m1

‘1 �1Y
m2

‘2 2Y
m3

‘3

þ�‘1‘2‘3�‘3

2

Z
d�Ym�

‘ 1Y
m1

‘1 �1Y
m2

‘2 0Y
m3

‘3
: (A8)

Thus the gradient integral reduces to an integral over four
spin spherical harmonics. We may reduce this to a three-
harmonic integral by invoking the Clebsch-Gordan expan-
sion for spin harmonics [36],

s1Y
m1

‘1 s2Y
m2

‘2
¼ �‘1‘2ffiffiffiffiffiffiffi

4�
p X

LMS

�L
‘1 ‘2 L
�s1 �s2 S

� �
� ‘1 ‘2 L

m1 m2 �M

� �
SY

M
L ð�1ÞM�S: (A9)

Application of the three-harmonic integral identity of
Eq. (A5) then gives

Z
d�s1Y

m1

‘1 s2Y
m2

‘2 s3Y
m3

‘3 s4Y
m4

‘4

¼ �‘1‘2‘3‘4

4�

X
LMS

�2
L

�
‘1 ‘2 L

�s1 �s2 �S

 !

� ‘1 ‘2 L

m1 m2 M

 !
ð�1ÞM�S

‘3 ‘4 L

�s3 �s4 S

 !

� ‘3 ‘4 L

m3 m4 �M

 !�
: (A10)

This may be used finally to give two compact expressions
for J

mm1m2m3

‘‘1‘2‘3
for ‘þ ‘1 þ ‘2 þ ‘3 ¼ even:

Jmm1m2m3

‘‘1‘2‘3
¼ ð�1Þm1

�‘‘1‘2‘3�‘1‘2‘3

8�

X
L

�2
L

‘ ‘1 L

�m m1 M

 !

� ‘2 ‘3 L

m2 m3 �M

 !
�‘‘1
‘2‘3

ðLÞ

¼ ð�1Þm3
�‘‘1‘2‘3�‘1‘2‘3

8�

X
L

�2
L

‘ ‘3 L

�m m3 M

 !

� ‘1 ‘2 L

m1 m2 �M

 !
�‘‘3
‘1‘2

ðLÞ; (A11)

where
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�‘‘1
‘2‘3

ðLÞ ¼ �
�

‘ ‘1 L

0 �1 1

 !
‘2 ‘3 L

1 0 �1

 !
�‘3 þ

‘ ‘1 L

0 1 �1

 !
‘2 ‘3 L

1 �2 1

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘3 � 1Þð‘3 þ 2Þ

q �
;

�‘‘3
‘1‘2

ðLÞ ¼
�

‘ ‘3 L

0 0 0

 !
‘1 ‘2 L

1 �1 0

 !
�‘3 þ

‘ ‘3 L

0 2 �2

 !
‘1 ‘2 L

�1 �1 2

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘3 � 1Þð‘3 þ 2Þ

q �
:

(A12)

Note that �‘‘1
‘2‘3

ðLÞ and �‘‘3
‘1‘2

ðLÞ correspond to the two
distinct ways of coupling the arguments of J (it is sym-
metric on the second and third arguments). They are there-
fore related by a 6j recoupling coefficient (for
‘þ ‘1 þ ‘2 þ ‘3 ¼ even):

�‘‘3
‘1‘2

ðLÞ ¼ X
L0
ð�1Þ‘þ‘3þL0

�2
L0

�
‘ ‘3 L
‘2 ‘1 L0

�
�‘‘1
‘2‘3

ðL0Þ:

(A13)

In our calculations in the main text, we only encounter �
terms with ð‘þ ‘1 þ LÞ and ð‘2 þ ‘3 þ LÞ even. In this
case we can simplify further by using the additional recur-
sion result

‘1 ‘2 ‘3

1 1 �2

 !
¼ 1

2

‘1 ‘2 ‘3

0 0 0

 !

�
��2

‘1
ð�2

‘3
��2

‘1
þ�2

‘2
Þ þ�2

‘2
ð�2

‘3
þ�2

‘1
��2

‘2
Þ

�‘1‘2‘3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘3 � 1Þð‘3 þ 2Þp �
;

(A14)

which holds only for ð‘1 þ ‘2 þ ‘3Þ even. Using Eqs. (A6)
and (A14) we find two simple equivalent forms for
�‘‘1
‘2‘3

ðLÞ:
�‘‘1
‘2‘3

ðLÞ ¼ 4�F‘L‘1

ð�L�LÞ2�‘‘1‘2‘3�‘1‘2‘3

�
8<:FL‘2‘3ð�2

‘3
��2

‘2
þ�2

LÞ
F‘2L‘3ð�2

‘3
þ�2

‘2
��2

LÞ:
(A15)

3. Kmm1m2m3m4

‘‘1‘2‘3‘4

Using the tools introduced thus far we may produce a
general expression for the K

mm1m2m3m4

‘‘1‘2‘3‘4
term. In our calcu-

lations, however, we only encounter terms in which K is
contracted on its second and third or third and fourth sets of
indices. The first of these isX
m1

ð�1Þm1K
mm1�m1m3m4

‘‘1‘1‘3‘4
¼
Z
d�Ym�

‘

�X
m1

riY
m1

‘1
rjY

m1�
‘1

�
�ðrkY

m3

‘3
ÞrirjrkYm4

‘4
: (A16)

Invoking the result that [26]X
m

riY
m
‘ rjY

m�
‘ ¼ ð�‘�‘Þ2

8�
gij; (A17)

where gij is the metric on the unit sphere, and using

r2rkYm
‘ ¼ rkðr2 þ 1ÞYm

‘ ¼ ð1��2
‘ÞrkYm

‘ ; (A18)

we find thatX
m1

ð�1Þm1Kmm1�m1m3m4

‘‘1‘1‘3‘4
¼ ð1��2

‘4
Þ ð�‘1�‘1Þ2

8�
Imm3m4

‘‘3‘4
:

(A19)

A similar calculation for the contraction of K on its third
and fourth indices givesX
m2

ð�1Þm2Kmm1m2�m2m4

‘‘1‘2‘2‘4
¼�ð�‘4�‘2�‘2Þ2

8�
Imm1m4

‘‘1‘4
: (A20)

APPENDIX B: FLAT-SKY TRISPECTRUM

For small patches of the sky, the curvature of the sphere
is negligible and we can represent the CMB in terms of
Fourier modes rather than spherical harmonics.
Geometrical terms in this flat-sky basis are represented as
scalar products, which frequently makes them easier to
work with than the corresponding full-sky expressions.
Here we present expressions for the flat-sky trispectrum
following the Fourier conventions of [3].
The flat-sky trispectrum, Tðl1l2l3l4Þ, is defined by

h�ðl1Þ�ðl2Þ�ðl3Þ�ðl4ÞiC ¼ ð2�Þ�2�ðl1 þ l2 þ l3 þ l4Þ
� Tðl1; l2; l3; l4Þ: (B1)

The trispectrum is permutation symmetric in all its vector
arguments, and rotational and parity invariance mean that
it depends on five scalar parameters of the quadrilateral
formed from its arguments. As with the spherical trispec-
trum, it is frequently convenient to work with a fully

reduced trispectrum, Tð‘1‘2Þ
ð‘3‘4ÞðLÞ, such that

h�ðl1Þ�ðl2Þ�ðl3Þ�ðl4ÞiC
¼ 1

2

Z d2L

ð2�Þ2 �ðl1 þ l2 þLÞ�ðl3 þ l4 �LÞ

� Tð‘1‘2Þ
ð‘3‘4ÞðLÞ þ perms; (B2)

where we include the sum over all permutations of l1, l2, l3
and l4. The fully reduced trispectrum is then an arbitrary
function of its arguments, but any permutation of ‘1, ‘2, ‘3,
and ‘4 within the ð‘1‘2Þ, ð‘3‘4Þ pairing generates an
equivalent trispectrum. The flat-sky fully reduced trispec-
trum is related to its spherical equivalent by [25]

T ‘1‘2
‘3‘4

ðLÞ ¼ 1

4�
�2

L�‘1‘2‘3‘4

‘1 ‘2 L
0 0 0

� �
� ‘3 ‘4 L

0 0 0

� �
Tð‘1‘2Þ
ð‘3‘4ÞðLÞ: (B3)
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At second order in �, the flat-sky trispectrum is

Tðl1; l2; l3; l4Þ ¼ 1
2C

~� ~�
‘2

C
~� ~�
‘4

C��
jl1þl2jðl1 þ l2Þ � l2ðl3 þ l4Þ � l4

þ perms: (B4)

Breaking up the delta function in Eq. (B1), we have

h�ðl1Þ�ðl2Þ�ðl3Þ�ðl4ÞiC
¼ 1

2

Z d2L

ð2�Þ2 �ðl1 þ l2 þLÞ�ðl3 þ l4 �LÞ

� C
~� ~�
‘2

C
~� ~�
‘4

C��
L ð�L � l2ÞL � l4 þ perms; (B5)

from which we can read off the fully reduced trispectrum:

Tð‘1‘2Þ
ð‘3‘4ÞðLÞ ¼ 1

4C
��
L C

~� ~�
‘2

C
~� ~�
‘4

ðL2 � ‘21 þ ‘22ÞðL2 � ‘23 þ ‘24Þ:
(B6)

Making use of Eq. (B3), in the limit of large arguments [so
that e.g. ‘2 � ‘ð‘þ 1Þ], we recover the spherical result in
Eq. (28).
AtOð�4Þ, there are four types of terms that contribute to

the trispectrum:

Tðl1; l2; l3; l4Þ
��������

¼ 1

4

Z d2l

ð2�Þ2
h
l � ðl1 � lÞl � ðl2 þ lÞðl1 þ l3 � lÞ � ðl1 � lÞðl1 þ l3 � lÞ � ðl2 þ lÞC��

jl�l1jC
��
jlþl2jC

~� ~�
‘ C

~� ~�
jl1þl3�lj

i
þ perms:;

Tðl1; l2; l3; l4Þ
�2��2�~� ~�

¼ 1

4
C

~� ~�
‘3

C
~� ~�
‘4

Z d2l

ð2�Þ2 l3 � ll4 � ll3 � ðl� l1 � l3Þl4 � ðl� l1 � l3ÞC��
‘ C��

jl�l1�l3j þ perms:;

Tðl1; l2; l3; l4Þ
�2�����~�

¼ � 1

2
C��
jl2þl4jR‘

2
1C

~� ~�
‘1

l1 � ðl1 þ l3ÞC ~� ~�
‘4

l4 � ðl2 þ l4Þ

þ C��
jl2þl4jC

~� ~�
‘4

l4 � ðl2 þ l4Þ
Z d2l

ð2�Þ2 l � ðl1 þ l3Þ½l � ðl� l3Þ�2C ~� ~�
‘ C��

jl�l3j

� 1

2
C

~� ~�
‘1

Z d2l

ð2�Þ2 l1 � ðlþ l3Þl � ðlþ l3Þl1 � ðl� l2Þl � ðl� l2ÞC ~� ~�
‘ C��

jl�l2jC
��
jlþl3j þ perms:;

Tðl1; l2; l3; l4Þ
�3���~� ~�

¼ � 1

2
C��
jl2þl4jR‘

2
1C

~� ~�
‘1

l1 � ðl1 þ l3ÞC ~� ~�
‘4

l4 � ðl2 þ l4Þ þ perms:;

where

R � 1

4�

Z
L3C��

L dL (B7)

is half the variance of the deflection field.
The subset of trispectrum terms that dominate the power

spectrum of the reconstructed lensing field is

Tðl1;l2;l3;l4Þ
dom

¼�C��
jl3þl4jR‘

2
1C

~� ~�
‘1

l1 � ðl1þ l2ÞC ~� ~�
‘3

l3 � ðl3þ l4Þ
þC��

jl3þl4jC
~� ~�
‘3

l3 � ðl3þ l4Þ

�
Z d2l

ð2�Þ2 l � ðl1þ l2Þ½l � ðl� l1Þ�2

�C
~� ~�
‘ C��

jl�l1j þperms:; (B8)

where we have chosen this particular permutation to dis-
play for later convenience. The first term (plus its permu-
tations) generates a fully reduced trispectrum,

Tð‘1‘2Þ
ð‘3‘4ÞðLÞ ¼ �1

2C
��
L R‘21C

~� ~�
‘1

ðL2 þ ‘21 � ‘22Þ
� C

~� ~�
‘3

ðL2 þ ‘23 � ‘24Þ: (B9)

Using Eq. (B3), this gives a full-sky trispectrum which for
large multipoles reduces simply to the second term in
Eq. (33). The second term on the right of Eq. (B8) gives
a fully reduced trispectrum,

Tð‘1‘2Þ
ð‘3‘4ÞðLÞ

¼ �2C��
L C

~� ~�
‘3

l3 �L
Z d2la

ð2�Þ2 la �L½la � ðla � l1Þ�2

�C
~� ~�
‘a

C��
jla�l1j

¼ �2C��
L C

~� ~�
‘3

l3 �Ll1 �L
Z d2la

ð2�Þ2
la � l1
‘21

½la � ðla � l1Þ�2

�C
~� ~�
‘a

C��
jla�l1j; (B10)

where l3 þ l4 ¼ L ¼ �ðl1 þ l2Þ. To write this in a form
that manifestly depends only on ‘1, ‘2, ‘3, ‘4, and L for

comparison to the full-sky result, we write C��
jla�l1j ¼R

d2lb�ðla þ lb � l1ÞC��
‘b

and use the large-‘ expansion

of the delta function (e.g. [25]),
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�ðla þ lb � l1Þ � 1

�

X
mambm1

ð�1Þm1eima�la eimb�lb e�im1�l1

� ‘a ‘b ‘1

0 0 0

 !
‘a ‘b ‘1

ma mb �m1

 !
;

(B11)

where, for example, �l1 is the angle that l1 makes with the

x axis. Substituting into Eq. (B10), integrating over�la and

�lb , and simplifying with recursion relations for the 3j

symbols, we find

Tð‘1‘2Þ
ð‘3‘4ÞðLÞ �

1

4
C��
L C

~� ~�
‘3

ð‘24 � ‘23 � L2Þð‘22 � ‘21 � L2Þ

� X
‘a‘b

C
~� ~�
‘a

C��
‘b

ð‘21 þ ‘2a � ‘2bÞ
‘21�

2
‘1

ðF‘1‘a‘bÞ2:

(B12)

This generates a full-sky trispectrum which for large multi-
poles reduces to the first term in Eq. (33).

For lens reconstruction, the standard optimal estimator is
given on the flat-sky by [28]

�̂ðLÞ ¼ AL

Z d2l1
2�

�ðl1Þ�ðl2Þgl1l2ðLÞ; (B13)

where L ¼ l1 þ l2 and

gl1l2ðLÞ ¼ fl1l2ðLÞ
2C��

‘1;expt
C��
‘2;expt

; (B14)

fl1l2ðLÞ ¼ l1 �LC
~� ~�
‘1

þ l2 �LC
~� ~�
‘2

: (B15)

The normalization is

A�1
L ¼

Z d2l1
ð2�Þ2 fl1l2ðLÞgl1l2ðLÞ: (B16)

The power spectrum of the reconstruction involves the
four-point function of the observed CMB; it can be written
in terms of the fully-reduced trispectrum as

hC�̂ �̂
L i ¼ Nð0Þ

L þ 4A2
L

Z d2l1
ð2�Þ2

d2l3
ð2�Þ2 gl1l2ðLÞgl3l4ðLÞ

� ½Tð‘1‘2Þ
ð‘3‘4ÞðLÞ þ Tð‘1‘3Þ

ð‘2‘4Þðjl1 � l3jÞ
þ Tð‘1‘4Þ

ð‘2‘3Þðjl1 � l4jÞ�; (B17)

where l1 þ l2 ¼ L ¼ l3 þ l4. Here, Nð0Þ
L ¼ AL arises

from the Gaussian (i.e. disconnected) part of the four-point
function. To second order in �, the primary coupling term

in Eq. (B17) gives the lensing power spectrum, C��
‘ that

we aim to reconstruct. The other two couplings give the

Nð1Þ
L bias found in Ref. [20]:

Nð1Þ
L ¼ �4A2

L

Z d2l1
ð2�Þ2

d2l3
ð2�Þ2 gl1l2ðLÞgl3l4

� ðLÞ½l1 � ðl1 � l3Þl2 � ðl1 � l3ÞC��
jl1�l3jC

~� ~�
‘1

C
~� ~�
‘2

þ l1 � ðl1 � l4Þð�l3Þ � ðl1 � l4ÞC��
jl1�l4jC

~� ~�
‘1

C
~� ~�
‘3

�:
(B18)

To fourth order in �, the primary couplings of the domi-

nant trispectrum terms, Eqs. (B9) and (B10), give the Nð2Þ
L

bias:

Nð2Þ
L � 4C��

L A2
L

�Z d2l3
ð2�Þ2 gl3l4ðLÞfl3l4ðLÞ

�
�
Z d2l1

ð2�Þ2 gl1l2ðLÞ
�Z d2l

ð2�Þ2 l �L½l � ðl� l1Þ�2

� C
~� ~�
‘ C��

jl�l1j � Rl1 �L‘21C
~� ~�
‘1

�
: (B19)

This is the flat-sky version of Eq. (34). We show in the text

that Nð2Þ
L =C��

L can be expressed in terms of the leading-
order difference between the lensed and unlensed power
spectra. More correctly, the final term in Eq. (B19) can be
shown to involve the difference between the power spec-
trum of the unlensed CMB and the cross spectrum of the
lensed CMB with the lensed temperature gradient, but the
latter is equal to the lensed spectrum to better than 1%
(Lewis, Challinor, and Hanson [30]). We show further in

the text that Nð2Þ
L =2 also arises when computing the power

spectrum C��̂
L . Using techniques from Lewis, Challinor,

and Hanson [30], the latter can be computed nonperturba-
tively in the lensing deflection as

hC��̂
L i�ALC

��
L

Z d2l1
ð2�Þ2gl1l2ðLÞðl1 �LC��

‘1
þ l2 �LC��

‘2
Þ;

(B20)

where the approximation arises from replacing the exact
cross power spectrum of the lensed temperature and the
lensed temperature gradient with the exactC��

‘ . We expect

hC��̂
L i to equal C��

L plus half the nonperturbative general-

ization of Nð2Þ
L . We thus expect the dominant low-‘ frac-

tional bias in C�̂ �̂
L to be controlled at higher order by the

difference between the (exact) lensed spectrum and the
unlensed spectrum.
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