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Upcoming imaging surveys such as the Large Synoptic Survey Telescope will repeatedly scan large

areas of sky and have the potential to yield million-supernova catalogs. Type Ia supernovae are excellent

standard candles and will provide distance measures that suffice to detect mean pairwise velocities of their

host galaxies. We show that when combining these distance measures with photometric redshifts for either

the supernovae or their host galaxies, the mean pairwise velocities of the host galaxies will provide a dark

energy probe which is competitive with other widely discussed methods. Adding information from this

test to type Ia supernova photometric luminosity distances from the same experiment, plus the cosmic

microwave background power spectrum from the Planck satellite, improves the Dark Energy Task Force

figure of merit by a factor of 1.8. Pairwise velocity measurements require no additional observational

effort beyond that required to perform the traditional supernova luminosity distance test, but may provide

complementary constraints on dark energy parameters and the nature of gravity. Incorporating additional

spectroscopic redshift follow-up observations could provide important dark energy constraints from

pairwise velocities alone. Mean pairwise velocities are much less sensitive to systematic redshift errors

than the luminosity distance test or weak lensing techniques, and also are only mildly affected by

systematic evolution of supernova luminosity.
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I. INTRODUCTION

Measurements of the distance-redshift relation of type Ia
supernovae (SNeIa) firmly established contemporary ac-
celerated cosmological expansion [1,2] and SNIa distances
remain one of the most promising probes of dark energy.
To determine whether the accelerated cosmological expan-
sion is caused by an ubiquitous dark energy or large-scale
deviations from general relativity, it is necessary to mea-
sure both the expansion of the universe and the dynamics
of the structure formation [3–14]. The SNIa luminosity
distance test provides information about the expansion rate
of the universe, but does not provide information on struc-
ture formation (though SNIa magnifications may achieve
this in the future; see Refs. [15–17]). Peculiar velocities are
related to densities through a continuity equation, so pecu-
liar velocity statistics provide one avenue to study the
growth of cosmic structure (e.g., [18]). The most well-
explored option for probing the peculiar velocity field is
via redshift-space distortions imprinted on the galaxy
power spectrum (e.g., [19–21]). Peculiar velocities may
be detectable with future microwave experiments via the
kinetic Sunyaev-Zeldovich effect [22–24] and from large
samples of SNeIa with spectroscopic redshifts [25]. In this
paper, we examine the possibility of utilizing the mean

pairwise velocity statistic, measured from SNeIa in a large
photometric survey, to constrain dark energy.
Two well-studied statistics derivable from a sample of

line-of-sight peculiar velocities are the velocity correlation
function and the mean pairwise velocity [26,27]. The for-
mer is a two-point statistic expressing correlations in the
peculiar velocities of objects as a function of their separa-
tion. The mean pairwise velocity is a measure of the typical
relative velocity of objects at a given separation. Peculiar
velocities are sensitive to both the rate of structure growth
in the universe and the rate of expansion of the universe.
Therefore, peculiar velocity measurements on cosmologi-
cal scales may constrain the dark energy that drives cos-
mological acceleration and quenches late-time structure
growth.
Traditionally, the bulk flow velocity has been measured

by coupling measured galaxy redshifts with local distance
indicators such as the fundamental plane of early-type
galaxies [28,29], the Tully-Fisher relation [30–32], or
surface brightness fluctuations [33]. More recent studies
[34–36] have measured significant bulk flows on scales
of 100 Mpc. Radial velocity measurements have been
used to reconstruct the velocity and density fields [37].
Reconstruction methods provide a way to test the gravita-
tional instability theory and to measure the bias between
the galaxy and mass density fields. Such studies are limited
to the relatively local Hubble flow (z & 0:1), primarily
because a constant fractional error in distance corresponds*Electronic address: sumanb@lanl.gov
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to a larger velocity interval at higher redshifts, an error that
eventually overcomes the signal.

Type Ia supernovae, in contrast, are well-calibrated stan-
dard candles, and at cosmological distances SNeIa are
more reliable distance indicators than those previously
used for measuring peculiar velocities. Indeed, the dipole
and quadrupole moments of the local bulk flow velocity
have been measured to higher precision with the current
data set of a few hundred SNeIa than with reconstructions
based upon catalogs of many thousands of galaxies [25].

SNeIa that are physically near each other exhibit coher-
ent motion as they are influenced by correlated density
structures. Therefore, the errors in the luminosity distance
measurements of pairs of SNeIa should be correlated at
low redshift (z & 0:1). Ignoring this correlation can lead to
systematic biases in the determination of dark energy
parameters [38–40]. Alternatively, one can treat these cor-
related shifts in luminosity distance as ‘‘signal,’’ because
peculiar velocities depend upon cosmological parameters.
This signal has led to useful, independent constraints on
the low-redshift normalization of the matter power
spectrum, �8, and the total matter density, �m [41,42].
Unfortunately, direct measurements of the velocity corre-
lation remain limited to relatively low redshifts. Even in
an optimistic scenario of measurements of 1� 106

SNeIa, all with full spectroscopic follow-up, the velocity
correlation can only be measured to a redshift of z ’ 0:5
[11].

In contrast to peculiar velocity correlation measure-
ments, mean pairwise velocity is a linear statistic so its
errors vary more mildly with redshift. In this study, we
show that it will be possible to obtain interesting cosmo-
logical information from mean pairwise velocities to a
redshift of z ¼ 0:9 in a large photometric survey of
SNeIa, such as that planned for the Large Synoptic
Survey Telescope (LSST) which is anticipated to increase
dramatically our current catalog of SNeIa, by a factor of
nearly 1000. We demonstrate that such a measurement can
provide dark energy constraints that complement luminos-
ity distance measurements under optimistic, but reason-
able, assumptions. The constraints from mean pairwise
velocities are also useful because they may be estimated
with relatively little additional observational effort beyond
that already required to use SNeIa to map luminosity
distance or to detect cosmic lensing magnification [17].
We find that combining the mean pairwise velocity mea-
surements with distance measurements of SNeIa will
sharpen constraints on the dark energy parameters com-
pared to those inferred from luminosity distances alone. In
particular, mean pairwise velocity constraints can improve
the dark energy figure of merit from SNeIa as defined by
the Dark Energy Task Force [43] (DETF) by a factor of 1.8.
We additionally demonstrate that mean pairwise velocities,
being a differential statistic, are potentially much less
sensitive to systematic errors than other commonly

considered observational techniques. Ultimately, this prop-
erty may make mean pairwise velocities one of the most
practically useful probes of dark energy.
Following the DETF, we describe the dark energy in

terms of three phenomenological parameters: its current
energy density �� and two parameters describing the
redshift evolution of its equation of state, w0 and wa,
such that wðaÞ ¼ w0 þ ð1� aÞwa. The additional cosmo-
logical parameters upon which the velocity field depends
are the large-scale normalization of the matter power spec-
trum �� , the power-law index of the primordial power

spectrum nS, the Hubble parameter h, the curvature of
the universe �k, and the present-day matter density �m.
In addition, we treat the photometric redshift (photo-z)
dispersion, �z, as a free parameter with priors. We label
our set of parameters p. We consider a fiducial cosmologi-
cal model similar to the WMAP 5-year results [44]: �� ¼
2:0� 10�9, nS ¼ 0:95, h ¼ 0:71, �k ¼ 0, �m ¼ 0:25,
�� ¼ 0:75, w0 ¼ �1, and wa ¼ 0.
The paper is organized as follows. In Sec. II, we describe

our assumed SNIa survey specifications and review the
estimation of supernova line-of-sight peculiar velocities
from observed supernova brightnesses and redshifts.
Section III describes a halo model calculation of the
mean pairwise velocity as a function of cosmological
parameters. Sections IV and V quantify various sources
of systematic and statistical errors that impact SNIa pair-
wise velocity measurements, respectively. We present our
results for dark energy parameter constraints in Sec. VI,
using two different sets of prior constraints. We also derive
limits on systematic effects that must be obtained to have
the resulting parameter bias be smaller than the calculated
statistical errors. In Sec. VII, we summarize the kinds of
observational efforts required to meet the prospects out-
lined in this paper, along with a brief discussion of the
systematic error properties of mean pairwise velocities
compared to other dark energy probes.

II. LARGE-AREA PHOTOMETRIC
SUPERNOVA SURVEYS

Forthcoming large-scale imaging surveys such as LSST
or the Panoramic Survey Telescope and Rapid Response
System (PanSTARRS) [45–47] will discover 104 to 106

SNeIa. These SNeIa may be observed with broadband
photometry with exposures spaced several days apart. To
infer cosmological parameters from peculiar velocities,
reliable distance measurements are needed. These will
likely be obtained from a well-characterized subset of the
supernovae discovered by any survey. The particular char-
acteristics of this subset depend upon survey strategy and
are difficult to anticipate.
For ease of comparison with published studies, we adopt

survey specifications similar to what may be achieved
with a survey similar to LSST. We assume a total of

BHATTACHARYA et al. PHYSICAL REVIEW D 83, 043004 (2011)

043004-2



3� 105 SNeIa out to z ¼ 1:2, collected over a dedicated
supernova survey region of 300 square degrees; this corre-
sponds to a SNIa surface density of 1000 deg�2. This
number density corresponds to the ‘‘d2k’’ survey described
in [48] and such a dedicated survey may be undertaken as
part of the science goals of the LSST [47]. We assume
redshifts estimated using broadband photometry with a

redshift-dependent, normally distributed error of �z ¼
�z0ð1þ zÞ. DETF specifies an error range of �z0 ¼ 0:01
for an optimistic scenario to �z0 ¼ 0:05 for a pessimistic
scenario; in our parameter forecasts, we allow �z0 to vary
along with the cosmological parameters. Following Zhan
et al. [48], we model the SNeIa redshift distribution as

d3n

d�dzdt
/
�
expð3:12z2:1Þ � 1 z � 0:5
ðexpð3:12z2:1Þ � 1Þ expð�12:2ðz� 0:5Þ2Þ z > 0:5:

(1)

To the extent that SNeIa are standardizable candles,
photometric observations will yield a distance modulus
� and a luminosity distance dL via the usual relation

� ¼ 2:17 ln

�
dL
Mpc

�
þ 25: (2)

The luminosity distance is obtained from the cosmological
redshift z via the definition

dLðzÞ ¼ ð1þ zÞdCðzÞ ¼ ð1þ zÞc
Z z

0

dz0

Hðz0Þ ; (3)

where dCðzÞ is the comoving line-of-sight distance to a
galaxy at redshift z, HðzÞ is the Hubble parameter as a
function of redshift, and a geometrically flat universe has
been assumed in the second equality. The evolution of the
Hubble parameter, and thus the luminosity distance, de-
pends on the assumed cosmological model. For a given
supernova, its measured redshift is the difference between
its cosmological redshift and the additional Doppler shift
due to its line-of-sight velocity,

zmeas ¼ zð�Þ � vlos

c
ð1þ zð�ÞÞ; (4)

where its cosmological redshift zð�Þ can be obtained from
its observed luminosity by inverting Eqs. (2) and (3). The
factor of (1þ z) in Eq. (4) accounts for the cosmological
redshift between the rest frame and the observation frame.
For a given supernova with observed redshift and luminos-
ity, its line-of-sight velocity can be obtained by rearranging
Eq. (4) into

vlos ¼ czð�Þ � czmeas

1þ zmeas

; (5)

where we have replaced zð�Þ by zmeas in the denominator,
which will always be a good approximation for objects at
cosmological distances where the first term in Eq. (4) is
large compared to the second term.

Traditional peculiar velocity estimates using other stan-
dard candles at cosmological distances have been ham-
pered by errors in distance estimates, which propagate into
errors in zð�Þ. For a galaxy with cosmological redshift
z ¼ 0:03, a 10% error in distance corresponds to an error in
inferred cosmological redshift equivalent to a peculiar

velocity of 1000 km=s, with the size of the error increasing
proportional to redshift for z � 1. Large-area supernova
surveys offer two main advantages. First, supernovae are
bright enough and good enough standard candles to pro-
vide convenient distance estimators out to z ¼ 1 and be-
yond. Second, the anticipated large number of supernovae
hold the promise of determining average distances far more
precisely than individual distances, allowing precise deter-
mination of average velocity statistics from large catalogs
of supernovae. Of course, realizing this promise requires
controlling systematic errors in both distance and redshift
observations to a high level, so that averages over large
ensembles of SNeIa reflect the actual velocity statistic.
Both systematic and statistical errors will be considered
following the next section, which outlines the application
of the mean pairwise velocity statistic to supernova
surveys.

III. MEAN PAIRWISE PECULIAR VELOCITY

The mean pairwise velocity vðr; aÞ at a comoving sepa-
ration r and scale factor a ¼ 1=ð1þ zÞ is the average over
all pairs at a fixed comoving separation of the relative
peculiar velocity of the two galaxies projected along the
line joining them. That is,

vðr; aÞ ¼ 1

NðrÞ
X
i�j

ðvi � vjÞ � r̂; (6)

where vi is the peculiar velocity of supernova i and r̂ is the
unit vector in the direction of the separation of the two
objects. The sum is over NðrÞ pairs at a given comoving
separation r. [Note that the quantity which we write
throughout this paper as vðr; aÞ is commonly written in
the literature as vijðr; aÞ or v12ðr; aÞ. We use this notation

to avoid potential confusion with subscript labels for indi-
vidual galaxies that we use below.]
The mean pairwise velocity for dark matter particles

may be derived using the pair conservation equation [49].
However for galaxies, the pair conservation equation needs
to be modified to account for evolution [27]. The resulting
mean pairwise velocity for SNIa host galaxies with a
comoving separation r at a mean scale factor a (assuming
that the redshift difference between the two galaxies
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corresponds to a scale factor difference much smaller
than a) can be written

vðr; aÞ ¼ � 2

3
HðaÞad lnDa

d lna
bgalðaÞ r ��dmðr; aÞ

1þ �galðr; aÞ ; (7)

where

�dmðr; aÞ ¼ D2
a

2�2r

Z 1

0
dkk sinðkrÞPðkÞ (8)

is the dark matter two-point correlation function, PðkÞ is
the dark matter power spectrum at wave number k, HðaÞ is
the Hubble parameter at a given redshift, and Da is the
linear growth factor as a function of time, normalized so
that Da ¼ 1 at z ¼ 0. We also define the dark matter
correlation function averaged over separations less than r
to be

�� dmðr; aÞ ¼ 3

r3

Z r

0
dr0r02�dmðr0; aÞ: (9)

We are interested in the large-scale limit, so we model the
correlation function of supernova host galaxies using a
deterministic linear bias relative to the dark matter
bgalðzÞ, defined by

�galðr; aÞ ¼ b2galðzÞ�dmðr; aÞ: (10)

The bias bgalðzÞ in general varies with the galaxy separa-

tion, a variety of galaxy properties, and redshift [50]. In the
large-scale limit, scale-independent bias is a fairly good
assumption. Following Ref. [48], we model bgalðzÞ as

bgalðzÞ ¼ 1:0þ 0:6z to obtain the fiducial value of the

galaxy bias as a function of redshift.
With future photometric surveys potentially detecting

more than a billion galaxies, we can expect that the corre-
lation function of samples of galaxies matching the super-
nova hosts can be measured to percent-level accuracy or
better. Thus the uncertainty in bgal will primarily be due to

uncertainty in the cosmological parameters affecting the
dark matter correlation function. We express bgal in terms

of the galaxy and predicted dark matter correlation func-
tions, and use this bias value in Eq. (7).

Only the line-of-sight component of the velocity can be
obtained from observations, while the mean pairwise ve-
locity involves all three directional components of the
velocity. We use the estimator for the mean pairwise
velocity given a data set of line-of-sight velocities devel-
oped in Ref. [26]. Consider two galaxies i and j at comov-
ing positions ri and rj moving with peculiar velocities vi
and vj. The radial component of velocities can be written

as vr
i ¼ r̂i � vi and vr

j ¼ r̂j � vj. Then an estimate for the

pairwise velocity of the two galaxies vest
ij is defined by

hvr
i � vr

ji ¼ vest
ij r̂ � ðr̂i þ r̂jÞ=2, where r̂ is the unit vector

along the line joining the two galaxies. If we now consider
a catalog of line-of-sight galaxy velocities, minimizing �2

between the actual pairwise velocities and the estimate of

the pairwise velocity at a given separation r gives an
estimator for the pairwise velocity Eq. (7) based on the
catalog,

vestðr; aÞ ¼
P
pairs

ðvr
i � vr

jÞpij

P
pairs

p2
ij

; (11)

where the sums are over all pairs i � j of galaxies at
comoving separation r and pij ¼ r̂ � ðr̂i þ r̂jÞ=2. Note

that this form for the projection tensor pij is applicable

in the flat-sky limit and breaks down for large angular
separations; in particular, it is zero if the two galaxies are
in opposite sky directions. In this paper, we consider a
model supernova survey of 300 square degrees in a com-
pact sky region, and the pij expression given here is always

valid. To extend the results here to a full-sky survey, or to
survey patches which are separated by large angles, a more
complicated projection tensor must be used. The derivation
is not conceptually difficult, but this will be deferred to
future work giving more detailed estimates of signal-to-
noise ratios for particular observing strategies.
Equation (11) is a function of the separation r between

the two galaxies. To measure this distance, we must use the
estimated locations of each galaxy; this is subject to errors
which will be quantified in the next section. The separation
that is measured directly is the angle between two galaxies
on the sky. This angle can be converted to the transverse
component of the distance between the two galaxies using
the angular diameter distances corresponding to their
redshifts.
The expression in Eq. (11) is a very simple estimator

which weights all pairs of velocities uniformly. A more
careful analysis of real data would use, for example, a
signal-to-noise weighting in the sum. This is not a major
correction to the analysis in this paper, as we limit the sums
in Eq. (11) to pairs with separations smaller than 100 Mpc;
at larger separations the signal becomes small. In principle,
a signal-to-noise weighting can squeeze more information
out of the data, using pairs with larger separations, but it
does not qualitatively change our results. Our estimator is
accurate, as we have shown explicitly in Fig. 4 of Ref. [23],
but suboptimal; an optimal estimator will somewhat im-
prove the constraining capability of a velocity survey
compared to the analysis here, so our estimator is
conservative.
As we discuss further in Secs. IV and VI, we can

mitigate the influence of systematic redshift errors by
considering a related projected statistic, where the mean
pairwise velocity is taken as a function of the angular
separation of the two galaxies rather than as a function of
their three-dimensional separation. This is given by

~vð�; aÞ ¼
Z �max

0
d�tPð�tj�; aÞvðr; aÞ; (12)
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where the line-of-sight comoving separation �t ¼
dCða2Þ � dCða1Þ and Pð�tj�; aÞ is the probability that a
pair has line-of-sight separation �t given that it has an
angular separation on the sky �. We can write the three-
dimensional separation r in terms of the angular separation
� and �t as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2dMðaÞ2 þ �2

t

q
; (13)

where

dMðaÞ¼
8><
>:
cH�1

0 ��1=2
k sinh½�1=2

k dCðaÞ=ðcH�1
0 Þ� �k>0

dCðaÞ �k¼0
cH�1

0 j�kj�1=2sin½j�kj1=2dCðaÞ=ðcH�1
0 Þ� �k<0

(14)

is the transverse comoving distance to scale factor a; here
�k is the effective curvature density,�k ¼ 1��m ���

(see Ref. [51] for a lucid discussion of various distance
measures in cosmology). If the redshift difference is small
compared to unity, �tHðz1Þ � cðz2 � z1Þ, though we com-
pute the separation in full for all pairs. For a spatially flat
universe, dMðaÞ ¼ dCðaÞ. In our case, we always consider
separations with r � cH�1

0 since the signal is only signifi-

cant on these scales. We therefore always have dMðaÞ �
dCðaÞ to good accuracy, and for simplicity we make this
assumption throughout the rest of the paper and use co-
moving distances entirely. We consider pairs of galaxies
with line-of-sight comoving separations up to a maximum
value �max (in practice, we will measure redshift-space
rather than comoving separations; we consider the impact
of this in Sec. IVA). The probability of a pair having line-
of-sight separation �t given that it has an angular separa-
tion on the sky � is

Pð�tj�; aÞ ¼ 1þ �galðr; aÞR�max

0 d�t½1þ �galðr; aÞ� (15)

for �t < �max and Pð�tj�; aÞ ¼ 0 for �t > �max.
An estimator for ~vð�; aÞ from line-of-sight velocity data

is easily obtained by substituting vestðr; aÞ for vðr; aÞ in
Eq. (12). To compare with data, we bin this statistic in
angular separation and redshift, putting each pair in the
redshift bin corresponding to the mean photometric red-
shift of the two galaxies in the pair. In this manner all pairs
are included regardless of binning; we have verified that
our results remain similar when modest changes are made
to projection and binning schemes. Note a correction for
scatter in measured redshifts must also be included, as
discussed in the following section.

Changing the maximum separation �max considered in
Eq. (12) will modify the signal-to-noise ratio in measuring
the projected pairwise velocity. A larger �max increases the
total number of pairs considered, but the signal-to-noise

ratio for each pair decreases at larger �t (as measurement
errors remain approximately unchanged but signal strength
decreases), so their contribution is small. For the purposes
of this paper, we adopt a cutoff of�max ¼ 100 Mpc, which
captures the great majority of the pairwise velocity signal.
As a test of this effect, we find that including pairs out to
separations 2 times larger only changes the signal-to-noise
in measuring the projected pairwise velocity by around
10%. Based on this, we conclude that including data from
pairs with separations larger than 100Mpc should give only
minimal improvements in parameter constraints compared
to those presented here. We also impose a minimum sepa-
ration of 20 Mpc on the pairs we consider, to eliminate any
systematic errors related to nonlinear effects. The mean
pairwise velocity is a declining function as separation in-
creases from 20 Mpc to 100 Mpc, as shown in Fig. 1; at
smaller scales, it turns over and decreases in linear theory.

IV. SYSTEMATIC ERRORS

A. Photometric redshift errors

Large imaging surveys will detect so many galaxies that
it will not be feasible to obtain spectroscopic redshifts for
the vast majority. We must settle for photometric redshift
estimates determined from the fluxes measured in the
various observed bands. These photometric redshifts will
be less accurate than spectroscopic redshifts, and may have
complex error distributions. Here we consider a measured
redshift distribution described by a Gaussian of standard
deviation�z centered at the true redshift of each object. We
neglect a possible photometric redshift bias for two rea-
sons: first, in realistic surveys this bias can be calibrated by
comparison with a manageable number of spectroscopic
SNIa observations [17,43,48]. We emphasize that we
utilize a normal distribution for definiteness, but a well-
calibrated error distribution is what is necessary to pro-
ceed; errors need not be Gaussian in practice. Second, the
expected level of photometric redshift bias is likely to be a
small effect [52,53] compared to the systematic errors in
estimating distances that we consider below. As a result,
we do not explicitly carry a bias through in the equations
below, but we will present a test of the impact of a bias in
photometric redshifts in Sec. VI.
In contrast, the photo-z dispersion �z essentially

smooths the estimated velocity distribution of the observed
sample and propagates scatter into galaxy pair separations.
The latter effect can cause not only a scatter in inferred
cosmological parameter values, but also a systematic shift,
which we calculate here.
The mean pairwise velocity vðr; aÞ, given in Eq. (7),

assumes that the three-dimensional separation r between
the SNeIa or their host galaxy pairs is known accurately;
however, there will be non-negligible errors in observed
redshifts. Our simple normal-error model for the distribu-
tion of the photometric redshift zp, given a true redshift

z, is
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Pðzpjz;�zÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

z

q exp½�ðz�zpÞ2=ð2�2
zÞ�: (16)

We take the photo-z dispersion to be �z ¼ �z0ð1þ zÞwith
�z0 ranging from 0.01 to 0.05 [6,43,48,52,53]. We explore
the sensitivity of our results to prior knowledge of �z0 in
Sec. VI.

Using Eq. (16) and the expression HðzpÞ�t ¼ cðzp2 �
zp1Þ for the local Hubble expansion about each SNIa, where
zp2 � zp1 is the photometric redshift difference between a

pair of supernovae, wewrite the probability of obtaining the
observed line-of-sight separation �obs for a given, true
comoving line-of-sight separation �t as

Pð�obsj�t; ��Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2��2

�

p exp½�ð�obs � �tÞ2=ð2�2
�Þ�;

(17)

where �� ¼ ffiffiffi
2

p
c�z=HðzÞ [53]. We assume that the photo-

metric redshifts zp, although they include the effects of

peculiar motions, give a better measurement of the galaxy
line-of-sight separation than the cosmological redshifts
zð�Þ, which must be determined via a distance measure-
ment with uncertainties on the order of 10%; hence the line-
of-sight positions of SNeIa are estimated using zp. The

factor
ffiffiffi
2

p
in relating �� to �z accounts for uncertainties

in the positions of the two galaxies in a pair, which are added
in quadrature. Combining Eqs. (7), (12), and (17), we get an
expression for the projected, mean pairwise velocity ac-
counting for a significant dispersion in photometric red-
shifts,

~vð�; aj��ðaÞÞ ¼
Z �max

0
d�t

Z 1

0
d�obsPð�tj�; aÞ

� Pð�obsj�t; ��ðaÞÞvðð�2dCðaÞ2 þ �2
t Þ1=2; aÞ: (18)

We propose using this statistic as a cosmological probe. We
consider only positive values of �t, so we count each pair
only once. This remains true if in some cases (due to errors)
�t scatters below zero (in which case the separation is
positive when the two members of the pair are exchanged).
Both Eq. (17) and the expression for �� are valid only

when jzp2 � zp1j � 1; however, we should always be in

this limit. The maximum true separation we consider,
�max ¼ 100 Mpc, corresponds to a redshift difference
ranging from 0.024 to 0.042 as z ranges from 0 to 1;
photo-z errors will broaden the distribution of separations

via a Gaussian kernel with dispersion � ¼ ffiffiffi
2

p
�z ¼ffiffiffi

2
p

�z0ð1þ zÞ, which gives �z ¼ 0:056 at z ¼ 1 for �z0 ¼
0:02. To the degree that the assumption of small jzp2 � zp1j
is violated, the small distance error induced by this ap-
proximation remains negligible, as the pairwise velocity
does not vary rapidly on any scales of interest. One addi-
tional caveat is that these relations hold only for suffi-
ciently large angular separations, corresponding to
comoving separations greater than approximately 5 Mpc,
so that nonlinear effects due to velocities within gravita-
tionally bound objects (‘‘fingers of god’’) are insignificant.
The left panel of Fig. 1 shows the effect of photo-z errors

on mean pairwise velocity measurements as a function of
three-dimensional separation r. For a photo-z error �z0 ¼
in the range 0:01 to 0.02, the overall amplitude of the mean
pairwise velocity is suppressed by a factor of 3 to 4 at

FIG. 1 (color online). Effect of photo-z errors on the mean pairwise velocity as a function of the three-dimensional separation r (left
panel) and on the projected mean pairwise velocity as a function of angular separation � (right panel). The solid line represents the
spectroscopic sample where the positions of the SNIa host galaxies are known accurately. The dashed line corresponds to a scenario
where the dispersion in the photo-z distribution about the true redshift is given by �z ¼ �z0ð1þ zÞ with �z0 ¼ 0:01, whereas the dot-
dashed line represents the case when �z0 ¼ 0:02. Projected statistics vary less with �z0, so they are less sensitive to systematic errors in
this quantity.
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separations r � 50 Mpc=h compared to the case where all
redshifts are known perfectly. As the separation increases,
this suppression becomes less prominent. This is largely
because the three-dimensional separations of the SNeIa are
uncertain by an amount given by the photo-z error, which
may be large compared to the three-dimensional distances
when the separation is small. For pairs which are farther
apart (and often have distances dominated by their trans-
verse separations), this smearing effect has much less
impact. The right panel of Fig. 1 shows the projected
mean pairwise velocity as a function of angular separation
for different assumed photo-z errors. Note that because of
the integration along the line of sight, changing photo-z
errors by a factor of two, from �z0 ¼ 0:01 to �z0 ¼ 0:02,
causes only a 10% to 15% change in the amplitude of the
statistic.

B. Evolution in the luminosities of type Ia supernovae

Evolution in intrinsic SNIa properties is one of the most
important potential sources of systematic error that could
bias estimates of cosmological parameters from pairwise
velocities. For instance, the mean intrinsic luminosity of
SNeIa could vary significantly over time. If this were
unaccounted for, the inferred distance moduli for super-
novae would have a systematic error whose amplitude is a
function of redshift. Following Ref. [43], we model an
error in the distance modulus � as

� ¼ �true þ�� ¼ �true þ�Lzþ�Qz
2; (19)

where �L and �Q are parameters quantifying the linear

and quadratic dependence of the systematic error on red-
shift. A systematic error in distance modulus propagates
into an error in the inferred cosmological redshift zð�Þ in
Eq. (5), while a systematic error in the photometric redshift
directly affects zmeas.

Propagating errors through Eqs. (2) and (3) gives

�z ¼ 0:46��ð1þ zÞ
fðzÞ ; (20)

where we define the function

fðzÞ � 1þ ð1þ zÞ2
dLðzÞHðzÞ : (21)

The resulting error in the line-of-sight velocity for a given
supernova is

�vlos ¼ 0:46c��

fðzmeasÞ : (22)

Using the measured redshift instead of the cosmological
redshift in this expression gives an error on the order of a
few percent at redshifts of interest.

This systematic shift can be applied directly to the
estimator Eq. (11) to evaluate the impact systematic errors
have upon a given supernova velocity catalog. Alternately,

we can apply this systematic error to Eq. (6) to get an
estimate of the size of the resulting shift in the pairwise
velocity statistic. Consider a pair of supernovae with
measured redshifts z1 and z2. Each of them has its three-
dimensional velocity systematically shifted in the line-of-
sight direction by an amount �vlos; the component of this
shift along the vector connecting the two galaxies is
�vlos�t=r, where �t is their separation along the line of
sight and r is the distance between the galaxies. Their
pairwise velocity gets a systematic shift given by

�vðr; aÞ ¼ c�t

r

�
�z2

1þ z2
� �z1

1þ z1

�

¼ 0:46c�t

r

�
��2

fðz2Þ �
��1

fðz1Þ
�

’ 0:46Hðz1Þ�2
t

fðz1Þr ð�L þ 2z1�QÞ; (23)

where for the last expression we have used the fact that the
difference in the second expression is dominated by the
difference in distance modulus, rather than the much
smaller difference in fðzÞ. In replacing both redshifts by
z1 in this expression, we have assumed that the redshift
difference for a given pair is small compared to unity,
which will be the case for any pair separations for which
the mean pairwise velocity is significant. For a given value
of r and a ¼ ð1þ z1Þ�1, the only quantity which varies
between different pairs is the line-of-sight separation term
�2

t , whose average over random pairs is r2=2. Averaging
the final expression in Eq. (23) over all pairs with a given
separation replaces �2

t =r by r=2 and gives the systematic
error in the mean pairwise velocity for pairs with comoving
separation r and mean redshift z as

�vðr; zÞ ¼ 0:23r
HðzÞð�L þ 2z�QÞ

fðzÞ : (24)

For the systematic error in the projected statistic, we
substitute Eq. (24) into Eq. (12), which yields

�~vð�; zÞ ¼ 0:23
HðzÞ
fðzÞ ð�L þ 2�QzÞ

Z �max

0
d�tPð�tj�; zÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2dCðzÞ2 þ �2

t

q
; (25)

with Pð�tj�; zÞ given by Eq. (15). This expression is used
in Sec. VI to estimate how small this systematic error
must be so that it does not dominate the statistical errors
in mean pairwise velocity measurements of dark energy
parameters.

V. STATISTICAL ERRORS

The line-of-sight velocity for a supernova is inferred by
combining a redshift measurement and a distance estimate
obtained from a brightness measurement. Here we assume
Gaussian random errors for both the redshift and brightness

GALAXY PECULIAR VELOCITIES FROM LARGE-SCALE . . . PHYSICAL REVIEW D 83, 043004 (2011)

043004-7



measurements, and find the resulting statistical error in the
mean pairwise velocity. We also give an expression for the
sample variance (sometimes referred to as cosmic vari-
ance) error in this quantity, which results from the fact
that its intrinsic value in the limited volume we probe may
not match the universal mean.

A. Apparent magnitude and redshift errors

For a given supernova, we assume normal errors of ��

and �z on the distance modulus and the measured redshift.
Propagating through Eq. (5) using Eq. (20) and adding the
resulting errors in quadrature gives

�vlosðzÞ2 ¼ 0:21c2

fðzÞ2 �2
� þ c2

ð1þ zÞ2 �
2
z : (26)

In evaluating the first term, we have assumed that �z is
small compared to zmeas, which should be a good approxi-
mation for photometric redshifts of SNeIa [52,53]. This
allows us to neglect the effect of errors in zmeas on the value
of fðzÞ. Note that in actual measurements the errors in
photometric redshifts may be significantly non-Gaussian,
requiring a more sophisticated treatment; here we explore
Gaussian errors to give an approximate guideline for the
relevant levels of uncertainty.

Gravitational lensing may increase the dispersion in the
measured distance moduli of SNeIa beyond that of intrinsic
luminosity scatter and random measurement errors. In the
weak lensing limit (convergence 	 � 1), the dispersion
due to lensing is [16,17,54,55]

�2
lensðzÞ � 1:69�2

mH
2
0

Z z

0
dz0

W2ðz0; zÞ
HðzÞ

Z
dkkPðk; z0Þ;

(27)

where Wðz0; zÞ ¼ H0dAðz0ÞdAðz0; zÞ=dAðzÞ, dAðzÞ is the an-
gular diameter distance to redshift z, and dAðz0; zÞ is the
angular diameter distance between redshifts z0 and z. The
quantity Pðk; zÞ is the matter power spectrum; we evaluate
it using the numerical fits of Smith et al. [56]. We thus have
a total standard error on the distance modulus for a single
supernova composed of three pieces,

�2
� ¼ �2

obs þ �2
SN þ �2

lens; (28)

where �obs is the random scatter due to measurement noise
and �SN is the intrinsic scatter in supernova intrinsic
luminosity. Where not otherwise specified, we take
�SN ¼ 0:1 independent of redshift, following recent esti-
mates [43], and assume �obs � �SN, which should be
satisfied for upcoming large surveys like LSST.

To obtain the standard error in the mean pairwise veloc-
ity, we begin by assuming that each individual line-of-sight
velocity has a normally-distributed error with standard
deviation �vlos. Then for any data bin, applying standard
propagation of errors to Eq. (11) gives

�vest ¼ ffiffiffi
2

p
�vlos

�X
pairs

p2
ij

��1=2
; (29)

assuming that fractional errors in the pij are modest; we

expect this to hold, as these values can be evaluated using
redshift distances, rather than the comparatively uncertain
distance measurements that drive the uncertainty in indi-
vidual speeds. For each pair, p2

ij ’ cos2’, where ’ is the

angle between the comoving line-of-sight vector and the
vector connecting the comoving supernova positions. This
angle will be distributed randomly for each pair; the ex-
pected mean value of p2

ij over a large number of pairs is 0.5.

Thus the standard error in the mean pairwise velocity in a
particular redshift and separation bin is

�vestðr; aÞ ¼ 2
�vlosðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðr; aÞp ; (30)

where Nðr; aÞ is the total number of pairs used to estimate
the mean pairwise velocity in a given redshift bin with
mean scale factor a and separation bin with mean separa-
tion r.
The standard error on the projected statistic can be ex-

pressed as a sum over pairs in the same way as vðr; aÞ,
except the sum is over Nð�; zÞ pairs in a given angular
separation bin about � instead of a given real-space sepa-
ration r. The same calculation applies, except that now the
average value of p2

ij for a bin in � will not be 0.5. For a

given pair, the projector pij ¼ �t=r, where �t is the co-

moving radial separation of the pair (as defined in Sec. III).
Analogous to Eq. (29), the error on the projected statistic in
a bin can be written as

�vest ¼ ffiffiffi
2

p
�vlos

�X
pairs

�2
t

r2

��1=2
: (31)

The sum must be evaluated by integrating over all the pairs
in a given angular bin, giving

�~vð�; zÞ ¼ �vlosðzÞ
�

2

Nð�; zÞ
Z �max

0
d�tPð�tj�; zÞ

� �2
t

�2dCðzÞ2 þ �2
t

��1=2
; (32)

with Pð�tj�; zÞ given by Eq. (15).
For a bin in angle covering a range from �low to �high and

a mean redshift bin with a range from zlow to zhigh, we can

derive the number of pairs in this bin from Eq. (1).
Consider a supernova at redshift z1. Any second supernova
which lies in the angular bin will be contained in a sky
region with area 2�ðcos�low � cos�highÞ ’ �ð�2high �
�2lowÞ, where the second expression is valid for small an-

gles. The second supernova at redshift z2 	 z1 must satisfy
zlow � ðz1 þ z2Þ=2 � zhigh for the pair to be in the redshift

bin, and cðz2 � z1Þ=Hðz1Þ<�max for the comoving
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line-of-sight separation to be less than �max. These con-
ditions are equivalent to

zlow � �maxHðzlowÞ
2c

< z1 < zhigh and (33)

2zlow � z1 < z2 <min

�
2zhigh � z1; z1 þ �maxHðz1Þ

c

�
:

(34)

Then neglecting the effect of any spatial clustering of
supernovae, the total number in the bin is simply

Nð�low; �high; zlow; zhighÞ ’ �ð�2high � �2lowÞ
Z

dz1
d2n

dzd�

� ðz1Þ
Z

dz2
d2n

dzd�
ðz2Þ; (35)

where the limits on the z integrals are given in Eqs. (33)
and (34); note the z2 integral must be performed first since
its limits depend on z1. The function d2n=dzd� is just
Eq. (1) normalized to the total number of supernovae
assumed per unit solid angle on the sky.

B. Sample variance

In addition to the measurement errors for individual
galaxy velocities, there is an additional uncertainty in
comparing estimates of the mean pairwise velocity to
models, resulting from the fact that we only sample a finite
volume in which the realized average pairwise velocity
may differ from the mean taken over the entire universe.
Here we give an expression for the covariance between the
projected mean pairwise velocity measured in different
redshift and angular separation bins resulting from this
effect (generally referred to as sample or cosmic variance).

Consider a mean pairwise velocity statistic binned in
pair separation r and scale factor a. For the three-
dimensional mean pairwise velocity, Eq. (7), the sample
covariance between two bins in separation and scale factor
½r; a�m and ½r; a�n for a survey volume V� can be written as
[23]

Cðrm;rn;am;anÞ¼ 32�HðamÞamHðanÞan
9V�ð1þ�galðrm;amÞÞð1þ�galðrn;anÞÞ
�
�
dlnDa

dlna

�
am

�
dlnDa

dlna

�
an

�
Z
dkk2jPðkÞj2j1ðkrmÞj1ðkrnÞ: (36)

We now integrate along the line-of-sight accounting for the
photo-z errors and obtain an expression for the sample
covariance of the projected mean pairwise velocity as a
function of perpendicular separation,

Cð�m; �n;am; anÞ ¼
Z 1

0
d�ðmÞ

obs

Z 1

0
d�ðmÞ

t Pð�ðmÞ
t j�m; amÞ

� Pð�ðmÞ
obs j�ðmÞ

t Þ
Z 1

0
d�ðnÞ

obs

Z 1

0
d�ðnÞ

t Pð�ðnÞ
t j�n; anÞ

� Pð�ðnÞ
obsj�ðnÞ

t ÞCðrm; rn; am; anÞ; (37)

using Eqs. (15) and (17).
The total statistical error covariance matrix is the sum of

the sample covariance, Eq. (37), and the statistical error,
Eq. (32),

Ctotalð�m; �n; am; anÞ ¼ Cð�m; �n; am; anÞ
þ �mn�~v

2ð�m; amÞ: (38)

In the following section, we use this total covariance
matrix to estimate the observability of SNeIa peculiar
velocities and their utility to cosmology.

VI. RESULTS

A. The signal-to-noise ratio of projected mean
pairwise velocity measurements

As seen in Fig. 1, the projected velocity statistic given by
Eq. (12) is far less sensitive to photometric redshift errors
than the nonprojected pairwise velocity. We therefore will
use this statistic both to estimate the signal-to-noise of
pairwise velocity measurements and to determine the re-
sulting constraints on cosmological parameters. The sim-
ple pairwise velocity should yield comparable or better
constraints in the limit of small photometric redshift errors,
but the results will be more sensitive to �z.
Figure 2 shows the signal-to-noise ratio per angular bin

for measurements of the projected mean pairwise velocity
as a function of angular separation �, for our fiducial
survey giving 3� 105 total host galaxies over 300 square
degrees of sky, and a distance modulus scatter for each host
galaxy of �SN ¼ 0:1 plus the scatter due to lensing mag-
nification. Pairs are binned in 6 redshift bins equally spaced
between z ¼ 0 and z ¼ 1:2. For each redshift bin, 10 bins
in angle are used, equally spaced for angles ranging from
� ¼ 0 up to the angle subtended by our maximum pair
separation of 100 Mpc at the mean redshift for the redshift
bin. The maximum angle considered therefore decreases as
the redshift increases, causing the curves in Fig. 2 to
truncate at differing values of �.
The mean pairwise velocity is detectable at a wide range

of angular separations and redshifts. The top left panel of
Fig. 2 shows that such a measurement with a photometric
redshift error of �ðzÞ ¼ 0:01ð1þ zÞ yields a signal-to-
noise ratio between 2 and 9 over a range in angular scales
for all but the most extreme redshift bins with z > 0:8. The
redshift distribution of observed SNeIa peaks around
z ¼ 0:5 in our LSST-like model, so the closer we get to
that redshift range, the more host galaxy pairs we average
over and the better we can measure velocity statistics. Note
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also that although the number of pairs increases at larger
separation, the amplitude of the mean pairwise velocity
decreases, yielding an overall decrease in the signal-to-
noise for bins with larger separations. The top right panel
of Fig. 2 shows the signal-to-noise ratio for a photometric
redshift error of �z ¼ 0:02ð1þ zÞ. After this doubling of
the photometric redshift error, the signal-to-noise de-
creases by around 30%. Even for �z ¼ 0:03ð1þ zÞ (lower
left panel of Fig. 2), we still reach a signal-to-noise of
around 3 for the redshift bins at z ¼ 0:5 and z ¼ 0:7.

The lower right panel shows a best-case scenario, as-
suming that spectroscopic redshifts are obtained for each

supernova host galaxy; for simplicity, we define a spectro-
scopic redshift to have �z ¼ 0:001ð1þ zÞ. This redshift
error is generally obtainable only from spectroscopy of the
hosts (rather than the supernovae themselves), primarily
because of the large breadth of SNIa spectral features, but
also due to the peculiar velocities of SNe with respect to
their galaxy’s center, which can reach a few hundred
km s�1. Spectroscopic redshifts for large samples of hosts
(though likely not all, since many will be fainter than the
supernovae) would be quite feasible with a 5000-fiber,
large field of view multiobject spectrograph like that cur-
rently proposed for the BigBOSS project [57]. If supernova

FIG. 2. The signal-to-noise per angular bin for the projected mean pairwise velocity for different redshift bins as a function of
angular separation �, for a catalog with 3� 105 total host galaxies over 300 square degrees of sky, and a distance modulus scatter for
each host galaxy of �SN ¼ 0:1 plus the scatter due to lensing magnification. The pairs are binned by their photometric redshifts and the
central values of the redshift bins are shown; each redshift bin has a width of �z ¼ 0:2. The maximum angle for each redshift bin
corresponds to the angle subtended by 100 Mpc at the bin’s mean redshift; the range in angles from 0 to the maximum angle is divided
into 10 angular bins. The top panels show the signal-to-noise for a photo-z normal error given by �z ¼ �z0ð1þ zÞ, where �z0 ¼ 0:01
(left) and �z0 ¼ 0:02 (right). The lower panels show the signal-to-noise for �z0 ¼ 0:03 (left) and the ‘‘spectroscopic’’ limit with
�z0 ¼ 0:001 (right).
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samples cover 300 square degrees, as assumed above, a
minimum of 43 BigBOSS pointings would be required to
cover this sky region, yielding more than 200 000 redshifts;
larger samples can be obtained by revisiting each pointing
with different fiber placements. The proposed BigBOSS
survey would use the Kitt Peak 4-meter telescope for only
100 nights per year; such a supernova project would re-
quire only a small fraction of the remaining time available.
In this ‘‘spectroscopic limit,’’ the signal-to-noise in mea-
suring the mean pairwise velocity generally improves by
around a factor of 2 compared to the �z ¼ 0:01ð1þ zÞ
case.

B. Parameter space and formalism

Now we investigate the constraints on dark energy pa-
rameters from a SNIa projected mean pairwise velocity
measurement, and assess the complementarity of these
constraints to performing the luminosity distance test
based on the same data. For the sake of simplicity, we
perform a Fisher matrix analysis similar to those in
Refs. [17,23]. In order to compute constraints on ��,
w0, and wa, we marginalize over the remainder of the
parameter space, consisting of the parameters �� , nS,
and h. We also treat �z0, describing the photometric red-
shift dispersion, as a parameter since the binned mean
pairwise velocity signal depends on this quantity.

In addition to the marginalized constraints on ��, w0,
and wa, we quantify the additional constraining power
of pairwise velocities by evaluating the quantity
½�ðwpÞ�ðwaÞ��1 for comparison to the DETF summary

tables [43]. We refer to this as the ‘‘figure of merit’’ (FoM)
for convenience, although in the DETF report this term
refers to a slightly different quantity (the inverse area of the
95% confidence limit ellipse in the wp � wa plane) which

is proportional to ½�ðwpÞ�ðwaÞ��1. The derived parameter

wp is the equation of state at the ‘‘pivot’’ (i.e. best-

constrained) redshift, defined as wp ¼ w0 þ ð1� apÞwa

with ap ¼ 1þ ½F�1�w0wa
=½F�1�wawa

.

The Fisher matrix for the projected mean pairwise ve-
locity can be written as

F
� ¼ X
m;n

@~vðmÞ
@p


C�1
totalðmnÞ@~vðnÞ

@p�

; (39)

where we have abbreviated the projected mean pairwise
velocity in the nth angular separation and redshift bin as
~vðnÞ, CtotalðmnÞ is the total covariance matrix between bins
m and n given by Eq. (38), and p
 indexes the parameters
in the vector p. The Fisher matrix provides a local estimate
of the parameter covariance, so the standard error on
parameter p
 marginalized over the other parameters is
�ðp
Þ ¼ ½F�1�

 (no summation implied).

Prior constraints on any of the parameters p which are
normally distributed are simple to incorporate. If parame-
ter p
 has a Gaussian prior with standard error �
, we

simply add the diagonal matrix diagð1=�2

Þ to the Fisher

matrix F
�. Priors with non-normal statistical distributions

require a more detailed statistical framework rather than a
simple Fisher matrix approximation.

C. Statistical constraints on dark energy parameters

In computing constraints on the dark energy parameters
��, w0, and wa, we first assume a reasonable calibration
spectroscopic sample of 1500 SNeIa, comprising 250
supernovae in each redshift bin spread uniformly over the
6 redshift bins spanning 0< z < 1:2. The fractional error
on the photo-z dispersion, ��z0=�z0 in this case is around

1=
ffiffiffiffiffiffiffiffi
500

p
, or approximately 5% (assuming Gaussian errors).

We therefore incorporate a Gaussian prior on �z0 centered
on the true value and with � ¼ 0:05�z0; however, as we
show below in Fig. 4, the pairwise velocity statistic is
relatively insensitive to the choice of a prior on �z0, so
this choice should not significantly affect our results, even
if the actual error on �z0 is much larger.
We compute the standard errors obtainable on the dark

energy parameters using a range of supernova distance
modulus dispersions �SN and photometric redshift disper-
sions�z0. We consider three possible values of the intrinsic
supernova absolute magnitude dispersion given by
�SN ¼ 0:05, �SN ¼ 0:1, and �SN ¼ 0:2. For each value
of �SN, we explore four possible values of photometric
redshift dispersion, �z0 ¼ 0:001 (the ‘‘spectroscopic
limit’’), �z0 ¼ 0:01, �z0 ¼ 0:02, and �z0 ¼ 0:03. The op-
timistic but reasonable supernova luminosity distance test
assumed in the DETF report corresponds to �SN ¼ 0:1 and
�z0 ¼ 0:01 so these choices constitute a sensible baseline
for comparison to other techniques.
The strength of the dark energy constraints obtained is

relatively sensitive to the amount of prior information
assumed. First, we can make the same assumptions used
by the Dark Energy Task Force [43]. They assume con-
straints on all parameters (including covariances) at the
level expected for measurements of the microwave back-
ground power spectrum by the Planck satellite. For this, we
employ the Planck Fisher matrix provided by the DETF. In
addition, DETF assumes a 11%Gaussian prior on the value
of h [58]. Note that a spatially flat universe is not assumed.
We also assume no systematic error on either redshift or
distance modulus measurements; limits on these system-
atics required to attain the statistical error levels presented
here are discussed below. The results are given in Table I.
For the nominal DETF survey case, mean pairwise

velocities give a standard error on w0 of �ðw0Þ ¼ 0:45
and a standard error on wa of �ðwaÞ ¼ 0:98. This con-
straint on w0 is comparable to the DETF stage IV con-
straints from ground-based optical baryon acoustic
oscillations (BAO) or galaxy cluster counts, while not as
good as those from stage IV supernova luminosity dis-
tances. For wa, mean pairwise velocity constraints are
significantly better than the optical survey-based BAO

GALAXY PECULIAR VELOCITIES FROM LARGE-SCALE . . . PHYSICAL REVIEW D 83, 043004 (2011)

043004-11



projection; slightly weaker than the pessimistic BAO pro-
jections for space-based or radio observations and for the
optimistic galaxy cluster projection; and halfway between
the optimistic and pessimistic DETF supernova luminosity
distance projection. However, all of these methods trail the
stage IV weak lensing projections in constraining power.

Among the dark energy probes resulting from a large
ground-based optical survey like LSST, mean pairwise
velocities compare well with both the baryon acoustic
oscillation and the supernova luminosity distance probes
[17]. To quantify this, we consider the improvement in dark
energy parameters obtained by adding the mean pairwise
velocity probe to the supernova luminosity distance probe
resulting from the same sample. The mean pairwise veloc-
ity can be measured using the supernova data from a large
survey telescope with little additional cost compared to

simply constraining dark energy using the resulting super-
nova Hubble diagram.
Figure 3 shows joint constraints on the dark energy

parameters combining projected peculiar velocity mea-
surements and the SNIa luminosity distance test, using
the same priors as Table I. The left panel shows the 1�
constraint in the w0 ��� plane and the right panel shows
the constraint in the wa ��� plane, after marginalizing
over the remainder of parameter space. Incorporating pe-
culiar velocity information significantly reduces the size of
the ellipses in the dark energy parameter space: the margi-
nalized constraint on�� improves by a factor of 1.7, onw0

by a factor of 1.2, and on wa by a factor of 1.5, giving an
overall improvement in the figure of merit by a factor of
1.8. (As a point of comparison, corresponding constraints
with no priors from other measurements are included in

TABLE I. Dark energy parameter constraints derived from mean pairwise velocity statistics. Photometric redshifts are assumed to be
normally distributed about the true z, with �z ¼ �z0ð1þ zÞ. We show results for �z0 ¼ 0:001, 0.01, 0.02, and 0.03, and three different
values for the uncertainty in supernova distance moduli, �SN ¼ 0:05, 0.1 and 0.2. The fiducial values of the dark energy parameters are
�� ¼ 0:75, w0 ¼ �1, and wa ¼ 0. We assume zero systematic errors related to SNIa evolution, i.e. �L ¼ �Q ¼ 0. We assume the

same priors used in the DETF report: Planck satellite priors from its projected measurement of the microwave background power
spectrum (using the Fisher matrix supplied by the DETF) and a Gaussian prior on h with a standard error of 11%. This table does not
assume a flat spatial geometry for the universe.

�z0 ¼ 0:001 �z0 ¼ 0:01 �z0 ¼ 0:02 �z0 ¼ 0:03

�SN �ð��Þ �ðw0Þ �ðwaÞ �ð��Þ �ðw0Þ �ðwaÞ �ð��Þ �ðw0Þ �ðwaÞ �ð��Þ �ðw0Þ �ðwaÞ
0.05 0.016 0.22 0.36 0.032 0.28 0.48 0.05 0.43 0.89 0.059 0.78 1.7

0.1 0.039 0.30 0.55 0.056 0.45 0.98 0.094 0.62 2.52 0.13 1.46 2.81

0.2 0.051 0.42 0.72 0.074 0.59 1.84 0.18 1.36 4.71 0.24 2.87 6.14

FIG. 3 (color online). Joint dark energy constraints obtainable from an LSST-like future supernova survey, combining constraints
from the supernovae luminosity distance test, priors on Hubble parameter [58] and constraints from Planck with those obtainable from
supernova velocity statistics. A flat universe is not assumed. A fiducial value for the photometric redshift error of �z0 ¼ 0:01 is
assumed, with a Gaussian prior on �z0 of 5%. The Fisher matrices for the Planck priors and the SNIa luminosity distance priors are
obtained from the DETF report [43]. The luminosity distance Fisher matrix represents the DETF LSST supernovae optimistic (LST-o)
survey. The blue (dark) shaded region shows the constraint obtainable from the supernova luminosity distance test only. The red (gray)
region shows the constraint when priors from a Planck survey are combined with the distance test. The green (innermost, light shaded)
region shows the joint constraint combining the distance test, a Planck prior and mean peculiar velocity measurements for the SNIa
host galaxies.
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Fig. 4.) Note that unlike the case of peculiar velocity
measurements, the constraints derived from the SNIa lu-
minosity distance are sensitive to the error in mean redshift
of a bin and hence the cosmological constraints derivable
from the SNIa luminosity distance depend much more on
the amount of prior knowledge of the photo-z distribution
[17,59], as well as being much more sensitive to intrinsic
SNIa luminosity evolution.

We have also considered statistical dark energy con-
straints from a more constraining, but still realistic, set of
priors. In particular, a measurement of the Hubble parame-
ter based on an improved, NGC 4258-calibrated distance
ladder with an estimated overall error of 5% has recently
been reported [60]. Furthermore, requiring the dark energy
probe itself in combination with microwave background
data to determine the geometry of the universe is likely
overly restrictive. Measurements of the baryon acoustic
oscillation scale from the Sloan Digital Sky Survey, data
release 7, combined with WMAP 5-year data, give a
constraint on the curvature parameter of �k ¼ �0:013

0:007, even for a very general cosmological model which
allows both a nonflat universe and a value of w0 different
from �1 [61]. Additionally, since a flat universe is an
unstable fixed point for standard cosmological evolution,
we have an overwhelming theoretical prejudice for�k ¼ 0
to high precision. Therefore, a prior assumption of a flat
universe is both reasonable and strongly suggested by data.

Table II gives the standard errors on the dark energy
parameters for a flat universe, with Gaussian priors for h
(5%), �� (5%), and nS (1%), the latter two being current

limits from WMAP 7-year data [62]. The assumption of
a flat universe and a tighter prior on h lead to much stronger
dark energy constraints than do DETF priors. With
these priors, a DETF-assumed supernova sample with
�SN ¼ 0:1 and �z0 ¼ 0:01 gives a measurement of ��,
w0 and wa with standard errors of 0.024, 0.27, and 0.41,
respectively, using the mean pairwise velocity alone. For
comparison, the constraints on w0 for stage IVexperiments
computed in the DETF report (but for the original set of
priors) are worse for clusters, comparable for baryon
acoustic oscillations, and better for the supernova Hubble
diagram. Our constraint on wa, on the other hand, is better
than for any of the stage IV experiments aside from the
optimistic weak lensing scenarios.

Of course, the constraining power of other probes will
also increase with the more restrictive set of priors we

assume in Table II. This makes a direct comparison with
these other methods beyond the scope of this paper. Our
primary point is that under optimistic, but reasonable,
assumptions, SNIa peculiar velocities can be useful by
themselves and at the very least can serve as a valuable
complementary probe and cross-check for systematic er-
rors, while requiring little additional investment. However,
note that Table II shows that broader photo-z distributions
and/or larger intrinsic SNIa dispersions can quickly dimin-
ish the returns on SNIa peculiar velocities.
This calculation also suggests the potential constraining

power of pairwise velocity statistics from future survey
observations. If a large photometric supernova survey were
combined with follow-up spectroscopic redshifts for su-
pernova host galaxies, the standard error in the redshift
could be reduced by a factor of 10 to �z0 ¼ 0:001, corre-
sponding to the first column of Table II. In this case, the
error on w0 shrinks to �ðw0Þ ’ 0:10 and the error on wa is
nearly �ðwaÞ ’ 0:16. Understanding type Ia supernovae
well enough to push �SN down by a factor of 2 to
�SN ¼ 0:05would reduce the error onwa by another factor
of two, to 0.08. Few other proposed probes have compa-
rable potential to constrain wa.

D. Systematic error in distance modulus

The potential statistical sensitivity of any dark energy
probe can only be realized if systematic errors can be
controlled to a level where their effect on cosmological
parameters is small compared to the statistical errors. For
the supernova data set considered here, systematic errors

TABLE II. Same as Table I, but we assume �k ¼ 0 and instead of Planck priors we assume Gaussian priors with standard errors of
5% on h and �� and 1% on nS (comparable to errors from current measurements).

�z0 ¼ 0:001 �z0 ¼ 0:01 �z0 ¼ 0:02 �z0 ¼ 0:03

�SN �ð��Þ �ðw0Þ �ðwaÞ �ð��Þ �ðw0Þ �ðwaÞ �ð��Þ �ðw0Þ �ðwaÞ �ð��Þ �ðw0Þ �ðwaÞ
0.05 0.004 0.047 0.08 0.012 0.16 0.23 0.024 0.34 0.49 0.049 0.65 1.03

0.1 0.009 0.10 0.16 0.024 0.27 0.41 0.046 0.62 0.94 0.1 1.42 1.96

0.2 0.022 0.28 0.41 0.061 0.63 0.89 0.1 1.48 1.93 0.2 2.86 4.18

TABLE III. The ratio of the parameter bias due to systematic
error to the statistical uncertainties on these parameters. A photo-
metric redshift distribution with dispersion �z ¼ 0:01ð1þ zÞ is
assumed. We assume �L ¼ �Q to compute the systematic bias.

Thenwe set�L ¼ �Q ¼ 0 and compute the statistical uncertainty

and report the ratio of systematic bias to statistical errors�p=�p,

where p ¼ ��, w0, or wa. We assume �k ¼ 0 and assume
Gaussian priors with standard error of 5% on h and �� and 1%

on ns.

�L ¼ �Q �� w0 wa

0:01=
ffiffiffi
2

p
10.2% 4.1% 20.2%

0:03=
ffiffiffi
2

p
20.3% 10.0% 41.0%

0:05=
ffiffiffi
2

p
40.9% 37.5% 80.1%
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may affect both observables: the distance modulus and the
photometric redshift. This section considers distance
modulus systematics, while the following section analyzes
the effect of redshift errors.

Section IVB gives a simple phenomenological model
for the effect of SNIa evolution with redshift, in terms of
the parameters �L and �Q. The resulting systematic error

on cosmological parameters induced by this systematic
error can be estimated using a Fisher matrix approach.
The bias in parameter p
 can be written as

�p
 ¼ X
�

½F�1�
�
X
m;n

�~vðmÞC�1
totalðmnÞ@~vðnÞ

@p�

; (40)

where �~v, obtained by substituting Eq. (24) for vðr; aÞ in
Eq. (12), is the systematic shift in the observable ~v due to
the systematic error characterized by nonzero values of�L

and �Q.

We calculate the bias in each parameter due to SNIa
evolution assuming a photometric redshift distribution with
spread �z ¼ 0:01ð1þ zÞ and the evolution model given by
Eq. (19). We can then compare the systematic bias with the
statistical errors on dark energy parameters assuming �L ¼
�Q ¼ 0, as computed inTable II. The ratios of the bias of the

dark energy parameters to their statistical errors are reported
in Table III for several representative choices of�L and�Q.

For reference, DETF took evolution in SNIa luminosity with

�L ¼ �Q ¼ 0:01=
ffiffiffi
2

p
as their optimistic scenario. We find

that the maximum bias incurred in �� and w0 is less than
40% as large as the statistical error on these parameters as

long as�L ¼ �Q � 0:05=
ffiffiffi
2

p
(5 times larger than the DETF

optimistic systematic error). For wa, the systematic bias is

40% of the statistical error for �L ¼ �Q � 0:03=
ffiffiffi
2

p
, and

increases to 80% of the statistical error for �L ¼ �Q ¼
0:05=

ffiffiffi
2

p
. If the actual unrecognized evolution of SNIa lumi-

nosity is similar to that assumed in the DETF report, the
resulting systematic bias in dark energy parameters should
be insignificant compared to the statistical error. Note that
these comparisons conservatively use the statistical error
incorporating our more restrictive prior than in the
DETF report. The larger statistical errors with the DETF
priors admit substantially larger systematic errors.

E. Systematic errors in photometric redshifts

We have also tested how a possible bias �zp in the

photo-z distribution might impact the dark energy con-
straints obtainable from pairwise velocity statistics. If
�zp is not a strong function of redshift (i.e., it does not

vary considerably within one of our redshift bins with
width �z ’ 0:2), then the bias affects both galaxies in
each pair in approximately the same manner. The mean
pairwise velocity relies on the difference between the two
velocities so nearly all of the effects of a photo-z bias tend
to cancel. The residual is a small misestimation of the
location of the redshift bin, which translates into a small
error in cosmological parameters. For example, assuming a
bias in photometric redshifts of �zp � 0:002ð1þ zÞ de-
grades the constraints on cosmological parameters by less
than 2% of the statistical errors. This stands in stark con-
trast to the strong dependence of the luminosity distance
test on photometric redshift biases (e.g., [17,59]) and the

FIG. 4 (color online). Dark energy parameter constraints from mean pairwise SNIa velocities (in the absence of complementary
cosmological probes), for the same survey as in Fig. 2. The left and the right panels show the 1� contour in the w0 ��� and the
wa ��� planes. Photometric redshift errors of �z ¼ 0:01ð1þ zÞ are assumed. The black shaded region represents the case when the
photo-z distribution is known accurately. The red (light shaded) region applies a prior such that the uncertainty in the photometric
redshift error, ��z0, is equal to the value of �z0; this is highly conservative. The blue (gray) shaded region shows the constraint when
we have no prior knowledge about the photo-z error distribution (e.g., zero supernovae with spectroscopic redshifts).
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similar sensitivity of probes such as weak gravitational
lensing to biased photometric redshifts (e.g., [63]).

The signal we measure, the redshift-binned projected
mean pairwise velocity Eq. (18), depends on the scatter in
photometric redshifts so we also must estimate the system-
atic error due to uncertainty in the photometric redshift
dispersion. We assume that the distribution of the differ-
ence between photo-z’s and spectroscopic redshifts is a
standard normal distribution; in reality this distribution is
likely more complex. The results here are a simple effec-
tive model for the distribution of photometric redshifts.

Figure 4 and Table IV show marginalized statistical
constraints on dark energy parameters from mean pairwise
velocity only, under three strongly different assumptions
regarding the photometric redshift error. The blue (gray)
and the black shaded regions show the two extreme cases.
The blue (gray) shaded area shows the 1� constraint when
we assume no prior knowledge of the uncertainty in the
photo-z error and allow �z0 to be determined from the
same data used to constrain cosmology. The black region
indicates the constraints when �z0 is known exactly. We
emphasize that this does not mean that the photometric
redshift is equal to the true redshift. There is still a non-
negligible dispersion in photometric redshifts in this case;
however, we have assumed that the photometric redshift
distribution is well understood, perhaps due to calibration
with several thousand spectra [17]. The red (light shaded)
region represents the case when the prior on �z0 is a
Gaussian centered at the true value with sigma equal to
its fiducial value, �z0 ¼ 0:01.

Constraints on w0, wa, and �� change by only about
10% between the case where �z0 is uncertain at the 100%
level and one where we assume a perfectly calibrated
photometric redshift distribution. This results from the
fact that the mean pairwise velocity is proportional to the
redshift difference between galaxies in a pair, but photo-
metric redshift errors do not correlate with the velocity we
are trying to measure. Figure 4 shows that even weak prior
knowledge of the photo-z distribution yields constraints

comparable to a scenario where the photo-z error distribu-
tion is known exactly.

VII. DISCUSSION AND FUTURE PROSPECTS

With vastly increased numbers of type Ia supernova
detections on the horizon, a new statistical probe of dark
energy using supernova peculiar velocities will be pos-
sible. The Dark Energy Task Force, when considering
future supernova measurements, made the optimistic but
reasonable assumptions that individual supernovae will
have a photometric redshift determined with a standard
error 0.01 at redshift z ¼ 0, and a distance modulus deter-
mined with an error of 0.1. If these levels are attained for
the nominal 3� 105 SNeIa which will be detected in a
targeted supernova survey area by the LSST, the resulting
dark energy constraints from the mean pairwise velocities
of these supernovae are interestingly good, comparable to
projections for a variety of stage IV techniques. In particu-
lar, pairwise peculiar velocities alone give a slightly
stronger dark energy constraint as the optimistic projection
for an optical baryon acoustic oscillation probe, and con-
straints which are toward the optimistic ends of the galaxy
cluster abundance and optical supernova Hubble diagram
probes.
Having another independent method for constraining

dark energy is invaluable, since all of these measurements
will likely be limited by systematic error control.
Comparison of inferred dark energy parameters from mul-
tiple independent experiments is even more important than
the combined statistical power of multiple measurements.
In addition, the science return from mean pairwise velocity
measurements comes essentially ‘‘for free,’’ as it uses the
same data sets from which supernova luminosity distance
measurements will be built.
An extension of these observations which can signifi-

cantly improve the strength of dark energy constraints is
the addition of spectroscopic redshifts. Surveys like Pan-
STARRS and LSST will provide only photometric red-
shifts, and the sheer number of objects they observe makes
obtaining spectroscopic redshifts for even small subsets of
the total objects a massive challenge. Given the numbers
used in this paper, LSSTwill detect on the order of 100 new
SNeIa per night of the survey. The supernovae themselves
are transient and widely spread over the survey area,
limiting the total number which can be observed simulta-
neously. Obtaining immediate redshift follow-up for all of
these objects would be a large logistical challenge, even if
a dedicated telescope were available. An alternative is to
obtain redshifts of host galaxies after their SNe have faded;
this can be done much more efficiently, as many host
galaxies in a particular field of view could be targeted
simultaneously with multiobject spectrographs. Baryon
acoustic oscillation observations, in particular, are pioneer-
ing the development of very large fiber spectrographs
which can obtain thousands of redshifts simultaneously.

TABLE IV. Impact of prior information about photo-z distri-
butions on the dark energy parameter constraints derived from
mean pairwise velocity statistics (calculated in the absence of
complementary cosmological probes). The photometric redshift
of a supernova is assumed to be normally distributed about its
true value with �z ¼ �z0ð1þ zÞ; for our standard scenario we
take �z0 ¼ 0:01. The fiducial values cosmology considered has
�� ¼ 0:75, w0 ¼ �1, and wa ¼ 0. We assume �k ¼ 0 and
assume Gaussian priors with standard error of 5% on h and ��

and 1% on ns.

�ð�z0Þ �ð��Þ �ðw0Þ �ðwaÞ
No prior 0.046 0.29 0.62

Prior (100% error in �z0) 0.023 0.25 0.37

Prior (zero error in �z0) 0.018 0.21 0.31
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The challenge for this strategy is that many of the host
galaxies will be at redshifts above 0.5, and many of the host
galaxies themselves are dim compared to their supernovae.
Host galaxy follow-up would require a large telescope and
large amounts of observing time. The spectrograph pro-
posed for the BigBOSS survey, which has been designed to
obtain high-throughput spectroscopy of 5000 galaxies at a
time over a 7 square degree field of view using the 4 m
Mayall telescope at Kitt Peak and the Blanco telescope at
CTIO [57], would be well suited for this task. Such a
spectroscopic survey of supernova hosts would be a major
undertaking, but could lead to highly competitive dark
energy constraints and leverages instruments and data al-
ready planned for other purposes.

Another possible avenue for improvement is better
standardization of SNIa intrinsic luminosities. Here our
baseline assumption, along with the DETF, is that SNIa
distance moduli will be known with a standard error of
around 0.1. It is an open question whether we eventually
will understand the SNIa explosion mechanism in enough
detail, and have sufficient observational information, to
model some portion of this scatter and reduce the effective
random error. Magnification due to gravitational lensing
provides an additional source of scatter, which can be
partly understood due to its strongly non-Gaussian distri-
bution, but for our nominal model survey we are not
limited by lensing scatter. The marginalized constraint on
wa, the most challenging dark energy parameter to mea-
sure, can be improved by a factor of two if the scatter in the
intrinsic supernova distance modulus is halved. A mean
pairwise velocity measurement for 3� 105 supernovae
with spectroscopic redshifts and an intrinsic distance
modulus scatter of 0.05 would constrainwa with a standard
error of 0.08 using our set of current prior constraints.

The statistical power of any given dark energy measure-
ment is only half of the story, as all of these measure-
ments are likely to be heavily dependent on systematic
error control. Because of its nature as a differential mea-
surement, the mean pairwise velocity technique offers
favorable prospects for controlling systematic errors.
Differential measurements have long been exploited in
measurements of the cosmic microwave background fluc-
tuations precisely for their systematic error advantages. In
particular, we have demonstrated that several obvious sys-
tematic error sources are not likely to dominate the dark
energy constraints. First, uncertainty about the level of
scatter in photometric redshifts about their true values
has only a weak effect on dark energy constraints, and
mild priors obtainable from modest spectroscopic calibra-
tion efforts give results that are nearly the same as exact
knowledge of the photometric redshift scatter. We have not
considered non-Gaussian errors in photometric redshifts,
but any scatter which is characterized at the levels of the
normal errors considered here is unlikely to induce any
significantly larger systematic errors.

Second, a bias in the photometric redshift distribution
has very little effect on our constraints, as long as the bias
varies slowly with redshift, because a constant redshift bias
does not affect the pairwise velocities. This is in marked
contrast to both the supernova luminosity distance and
weak lensing techniques. Both of these widely discussed
routes to dark energy constraints are very sensitive to
photometric redshift biases [17,59], where a redshift bias
can mimic a shift in dark energy parameters. Third, a
systematic error in distance modulus due to unrecognized
evolution in mean supernova luminosity with redshift will
be a small effect provided the magnitude of the error is
within a factor of 3 of that considered in the DETF report.
This potential source of error can also be addressed by
testing the rich information in supernova spectra and time
series at different redshifts for any evidence of evolution in
intrinsic supernova properties. While detailed modeling of
potential systematic errors is required to understand any
particular experiment, it is plausible that the systematic
errors associated with mean pairwise velocities will be
substantially less severe than other leading techniques for
probing dark energy.
We also note that mean pairwise velocities can be used

to constrain gravitational explanations for the accelerating
expansion of the universe. This technique has the advan-
tage of probing structure growth over a wide range in
redshift, while also being sensitive to the expansion rate;
the comparison between these two quantities is the key to
constraining alternate gravity models [64–66]. Pairwise
velocities from a much smaller sample of galaxy clusters,
with more precise velocities obtained via the kinematic
Sunyaev-Zeldovich effect, have already been shown to
offer potentially interesting constraints on modifications
of gravity [14].
The pairwise velocity statistic offers a particularly sim-

ple route to a probe of modified gravity. In linear perturba-
tion theory, the evolution of the growth factorDðaÞ is given
to a very good approximation by d lnD=d lna ¼ �ðaÞ�,
where � is nearly a constant and takes the value � � 0:55
for general relativity [4]; see Juszkiewicz et al. [67] for a
highly accurate approximation to DðaÞ. Other gravitation
theories can have different values of �; for example,
Dvali-Gabadadze-Porrati gravity [68] has � ¼ 0:68 [8].
Examining Eq. (7), we see that the mean pairwise velocity
(on the left side) depends linearly on d lnD=d lna, as well
as HðaÞ, the (linear regime) galaxy bias factor, and corre-
lation function information. Other cosmological tests, such
as the supernova Hubble diagram, will directly constrain
HðaÞ, while correlation functions will be measurable di-
rectly from the data set used. The linear clustering bias of
host galaxies can be constrained in a number of ways: e.g.,
by direct comparison of galaxy correlation functions to the
matter power spectrum derived from gravitational lensing;
with galaxy three-point correlation functions [69] or angu-
lar bispectra [70]; or (if a large spectroscopic sample is
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available) by combining redshift-space distortions [19–21]
with mean pairwise velocity statistics. Assuming these
other quantities will be measured with errors which are
small compared to our velocity errors, a measurement of
vðr; aÞ will provide an estimate of d lnD=d lna in several
bins in a, which can then be used to constrain �.

If for each bin in a we have independent measurements
of vðr; aÞ in five radial bins with a signal-to-noise ratio of
around 3 in each bin (see Fig. 2), then the amplitude of the
function vðr; aÞ can be constrained with a fractional error

of around 0:33=
ffiffiffi
5

p
or 0.16. Assuming this is the dominant

error, the fractional error on d lnD=d lna is also around
0.16. By propagation of errors, the resulting error on � is
then 0:16= ln�mðaÞ, and hence ranges from 0.15 to 0.45,
depending on the redshift bin. This would give approxi-
mately a 25% to 80% measurement of � in each redshift
bin (assuming � takes its general relativistic value),
providing a significant constraint on many theoretical al-
ternatives to general relativity. With spectroscopic red-
shifts, these constraints would improve by a factor of 3
due to the increase in signal-noise ratio in each angular bin;
then the best redshift bin alone might provide a 10%
measurement of �, comparable to projected constraints
from weak lensing [12]. Prospects for constraining modi-
fied gravity with a large supernova survey will be explored
in more detail elsewhere.

Dark energy is simultaneously one of the most important
problems in physics today, and one of the most elusive to
address observationally. Mean pairwise velocities ex-
tracted from a large survey of SNeIa can provide an
important arrow in the dark energy quiver and should be
considered alongside any of the other methods now being
actively pursued. If simply piggybacked on existing plans

for supernova luminosity distance tests, pairwise velocities
offer independent dark energy constraints which are com-
petitive with other methods. If augmented by spectroscopic
redshift follow-up observations, pairwise velocities alone
may provide important constraints on dark energy, with
constraints on wa of 0.1 or better. Perhaps most impor-
tantly, this technique provides not only statistical power
but potentially strong control of systematic errors.
Additionally, it allows tests of the nature of gravity which
cannot be obtained using distance measurements alone. We
anticipate that type Ia supernova peculiar velocity statistics
will be in the vanguard of dark energy constraints over the
coming years.
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