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We construct efficient banks of templates suitable for directed searches of almost monochromatic

gravitational waves originating from spinning neutron stars in our Galaxy in data being collected by

currently operating interferometric detectors. We thus assume that the position of the gravitational-wave

source in the sky is known, but we do not assume that the wave’s frequency and its derivatives are a priori

known. In the construction we employ a simplified model of the signal with constant amplitude and phase

which is a polynomial function of time. All our template banks enable usage of the fast Fourier transform

algorithm in the computation of the maximum-likelihood F -statistic for nodes of the grids defining the

bank. We study and employ the dependence of the grid’s construction on the choice of the position of the

observational interval with respect to the origin of time axis. We also study the usage of the fast Fourier

transform algorithms with nonstandard frequency resolutions achieved by zero padding or folding the

data. In the case of the gravitational-wave signal with one spin-down parameter included we have found

grids with covering thicknesses which are only 0.1–16% larger than the thickness of the optimal

2-dimensional hexagonal covering.
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I. INTRODUCTION

Rotating neutron stars in our Galaxy are expected
sources of almost monochromatic gravitational waves
which are looked for in the data being collected by cur-
rently operating ground-based interferometric detectors
LIGO [1], Virgo [2], GEO600 [3], and TAMA [4]. In the
present paper we consider the problem of construction of
efficient banks of templates needed to detect gravitational-
wave signals originating from spinning neutron stars. We
assume that the problem of detection of the signal and of
estimation of its parameters is based on the maximum-
likelihood (ML) principle and we also assume that the
noise in the detector is Gaussian and stationary. (The de-
tailed exposition of the ML detection in Gaussian noise can
be found e.g. in Chapter 6 of the monograph [5]; see also
[6] and the review article [7].) Data analysis tools and
algorithms needed to perform, within the ML approach,
an all-sky search for almost monochromatic gravitational-
wave signals (i.e. the search which assumes that the posi-
tion of the source in the sky is not known) were developed
in detail in the series of papers in [8–12]. (See also
Refs. [13,14].) In our paper we restrict ourselves to di-
rected searches for almost monochromatic signals, i.e. we
assume that the position of the source in the sky is known.
We do not assume however that the frequency and the spin-
down parameters of the gravitational-wave signal are
known. Directed searches should thus be distinguished
from targeted searches, in which it is additionally assumed
that the frequency and the spin-down parameters of the

gravitational wave are also known. (See Refs. [15,16] for
discussions of statistics by means of which one can test
whether data contain such signal.) Several targeted
searches have already been performed with data collected
by the LIGO and GEO600 detectors [17–21].
In the ML approach one considers the likelihood ratio

�½x;��which is a function of the data x and the parameters
� of the gravitational-wave signal we are looking for.
Detection of the signal relies on the computation of
�½x;�� maximized over all possible values of the parame-
ters � and comparing this maximum with a threshold.
In the case of directed searches the unknown parameters
� can be divided into two groups, � ¼ ðA; �Þ. The first
groupA consists of four extrinsic or amplitude parameters:
an overall amplitude of the waveform, its initial phase, the
polarization angle of the wave, and the inclination angle of
the star’s rotation axis with respect to the line of sight. The
second group � contains intrinsic or phase parameters: the
frequency of the wave and the spin-down parameters.
Maximization of the � with respect to amplitude parame-
ters A can be done analytically (by solving the set of ML
equations @�=@A ¼ 0 with respect to A), and the
F -statistic is defined as the logarithm of the likelihood
ratio� after replacing in� the amplitude parametersA by

their ML estimators Â: F ½x; �� :¼ ln�½x; Â; ��.
In the case of targeted searches (i.e. in the case when all

the parameters � are known), the F -statistic was recently
reinterpreted in Ref. [15] from a Bayesian viewpoint, and a
Bayesian version of the F -statistic, called the B-statistic,
was introduced. It was also shown in [15] that for targeted
searches the BayesianB-statistic is more powerful than the
ML F -statistic (i.e. it ensures a higher expected detection
probability at equal false-alarm probabilities).
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For directed searches, maximization of the F -statistic
over the phase parameters � can be done only numerically.
To find this maximum one needs to construct a bank of
templates in the space of the parameters � on which the
F -statistic depends. The bank of templates is defined by a
discrete set of points, i.e. a grid in the parameter space
chosen in such a way that, for any possible signal,
there exists a grid point such that the expectation value
of theF -statistic (which is a random variable as it depends
on the detector’s noise which is a stochastic process)
computed for the parameters of this grid point is not less
than a certain fixed minimal value (assuming that the
minimal value of the signal-to-noise ratio is also a priori
fixed).

In the series of papers in [8–12] it was argued and
checked by numerical simulations that in the case of an
all-sky search in the construction of the bank of templates
one can employ a simplified model of the gravitational-
wave signal, the so-called linear phase model, in which the
amplitude of the signal is assumed to be constant and the
signal’s phase is a linear function of the unknown parame-
ters. (This model was introduced in Sec. VB of Ref. [9].) In
Sec. VE of [9] it was checked that the linear model
reproduces well the covariance matrix (defined as the
inverse of the Fisher matrix) for the ML estimators of the
signal’s parameters of the exact gravitational-wave signal.
Also in Ref. [9] (Sec. VD and Appendix C), the polynomial
phase model was introduced in which the signal’s ampli-
tude is constant and the phase is a polynomial function of
time. It was found (in Sec. VE of [9]) that the polynomial
phase model reproduces very well the covariance matrix of
the signal’s parameters of the exact model in the case of
directed searches. This indicates that the polynomial model
can be used in the construction of the banks of templates
for directed searches and this model is accepted in the
present paper.

In the current paper we assume that the observational
interval is of the form hti � To=2; ti þ To=2i (where To is
the length of observation time), and we study the depen-
dence of the construction of banks of templates on the
choice of the parameter ti (or its dimensionless version
�i :¼ ti=To) which fixes the position of the observational
interval with respect to the origin of time axis.

The organization of this paper is as follows. In Sec. II we
introduce the polynomial phase model of the gravitational-
wave signal. We consider here the phase with only one
spin-down parameter included. For this model we compute
the F -statistic and its expectation value in the case when
the data contains the gravitational-wave signal. This ex-
pectation value depends [see the crucial Eq. (2.33) below]
on the signal-to-noise ratio � and on the value of the
autocovariance function C0ð�; �0Þ of the F -statistic (the
subscript ‘‘0’’ indicates that the autocovariance is calcu-
lated in the case when data is a pure noise), computed for
the intrinsic parameters of the template (�) and the

gravitational-wave signal (� 0), respectively. The signal-
to-noise ratio � we cannot control; therefore, to construct
a bank of templates, one needs to choose some minimum
valueCmin of the autocovariance functionC0 and look for a
grid of points such that for any point � 0 in the intrinsic
parameter space there exists a grid node � such that the
autocovariance C0ð�; �0Þ computed for the parameters �
and � 0 is not less than Cmin. The autocovariance C0ð�Þ
(which, for the polynomial phase model, depends on �, �0
only through the difference � :¼ � � �0) can be expressed
in terms of Fresnel integrals, or one can use an approximate
formula for C0 by taking the Taylor expansion (up to the
second-order terms) of C0 around its maximum at � ¼ 0.
In Sec. II, we compare these two ways of computing the
autocovariance.
In Sec. III we consider banks of templates necessary to

perform detection of almost monochromatic gravitational-
wave signals with polynomial phase. We first formulate in
Sec. III A the problem of constructing a bank of templates
as a problem of finding optimal covering of the signal’s
parameter space by means of identical ellipses (defined as
isoheights of the autocovariance function C0 of the
F -statistic) and introduce some mathematical notions re-
lated with coverings. We are interested in such searches for
almost periodic gravitational-wave signals for which the
number of grid points in the parameter space is very large
and the time needed to compute the F -statistic for all grid
nodes is long. Then it is crucial to use in the computation
the fast numerical algorithms. Because the computation of
the F -statistic involves calculation of the Fourier trans-
form, one would like to use the fast Fourier transform
(FFT) algorithm. As is known, the FFTalgorithm computes
the values of the discrete Fourier transform (DFT) of a
time series for a certain set of discrete frequencies called
the Fourier frequencies. Thus it will be possible to use the
FFT algorithm in computation of the F -statistic, provided
the grid points will be arranged in such a way that the
frequency coordinates of these points will all coincide with
the Fourier frequencies. We have constructed two different
families of grids which fulfill this requirement. Our con-
structions were motivated by a simple observation (see
Fig. 1) that the shape of the autocovariance ellipse strongly
depends on the value of the parameter �i: the larger j�ij is,
the more elongated (along the frequency axis) this ellipse
is. The usage of elongated ellipses suggests that the
F -statistic could be computed for a smaller number of
frequency values than the standard DFT algorithm com-
putes. Therefore we have also employed some modifica-
tions of the DFT algorithm leading to nonstandard
frequency resolutions achieved by zero padding or folding
the data (as discussed in the Appendix). Details of the
construction of two families of grids are presented in
Secs. III B and III C, where the components of the basis
vectors spanning the grids are also given. In Sec. IV we
present the results of numerical simulations we performed
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to study the quality of grids constructed in Secs. III B and
III C. Section V is devoted to conclusions.

The construction of efficient banks of templates for
gravitational-wave searches was recently discussed in
Ref. [22] (see also [23–26]), where random template banks
and relaxed lattice coverings were considered. As ex-
plained above we are interested in searches involving
data streams so long that the time performance of the
search crucially depends on the ability to use the FFT
algorithm. This enforces the above-mentioned constraint
which is not fulfilled by the grids considered in Ref. [22].
Therefore our work can be considered as being comple-
mentary to the studies performed in Ref. [22]. The grid
fulfilling the constraint was constructed in Sec. IV of
Ref. [12] in the case of all-sky search for almost mono-
chromatic gravitational waves. In the search considered in
[12], the signal’s parameter space is 4-dimensional and the
polynomial phase model cannot be employed. However, in
Sec. IVC of [12], as an example of the application of the
general algorithm devised in [12] to construct constrained
grids, the 2-dimensional grid for searches of signals with
polynomial phase is considered. This grid has thickness
equal to �1:8, whereas grids constructed in the current
paper have thicknesses of �1:2–1:4.

II. AUTOCOVARIANCE FUNCTION OF THE
F -STATISTIC

We assume that the noise n in the detector is an additive,
stationary, Gaussian, and zero-mean continuous stochastic
process. Then the logarithm of the likelihood function is
given by

ln�½x� ¼ ðxjhÞ � 1

2
ðhjhÞ; (2.1)

where x denotes the data from the detector, h is the
deterministic signal we are looking for in the data, and
ð�j�Þ is the scalar product between waveforms defined by

ðh1jh2Þ :¼ 4 Re
Z 1

0

~h1ðfÞ~h�2ðfÞ
SnðfÞ df; (2.2)

where~stands for the Fourier transform, * denotes complex
conjugation, and Sn is the one-sided spectral density
(defined for frequencies 0 � f <þ1) of the detector’s
noise n.

We are interested in almost monochromatic signals, i.e.
such signals for which the modulus of the Fourier trans-
form is concentrated (for frequencies f � 0) around some
‘‘central’’ frequency fc > 0, and Sn is a slowly changing
function of f in the vicinity of the frequency fc. If both
waveforms h1 and h2 in Eq. (2.2) have Fourier transforms
concentrated around the same frequency fc, then we can
replace SnðfÞ in the integrand of (2.2) by SnðfcÞ and, after
employing the Parseval’s theorem, approximate the scalar
product by

ðh1jh2Þ ffi 2

SnðfcÞ
Z tiþTo=2

ti�To=2
h1ðtÞh2ðtÞdt ¼ 2To

SnðfcÞ hh1h2i:
(2.3)

Here hti � To=2; ti þ To=2i denotes observational interval,
so To is the length of observation time, and ti � To=2 is the
moment at which the observation begins. The time averag-
ing operator h�i is defined by

hhi :¼ 1

To

Z tiþTo=2

ti�To=2
hðtÞdt: (2.4)

Using the formula (2.3) we can write the log likelihood
ratio from Eq. (2.1) as

ln�½x� ffi 2To

SnðfcÞ
�
hxhi � 1

2
hh2i

�
: (2.5)

We restrict to almost monochromatic signals with fre-
quency drift given by the linear-in-time relation,

fðtÞ ¼ f0 þ _f0t; (2.6)

so f0 and _f0 is the frequency and the first derivative of the
frequency with respect to time, respectively, both taken at
the time t ¼ 0. The instantaneous frequency is related to
the phase � of the signal by

fðtÞ ¼ 1

2�

d�ðtÞ
dt

: (2.7)

Making use of Eqs. (2.6) and (2.7), we obtain the time
dependence of the phase �:

�ðtÞ ¼ 2�
Z t

0
fðt0Þdt0 þ�0 ¼ 2�

�
f0tþ 1

2
_f0t

2

�
þ�0;

(2.8)

where�0 is the value of the phase� at the time t ¼ 0. It is
convenient to define the dimensionless parameters

!0 :¼ 2�f0To; !1 :¼ � _f0T
2
o: (2.9)

Using these parameters we can write the phase � in the
form

�ðt;�0; !0; !1Þ ¼ �ðt;!0; !1Þ þ�0; (2.10)

where

�ðt;!0; !1Þ ¼ !0

t

To

þ!1

�
t

To

�
2
: (2.11)

We further assume that the gravitational-wave signal h we
are looking for has a constant amplitude h0, so it can be
written in the form

hðt;h0;�0;!0;!1Þ¼h0 sinð�ðt;!0;!1Þþ�0Þ: (2.12)

Let us collect the parameters of the phase � into a
2-dimensional vector �,

� :¼ ð!0; !1Þ: (2.13)
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Then the gravitational-wave signal h, Eq. (2.12), we can
shortly write as

hðt;h0;�0; �Þ ¼ h0 sinð�ðt; �Þ þ�0Þ: (2.14)

It is easy to maximize the likelihood ratio (2.5) for the
signal (2.14) with respect to the parameters h0 and �0. To
do this it is convenient to introduce the new parameters h1
and h2:

h1 :¼ h0 cos�0; h2 :¼ h0 sin�0; (2.15)

and rewrite the signal h in the form

hðt;h1; h2; �Þ ¼ h1 sin�ðt; �Þ þ h2 cos�ðt; �Þ: (2.16)

Making use of Eq. (2.16) and the identities 2 sin� cos� ¼
sin2�, cos2� ¼ 1

2 ð1þ cos2�Þ, sin2� ¼ 1
2 ð1� cos2�Þ, we

can represent the time average hh2i as
hh2i ¼ 1

2
ðh21 þ h22Þ þ h1h2hsin2�i þ 1

2
ðh22 � h21Þhcos2�i:

(2.17)

For observation times longer than a few hours and for
almost monochromatic signals with frequency of the order
of hundreds or thousands of hertz, we can make the ap-
proximation

hsin2�i ffi 0; hcos2�i ffi 0: (2.18)

Then Eq. (2.17) can be approximated by

hh2i ffi 1

2
ðh21 þ h22Þ: (2.19)

With the aid of the equality (2.19), it is easy to compute the
optimal signal-to-noise ratio � for the signal (2.16):

� :¼
ffiffiffiffiffiffiffiffiffiffiffi
ðhjhÞ

q
ffi h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
To

SnðfcÞ

s
: (2.20)

Substituting Eqs. (2.19) and (2.16) into Eq. (2.5), we get
the following formula for the likelihood ratio:

ln�ðx;h1; h2; �Þ ffi 2To

SnðfcÞ
�
h1hx sin�ðt;�Þi

þ h2hx cos�ðt;�Þi � 1

4
ðh21 þ h22Þ

�
:

(2.21)

To maximize ln�with respect to the parameters h1 and h2,
we solve equations

@ ln�

@hi
¼ 0; i ¼ 1; 2: (2.22)

The unique solution to these equations reads

ĥ 1 ¼ 2hx sin�i; ĥ2 ¼ 2hx cos�i: (2.23)

Replacing in Eq. (2.21) the parameters h1 and h2 by their

estimators ĥ1 and ĥ2 given by Eqs. (2.23), we obtain the
reduced likelihood ratio which we call the F -statistic:

F ðx;�Þ :¼ ln�ðx; ĥ1; ĥ2; �Þ
ffi 2To

SnðfcÞ ðhx sin�ðt;�Þi2 þ hx cos�ðt; �Þi2Þ:
(2.24)

It is rather easy to rewrite the F -statistic in still another
form:

F ðx;�Þ ffi 2

SnðfcÞTo

��������
Z tiþTo=2

ti�To=2
xðtÞ exp

�
�i!1

�
t

To

�
2
�

	 exp

�
�i!0

t

To

�
dt

��������2

: (2.25)

Thus the F -statistic, up to a constant multiplication factor,
is the modulus squared of the Fourier transform of the
product of the data stream xðtÞ by the exponential factor
expð�i!1ðt=ToÞ2Þ which depends on the spin-down pa-
rameter !1.
For the construction of the bank of templates it is crucial

to study the expectation value of the F -statistic (2.24) in
the case when the data x contains some gravitational-wave
signal h, i.e.

xðtÞ ¼ nðtÞ þ hðt;�0Þ; (2.26)

where �0 ¼ ðh01; h02; �0Þ collects the parameters of the
gravitational-wave signal present in the data [see
Eq. (2.16)]. Let us denote this expectation value by E1.
(The subscript ‘‘1’’ means here that the average is com-
puted in the case when the data contain some gravitational-
wave signal.) So we have

E 1fF ðx;�Þg ¼ EfF ðnðtÞ þ hðt;�0Þ;�Þg: (2.27)

We want to obtain an approximate analytical formula for
this quantity. Making use of the following approximations

hsin½�ðt; �Þ þ�ðt;� 0Þ�i ffi 0;

hcos½�ðt;�Þ þ�ðt; �0Þ�i ffi 0;
(2.28)

after some computation, we obtain

E1fF ðx;�Þg ffi 1þ 1

2
�2ðhsin½�ðt;�Þ ��ðt; �0Þ�i2

þ hcos½�ðt; �Þ ��ðt;� 0Þ�i2Þ; (2.29)

where � is the signal-to-noise ratio from Eq. (2.20). The
right-hand side of the above equation can be rewritten in
terms of the autocovariance function C0 of the F -statistic
(computed in the case when the data contain only noise); it
is defined as

C0ð�; �0Þ :¼ Ef½F ðn; �Þ �m0ð�Þ�½F ðn;� 0Þ �m0ð�0Þ�g;
(2.30)

where m0 is the signal-free average of F :

m0ð�Þ :¼ EfF ðn; �Þg: (2.31)
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In Sec. IVof Ref. [10] it was shown that the autocovariance
function C0 computed for the gravitational-wave signal of
the form (2.16) can be approximated by

C0ð�; �0Þ ffi hsin½�ðt;�Þ ��ðt; �0Þ�i2
þ hcos½�ðt; �Þ ��ðt;�0Þ�i2: (2.32)

Therefore the expectation value (2.29) can shortly be
written as

E 1fF ðx; �Þg ffi 1þ 1

2
�2C0ð�; �0Þ: (2.33)

The phase � [see Eq. (2.11)] of the gravitational-wave
signal (2.16) depends linearly on the parameters �; there-
fore the autocovariance function (2.32) depends only on
the differences between the parameters � and � 0:

C0ð�; �0Þ ffi hsin�ðt; � � �0Þi2 þ hcos�ðt; � � �0Þi2:
(2.34)

If one introduces � :¼ � � � 0, one can thus write

C0ð�Þ ffi hcos�ðt; �Þi2 þ hsin�ðt; �Þi2: (2.35)

Let us note that the function C0 attains its maximal value
equal to 1 for � ¼ 0.

We will numerically compute the autocovariance func-
tion (2.35) in two ways. First, the right-hand side of
Eq. (2.35) can be expressed (without any additional ap-
proximations) in terms of the Fresnel integrals:

Ceð�; �iÞ ¼ �

2j!1j
��

Fc

�
!0 þ!1ð2�i þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�j!1j
p �

� Fc

�
!0 þ!1ð2�i � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�j!1j
p ��

2

þ
�
Fs

�
!0 þ!1ð2�i þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�j!1j
p �

� Fs

�
!0 þ!1ð2�i � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�j!1j
p ��

2
�
; (2.36)

where we have introduced the dimensionless variable

�i :¼ ti
To

: (2.37)

The Fresnel integrals are defined as1

FsðxÞ :¼
Z x

0
sin

�
�z2

2

�
dz; (2.38a)

FcðxÞ :¼
Z x

0
cos

�
�z2

2

�
dz: (2.38b)

We can also compute the right-hand side of Eq. (2.35) in
an approximate way. To do this we expand (2.35) in Taylor
series around � ¼ 0 up to terms quadratic in �. Making use
of the obvious equalities

�ðt;� ¼ 0Þ ¼ 0;
@2�

@�i@�j

¼ 0; (2.39)

we get

Cað�; �iÞ ffi 1� X2
k;l¼1

~�ð�iÞkl�k�l; (2.40)

where ~� is the 2-dimensional reduced Fisher information
matrix with elements equal to

~� kl :¼
�
@�

@�k

@�

@�l

�
�
�
@�

@�k

��
@�

@�l

�
; k; l ¼ 1; 2:

(2.41)

In terms of the dimensionless variable �i the Fisher matrix
~� equals

~�ð�iÞ ¼
1
12

1
6�i

1
6�i

1
180 þ 1

3�
2
i

 !
: (2.42)

In Fig. 1 we study the relation between the exact (2.36)
and approximate (2.40) formulae for the autocovariance
function. We have found (see the left panel of Fig. 1) that
the approximate formula underestimates the value of the
autocovariance function. In the right panel of Fig. 1 we plot
the isoheights of the approximate autocovariance function
and the isoheights of the fractional difference:

�C :¼ Ce � Ca

Ce

100%: (2.43)

One can see that �C> 0 always, and for Ce � 0:75 the
fractional difference �C< 4%.
From Fig. 1 one can also see that, whereas the isoheights

of the approximate autocovariance Ca are perfect ellipses,
the isoheights of the exact autocovariance Ce are closed
curves of shapes very similar to ellipses. Therefore it is
reasonable to study the value of the approximate autoco-
variance along the isoheight Ce ¼ const of the exact auto-
covariance. We have done this for the several values of Ce.
Along each Ce ¼ const curve, the values of the approxi-
mate autocovariance are smaller than Ce and they are
almost the same. We have picked up the largest value out
of them, and these values are given in Table I together with
the corresponding values of Ce and the fractional differ-
ence between Ca and Ce. The following cubic fit,

Ce ¼ �0:823 872þ 3:150 65Ca � 1:840 55C2
a

þ 0:514 037C3
a; (2.44)

reproduces the relation Ce ¼ CeðCaÞ with accuracy better
than 0.04% for 0:55 � Ca � 1:00.

1Let us note that both Fc and Fs are odd functions: Fcð�xÞ ¼
�FcðxÞ and Fsð�xÞ ¼ �FsðxÞ.
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FIG. 1. The left column: Isoheights of the autocovariance function computed by means of the exact formula Eq. (2.36) (black lines)
and the approximate formula Eq. (2.40) (grey lines); isoheights for the values 0.5, 0.75, and 0.8 are shown. The right column: Isoheights
of the autocovariance function computed by means of the approximate formula Eq. (2.40) (grey lines) and isoheights of the fractional
difference �C defined in Eq. (2.43) (black lines).
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III. BANKS OF THE TEMPLATES

A. Constrained coverings

To search for the gravitational-wave signal (2.14) in
detector’s noise we need to construct a bank of templates
in the space of the parameters ð!0; !1Þ on which the
F -statistic [given in Eq. (2.24)] depends. The bank of
templates is defined by a discrete set of points, i.e. a grid
in the parameter space chosen in such a way that, for any
possible signal, there exists a grid point such that the
expectation value of the F -statistic computed for the pa-
rameters of this grid point is not less than a certain fixed
minimal value. From Eq. (2.33) we see that this expectation
value depends on the signal-to-noise ratio � and on the
value of the noise autocovariance function C0 computed
for the intrinsic parameters � and �0 of the template and the
gravitational-wave signal, respectively. In the rest of this
paper we will approximate the autocovariance function C0

by means of the formula Eq. (2.40), i.e. we will use the
equality C0ð�; �0Þ ffi Cað�; � 0Þ.

The signal-to-noise ratio � we cannot control; therefore
to construct the bank of templates one needs to choose
some minimum value Cmin of the autocovariance function
Ca and look for such a grid of points that for any point �

0 in
the ð!0; !1Þ plane there exists a grid node � such that the
autocovariance Ca computed for the parameters � and � 0 is
not less than Cmin. Because Ca depends on �, � 0 only
through the difference � � �0, we require that

Cað� � �0Þ � Cmin: (3.1)

By virtue of Eq. (2.40) this condition leads to the inequality

X2
k;l¼1

~�klð�k � �0
kÞð�l � �0

lÞ � 1� Cmin; (3.2)

which for the fixed � is fulfilled by all points �0 which
belong to an ellipse with the center located at �.

We want to find the optimal grid fulfilling the require-
ment (3.1), i.e. the grid which consists of possibly the
smallest number of points. Thus the problem of finding

the optimal grid is a kind of covering problem, i.e. the
problem to cover the ð!0; !1Þ plane (or, in the data analysis
case, the bounded region of the plane) by the smallest
number of identical ellipses. The thorough exposition of
the problem of covering n-dimensional Euclidean space by
identical spheres is given in Chap. 2 of Ref. [27].
We restrict ourselves to grids which are lattices, i.e. to

grids with nodes which are linear combinations (with in-
teger coefficients) of two basis vectors. If the vectors (P0,
P1) are the basis vectors of a lattice, then a fundamental
parallelogram (for the case of more than two parameters, it
would be a parallelotope) is the parallelogram consisting of
the points

�0P0 þ �1P1; 0 � �0; �1 � 1: (3.3)

A fundamental parallelogram is an example of a funda-
mental region for the lattice, which when repeated many
times fills the plane with one lattice point in each copy. The
quality of a covering can be expressed by the covering
thickness �, which is defined as the average number of
ellipses that contain a point in the plane. For lattice cover-
ings their thickness can be computed as

� ¼ area of one ellipse

area of fundamental region
: (3.4)

We assume that we are interested in such searches for
almost monochromatic gravitational-wave signals for
which the number of grid points in the parameter space
is very large and the time needed to compute the
F -statistic for all grid nodes is long, so it is crucial to
use in the computation the fast numerical algorithms.
Because the computation of the F -statistic involves cal-
culation of the Fourier transform [see Eq. (2.25)], one
would like to use the fast Fourier transform (FFT) algo-
rithm. The FFT algorithm computes the values of the
discrete Fourier transform (DFT) of a time series. The
values of the DFT are defined for a certain set of discrete
frequencies called the Fourier frequencies. It will thus be
possible to use the FFT algorithm in computation of the
F -statistic, if the grid points will be arranged in such a way
that the frequency coordinates of these points will all
coincide with the Fourier frequencies. In the next section
we construct two different families of grids which fulfill
this requirement. In the construction we have explored
observation that the shape of the autocovariance ellipse
strongly depends on the value of the parameter �i: the
larger j�ij is, the more elongated (along the !0-axis) this
ellipse is (see Fig. 1). But the usage of elongated enough
ellipses suggests that theF -statistic could be computed for
a smaller number of frequency values than the standard
DFT algorithm computes. Therefore we have employed
some modifications of the DFT algorithm.
Let the data collected by a detector form a sequence ofN

samples

xu; u ¼ 1; . . . ; N; (3.5)

TABLE I. The relation between the exact, Eq. (2.36), and the
approximate, Eq. (2.40), formulae of the autocovariance function
of the F -statistic.

Ce Ca ðCe � CaÞ=Ce

0.55 0.437 67 20.4%

0.60 0.515 13 14.2%

0.65 0.587 69 9.6%

0.70 0.656 00 6.3%

0.75 0.720 57 3.9%

0.80 0.781 83 2.3%

0.85 0.840 12 1.2%

0.90 0.895 75 0.5%

0.95 0.948 97 0.1%
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and let the sampling period be �t. Then the DFTalgorithm
calculates the Fourier transform of the data with the fre-
quency resolution �f ¼ 1=ðN�tÞ. The resolution of the
dimensionless frequency parameter !0 [introduced in
Eq. (2.9)] is thus

�!0 ¼ 2�To�f ¼ 2�; (3.6)

because N�t ¼ To. It is possible to modify the DFT
algorithm in such a way that the frequency resolution
(3.6) changes. In the Appendix we consider two such
modifications: (i) zero padding of the data, which makes
the DFT more dense; (ii) folding of the data, which dimin-
ishes the frequency resolution. Therefore we study banks
of templates which are compatible with the frequency
resolutions of the form

�!0 ¼ 2l�; l ¼ 0; 1; 2; 3: (3.7)

As explained in the Appendix, l ¼ 0 corresponds to zero
padding of the data (for N data points we add N zeros);
l ¼ 1 is a pure DFT of the N-point data stream; for l ¼ 2
the data is folded 2 times; and for l ¼ 3 the data is folded
4 times.

Let ðP0;P1Þ be the basis vectors of a lattice we consider.
As explained above we want to use the DFT algorithm;
therefore we need a bank of templates such that all nodes
can be arranged along straight lines parallel to the!0-axis.
Moreover, the distance between neighboring nodes along
these lines must be equal to the frequency resolution (3.7)
of the DFT algorithm. To fulfill this constraint we require
that the vector P0 has components

P 0 ¼ ð�!0 ¼ 2l�; 0Þ: (3.8)

Let us also denote the components of the second basis
vector P1 as

P 1 ¼ ð	!0; 	!1Þ: (3.9)

We will call the grid orthogonal if P0 � P1 ¼ 0, where dot
denotes the usual Euclidean scalar product. The grid
spanned by the vectors (3.8) and (3.9) is thus orthogonal
if and only if 	!0 ¼ 0.

In the rest of this section we construct two different
families of grids fulfilling the constraint (3.8). Construction
of the grids denoted byG1;l (for l ¼ 0, 1, 2, 3) is described in
Sec. III B; the grids G2;l and G0

2;l (valid for l ¼ 1, 2, 3) are

constructed in Sec. III C 1; and the grids G2;0 and G0
2;0 are

described in Sec. III C 2. The gridsG1;l andG
0
2;l are orthogo-

nal, whereas the grids G2;l are nonorthogonal.

B. Grids G1;l

In this subsection we construct a family of grids
by construction of their fundamental regions of parallelo-
gram shape. The fundamental parallelograms are always
inscribed into the ellipse of constant value of the autoco-
variance function [this ellipse is given by Eq. (3.2)], and
their construction ensures that the constraint (3.7) is
fulfilled.

1. Construction of the fundamental parallelogram

Let us denote the coordinates of the parallelogram ver-

tices we are looking for by ð!ðaÞ
0 ; !ðaÞ

1 Þ, a ¼ 1; . . . ; 4. Bases
of the parallelogram we choose to be parallel to the !1

axis, so the!0 coordinates of the vertices can be written as

!ðaÞ
0 ðkÞ ¼ k

�

2
; a ¼ 1; 2;

!ðaÞ
0 ðkÞ ¼ �k

�

2
; a ¼ 3; 4;

(3.10)

where k > 0. Then the coordinates !ðaÞ
1 of the vertices we

obtain from the equations [here T denotes the transposition

of the row vector ð!ðaÞ
0 ; !ðaÞ

1 Þ] are:
ð!ðaÞ

0 ; !ðaÞ
1 Þ � ~�ð�iÞ � ð!ðaÞ

0 ; !ðaÞ
1 ÞT ¼ 1� Ci

min;

a ¼ 1; . . . ; 4; (3.11)

where ~�ð�iÞ is the Fisher matrix from Eq. (2.42) and Ci
min

(the reason for introducing the extra subscript ‘‘i,’’ from
‘‘initial,’’ is explained in Sec. III B 2 below) is the mini-
mum value of the autocovariance function. We can assume
that Ci

min 2 ð0; 1Þ; then the solution of Eqs. (3.11) reads

!ð1Þ
1 ð�i; kÞ ¼

�30k��i þ
ffiffiffiffiffiffi
15

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48ð1� Ci

minÞð1þ 60�2
i Þ � k2�2

q
2ð1þ 60�2

i Þ
; (3.12a)

!ð2Þ
1 ð�i; kÞ ¼

�30k��i þ
ffiffiffiffiffiffi
15

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48ð1� Ci

minÞð1þ 60�2
i Þ � k2�2

q
2ð1þ 60�2

i Þ
; (3.12b)

!ð3Þ
1 ð�i; kÞ ¼ �!ð2Þ

1 ð�i; kÞ; !ð4Þ
1 ð�i; kÞ ¼ �!ð1Þ

1 ð�i; kÞ: (3.12c)

The area of the parallelogram with the vertices given above is equal to

S ¼ ð!ð1Þ
1 �!ð2Þ

1 Þk�: (3.13)

Making use of Eqs. (3.12) we get the area S as a function of the parameters �i and k:
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Sð�i; kÞ ¼
ffiffiffiffiffiffi
15

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48ð1� Ci

minÞð1þ 60�2
i Þ � k2�2

q
1þ 60�2

i

k�:

(3.14)

We want to have the fundamental parallelogram be a
possibly large area. Let us first fix the parameter �i and
maximize the area with respect to the parameter k. The
only positive solution of the equation @S=@k ¼ 0 reads

k0ð�iÞ ¼ 2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1� Ci

minÞð1þ 60�2
i Þ

q
: (3.15)

We can compute the area of the parallelogram for this
optimal value of k:

Smax ¼ Sð�i; k0ð�iÞÞ ¼ 24
ffiffiffiffiffiffi
15

p ð1� Ci
minÞ: (3.16)

It does not depend on the value of �i. It can be shown that
the value Smax given above is also the global maximum of
the function S ¼ Sð�i; kÞ.

The dependence S ¼ Sð�i; kÞ is illustrated in Fig. 2. It is
easy to show that for any value of k > kmin, where

kmin :¼ 2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1� Ci

minÞ
q

; (3.17)

we can find two values of �i for which the maximal area
Smax is achieved. These values one obtains solving the
equation Sð�i; kÞ ¼ Smax. The solutions read

�iðkÞ ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2 � 24ð1� Ci

minÞ
q

12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ð1� Ci

minÞ
q (3.18)

For k ¼ kmin we get only one solution: �iðkminÞ ¼ 0.

2. Construction of the grids

We want to use the FFT algorithm in the computation of
the F -statistic for all grid nodes, therefore we need a grid
such that (i) all grid points can be arranged along straight
lines parallel to the !0-axis, and (ii) the distance between
neigboring points along these lines is k�, where k ¼ 2l,
l ¼ 0, 1, 2, 3 [see Eq. (3.7)]. It is not difficult to construct
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FIG. 2. In the left panel, the area S of the fundamental parallelogram for the grid G1 is plotted as a function of the parameters �i and
k [see Eq. (3.14)]. In the right panel, part of the ð�i; kÞ plane is displayed; here the black shaded region is made of the points ð�i; kÞ for
which the construction of the parallelogram is not possible, and the V-shaped solid line is made of the values of the parameters ð�i; kÞ
for which the maximal area Smax is achieved.
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FIG. 3. The relation, valid for the grids G1, between the initial
minimum value Ci

min and the final minimum value Cmin of the

autocovariance. Plots for three different values of the parameter
k are shown. The diagonal grey line is the plot of the relation
Cmin ¼ Ci

min.
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an orthogonal lattice fulfilling these requirements. Let the
lattice be spanned by the vectors ðP0;P1Þ. The first basis
vector P0 is parallel to the !0-axis and has components
P0 :¼ ðk�; 0Þ, so its length is equal to the height of the
fundamental parallelogram. The second basis vector P1 is
chosen to be parallel to the!1-axis and has length equal to
the length of the parallelogram’s base. The !1-component
of the vector P1 can easily be obtained from Eqs. (3.12).
One finds that P1 ¼ ð0; 	!1Þ, where

	!1 ¼
ffiffiffiffiffiffi
15

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48ð1� Ci

minÞð1þ 60�2
i Þ � k2�2

q
1þ 60�2

i

: (3.19)

In the construction of the fundamental parallelogram
presented above (in Sec. III B 1), we have ensured that
the autocovariance between the center of the fundamental
parallelogram and any of its vertices is equal to Ci

min. In

the bank of templates spanned by the vectors P0 and P1, the
minimum value [taken over all points in the
ð!0; !1Þ-plane] of the maximum (taken over all grid
points) autocovariance between any point in the
ð!0; !1Þ-plane and all the grid points is not less than
Ci
min. It turns out that usually it is greater than Ci

min. Let

us denote this minimum value of the autocovariance by
Cmin; then Cmin � Ci

min.

To find the value of Cmin we should first find the Voronoi
cell of the grid.2 To do this let us first choose two neighbor-
ing grid nodes and find all points in the ð!0; !1Þ-plane such
that the autocovariance between the point and one of
the chosen nodes is equal to the autocovariance between
the point and the second node. All such points belong to the
border between neighboring Voronoi cells. We repeat this
construction for all nodes which are neighbors of the
chosen node. Points where borders cross each other
are vertices of the Voronoi cell, and at these vertices the
autocovariance takes its minimum value. In Fig. 3 we have
shown, for different values of the parameter k,
the relation between the initial minimum value Ci

min and

the final minimum value Cmin of the autocovariance.

In Table II, the components of the basis vectors ðP0;P1Þ
for orthogonal grids G1;l (for l ¼ 0; 1; 2; 3) are given to-

gether with the optimal values of �i and the initial mini-
mum values Ci

min of the autocovariance function.

C. Grids G2;‘

Constructions of the grids G2 were inspired by the
existence of the optimal hexagonal covering by circles of
the 2-dimensional Cartesian space R2, and they can be
treated as some deformations of this covering. To employ
the properties of the hexagonal covering we first translate,
by means of a linear transformation, the problem of cover-
ing the ð!0; !1Þ-plane by identical ellipses to the problem
of covering the ð!0

0; !
0
1Þ-plane by unit circles.

In the constructions of the grids described below, we
were guided by the two following features of the hexagonal
covering: (i) The fundamental region of the hexagonal
covering can be chosen to be a regular hexagon inscribed
into the circle; we demand that deformed coverings have
fundamental region in the form of a polygon (usually a
nonregular hexagon) inscribed into the unit circle. (ii) Let

TABLE II. Basis vectors P0 and P1 defining the orthogonal grids G1;l (l ¼ 0, 1, 2, 3) for
Cmin ¼ 0:75 (which corresponds to Ce

min ¼ 0:7737). The covering thicknesses � of the grids G1;l

are shown in Table V.

l Ci
min �i P0 P1

0 0.680 384 804 61 0.069 119 697 77 ð�; 0Þ (0,9.456 586 887 7)

1 0.712 080 379 43 0.280 272 817 68 ð2�; 0Þ (0,4.259 398 407 6)

2 0.681 380 539 92 0.572 287 327 48 ð4�; 0Þ (0,2.356 781 413 8)

3 0.696 846 517 33 1.195 946 125 80 ð8�; 0Þ (0,1.121 190 923 7)

FIG. 4. Construction of the grids G2;l (valid for l � 1) in the
ð!0

0; !
0
1Þ-plane.

2With each point �a of a latticeLwe associate its Voronoi cell
Vð�aÞ which consists of those points of plane that are at least as
close to �a as to any other point �b 2 L: Vð�aÞ :¼ f� :j� �
�aj � j� � �bjfor all bg.
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us denote by ðP0
0;P

0
1Þ the basis vectors of the lattice cover-

ing in the ð!0
0; !

0
1Þ-plane (with the vector P0

0 parallel to the

!0
0-axis); we demand that the lattice points which lie along

two neighboring straight lines parallel to the vector P0
1 are

shifted with respect to each other by half of the length of
the vector P0

1. (This feature can be seen in Fig. 4.)
We start by constructing a linear transformation (de-

scribed by a matrix M) which converts the ellipse of the
autocovariance function into the circle of unit radius. The
matrixM transforms a point with coordinates ð!0; !1Þ into
the point with coordinates ð!0

0; !
0
1Þ:

ð!0
0; !

0
1ÞT ¼ M � ð!0; !1ÞT: (3.20)

The equation of the ellipse of the autocovariance function
in the ð!0; !1Þ-plane reads [see Eq. (3.11)]

ð!0
0; !

0
1Þ � ~� � ð!0; !1ÞT ¼ 1� Cmin: (3.21)

The linear transformation (3.20) converts the ellipse (3.21)
into the circle of unit radius provided the matrix M fulfills
the condition

MT �M ¼ 1

1� Cmin

~�: (3.22)

The Fisher matrix ~� is symmetric, and, as can easily be
shown by means of Eq. (2.42), it is strictly positive definite,

i.e. ð!0; !1Þ � ~� � ð!0; !1ÞT > 0 for any ð!0; !1Þ � ð0; 0Þ.
For such matrix ~�, Eq. (3.22) can be interpreted as its
Cholesky decomposition, which states that there exists
the unique upper diagonal matrix M fulfilling Eq. (3.22).
In the rest of this subsection we will assume that the matrix
M is the result of the Cholesky decomposition (so it is an

upper diagonal matrix). Let us also note that the matrix
M depends on the parameters �i and Cmin.
Let P0 be the vector in the ð!0; !1Þ-plane parallel to the

!0 axis and with length equal to k�, so its
ð!0; !1Þ-components are P0 ¼ ðk�; 0Þ. After transforma-
tion to the ð!0

0; !
0
1Þ-plane, this vector becomes P0

0. Let us

denote its length by ak�; thus its ð!0
0; !

0
1Þ-components are

(remembering that the matrix M is upper diagonal)

P 0
0 ¼ ðak�; 0Þ: (3.23)

The construction of the second basis vector P0
1 of the

lattice in the ð!0
0; !

0
1Þ-plane is described in detail below.

When this vector is found, we take its image in the trans-
formation inverse to that from Eq. (3.20); it defines the
second basis vector in the ð!0; !1Þ-plane,

P 1 :¼ M�1P0
1: (3.24)

For the lattices constructed below, the components of the
basis vectors P1 depend on the parameter �i; therefore for
different values of this parameter we get different lattices,
but, as we checked, all these lattices have (for the fixed l)
the same value of covering thickness. Moreover, we can
always choose such value of �i that the vectors P0 and P1

will be orthogonal. In Table III we give the components of
the basis vectors ðP0;P1Þ for nonorthogonal grids G2;l (for

l ¼ 0, 1, 2, 3) defined by choosing �i ¼ 0. Table IV con-
tains the components of the vectors ðP0;P1Þ for orthogonal
grids G0

2;l (for l ¼ 0, 1, 2, 3; here we have added primes to

the grid symbols to distinguish them from the nonorthog-
onal grids of Table III) together with the values of the
parameter �i chosen to make the basis vectors orthogonal.

1. Grids G2;l (for l � 1)

To find the second basis vector P0
1 in the ð!0

0; !
0
1Þ-plane,

we make the following construction, which is illustrated in
Fig. 4. We plot a circle K with radius equal to half of the
length of the vector P0

0. The center of the circle coincides

with the center of the line segment spanned by the vector
P0
0. We inscribe a right-angle triangle G into the circle K;

its hypotenuse is along the diameter of the circle (i.e. along
the vector P0

0). The vertex O at the right angle of the

triangle G has coordinates

TABLE III. Basis vectors P0 and P1 defining the nonorthogonal grids G2;l (l ¼ 0, 1, 2, 3) for
Cmin ¼ 0:75 (which corresponds to Ce

min ¼ 0:7737). The grids are defined by choosing �i ¼ 0.
The covering thicknesses � of the grids G2;l are shown in Table V.

l �i P0 P1

0 0 ð�; 0Þ (1.570 796 326 794 90, 9.534 682 925 153 46)

1 0 ð2�; 0Þ (1.912 020 577 463 03, 4.152 606 081 295 65)

2 0 ð4�; 0Þ (2.653 563 333 733 61, 2.351 855 758 588 32)

3 0 ð8�; 0Þ (2.923 975 043 756 49, 1.199 744 571 065 59)

TABLE IV. Basis vectors P0 and P1 defining the orthogonal
grids G0

2;l (l ¼ 0, 1, 2, 3) for Cmin ¼ 0:75 (which corresponds to

Ce
min ¼ 0:7737). The values of the parameter �i chosen to make

the basis vectors orthogonal are also given. The covering thick-
nesses � of the grids G0

2;l are shown in Table V.

l �i P0 P1

0 0.082 372 761 586 60 ð�; 0Þ (0, 9.534 682 925 153 45)

1 0.230 219 353 826 42 ð2�; 0Þ (0, 4.152 606 081 295 65)

2 0.564 142 448 796 77 ð4�; 0Þ (0, 2.351 855 758 588 33)

3 1.218 582 319 217 93 ð8�; 0Þ (0, 1.199 744 571 065 59)
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O ¼
0
B@1
2
ak��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðak�Þ2 �!02

1

s
; !0

1

1
CA: (3.25)

The second basis vector P0
1 is chosen to be parallel to one

of the sides of the triangle G; see Fig. 4. We demand that
the ratio of the length L of this side and half of the length of
the vector P0

1 be an odd positive integer: L=ðjP0
1j=2Þ ¼

2nþ 1 (n ¼ 1; 2; . . . ). For the fixed n this requirement
fixes both coordinates of the point O, and thus it uniquely
determines the vector P0

1. Usually we obtain several pos-
sible values of n. We choose the value which leads to the
lattice with the smallest covering thickness �.

2. Grid G2;0

The construction of the gridG2;0 in the ð!0
0; !

0
1Þ-plane is

illustrated in Fig. 5. We start by constructing three circles
of unit radii. All these circles have to cross each other at the
same point. We then build the three vectors v1, v2, and v3 of
unit length (jv1j ¼ jv2j ¼ jv3j ¼ 1). The vector v1 begins
at the center of one of the circles and ends at the point
which is common to all three circles; the vectors v2 and v3
are constructed in a similar way. See Fig. 5. The coordi-
nates of the vectors v1, v2, and v3 are

v 1¼ðp;qÞ; v2¼ðp;�qÞ; v3¼ð0;1Þ; (3.26)

where p and q are positive numbers fulfilling the condition

p2 þ q2 ¼ 1: (3.27)

Because (see Fig. 5)

P 0
0 ¼ v1 þ v2; (3.28)

by virtue of Eq. (3.23) (taken for k ¼ 1), we get

p ¼ 1

2
a�: (3.29)

Making use of Eqs. (3.27) and (3.29) and the equality (see
Fig. 5)

P 0
1 ¼ v1 þ v3; (3.30)

one easily obtains the ð!0
0; !

0
1Þ-coordinates of the basis

vector P0
1:

P 0
1 ¼

0
B@1
2
�a; 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
1

2
�a

�
2

s 1
CA: (3.31)

IV. TIME PERFORMANCE OF THE GRIDS

We have made a number of numerical simulations to
study the performance of the grids constructed in
Secs. III B and III C. All computations were done for N ¼
219 ¼ 524 288 data points. For the sampling period
�t ¼ 0:5 s (i.e. for the Nyquist frequency equal to 1 Hz),
this corresponds to around three days of data. The dimen-
sionless first spin-down parameter !1 we have taken to be
nonpositive and in the range !1 2 h�3000; 0i. The
discrete-in-time version of the F -statistic [its continuous-
in-time form is given in Eq. (2.25)] reads

F ðx; �Þ ffi 2�t2

SnðfcÞTo��������X
N

u¼1

xu exp

�
�i!1

�
�i � 1

2
þ u� 1

N

�
2
�

	 exp

�
�i!0

u� 1

N

���������2

; (4.1)

where the discrete data stream points are defined as xu :¼
xðti � To=2þ ðu� 1Þ�tÞ (u ¼ 1; . . . ; N). The DFT algo-
rithm computes the sum present in Eq. (4.1) simulta-
neously for all dimensionless frequencies !0 from a
discrete set. Let us denote these discrete Fourier frequen-
cies by !0r; then (see the Appendix),

!0r ¼ ðr� 1Þ�!0; r ¼ 1; . . . ; rmax; (4.2)

where �!0 is the frequency resolution of the DFT. Using
in the parameter space a discrete grid spanned by the
vectors ðP0;P1Þ [see Eqs. (3.8) and (3.9)] means that the
spin-down parameter !1 also becomes discrete with pos-
sible values equal to

!1s ¼ �ðs� 1Þ	!1; s ¼ 1; . . . ; smax: (4.3)

In the case of nonorthogonal grids, the point in the
parameter space with coordinates ð!0 ¼ 0; !1sÞ usually
is not a grid node for s � 0; the grid node with the
smallest !0-coordinate is ðmodðs	!0;�!0Þ; !1sÞ, where
modðm; nÞ is the remainder on division ofm by n. It meansFIG. 5. Construction of the grid G2;0 in the ð!0

0; !
0
1Þ-plane.
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that, for the fixed value of s � 0, before computing the
DFT, one has to multiply the uth data point by an extra
exponential factor exp½�imodðs	!0;�!0Þu=N�.

Collecting all this information together, one can finally
show that the F -statistic evaluated on the grid point de-
fined by the integers ðr; sÞ [introduced in Eqs. (4.2) and
(4.3)] can be written as

F ðx;r;sÞffi 2�t2

SnðfcÞTo

��������X
N

u¼1

xuexp

�
iðs�1Þ	!1

	
�
�i�1

2
þu�1

N

�
2� imodðs	!0;�!0Þ uN

�

	exp

�
�iðr�1Þ�!0

u�1

N

���������2

;

r¼1; . . . ;rmax;s¼1; . . . ;smax: (4.4)

In our numerical simulations we have used the FFT
algorithm3 with different frequency resolutions given in
Eq. (3.7). In Table V we have shown the results of simu-
lations in which we have studied, for different types of
grids, the time needed to compute the F -statistic for all
grid nodes and the number of Fourier transforms per-
formed during the computation.4 We have also shown the
thicknesses � of coverings for different grids.

Let us recall that, in two dimensions, the optimal cover-
ing (without any constraint imposed) is the hexagonal

covering with thickness � equal to 2�=ð3 ffiffiffi
3

p Þ ffi 1:2092.
The grids presented in Table V have all thicknesses in the
range 1:2106 & � & 1:3990, so they are greater than the
optimal hexagonal covering thickness by �0:1–15:7%.
From inspection of Table V it is clear that the value of
the thickness does not decide the efficiency of a grid. We

see that the most efficient grids are grids which involve the
computation of the longest FFTs. Moreover, within the
grids with the same value of l (i.e. with the same length
of the FFTs), orthogonal grids are much more efficient.
The reason for this is the lack of the exponential term
exp½�imodðs	!0;�!0Þu=N� in the discrete form of the
F -statistic; see Eq. (4.4).
The nonorthogonal grid G00

2;0 is identical to the grid G2;0,

but the time-performances of these two grids are different
because of the different way of handling, during
computation of the F -statistics, the exponential term
exp½�imodðs	!0;�!0Þu=N� in Eq. (4.4). The computing
time can be considerably reduced if the values of this term
are computed in advance for all needed values of s and u
and they are kept in RAM memory of the computer. (Note
that the exponential term depends on the quantities �!0

and 	!0 defining the grid and does not depend on data.)
However, to apply this trick one has to reserve a large
amount of RAM for the table with values of the exponen-
tial term. For l ¼ 0 (i.e. for the grid G00

2;0), this table

requires about 2.5 GB of RAM. One can estimate that
the table for lþ 1 requires around 2 times more RAM
than the table for l.

V. CONCLUSIONS

In our paper we have constructed banks of templates
suitable for directed searches of almost monochromatic
gravitational waves. In the construction we have employed
a simplified model of the signal with constant amplitude
and phase which is a polynomial function of time. We have
made computations for the phase model with one spin-
down parameter included.
All our constructions of the template banks employ the

isoheights of the autocovariance function (computed for
pure noise) of the F -statistic. Usually one expands the
autocovariance function into Taylor series up to second-
order terms and then studies the elliptical isoheights of the
obtained approximate function. In Sec. II we have shown
that the autocovariance function without Taylor expanding
can be expressed in terms of Fresnel integrals and that the

TABLE V. The results of numerical simulations showing the time performance of the grids constructed in Secs. III B and III C.
Besides the times needed to compute the F -statistic [given in Eq. (4.4)] for all grid nodes, the number of the FFTs calculated during
the computation and the covering thicknesses � are also shown. All grids are constructed for Cmin ¼ 0:75 (which corresponds to
Ce
min ¼ 0:7737). Each time slot in the table is the arithmetic mean from 200 repetitions of the computation of theF -statistic for all grid

nodes.

l
G1;l G2;l, G

0
2;l, G

00
2;l

Time (s) No. of FFTs � Time (s) for G2;l Time (s) for G0
2;l Time (s) forG00

2;l No. of FFTs �

0 23.4 318 1.2287 48.1 23.1 30.4 315 1.2186

1 31.3 705 1.3639 81.7 32.2 - 723 1.3990

2 38.2 1273 1.2325 126.6 38.8 - 1276 1.2351

3 63.0 2676 1.2954 230.2 59.1 - 2501 1.2106

3We have employed the FFTW version 3.2.2 implementation of
the FFT algorithm with the wisdom mechanism (within which
the algorithm performs some tests to ensure optimal FFT
performance).

4Our codes were written in C and compiled with GCC 4.3.4. We
have used a PC computer with Core 2 Quad 2.66 GHz processor
and 4 GB of RAM.
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isoheights of this exact autocovariance are closed curves of
shapes very similar to ellipses. We have thus proposed a
simple way to improve the accuracy and efficiency of the
Taylor-expansion-based grid construction: For the fixed
value Cmin of the exact autocovariance, one should use in
the construction the isoheight of the Taylor-expanded au-
tocovariance for some Ca

min <Cmin such that this isoheight

almost coincides with the isoheight of the exact autocovar-
iance which corresponds to Cmin.

All banks of templates constructed by us in Sec. III
enable usage of the FFT algorithm in the computation of
the ML F -statistic for nodes of the grids defining the
banks. This was possible because we have employed
the dependence of the grid’s construction on the choice
of the position of the observational interval with respect to
the origin of time axis; this dependence comes from the
fact that the formula for the noise autocovariance function
(and the Fisher matrix) depends on the choice of the origin
of time axis. We have also studied the usage of the FFT
algorithms with nonstandard frequency resolutions
achieved by zero padding or folding the data. All the grids
we have found in Sec. III have covering thicknesses which
are only 0.1–16% larger than the thickness of the uncon-
strained optimal 2-dimensional hexagonal covering.

In Sec. IV we have performed numerical simulations to
study the quality of grids constructed in Sec. III. Their
results are contained in Table V. From our simulations it
follows that when considering the efficiency of a grid it is
not enough to worry only about the thickness of the cover-
ing related with the grid. We see from Table V that, for
lattices which have the same thickness of covering, but one
of them has basis vectors which are orthogonal to each
other, the time used to compute the F -statistics is at least
2 times shorter than the corresponding time for the lattice
with nonorthogonal basis vectors. From our simulation it
also follows that the most efficient grids are grids which
involve the computation of the longest FFTs.

Two (as far as we know) novel ideas have been system-
atically studied in this paper: (i) usage of the FFTalgorithm
with frequency resolution smaller than the standard one
(achieved by folding the data); and (ii) usage in grid
construction of the freedom of choice of the position of
observational interval with respect to the origin of time
axis. These two ideas can be employed in the construction
of efficient banks of templates for more complicated
gravitational-wave signals than those considered in the
present paper. Such study for the case of an all-sky search
for almost monochromatic gravitational waves (when the
intrinsic parameter space is at least 4-dimensional) is in
progress.
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Note added in proof.—Recently, the results of the first
directed search for gravitational waves from the supernova
remnant Cassiopeia A were reported in Ref. [28] (see also
[29]). In the search the phase of the gravitational-wave
signal was modeled as a third-order-in-time polynomial
(i.e. the frequency of the wave and its first and second spin-
down parameters were taken into account), and a template
bank based on a body-centered cubic lattice was used. We
thank Ben Owen for pointing us to Refs. [28,29].

APPENDIX: MODIFICATIONS OF THE
DISCRETE FOURIER TRANSFORM

The data from the detector form the sequence

ðxrÞ ¼ ðx1; x2; . . . ; xNÞ; (A1)

so N is the number of data points. The discrete Fourier
transform (DFT) of the data (A1) is defined as

~xs ¼
XN
r¼1

xr exp

�
�2�i

ðr� 1Þðs� 1Þ
N

�
;

s ¼ 1; . . . ; N:
(A2)

The DFT defined above computes the Fourier transform of
the data stream (A1) at frequencies

fs ¼ s� 1

N�t
¼ 2ðs� 1Þ fN

N
; s ¼ 1; . . . ; N; (A3)

where �t is the sampling period and fN is the Nyquist
frequency. The frequency resolution of the DFT (A2) is
thus

�f ¼ 1

N�t
) �!0 ¼ 2�: (A4)

1. Zero padding

Let us now consider the 2N-point data stream ðyrÞwhich
consists of the original N-point data stream ðxrÞ, Eq. (A1),
supplemented by N zeros,

ðyrÞ ¼ ðx1; . . . ; xN; 0; . . . ; 0Þ: (A5)

By virtue of formula (A2), the DFT of the data ðyrÞ reads

~ys ¼
XN
r¼1

xr exp

�
�2�i

ðr� 1Þðs� 1Þ
2N

�
;

s ¼ 1; . . . ; 2N:
(A6)

Making use of Eqs. (A2) and (A3) one easily sees that the
numbers ~ys can be interpreted as the values of the DFT
of the original data stream ðxrÞ, but computed now
for frequencies

fs ¼ s� 1

2N�t
; s ¼ 1; . . . ; 2N; (A7)
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so the frequency resolution of the DFT (A6) is

�f ¼ 1

2N�t
) �!0 ¼ �: (A8)

Of course one can add more zeros to the data to obtain their
DFT with the frequency resolution better than the one
given in Eq. (A8).

2. Folding of data

Let us fold the N-point data stream ðxrÞ to the
ðN=2Þ-point data stream ðyrÞ:

yr :¼ xr þ xrþN=2; r ¼ 1; . . . ;
N

2
: (A9)

The DFT of the data ðyrÞ reads, according to Eq. (A2),

~ys ¼
XN=2

r¼1

ðxr þ xrþN=2Þ exp
�
�2�i

ðr� 1Þðs� 1Þ
N=2

�
;

s ¼ 1; . . . ;
N

2
:

(A10)

It is not difficult, employing the periodicity of the function
expðizÞ for real z, to rewrite formula (A10) in the form

~ys ¼
XN
r¼1

xr exp

�
�2�i

2ðr� 1Þðs� 1Þ
N

�
;

s ¼ 1; . . . ;
N

2
:

(A11)

Again making use of Eqs. (A2) and (A3), one sees that the
numbers ~ys can be interpreted as the values of the DFT of
the original data stream ðxrÞ, but computed for frequencies

fs ¼ 2ðs� 1Þ
N�t

; s ¼ 1; . . . ;
N

2
; (A12)

so the frequency resolution of the DFT (A11) is

�f ¼ 2

N�t
) �!0 ¼ 4�: (A13)

By folding the data p times (p ¼ 1; 2; . . . ), one gets an
ðN=pÞ-point data stream the DFT of which is the DFT of
the original N-point data but computed with the frequency
resolution �!0 ¼ 2p 	 2�.
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