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We investigate the minimal conditions that an asymptotically flat general relativistic spacetime must

satisfy in order for a Hawking-like Planckian flux of particles to arrive at future null infinity. We

demonstrate that there is no requirement that any sort of horizon form anywhere in the spacetime. We find

that the irreducible core requirement is encoded in an approximately exponential ‘‘peeling’’ relationship

between affine coordinates on past and future null infinity. As long as a suitable adiabaticity condition

holds, then a Planck-distributed Hawking-like flux will arrive at future null infinity with temperature

determined by the e-folding properties of the outgoing null geodesics. The temperature of the Hawking-

like flux can slowly evolve as a function of time. We also show that the notion of peeling of null geodesics

is distinct from the usual notion of ‘‘inaffinity’’ used in Hawking’s definition of surface gravity.
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I. INTRODUCTION

Ever since Hawking’s 1974 discovery of the existence of
a quantum-physics-induced steady Planckian flux of parti-
cles in black hole spacetimes [1,2], there has been a steady
stream of papers that seek to rederive this effect in many
different ways—typically with a view to understanding
what parts of the usual derivation are truly essential, and
what parts can be dispensed with, or as overall consistency
checks on the entire formalism [3–11]. In the strict general
relativistic scenario adopted in this paper (no modified
dispersion relations), Hawking radiation is derived assum-
ing (i) that an event horizon forms and (ii) that the sub-
sequent exterior geometry is static. However, one may be
interested in either considering (quasi)black holes, where
(i) fails [12–17], or following the evolution of a black hole
during evaporation, where (ii) fails. We present a formal-
ism where one can deal with both these cases.

One particularly important result, due to Hajicek [8], is
that the existence of a strict event horizon is not necessary
and that a long-lived apparent horizon is quite sufficient to
generate the Hawking flux (see also [9–11]). More recently,
the present authors have developed some ‘‘analogue space-
times’’ [18–20] for which a Hawking flux is generated even
in the absence of a trapping or apparent horizon [21,22],
which has prompted us to undertake a thorough reassess-
ment of the situation. Inspired, in particular, by the work
of Hu [23], we focus on the existence of an (in our case,
approximate) exponential relation between the affine pa-
rameters on past and future null infinities as the necessary
and sufficient condition for generating a Hawking flux.

II. STRUCTURE OF NULL INFINITY

Consider an asymptotically flat spherically symmetric
spacetime with a Minkowskian structure in the asymptotic

past. (The discussion that follows applies equally well to
any number of spatial dimensions and can easily be gen-
eralized to deal with acoustic spacetimes in 1þ 1 dimen-
sions having two asymptotic regions [24].) In the ft; rg
sector of the geometry we define an affine parameter W
on I� and use it to label the null curves traveling towards
the center of the body. Similarly, u is taken to be an affine
parameter on Iþ, used to label the null rays traveling away
from the central body. The independent coordinates fW;ug
provide a double-null cover of the relevant parts of space-
time (the domain of outer communication).
As is standard, one can define a canonical functional

relationship connecting I� with Iþ by using null curves
that reflect off the center at r ¼ 0. This relation can be
expressed as

U ¼ pðuÞ; u ¼ p�1ðUÞ; (1)

where the labels fU; ug are now no longer to be thought of
as independent coordinates but, since we have explicitly
linked them via the function pð�Þ, as different ways of
labeling the same null curve once it is reflected through
the origin. It is to be understood that p�1ð�Þ need not be
defined on all of I� if a true event horizon indeed forms;
however, this function will certainly be well defined on
those parts of I� that lie in the domain of outer commu-
nication. We shall soon see that the function pð�Þ, or
equivalently its inverse, is sufficient to encode all the
relevant physics of Hawking radiation. Specifically, let us
choose a reference null curve completely traversing the
body. It is labeled by u� on its way out of the body and by
U� on its way in. We want to use ‘‘local’’ information from
the vicinity of this reference null curve to study Hawking-
like radiation that reaches Iþ in the vicinity of u�.
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III. EXPONENTIAL REPRESENTATION

Let us define

�ðuÞ � � €pðuÞ= _pðuÞ: (2)

Around the null curve labeled by u� this definition can be
integrated to yield the exact result

U ¼ U� þ C�
Z u

u�
exp

�
�
Z �u

u�
�ð~uÞd~u

�
d �u; (3)

for some constantC�. At this stage this is just an alternative
way of writing the function pðuÞ in terms of another
function �ðuÞ. Note that this formalism continues to
make perfectly good sense for � ! 0 where it implies a
linear relation between u and U. Now in any sufficiently
small interval around u� one can always approximate
U ¼ pðuÞ by

U � U� þ C�
Z u

u�
exp½���f �u� u�g�d �u; (4)

where �� ¼ �ðu�Þ. Integrating once again,

U � U� � C�
��

fexp½���fu� u�g� � 1g

¼ U�
H � A� exp½���u�; (5)

where we define constants

U�
H ¼ U� þ C�

��
and A� ¼ C�

��
e��u� : (6)

One can also invert this ‘‘exponential approximation’’
to give the perhaps more common ‘‘logarithmic approxi-
mation’’

u � � 1

��
ln

�
U�

H �U

A�

�
; (7)

which is valid in the proximity of U�.
The essence of this approximation is to replace �ðuÞ

by ��. This can always be done in the region defined by��������
Z u

u�
½�ð �uÞ � ���d �u

��������� �2 � 1: (8)

Under suitable technical assumptions this can be
replaced by

j _�ðu�Þjðu� u�Þ2 � �2 � 1 (9)

(for mathematical and physical details see [25]). Defining
_�� ¼ _�ðu�Þ, the region in which the exponential approxi-
mation �ðuÞ � �ðu�Þ is valid can be equivalently
expressed as

ju� u�j � �j _��j�1=2 � j _��j�1=2: (10)

The relevant interval

S þ ¼ ðu� � �j _��j�1=2; u� þ �j _��j�1=2Þ (11)

has a counterpart S� ¼ pðSþÞ:

S � ¼
�
U�

H � C�
��

e���j _��j�1=2
; U�

H � C�
��

e����j _��j�1=2

�
;

(12)

which defines what we mean by ‘‘in the proximity of U�.’’
Though this exponential approximation is valid only on

a limited region of Iþ (or I�), this region is sufficient to
dominate the integrals defining the relevant Bogoliubov
coefficients [25]. A similar issue arises even in Hawking’s
original calculation [1,2], where his version of the expo-
nential approximation holds only over a limited interval of
null infinity which is nevertheless sufficient to dominate
the relevant integrals.

IV. ADIABATIC APPROXIMATION
AND THE HAWKING FLUX

Since we know the exponential approximation is valid
for u 2 Sþ, consider some wave packet that arrives at Iþ
with compact support in Sþ. Such a wave packet cannot
tell the difference between the (unknown) exact relation
U ¼ pðuÞ and the exponential approximation defined
above. Working with such wave packets one can attempt
to apply the standard Hawking calculation [1–3] to derive a
time-dependent Bogoliubov coefficient �ð!; u�;��Þ rele-
vant to this particular time interval. At a first glance it
seems that this calculation should give us a Planckian
spectrum with a time-dependent Hawking temperature

kBTHðu�Þ ¼ ℏ
�ðu�Þ
2�

: (13)

However, this is not quite true. To obtain this result one
needs to satisfy one further important condition [25]: The
width of the wave packets used, �!, has to be much
smaller than the frequencies at the peak of the Planck
spectrum, i.e., �! � ��. But there is always an inverse
relation between the temporal and frequency resolutions
of a wave packet �! * 1=�u, and Eq. (11) implies

�u	 �j _��j�1=2. Thus, to recover a Planckian emission at
u�, the following adiabatic condition has to be satisfied:

j _��j
�2�

� �2 � 1: (14)

Only some particular functions pðuÞ satisfy this condition
and typically only in specific u regions. We shall subse-
quently verify that for realistic black holes this region is
‘‘large enough.’’
Once we are sure that the adiabatic condition is in place,

Hawking’s (at first glance seemingly absurd) extrapolation
of his version of the exponential approximation to ‘‘all
time’’ [equivalent to Eq. (5) above] can simply be inserted
into any one of the usual derivations of the Hawking effect,
and (subject to the qualifications above) the standard result
follows [1–3]. We have explicitly checked the details of
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this claim by calculating the Bogoliubov coefficients in
four independent ways: by using the Klein-Gordon inner
products on both Iþ and Iþ and by evaluating the relevant
integrals either in terms of Gamma functions or by using a
variant of the stationary phase technique [25]. The final
result is a time-dependent but slowly varying Hawking
temperature.

Once in an adiabatic regime some observations are in
order. TheU�

H in Eq. (5) is not in general the location of the
horizon. It is instead the best estimate (based on what you
can see locally at u�) of where a horizon might be likely to
form if the relation between U and u keeps e-folding in the
way it is at u�. There is no actual implication that a strict
horizon (or indeed any sort of horizon) ever forms, only
that it ‘‘looks like’’ a horizon might form in the not too
distant future. If a strict stationary event horizon forms, the
exponential approximation with a fixed asymptotic value
for ��, namely, �� ¼ �H, would be valid from some u0 up
to arbitrarily large values of u. Then, UH would signal the
location of the event horizon. However, in strictly geomet-
ric terms (without considering Einstein equations or other
dynamical conditions), the adiabatic approximation could
be perfectly valid in evaporating configurations even if no
horizon of any type ever forms.

V. NORMALIZATION

To fix the parameters in the exponential approximation
of Eq. (5) we have had to fix the overall normalization
of u and U. This is done in two steps. First we demand
pðu ! �1Þ ! u, to make sure that in the infinite past
(i.e., before collapse) I� and Iþ are connected in a simple
sensible way: U ¼ u. That is, dU=du ¼ _pðuÞ ! 1 as
u ! �1. Next, given the assumed asymptotic flatness,
we pick an overall scale to set u ¼ t� r in terms of the
asymptotic time and space coordinates.

A consequence of this normalization condition is that

C� ¼ exp

�
�

Z u�

�1
�ð~uÞd~u

�
; (15)

so that C� depends on the entire past history of Iþ (the
history of the collapse in Hawking’s language). In fact,
noting that �U ¼ C��u, it is easy to see that C� is the
Doppler shift encountered by a photon traveling from U�
on I� to u� on Iþ [25]. Furthermore

U�
H ¼ U� þ 1

��
exp

�
�

Z u�

�1
�ð~uÞd~u

�
(16)

and

A� ¼ 1

��
exp

�
�
Z u�

�1
�ð~uÞd~uþ ��u�

�
: (17)

So we have explicit formulas for the parameters appearing
in the exponential approximation.

VI. SURFACE GRAVITY

The quantity �ðuÞ is at this stage of the argument not in
any sense a ‘‘surface gravity’’—it is just a specific way of
encoding the functional relationship U ¼ pðuÞ. Can we
relate it to a surface gravity? Especially since we have
emphasized that there is no need for an actual event
horizon ever to form in this formalism? To see the relation
to surface gravity, we first use the fact that the (indepen-
dent) coordinates fW; ug provide a double-null cover of the
relevant parts of the spacetime:

ds2 ¼ �FðW;uÞdWduþ rðW;uÞ2d�2
d�1: (18)

Since W and u have been constructed to be affine on I

respectively then (assuming for the sake of argument no
event horizon ever forms)

Fðþ1; uÞ ¼ 1 and FðW;�1Þ ¼ 1; (19)

which makes the metric simple on I .
To now introduce a suitable notion of surface gravity

note that the generators of I� are null geodesics, affinely
parameterized byW. Indeed, let us [in ðW; u; �1; . . . ; �d�1Þ
coordinates] define the null vector

ka ¼ ð1; 0; 0; . . . ; 0Þ; (20)

pointing in the direction of increasing W. The
4-acceleration

karak
b ¼ �b

WW ¼ F;W

F
ð1; 0; . . . ; 0Þ (21)

enables us to identify a new and logically distinct quantity

�bulkðW; uÞ ¼ F;W

F
; (22)

where this is now a ‘‘bulk’’ quantity defined everywhere in
the spacetime and not a surface gravity as such. Instead,
�bulk is a ‘‘bulk inaffinity estimator’’ which measures the
extent to whichW fails to be an affine parameter along null
geodesics of increasing W. It is this bulk inaffinity estima-
tor that is closely related to textbook notions of surface
gravity, while it is the peeling notion of �ðuÞ that we have
seen is related to the Hawking flux (this observation ex-
tends to even more general analogue spacetime settings;
see, for example, [26]).
If a true future-eternal event horizon forms, then there

will be a region of I� (namely, W >UH) which has no
natural ‘‘lift’’ to Iþ. Instead, this region of I� lifts toHþ,
the future horizon. On this region we have the textbook
definition of surface gravity

�inaffinityðWÞ ¼ lim
u!þ1�bulkðW; uÞ: (23)

If we make the further assumption that, after the future-
eternal event horizon forms, the black hole settles down to
an asymptotically static state, then we have a relation
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�H ¼ lim
W!þ1�inaffinityðWÞ ¼ lim

u!þ1�ðuÞ: (24)

However, without such an asymptotic assumption the two
notions are distinct. Even in this particular case they at best
only coincide at iþ, future timelike infinity, and are unre-
lated at other locations. It is only for static (or stationary)
spacetimes that the two notions exactly coincide for all
times. (See [25] for details.)

The physics here is intriguing—to get a Planckian flux
not only do we not ever need the future horizon Hþ to
form, but the Hawking temperature is not logically or
physically connected to the surface gravity of the horizon
Hþ. Instead the Hawking temperature is primarily related
to �ðuÞ, that is, the ‘‘peeling off’’ properties of the null
geodesics that actually do reach Iþ.

VII. EVAPORATING BLACK HOLES

Now consider a Schwarzschild black hole. It is easy to
estimate �	M2

P=M and _�	M6
P=M

4. Thus, on the one
hand the exponential approximation is valid as long as

ju� u�j � tcrossðM=MPÞ (25)

(tcross ¼ 1=� is the time that light would take to travel a
distance 2M), which for macroscopic black holes implies a
very long time scale indeed, while on the other hand

_�=�2 	M2
P=M

2: (26)

So the Hawking process for Schwarzschild black holes
does satisfy the ‘‘adiabaticity condition’’ we have enunci-
ated above, at least as long as the black hole is heavier
than a few Planck masses. Physically the ‘‘adiabaticity
constraint’’ is equivalent to the statement that a photon
emitted near the peak of the Planckian spectrum,
with ℏ!1 � kTH, that is, !1 	 �, should not see a large

fractional change in the peak energy of the spectrum over
one oscillation of the electromagnetic field. (That is, the
change in spacetime geometry is adiabatic as seen by a
photon near the peak of the Hawking spectrum.)

VIII. DISCUSSION

We have demonstrated that any collapsing compact
object (regardless of whether or not any type of horizon
ever forms) will, provided the exponential approximation
and adiabatic condition hold, emit a slowly evolving
Planckian flux of quanta. A key observation is that it is
the peeling function �ðuÞ that controls the salient features
of the Hawking flux whether or not a horizon ever forms.
Even if a future horizon forms, the peeling function �ðuÞ
need not be directly related to its surface gravity. Note that
we have carefully described the Hawking flux as Planckian
rather than thermal. To claim thermality one has to explic-
itly assume the formation of an event horizon (behind
which one can hide correlations).
As a by-product, our analysis provides a reasonably

complete physical picture of standard black hole evapora-
tion that applies over most of the history of the collapse and
evaporation process (a picture that is broadly speaking
compatible with the extant literature [15–17,27–30]). As
is only to be expected, the physical picture developed in
this paper explicitly fails during the last few Planck times
of the evaporation process, when the region of validity of
the exponential approximation shrinks to Planck size, and
when the adiabatic condition is explicitly violated. (This
need not be the case for compact horizonless objects such
as (quasi)black holes [12–17].) Note that if a horizon forms
and then completely evaporates, then at the end point pðuÞ
has a discontinuity, and �ðuÞ will diverge. This strongly
suggests that in this situation some form of ‘‘thunderbolt’’
will be emitted [31,32].
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[14] C. Barceló, S. Liberati, S. Sonego, and M. Visser, AIP

Conf. Proc. 1122, 99 (2009).
[15] A. Ashtekar and M. Bojowald, Classical Quantum Gravity

22, 3349 (2005).
[16] S. A. Hayward, arXiv:gr-qc/0504037; arXiv:gr-qc/

0504038.
[17] S. A. Hayward, Phys. Rev. Lett. 96, 031103 (2006).
[18] M. Visser, arXiv:gr-qc/9311028.
[19] M. Visser, Classical Quantum Gravity 15, 1767 (1998).
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