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It is shown that the �0 transition form factor FðQ2
1; Q

2
2Þ differs substantially from its one-real-photon

limit FðQ2
1; 0Þ even for rather small values of Q2

2 (� 0:1 GeV2), which cannot be excluded in experiments

with one ‘‘untagged’’ electron. It indicates that the comparison of data with theoretical calculations, which

usually assume Q2
2 ¼ 0, may be untrustworthy. Our phenomenological model of the �0 transition form

factor is based on the vector-meson-dominance hypothesis and all its parameters are fixed by using the

experimental data on the decays of vector mesons. The model soundness is checked in the two-real-photon

limit, where it provides a good parameter-free description of the �0 ! 2� decay rate, and in the �0 Dalitz

decay. The dependence of FðQ2
1; Q

2
2Þ on Q2

1 at several fixed values of Q2
2 is presented and the comparison

with existing data performed.
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The issue of the �0 transition form factor has recently
attracted renewed interest in connection with the precise
measurements of the BABAR Collaboration [1], which
seem to indicate that the asymptotic limit predicted by
perturbative QCD [2] has been exceeded. A comprehensive
review of the current theoretical situation with an extended
list of references can be found in Ref. [3]. On a phenome-
nological side, it has recently been shown [4] that the
vector-meson-dominance (VMD) hypothesis [5–7] leads
to a correct description of the two-photon decay of the
�0 if the parameters are fixed by the data on the partial
decay widths of the vector mesons [8]. The rate of this
decay is related to the real-photon limit Fð0; 0Þ of the �0

transition form factor. It is therefore tempting to use the
VMD also for the construction of the �0 transition form
factor, which parametrizes the dynamics of the process in
which two off-mass-shell photons fuse and form a �0.

The experimental data on the �0 transition form factor
are taken in the process e� þ e�ðeþÞ ! e� þ �0 þ
e�ðeþÞ, where the photon virtualities are given by the
electron (eþ or e�) momenta transfer squared, Q2

i ¼�q2i , i ¼ 1, 2. To get the one-real-photon transition
form factor, only the data sample is utilized in which
one lepton exhibits a small momentum transfer, e.g.,
jq2j< 0:18 GeV2 in the latest BABAR experiment [1].

The transition form factor FðQ2
1; Q

2
2Þ is defined by its

appearance in the �����0 vertex, which describes the
fusion of two virtual photons with the four-momenta q1
and q2 into a �0:

T�� ¼ �ie2�����q
�
1 q

�
2 FðQ2

1; Q
2
2Þ; (1)

where e is the elementary electric charge. This definition of
the transition form factor agrees with that used in [1,9], but
differs from that in [10], where the factor e2 was absorbed
in FðQ2

1; Q
2
2Þ. The two-real-photon value of the pion tran-

sition form factor is related to the two-photon decay width
of the �0 by

�ð�0 ! 2�Þ ¼ ��2

4
m3

�F
2ð0; 0Þ; (2)

where � is the fine-structure constant.
Another process in which the transition form factor

plays a role is the decay �0 ! eþe��, which was sug-
gested by Dalitz [11]. The original evaluation of the
branching ratio

B ¼ �ð�0 ! eþe��Þ
�ð�0 ! 2�Þ (3)

by Dalitz, as well as a later one [12], did not consider a
possible form factor. The latter was included in [13]. The
differential branching ratio (3) in the Berman-Geffen [13]
variable x ¼ M2=m2

�, where M is the mass of the eþe�
pair, reads as

dB

dx
¼ 2�

3�

ð1� xÞ3
x

�
1þ 2�

x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

x

s
F2
DðxÞ; (4)

where � ¼ m2
e=m

2
�. Form factor FD is related to the �0

transition form factor by

FDðxÞ ¼ Fð�xm2
�; 0Þ

Fð0; 0Þ : (5)

The total branching ratio (3) is not very sensitive to the
shape of the form factor (5) and cannot serve as a stringent
test of theoretical calculations or phenomenological
models. Even the original Dalitz formula, which did not
include the form factor at all, leads to B ¼ 1:185%, which
agrees with the experimental value of ð1:188� 0:035Þ%
[14]. The form factor (5) is at small x usually parametrized
as FDðxÞ ¼ 1þ ax. In 1961, Gell-Mann and Zachariasen
[6] showed that the form factor FD is dominated by
two resonances, namely, � and !, and got a positive a
equal to m2

�ðm�2
� þm�2

! Þ=2, in agreement with today’s

observations.
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Our model of the pion transition form factor FðQ2
1; Q

2
2Þ

is defined in Fig. 1. In addition to the �! intermediate state
considered in [4,6,7], we include the following compan-
ions of the �0:	,!ð1420Þ (denoted as!0 in what follows),
and!ð1650Þ (denoted as!00). All these resonances, except
!00, have recently been considered in the model of the one-
real-photon transition form factors of �0, 
, and 
0 [15].

The combination of an isoscalar resonance with an iso-
vector one in the intermediate states is unique for the �0

transition form factor and implies the equal contribution of
the I ¼ 0 and I ¼ 1 currents to Fð0; 0Þ. With the 
 and 
0,
the situation is different.

In order to evaluate the Feynman diagrams depicted in
Fig. 1, we use the Lagrangian

L V�� ¼ GV�������ð@�V�Þð	 � @���Þ; (6)

where V is the operator of a neutral vector meson field, � is
the isovector of the �meson fields, and	 is that of the pion
fields. The coupling of photons to neutral vector mesons is
given by the VMD Lagrangian (a little nonstandard nota-
tion of [16] adopted from [17] is used)

L em ¼ �X
V

egV�
2

m2
VA

�V�; (7)

where A� is the electromagnetic field operator.
After comparing the amplitude corresponding to

Feynman diagrams in Fig. 1 with the definition of the
transition form factor (1) we extract the latter in the follow-
ing form:

FðQ2
1; Q

2
2Þ ¼

g��
4

X
V¼!;	;...

GV½RVðQ2
1ÞR�ðQ2

2Þ

þ RVðQ2
2ÞR�ðQ2

1Þ�; (8)

where GV ¼ GV��gV� and functions

RVðQ2Þ ¼ m2
V

m2
V þQ2

(9)

are the scalar parts of the vector meson propagators below
the physical cut threshold in s ¼ �Q2, sth ¼ m2

�. Tensor
parts do not contribute thanks to the presence of the Levi-
Civita tensor in (6). For R�ðQ2Þ we will alternatively use

the form

R�ðQ2Þ ¼ M2
�ð0Þ

M2
�ð�Q2Þ þQ2

(10)

with the running mass squared given by the dispersion
formula

M2
�ðsÞ ¼ M2

�ð0Þ � s

�
P
Z 1

m2
�

m���ðs0Þ
s0ðs0 � sÞds

0 (11)

and satisfying M2
�ðm2

�Þ ¼ m2
� and dM2

�=ds ¼ 0 at

s ¼ m2
�. The energy dependent total width �� includes

the contributions from the following final states: �þ��,
K �K, �0!, 
��, �0�, 
�, and �þ���. For details,
see [18].

The values of coupling constants GV�� are determined

as follows. For the vector mesons with masses below or
close to the �� threshold [!ð782Þ, 	ð1020Þ] we consider
the decay chain V ! �þ � ! 3�. The comparison of the
decay width formula given in [16] with the recommended
value from [14] yields the product G2

V��g
2
�, where g� is

the coupling constant of the usual ��� interaction
Lagrangian. Using the value g2� ¼ 35:70� 0:19, as it fol-

lows from the �meson decay width [14], we getG2
V��. For

the vector mesons with higher masses [!0,!00, J=c ð1SÞ] it
is sufficient to explore the simpler V ! �þ � decay width
formula. Concerning the!0, the Review of Particle Physics
[14] gives only intervals for its mass and total width and no
quantitative estimate for the �� branching fraction. We use
therefore the values m!0 ¼ ð1:38� 0:02� 0:07Þ GeV=c2
and �!0 ¼ ð0:13� 0:05� 0:10Þ GeV as measured by
the BABAR Collaboration [19] and Bð!0 ! �þ �Þ ¼
ð69:9� 2:9Þ% from the wavelet analysis [20] of the
eþe� annihilation data. In the case of the !00, we again
use the BABAR [19] values m!00 ¼ ð1:667� 0:013�
0:006Þ GeV=c2 and �!00 ¼ ð0:222� 0:025� 0:020Þ GeV
with the wavelet analysis [20] branching fraction
Bð!00 ! �þ �Þ ¼ ð38:0� 1:4Þ%. The resulting values
of the coupling constants GV�� squared are summarized

in Table I. The coupling constants G!�� and G	�� them-

selves differ in sign, as it follows from the analysis of the
� ! �� decay [16] and from the SU(3) symmetry [17].
This results in the negative sign of G	 shown in Table I.

Now, we determine the coupling constants in the VMD
Lagrangian (7). The value g2�� ¼ 4=g2� ¼ 0:1120ð10Þ fol-
lows from the normalization of the charged pion form
factor. The squares of other coupling constants gV� are

evaluated from the dilepton decay width of the correspond-
ing vector mesons. In the case of the !, the eþe� decay

FIG. 1. Feynman diagrams defining our model of the �0

transition form factor.

TABLE I. The squares of the coupling constants in
Lagrangians (6) and (7) obtained from the vector meson decay
data described in the text. Also shown are the parameters GV ,
which enter the transition form factor (8).

V G2
V�� (GeV�2) g2V� � 102 GV (GeV�1)

!ð782Þ 216:2� 3:0 1:375� 0:046 1:724� 0:031
	ð1020Þ 0:676� 0:020 2:214� 0:031 �0:122� 0:002
!ð1420Þ 11:7� 1:1 0:20� 0:17 0:152� 0:136
!ð1650Þ 3:97� 0:61 0:76� 0:11 0:174� 0:026
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width from [14] is used. For the	, we obtain it as a product
of the full width and the eþe� branching fraction. To get
g2!00�, we combine the full width from [19] (shown

above) with the eþe� branching fraction Bð!00 !
eþe�Þ ¼ ð32� 1Þ � 10�7 from [20]. Let us note that the
product of the �� and eþe� branching fractions from
[20] agrees with Bð!00 ! eþe�ÞBð!00 ! �þ �Þ ¼
ð1:3� 0:1� 0:1Þ � 10�6 got later by the BABAR
Collaboration [21]. The same concerns the full width.
Unfortunately, the situation with the !0 is more controver-
sial. The product of the �� and eþe� branching fractions
from the wavelet analysis [20] is about twofold of that
observed by BABAR [21]. In order not to overestimate the
contribution of the !0 to the �0 transition form factor, we
use the BABAR value Bð!0 ! eþe�ÞBð!0 ! �þ �Þ ¼
ð0:82� 0:05� 0:06Þ � 10�6 to get G2

!0 ¼ G2
!0��g

2
!0�,

from which the estimate of g2!0� presented in Table I is

obtained.
As all the parameters of our model of the �0 transition

form factor are now determined, we are ready to test its
soundness by evaluating the characteristics of the two-
photon and Dalitz decays of the neutral pion and compar-
ing them to the measured values. To avoid the cumulation
of the errors, we do not use Table I for the error analysis,
but calculate the errors of the results directly from the input
data (masses, full widths, branching fractions, and their
errors). To account for possible correlations among the
input quantities, we sum the contributions to the final errors
from various sources linearly. Two of the calculated quan-
tities, namely, the mean lifetime of�0 and the Dalitz decay
slope parameter, are shown in Table II for various versions
of our model, i.e., for various choices of the isoscalar
vector mesons entering the sum in Eq. (8) and for two
possible treatments of the � propagator. The branching
ratio of the Dalitz decay to the two-photon decay is not
shown in the table. It acquires the same value of 1.196(1)%
in all versions of the model, in agreement with the experi-
mental value of 1.188(35)% [14]. Our results concerning
the �0 transition form factor are presented in Figs. 2 and 3.
The contributions of the various �0�0V vertexes to the

one-real-, one-virtual-photon form factor together with
their sum are shown in Fig. 2. They were all calculated
using the running mass (11) of the � meson. In addition,
the sum of the same contributions, but calculated using the

TABLE II. Comparison of various versions of our model with
the �0 decay data. When converting the calculated �0 ! 2�
decay rate into the �0 mean lifetime �, the experimental branch-
ing fraction of 0.988 was used. The first two rows were obtained
with the constant � mass; the others with the running mass (11).

V �� 1017 (s) a� 102

! 7:6� 0:4 3:002� 0:002
!, 	 8:8� 0:6 3:049� 0:004
!, 	 8:8� 0:6 3:282� 0:003
!, 	, !0 7:3� 1:9 3:190� 0:097
!, 	, !00 7:2� 0:7 3:163� 0:024
!, 	, !0, !00 6:1� 1:7 3:089� 0:099
Data [14] 8:4� 0:5 3:2� 0:4

FIG. 2. The individual contributions to the pion transition form
factor FðQ2; 0Þmultiplied byQ2 and their sum (solid curve) with
the uncertainties originating in the errors of input parameters.
The sum of individual contributions (not shown) that were
calculated assuming the constant mass of the �ð770Þ is depicted
by the dotted curve.

FIG. 3. Dependence of Q2
1FðQ2

1; Q
2
2Þ on Q2

1 for four fixed
values of Q2

2 calculated in the full version of our model. The

CELLO [10], CLEO [9], and BABAR [1] data are also shown.
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fixed � mass, is depicted by a dotted curve. It differs from
the running-mass case only marginally. The strong depen-
dence of the transition form factor FðQ2

1; Q
2
2Þ on the vir-

tuality Q2
2, which is given by the four-momentum transfer

of the ‘‘untagged’’ electron, is demonstrated in Fig. 3. The
expression Q2

1FðQ2
1; Q

2
2Þ is presented as a function of Q2

1

for four different virtualities Q2
2 from 0 to 0:3 GeV2. The

full version (V ¼ !, 	, !0, and !00) of our model with
running mass of the � is used. Comparison with existing
data indicates that our model would be able to describe
them if the (unmeasured, but certainly nonvanishing) ab-
solute value of the momentum transfer squared of the
untagged electron decreased with the rising Q2

1. A more
quantitative account is given in Table III, which shows
that the agreement of our model with the data below
Q2

1 ¼ 9 GeV2 is excellent but deteriorating for higher
Q2

1. There are two possible ways of improving our model
in an attempt to get a better description of the high-Q2

1 data.
First, the inclusion of higher isovector [�ð1450Þ, �ð1700Þ]
and isoscalar [	ð1680Þ, 	ð2170Þ] resonances. Second, a
consequent use of the running-mass propagators also for
other resonances [not only for �ð770Þ as here], which
guarantee the correct analytic properties of the transition
form factor.

The effect of nonvanishing Q2
2 has already been quanti-

tatively studied in terms of the photon momentum asym-
metry parameter A ¼ ðQ2

1 �Q2
2Þ=ðQ2

1 þQ2
2Þ within the

spectral quark model [22] and the incomplete vector meson
dominance [3]. In the former, the transition form factor

decreases with risingQ2
2 (falling A)—see Fig. 2 in [22]—as

in our model. In the latter, the tendency is inverse—see
Fig. 7 in [3]. This difference is caused by not keeping the
incomplete vector-meson-dominance parameters c andMV

constant, but allowing them to vary in order to get the best
fit for each particular A.
Our model, in spite of its deficiencies, supports the

conclusion of Refs. [3,22] that it is important to pay
more attention to the dependence of the transition form
factor on both virtualities in theoretical calculations and
experimental analyses.
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TABLE III. The comparison of our parameter-free model with
the data in various Q2

1 ranges. The virtuality Q2
2 of the photon

radiated from the untagged electron was assumed the same for
all n data points within a particular Q2

1 range and determined by

minimizing the �2. The confidence levels (C.L.) are also shown.

Q2
1 (GeV2) n �2 Q2

2 (GeV2) C.L. (%)

0–9 27 10.67 0:187� 0:008 99.7

9–18 6 3.77 0:107� 0:013 58.3

18–36 4 4.47 0:010� 0:025 21.5
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