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We present an improved calculation on the pionic twist-3 distribution amplitudes ��
p and ��

�, which

are studied within the QCD sum rules. By adding all the uncertainties in quadrature, it is found that

h�2
pi ¼ 0:248þ0:076

�0:052, h�4
pi ¼ 0:262þ0:080

�0:055, h�2
�i ¼ 0:102þ0:035

�0:025 and h�4
�i ¼ 0:094þ0:028

�0:020. Furthermore, with

the help of these moments, we construct a model for the twist-3 wave functions c �
p;�ðx;k?Þ, which have

better end point behavior and are helpful for perturbative QCD approach. The obtained twist-3 distribution

amplitudes are adopted to calculate the B ! � transition form factor fþB� within the QCD light cone sum

rules up to next-to-leading order. By suitable choice of the parameters, we obtain a consistent fþB� with

those obtained in the literature.
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I. INTRODUCTION

Distribution amplitude (DA) shows the momentum frac-
tion distributions of partons in hadron in a particular Fock
state, which possess an important component for QCD
factorization theory [1]. It is convenient to arrange DA
by its different twist structures such that when the energy
scale of the process is large enough, one can safely neglect
those higher power suppressed contributions from higher
twists. Because of its simpler structure, the leading-twist
DA has attracted much attention in the literature [1,2]. Very
recently, the new BABAR data on the pion-photon transi-
tion form factor [3] arouses people’s new interests on the
pion twist-2 DA [4].

However the higher-twist DAs are much more involved
[5–7], which describes either contributions of the trans-
verse motion of quarks (antiquarks) in the leading-twist
components or contributions of higher Fock states with
additional gluons and/or quark-antiquark pairs or etc. In
certain cases, higher-twist structures, especially the twist-3
DAs, may provide sizable contributions and there are
usually the main uncertainties for the theoretical estima-
tion. For example, as for the case of pion electromagnetic
form factor and B ! � transition form factor, most calcu-
lations give large twist-3 contributions that are even domi-
nant over that of the leading twist in the intermediate or
even large Q2 region. It should be pointed out that those
large contributions of twist-3 DAs are usually based on the
asymptotic behavior of��

p , i.e.,�
AS
p � 1. And with such a

naive asymptotic behavior of twist-3 DA, the end point
singularity can not be effectively suppressed, which in-
versely leads to a large twist-3 contribution [8–12]. While,
by taking the kT factorization approach [13] and by con-
structing a twist-3 wave function model based on the DA
moments derived by Refs. [14,15], it has been found that
the contributions from twist-3 DAs are really power sup-
pressed to that of the leading-twist DA within large Q2

region [16,17]. So, a twist-3 DA with a better end point
behavior other than the asymptotic one shall lead to a better
understanding of these form factors.
At present, the pionic twist-3 structures are far from

affirmation [6,7,14,15,18,19], and it would be interesting
to do further studies on the twist-3 DAs/wave functions. In
the present paper, we shall first make a study on the pionic
twist-3 DA moments within the QCD sum rules, and then
make a discussion on its physical effects by constructing a
reasonable wave function model and by taking B ! �
transition form factor as an explicit example.
The remaining parts of the paper are organized as fol-

lows: In Sec. II, we present the calculation technology for
the twist-3 DAs ��

p and ��
� within the framework of QCD

sum rules. In Sec. III, we present our numerical results for
��

p and ��
�, where the DA moments together with their

uncertainties are discussed in detail. Based on the derived
DA moments, we construct the wave function models for
c �

p and c �
� in Sec. IV, and then make a discussion on their

rationality by further applying them to deal with the
B ! � transition form factor within the QCD light cone
sum rules up to next-to-leading order (NLO). The final
section is reserved for a summary.

II. CALCULATION TECHNOLOGY FOR THE
TWIST-3 DAS ��

p AND ��
�

The pionic twist-3 DAs ��
p and ��

� are defined as [19]

h0j �uðxÞi�5dð�xÞj��
q i ¼ ��f�

Z 1

0
duei�ðq�xÞ��

p ðuÞ (1)

and

h0j �uðxÞ����5dð�xÞj��
q i ¼ � i

3
��f�

Z 1

0
duei�ðq�xÞ

� ðq�x� � q�x�Þ��
�ðuÞ; (2)*wuxg@cqu.edu.cn
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where � ¼ ð2u� 1Þ, and due to the equations of motion of

the quarks inside pion [19], �� ¼ m2
�

muþmd
, whose value is

1:6� 0:2 GeV at the scale 1 GeV [7]. Normally, these two
DAs can be expanded by the conventional Gegenbauler

expansions, ��
p ð�Þ ¼ P

nh�2n
p iC1=2

2n ð�Þ and ��
�ð�Þ ¼ 3ð1�

�2Þ=4Pnh�2n
� iC3=2

2n ð�Þ, where C1=2;3=2
2n ð�Þ are Gegenbauler

polynomials and h�2n
p;�i are the so-called Gegenbauler mo-

ments. As for the pionic case, because of the chiral sym-
metry, only even moments’ terms are nonzero.

The Gegenbauler moments can be calculated under the
QCD sum rules. For such purpose, one can define the two
correlation functions as

ðz �qÞ2nIð2n;0Þp ðq2Þ
��i

Z
d4xeiq�xh0jTf �dðxÞ�5ðiz �D$Þ2nuðxÞ; �uð0Þ�5dð0Þgj0i

(3)

and

� iðq�z��q�z�Þðz �qÞ2nIð2n;0Þ� ðq2Þ
��i

Z
d4xeiq�xh0jTf �dðxÞ����5ðiz �D$Þ2nþ1

�uðxÞ; �uð0Þ�5dð0Þgj0i: (4)

Following the same calculation technology as described in
detail in Refs. [14,15], i.e., the QCD sum rules under the
background field approach [20–23], we obtain two sum
rules for the moments of ��

p and ��
� with the condensates

up to dimension six, i.e.,

h�2n
p i ¼ M4em

2
�=M

2

f2��
2
�

�
3

8�2

1

2nþ 1

�
1�

�
1þ sp�

M2

�
e�sp�=M

2

�

þ 2n� 1

2

ðmu þmdÞh �qqi
M4

þ 2nþ 3

24

h�s

� G2i
M4

þ 16�

81
½21þ 8nðnþ 1Þ� h

ffiffiffiffiffiffi
�s

p
�qqi2

M6

�
(5)

and

h�2n
� i¼M4em

2
�=M

2

f2��
2
�

3

2nþ1

�
3

8�2

1

2nþ3

�
�
1�

�
1þ s��

M2

�
e�s��=M

2

�
þ2nþ1

2

ðmuþmdÞh �qqi
M4

þ2nþ1

24

h�s

� G
2i

M4
þ16�

81
ð8n2�2Þh

ffiffiffiffiffiffi
�s

p
�qqi2

M6

�
; (6)

where M is the Borel parameter, sp� and s�� are continuum
threshold, which are usually taken to be around the mass
square of the first exciting state �0ð1300Þ of pion. For
clarity, we will take sp;�� ¼ 1:59, 1.69 and 1:79 GeV2 to
do our discussion. For the nonperturbative vacuum con-
densate, we take [24] h �uui ¼ h �ddi ’ �ð240 MeVÞ3 and
h�s

� G2i ¼ 0:012 GeV4, which are at the renormalization

scale 1 GeV and shall be evaluated up to the concerned
scale by using the leading order anomalous dimensions of
the condensates. The pion decay constant, the pion mass
and the �s are taken as the center values of Refs. [25,26],
i.e., f� ¼ 0:1304 GeV and m� ¼ 0:1396 GeV and
�sðMZÞ ¼ 0:1184. The renormalization scale for the
present case is taken as � ¼ M.
As a cross check, we make a comparison with the sum

rules derived in Refs. [14,15]. First, our sum rules agree
with the corresponding sum rules derived by Ref. [15],
except for the two coefficients of the dimension-four
h�s

� G2i and dimension six matrix element h ffiffiffiffiffiffi
�s

p
�qqi2. It is

found that such a difference is caused by the two Feynman
diagrams shown by FIG. 1, which are missed by the
authors of Ref. [15]. According to the background field
approach [20–23], the Feynman rules are derived under the
Schwinger Gauge or ‘‘the fixed-point gauge’’ [27]. And
because of the gluon’s or quark’s equation of motion, only
those interactions that have at most one background field
coupling can have contribution to the interaction vertex. As
for the two Feynman diagrams shown by FIG. 1, the two
background fields are attached to a big dot, which stands

for the two complex currents ½ �dðxÞ�5ðiz �D$Þ2nuðxÞ� and

½ �dðxÞ����5ðiz �D$Þ2nþ1uðxÞ� for ��
p and ��

�, respectively.

Since the two background fields can attach to different
places of the two complex currents, these two Feynman
should be taken into consideration. Second, Ref. [14] only
presents the sum rules for �p. And, one may find a typo

error in Ref. [14], i.e., the term before the dimension-three
quark condensate< �qq> and dimension six quark conden-
sate < �qq>2 should be ‘‘þ’’ other than ‘‘�’’.

III. NUMERICAL RESULTS FOR THE MOMENTS
OF ��

p AND ��
�

Basing on the QCD sum rules (5) and (6), we discuss the
Gegenbauler moments of ��

p and ��
�. For the purpose, we

adopt the usual criteria to fix the Borel window for the first

two moments h�2;4
p;�i, i.e., the continuum contribution is

less than 30% of the total dispersion integration and the
dimension six condensate contribution is no more than
30%. It is found that the continued contribution increases
with the increment of M2 and the contribution from the

FIG. 1 (color online). Feynman diagrams that are missed in
Ref. [15], where the gluon and the quark condensates are
depicted as crosses, and the big dot stands for the currents
½ �dðxÞ�5ðiz �D$Þ2nuðxÞ� and ½ �dðxÞ����5ðiz �D$Þ2nþ1uðxÞ� for ��

p

and ��
�, respectively.

ZHONG et al. PHYSICAL REVIEW D 83, 036002 (2011)

036002-2



dimension-six condensate term increases with the decre-
ment of M2, then possible Borel windows can be obtained
as required.

All the obtained Borel windows and the corresponding
second and fourth moments of ��

p and ��
� are collected in

Tables I, II, III, and IV), respectively. Tables I, II, III, and
IV) indicate that

(i) The second and fourth moments of ��
p are slightly

affected by the Borel parameterM2. This shows that
the present sum rules (5) is reasonable. More explic-
itly, it can be found that the second and forth mo-
ments of ��

p , the uncertainty caused by M2 is less

than 2%. For sum rules (6), it is noted that for the
second moment of��

�, the uncertainty caused byM
2

reaches up to a somewhat larger value�13%. While
for higher moments, it is found that the uncertainty
caused by M2 is back to being less than 2%. If we
require the flatness of the moments versus M2 as an
extra condition to constrain the Borel window then
the large uncertainty for the second moments can be
reduced. Here, to make a consistent analysis over all
the moments of ��

p and ��
�, we do not imply any

further constraint for ��
�. To show these points more

clearly, we draw the curves of the second and forth
moments of ��

p;� versusM2 in Figs. 2 and 3), which

shows that the moments (except for the second mo-
ments of ��

�) are almost flat in the allowable Borel
window.

(ii) The Borel windows will be broadened with the
increment of the continued threshold sp;�� . And
accordingly, the second and the fourth moments of
��

p;� shall increase with increment of sp;�� . When

increasing sp;�� by 0.10 GeV, the second and fourth
moments of ��

p;� shall be increased by 3%–5%.

(iii) The twist-3 DA moments are greatly affected by
the value of ��, which provides the dominant
uncertainty for the present sum rules. So, a better
determination of �� shall greatly improve our
knowledge on twist-3 DA. All the twist-3 DA mo-
ments are decreased with the increment of ��.
When increasing �� by 0.2 GeV, the second and
fourth moments of ��

p;� shall be decreased by

20%–25%.
(iv) By taking all uncertainty sources into considera-

tion, we obtain

h�2
pi ¼ 0:248� 0:004jM2

þ0:007

�0:006

��������sp�

þ0:076

�0:052

����������

;

h�4
pi ¼ 0:262� 0:003jM2

þ0:005

�0:005

��������sp�

þ0:080

�0:055

����������

;

h�2
�i ¼ 0:102� 0:013jM2

þ0:004

�0:003

��������s��

þ0:032

�0:021

����������

(7)

and

h�4
�i ¼ 0:094� 0:001jM2

þ0:002

�0:002
js��

þ0:028

�0:020
j��

;

(8)

where the center value is obtained by taking all the
input parameters to be their center values, i.e.,
sp;�� ¼ 1:69 GeV2 and ��ð1 GeVÞ ¼ 1:6 GeV2.
And the uncertainty of a particular parameter is
obtained by fixing other parameters to be their
center accordingly.

(v) As a summary, by adding the uncertainties in
quadrature, we obtain h�2

pi ¼ 0:248þ0:076
�0:052, h�4

pi ¼
0:262þ0:080

�0:055, h�2
�i ¼ 0:102þ0:035

�0:025 and h�4
�i ¼

0:094þ0:028
�0:020.

TABLE II. Uncertainties of the fourth moment h�4
pi��

, where
��ð1 GeVÞ ¼ 1:4, 1.6, 1.8 GeV, respectively.

sp� (GeV2) 1.59 1.69 1.79

M2 (GeV2) [0.958, 1.052] [0.958, 1.080] [0.958, 1.108]

h�4
pið1:4Þ 0:335� 0:004 0:342� 0:004 0:349� 0:004

h�4
pið1:6Þ 0:257� 0:003 0:262� 0:003 0:267� 0:003

h�4
pið1:8Þ 0:203� 0:002 0:207� 0:002 0:211� 0:002

TABLE I. Uncertainties of the second moment h�2
pi��

, where
��ð1 GeVÞ ¼ 1:4, 1.6, 1.8 GeV, respectively.

sp� (GeV2) 1.59 1.69 1.79

M2 (GeV2) [0.696, 0.874] [0.696, 0.905] [0.696, 0.937]

h�2
pið1:4Þ 0:315� 0:002 0:324� 0:005 0:334� 0:009

h�2
pið1:6Þ 0:242� 0:002 0:248� 0:004 0:255� 0:007

h�2
pið1:8Þ 0:191� 0:001 0:196� 0:003 0:202� 0:005

TABLE IV. Uncertainties of the fourth moment h�4
�i��

, where
��ð1 GeVÞ ¼ 1:4, 1.6, 1.8 GeV, respectively.

s�� (GeV2) 1.59 1.69 1.79

M2 (GeV2) [0.807, 0.988] [0.807, 1.017] [0.807, 1.047]

h�4
�ið1:4Þ 0:120� 0:001 0:122� 0:001 0:125� 0:001

h�4
�ið1:6Þ 0:092� 0:001 0:094� 0:001 0:096� 0:001

h�4
�ið1:8Þ 0:072� 0:001 0:074� 0:001 0:076� 0:001

TABLE III. Uncertainties of the second moment h�2
�i��

,
where ��ð1 GeVÞ ¼ 1:4, 1.6, 1.8 GeV, respectively.

s�� (GeV2) 1.59 1.69 1.79

M2 (GeV2) [0.439, 0.798] [0.439, 0.832] [0.439, 0.867]

h�2
�ið1:4Þ 0:129� 0:013 0:134� 0:017 0:139� 0:021

h�2
�ið1:6Þ 0:099� 0:010 0:102� 0:013 0:106� 0:016

h�2
�ið1:8Þ 0:078� 0:008 0:081� 0:010 0:084� 0:013

NEW RESULTS ON PIONIC TWIST-3 DISTRIBUTION . . . PHYSICAL REVIEW D 83, 036002 (2011)

036002-3



IV. MODELS FOR c �
p AND c �

� AND THEIR
APPLICATION FOR B ! � FORM FACTOR

A. Models for c �
p and c �

�

The wave function is the key component for the kT
factorization approach [13], which is helpful to suppress
the end point singularity in certain processes. And, it would
be useful to know the properties of the twist-3 wave
functions c �

p and c �
�.

The wave function is purely nonperturbative, so it can
hardly be determined from the first principle of QCD.
Generally, the pion wave function and its corresponding

DA is related through the relation, ��
p;�ðx;�fÞ ¼R

jk?j<�f

d2k?
16�3 c �

p;�ðx;k?Þ, where �f is the factorization

scale that is around Oð1 GeVÞ. So, on the other hand, if
we have known the DA moments well, then we can in-
versely obtain some valuable properties of the wave
function .

Our model for the pionic twist-3 wave functions is based
on the assumptions that I) its longitudinal distributions is
determined by its DA moments as derived by the sum rules

(5) and (6) and its longitudinal behavior is dominated by
the first two Gegenbauler moments; II) its transverse
momentum dependence is determined by the so-called
BHL-prescription [28,29], which is obtained by using the
connection between the equal-time wave function
c c:m:ðq?Þ in the rest frame and the light cone wave func-
tion c LCðx;k?Þ in the infinite momentum frame, i.e.,

c c:m:ðq?Þ $ c LCðk
2
?þm2

4xð1�xÞ �m2Þ, where m stands for the

light constitute quark mass. It is found that the transverse
momentum dependence is just in the exponential form of
the off shell energy of the constitute quarks, which agrees
with Brodsky and Teramond’s holographic model that is
obtained by using the anti-de Sitter/conformal field theory
correspondence [30,31]. And, the pionic twist-3 wave
functions c �

p ðx;k?Þ and c �
�ðx;k?Þ take the following

form:

c �
p ðx;k?Þ ¼ ½1þ BpC

1=2
2 ð2x� 1Þ þ CpC

1=2
4 ð2x� 1Þ�

� Ap

xð1� xÞ exp
�
� m2 þ k2

?
8	2

pxð1� xÞ
�

(9)

and

0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

M2

p2

0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

M2

p4

FIG. 2 (color online). The second and forth moments of twist-
3 DA ��

p versus the Borel parameterM2 corresponding to �� ¼
1:6 GeV. The solid line, dashed line and dotted line correspond
to sp� ¼ 1:59, 1.69, 1:79 GeV2, respectively.

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M2

2

0.6 0.8 1.0 1.2 1.4
0.0

0.1

0.2

0.3

0.4

M2

4

FIG. 3 (color online). The second and forth moments of twist-
3 DAs ��

� versus the Borel parameter M2 corresponding to
�� ¼ 1:6 GeV. The solid line, dashed line and dotted line
correspond to s�� ¼ 1:59, 1.69, 1:79 GeV2, respectively.

ZHONG et al. PHYSICAL REVIEW D 83, 036002 (2011)

036002-4



c �
�ðx;k?Þ ¼ ½1þ B�C

3=2
2 ð2x� 1Þ þ C�C

3=2
4 ð2x� 1Þ�

� A�

xð1� xÞ exp
�
�
�

m2 þ k2
?

8	2
�xð1� xÞ

��
: (10)

The parameters Ap;�, Bp;�, Cp;� and 	p;� can be deter-

mined by the average value of the transverse momentum
hk2

?ip;�, the wave function normalization
R
1
0 dx

R
jk?j<�f

�
d2k?
16�3 c �

p;�ðx;k?Þ ¼ 1, and the first two DA moments de-

termined by the last section. The average value of the
transverse momentum square is defined as

hk2
?ip;� ¼

R
dxd2k?jk2

?jjc �
p;�ðx;k?Þj2R

dxd2k?jc �
p;�ðx;k?Þj2

(11)

and hk2
?i1=2p;� ¼ 0:350 GeV [32]. Using the relation be-

tween the DA and the wave function, we obtain

��
p ðx;�fÞ ¼ ½1þ BpC

1=2
2 ð2x� 1Þ þ CpC

1=2
4 ð2x� 1Þ�

� Ap	
2
p

2�2
exp

�
� m2

8	2
pxð1� xÞ

�

�
�
1� exp

�
� �2

f

8	2
pxð1� xÞ

��
(12)

and

��
�ðx;�fÞ ¼ ½1þ B�C

3=2
2 ð2x� 1Þ þ C�C

3=2
4 ð2x� 1Þ�

� A�	
2
�

2�2
exp

�
� m2

8	2
�xð1� xÞ

�

�
�
1� exp

�
� �2

f

8	2
�xð1� xÞ

��
: (13)

The Gegenbauer moments h�2n
p;�i for the DAs defined by

Eqs. (12) and (13) at the scale �f can be defined as

h�2n
p ij�f

¼
R
1
0 dx�

�
p ðx;�fÞC1=2

2n ð2x� 1ÞR
1
0 dx½C1=2

2n ð2x� 1Þ�2 (14)

and

h�2n
� ij�f

¼
R
1
0 dx�

�
�ðx;�fÞC3=2

2n ð2x� 1ÞR
1
0 dx6xð1� xÞ½C3=2

2n ð2x� 1Þ�2 : (15)

With the help of the above formulas, we can determine
the wave function parameters for varying DA moments,
which are presented in Table V and VI.
We present ��

p and ��
� in Figs. 4 and 5. Our DAs, i.e.,

Eqs. (12) and (13), are drawn by solid lines and are derived
by setting the second and fourth moments to be their center
values shown in Tables I, II, III, and IV). As a comparison,
we also present the DAs of Ref. [6,7,19] in Figs. 4 and 5),
which are shown by the dashed lines and the dotted lines,
respectively. As for ��

p , in difference to its asymptotic

behavior, it will provide great suppression in the end point
region. Such a behavior will be helpful to derive a reason-
able power behavior for twist-3 DA [17]. It is noted that to
study the right behavior of the DA itself, the full form of
the twist-3 DAs (12) and (13) is more useful and more
accurate than its truncated Gegenbauer form.

B. Reanalysis of the B ! � transition form factor

The B ! � transition form factor provides a good plat-
form to study the pion properties. Especially within the
QCD light cone sum rules [33], one can concentrate on
different twist structures of pion DA by properly choosing
the correlator. By choosing the corrector with the proper
current, because of the cancellation among the different
�-structures, different twist DAs will remain in the final
formulas.
Three typical correlators are suggested in the literature

to calculate fþB�ðq2Þ. The first one is �þ
�ðp;qÞ¼

i
R
d4xeiq�xh�ðpÞjTf �qðxÞ��bðxÞ; �bð0Þimb�5qð0Þgj0i, which

TABLE V. Wave function parameters for c �
p ðx;k?Þ with varying DA moments.

h�2
pi 0.196 0.248 0.324

h�4
pi 0.207 0.262 0.342 0.207 0.262 0.342 0.207 0.262 0.342

Ap (GeV�2) 93.4987 92.4429 90.9983 89.7356 88.7233 87.2936 84.7201 83.7330 82.3809

Bp 1.2835 1.2926 1.3056 1.3177 1.3261 1.3385 1.3679 1.3756 1.3868

Cp 1.3579 1.4165 1.5005 1.3635 1.4210 1.5045 1.3710 1.4277 1.5097

	p (GeV) 0.5849 0.5882 0.5930 0.5950 0.5984 0.6033 0.6095 0.6131 0.6181

TABLE VI. Wave function parameters for c �
�ðx;k?Þ with varying DA moments.

h�2
�i 0.077 0.102 0.127

h�4
�i 0.074 0.094 0.122 0.074 0.094 0.122 0.074 0.094 0.122

A� (GeV�2) 196.486 194.804 192.128 187.336 185.532 182.777 178.403 176.532 173.584

B� �0:0284 �0:0309 �0:0349 �0:0115 �0:0144 �0:0191 0.0053 0.0019 �0:0032

C� 0.0922 0.1108 0.1364 0.0885 0.1069 0.1322 0.0845 0.1026 0.1276

	� (GeV) 0.4107 0.4123 0.4147 0.4169 0.4187 0.4213 0.4234 0.4253 0.4283
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is usually adopted in the literature. After doing the sim-
plification, it can be found that all the twist-2, twist-3
and twist-4 terms remain, all of which can provide sizable
contributions [34–36]. The second one is �þ

�ðp;qÞ¼
i
R
d4xeiq�xh�ðpÞjTf �qðxÞ��ð1þ�5ÞbðxÞ; �bð0Þimbð1þ�5Þ�

qð0Þgj0i, which is constructed by using the chiral current.
After doing the simplification, it can be found that the
twist-3 terms can rightly be canceled, so one only needs
to consider the twist-2 and twist-4 DAs [37,38]. The third
one is�þ

�ðp;qÞ¼ i
R
d4xeiq�xh�ðpÞjTf �qðxÞ��ð1þ�5ÞbðxÞ;

�bð0Þimbð1��5Þqð0Þgj0i. After doing the simplification, it
can be found that the terms involving the twist-2 DA are
exactly be canceled, so one only needs to consider the
dominant twist-3 DAs [39].

In the present paper, our purpose is to test the properties
of the obtained twist-3 DAs in the last section, so we adopt
the third correlator to do our analysis. Following the same
procedure of Refs. [36,39], we can obtain the light cone
sum rules for the fþB�ðq2Þ up to NLO:

fþB�ðq2Þ ¼
f���

m2
BfB

exp

�
m2

B

M2

��
F0ðq2;M2; s0Þ

þ �sCF

4�
F1ðq2;M2; s0Þ

�
; (16)

where the leading order F0ðq2;M2; s0Þ takes the form

F0ðq2;M2; s0Þ ¼ mb

�Z 1

�

du

u
exp

�
�m2

b � q2ð1� uÞ
uM2

��
u��

p ðuÞ þ 1

6

�
2þm2

b þ q2

uM2

�
��

�ðuÞ
�
� 2f3�

f���

�
Z 1

0
vdv

Z
D�i


ð�1 þ v�3 ��Þ
ð�1 þ v�3Þ2

exp

�
�m2

b � q2ð1� �1 � v�3Þ
ð�1 þ v�3ÞM2

��
1� m2

b � q2

ð�1 þ v�3ÞM2

�
�3�ð�iÞ

�

(17)

and the NLO F1ðq2;M2; s0Þ takes the form

F1ðq2;M2; s0Þ ¼ 1

�mb

Z s0

m2
b

dse�s=M2

�
Z 1

0
du½ImsT

p
1 ðq2; s; uÞ��

p ðuÞ
þ ImsT

�
1 ðq2; s; uÞ��

�ðuÞ�; (18)

where D�i ¼ d�1d�2d�3�ð1� �1 � �2 � �3Þ, mb

stands for the running b-quark mass under theMS scheme,
4 ¼ m2

b
�q2

s0�q2
,�3�ð�iÞ is the pionic three-particle twist-3 DA

with the normalization parameter f3�. The leading order
result agrees well with that of Ref. [39]. And it has been
found that our present NLO result is different to that of

Ref. [36] only by an overall factor ‘‘2’’, which is caused by
the use of different correlators. To shorten the paper, we do
not present them here (interested readers may turn to
Ref. [36] for detailed formulas). Moreover, the three-
particle twist-3 DA can be derived from the exact relation
between the two-particle and three-particle twist-3 DAs,
which can be derived by the equations of motion [19]. It is
noted that the contributions from �3�ð�iÞ to the present
sum rules (16) is quite small, which is less than 0.5%, so we
simply take its form as suggested in Ref. [19] to do our
calculation.
We present our results for fþB� in Fig. 6, where the light

cone sum rule with certain extrapolation [38], and the
quenched lattice QCD result [40] and the unquenched
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0.0

0.5

1.0

1.5

2.0

u

u

FIG. 5 (color online). Pion twist-3 DA ��
�. The solid line, the

dashed line and the dotted line are for our DA defined by
Eq. (13), DA of Ref. [19] and DA of Refs. [6,7], respectively.
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FIG. 4 (color online). Pion twist-3 DA ��
p . The solid line, the

dashed line and the dotted line are for our DA defined by
Eq. (12), DA of Ref. [19] and DA of Refs. [6,7], respectively.

ZHONG et al. PHYSICAL REVIEW D 83, 036002 (2011)

036002-6



lattice QCD result [41] are also presented for comparison.
The light cone sum rule for B ! � is valid up to momen-

tum transfer q2 �m2
b � 2mb

��, typically at 0< q2 <
14 GeV2, and to be on safe side, we take the maximal
allowed q2 to be 12 GeV2. Here, in doing the numerical
calculation, the center value of fþB� is obtained by taking
fB ¼ 169 MeV, s0 ¼ 32:6 GeV2 [38] and �mbð �mbÞ ¼
4:20 GeV, mB ¼ 5:279 GeV [25]. The effective threshold
for different correlators should be different from each other
so as to derive a reliable estimation [42]. As for the present
adopted correlator with a chiral current, the value of s0
should be slightly lower than that of the conventional
corrector (i.e., the first correlator) so as to include the
unwanted scalar state with JP ¼ 0þ into the continuum
contribution [43].

It is found that our present result agrees with those of
Refs. [6,7,19] under the same parameter values. The
shaded band is obtained by varying the pionic parameters
within their reasonable regions. As for the Borel parameter,
its reasonable region is ½14; 20� GeV2 and we fix its value
to be M2 ¼ 16 GeV2 to do our calculation. The typical

energy scale for B ! � is�b ¼ ðm2
B �m2

bÞ1=2 ’ 2:2 GeV,
and by running �� from 1 GeV to �b, we obtain
��ð�bÞ ¼ 1:93� 0:24 GeV. At q2 ¼ 0, we obtain

fþB�ð0Þ ¼ 0:253� 0:031. It is found that the main uncer-

tainty is caused by ��, and the twist-3 DAs models (12)
and (13) lead to small uncertainties. As for the NLO
corrections, it will provide sizable contributions and its
value will increase with the increment of q2, e.g., for
q2 ¼ 0 its contribution is �6% and for q2 ¼ 10 GeV2 its
contribution changes to �16%, so it should be included to
provide a sound estimation. As a cross check, it is found
that our present result of fþB�ð0Þ is consistent with those of

Refs. [35–38] within reasonable parameter regions.

V. SUMMARY

We have studied the twist-3 DAs ��
p and ��

� within the

QCD sum rules. And by adding all the uncertainties in
quadrature, the uncertainties for the moments are about
20%–35%. Furthermore, these moments can provide help-
ful constraints on the twist-3 DAs and hence the wave
functions. The presently constructed twist-3 wave func-
tions shall be useful for the kT factorization approach [13],
where the transverse momentum dependence both in the
wave function and the hard scattering part should be
treated on equal footing. A consistency check of our
twist-3 DAs is done by studying the B ! � transition
form factor fþB� with the QCD light cone sum rules up to

NLO.
Recently, Ref. [44] points out a non-negligible contri-

bution of higher-twist processes in large pt hadron produc-
tion in hadronic collisions, where the hadron is produced
directly in the hard subprocesses rather than by gluon or
quark jet fragmentation. So a better understanding of
higher-twist wave functions or DAs shall be helpful for
further studies on higher-twist contributions. Especially,
the forthcoming RHIC and LHC measurements will pro-
vide further tests of the dynamics of large-pt hadron pro-
duction beyond the leading twist.
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