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Generalized parton distributions in AdS/QCD
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The nucleon helicity-independent generalized parton distributions of quarks are calculated in the zero
skewness case, in the framework of the anti-de Sitter/QCD model. The present approach is based on a
matching procedure of sum rules relating the electromagnetic form factors to generalized parton

distributions and anti-de Sitter modes.
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I. INTRODUCTION

One of the main goals in strong interaction theory is to
understand how nucleons and other hadrons are build up
from quarks and gluons. Studied in various scattering
processes, the hadronic structure can be encoded in the
so-called generalized parton distributions (GPDs) [1-4]. In
particular, at leading twist 2, there exist two kinds of
helicity-independent GPDs of quarks in the nucleon, de-
noted as HY(x, &, t) and E9(x, &, t). Both quantities depend
in general on three variables: the momentum transfer
squared ¢ = g2, the light-cone momentum fraction x, and
the skewness ¢&.

Because of their nonperturbative nature the GPDs can-
not be directly calculated from Quantum Chromodynamics
(QCD). There are essentially three ways to access the
GPDs (for reviews see e.g. [5,6]): extraction from the
experimental measurement of hard processes, a direct cal-
culation in the context of lattice QCD, and different phe-
nomenological models and methods. The last procedure is
based on a parametrization of the quark wave functions/
GPDs using constraints imposed by sum rules [2,3], which
relate the parton distributions to nucleon electromagnetic
form factors (some examples of this procedure can be
found e.g. in [7-9]). On the other hand, such sum rules
can also be used in the other direction—GPDs are
extracted by calculating nucleon electromagnetic form
factors in some approach.

Following the last idea, here we show how to extract the
quark GPDs of the nucleon in the framework of a holo-
graphical soft-wall model [10,11]. In particular, we use the
results of Abidin and Carlson for the nucleon form factors
[11] in order to extract the GPDs using the light-front
mapping—the key ingredient of light-front holography
(LFH). This is an approach based on the correspondence
of string theory in anti-de Sitter (AdS) space and conformal
field theory (CFT) in physical space-time [12]. LFH is
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further based on a mapping of string modes in the AdS
fifth dimension to hadron light-front wave functions
in physical space-time, as suggested and developed by
Brodsky and de Téramond [10,13-16] and extended in
[17-19]. In this paper, we show how LFH can be used to
get the nucleon GPDs in the context of the soft-wall model.

From the beginning the AdS/CFT [12] correspondence
has received considerable attention, which over time
was expanded into several directions, one of which is the
possibility to address issues related to QCD phenomena. A
particular and easy way to consider AdS/CFT ideas applied
to QCD is known as the bottom—up approach [20,21],
where one tries to build models that reproduce some fea-
tures of QCD in a dual 5-dimensional space which con-
tains gravity. These kind of models have been successful
in several QCD applications, among which are the follow-
ing examples: hadronic scattering processes [13,22-24],
hadronic spectra [10,19,25-28], hadronic couplings and
chiral symmetry breaking [20,21,29-31], quark potentials
[32-34], etc.

In this paper, we perform a matching of the nucleon
electromagnetic form factors considering two approaches
for them: we use sum rules derived in QCD [2,3], which
contain GPDs for valence quarks, and we consider an
expression obtained in the AdS/QCD soft-wall model
[11]. As a result of the matching, we obtain expressions
for the nonforward parton densities [4] Hi(x, t) =
Hi(x,0,t) + Hi(—x,0,¢) and E¥(x,t) = Ei(x,0, 1)+
E49(—x, 0, t)—flavor combinations of the GPDs (or valence
GPDs), using information from the AdS side. The proce-
dure proposed here is similar to the one used in LFH, which
allows to obtain a light-front wave function related to the
AdS modes associated with mesons [10,13-16]. Contrary
to the LFH approach, here the holographical coordinate is
not considered as a parton distance in hadrons, so we do
not need to propose a modification in the AdS/CFT dictio-
nary. Also, we look at several impact space properties of
the nucleons: impact parameter dependent GPDs, parton
charge densities in the transverse impact space, transverse
widths, and root mean square (rms) radii [7,35-40].
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The nucleon electromagnetic form factors F) and FY
(N = p, n correspond to proton and neutron) are conven-
tionally defined by the matrix element of the electromag-
netic current as

(P O)p) = u(p’>[wFN<t) + 1 q,,F (z)]u<p>

D

where ¢ = p’ — p is the momentum transfer; my is the
nucleon mass; and F) and FY are the Dirac and Pauli form
factors, which are normalized to the electric charge ey
and anomalous magnetic moment kj of the corresponding
nucleon: FY(0) = ey and FY(0) = ky.

The sum rules relating the electromagnetic form factors
and the GPDs read as [2-4]

Fi (1) = fol dX@HZ(x, 1) — le’(x, t)>,

3
Fi(t) = [01 dx@Hﬁ(x, 1 — %Hg(x, ;)),
Fy (0 = fo 1 dX@EZ(x, ) - %Eﬁ(x, z)), ®

Fir) = ﬁ) 1 dx@ Ed(x, 1) %Eﬁ(x, t)).

Here we restrict our analysis to the contribution of the u
and d quarks and antiquarks, while the presence of the
heavier strange and charm quark constituents is not
considered.

II. GPDS IN ADS/QCD

A. Electromagnetic nucleon form factors

In order to derive the GPDs in AdS/QCD we outline the
relevant results obtained by Abidin and Carlson [11] for the
nucleon form factors using an AdS/QCD model. It is based
on soft-wall breaking of conformal invariance by introduc-
ing a quadratic dilaton field ®(z) = xz? in the action (in
the overall exponential and in the mass term) [11]. Such a
procedure leads to Regge-like mass spectra in the baryonic
sector. Note that a similar AdS/QCD approach for baryons
was developed by Brodsky and de Téramond in [10]. One
should stress that introduction of the dilaton field in both
approaches is based on the idea of getting the simplest
analytical solution of the equations of motion of the string
mode. Further corrections like higher powers in the holo-
graphic coordinate can be included, although they do not
change the physics significantly. The AdS metric is speci-
fied as

ds®> = gyndxMdxN = Z%(77#,,61)#‘(1)6” —-dz?), Q)
where u, » =0, 1,2,3; 9, = diag(1, —1, —1, —1) is the
Minkowski metric tensor and z is the holographical coor-
dinate running from zero to .
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The relevant terms in the AdS/QCD action, which gen-
erate the nucleon form factors, are [11]

S = jd4xdz\/§e_¢(Z)(\i’e%FAVqu

L 5 s, y el N4 TR, V>~1f) 4)

where the basic blocks of the AdS/QCD model are defined
as [11] g = | detgyyl; ¥ and V,, are the five-dimensional
Dirac and vector fields dual to the nucleon and electro-
magnetic fields, respectively; Fyy = 9y Vv — InVus
I = (y*, —iy®); el = z6% is the inverse vielbein;
and 7gy are the couplings constrained by the anomalous
magnetic moment of the nucleon: 7, = (g + 1y)/2 =
Kkp/(sz\/E) and M = (T]S - 77v)/2 = Kkn/(sz\/z)-
Here the indices S, V denote isoscalar and isovector con-
tributions to the electromagnetic form factors.

Finally, the results for the nucleon form factors in AdS/
QCD are given by [11]

F{(Q%) = C1(Q%) + 1,C2(Q),
FJ(0%) = 1,C5(0%),
F1(Q%) = 1,C5(0%),
F3(0%) = 1,C5(0?),

(&)

where Q> = —t and C;(Q?) are the structure integrals:

ci(0) = [z ve. Z)m( )+ W)

aen - [ a’ze‘q’w(w%&)— 2@, ©)

fd —d szV(Q Z)

C3(Q2) = lﬁL( )lﬁR(Z)

1 (z) and iy g(z) are the Kaluza-Klein modes (normal-
izable wave functions), which are dual to left- and right-
handed nucleon fields:

Wi(z) = K324, Yr(z) = K223V2, (7)

and

V(Q.2) = (1+4Q—22) (4Q—22,0K ) (8)

is the bulk-to-boundary propagator of the vector field in the
axial gauge. Note that expressions for the nucleon form
factors in AdS/QCD can be presented in an analytical form
after integration over the variable z. In particular, the C;
functions, defining the Dirac and Pauli factors, are given by
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a+6
Q)= T DTG
- 2a(2a — 1)
) =i e+ et ary 0 @
Cy(0?) — 122 1

(a+ 1)(a+2)(a+3)

where a = Q?/(4k?). Note that we obtain the correct
scaling behavior of the nucleon form factors at large Q2,
FP™ ~1/0% and FJ'" ~ 1/Q° [11]. Also we get reason-
able agreement for the slopes of the nucleon form factors
with data. In particular, in terms of the nucleon magnetic
moments u, =1+ k, and u, =k, the charge (rf, rf)
and magnetic (r},, r7,) radii are written as

(,%)p = 1477<1 + £ )) <r%>n — i

6412 147 M0 642 M
177 17 177
2\p — 1 — 2 \n — .
ran) 64K2( 177Mp)’ )" = G

(10)

Notice that in the context of AdS/QCD charge radii have
been discussed before in [11]. Our numerical results for the
slopes compared rather well with data:

0.766 fm?(data),
—0.116 fm?(data),
0.731 fm?(data),
0.762 fm?(data).

(rzy? = 0.910 fm?(our),
(r2y" = —0.123 fm*(our),
(r3,)? = 0.849 fm?(our),
(r2y" = 0.879 fm>(our),

(an

B. Nucleon GPDs in momentum space

Expressions for the GPDs in terms of the AdS modes can
be obtained using the procedure of light-front mapping
suggested by Brodsky and de Téramond [15]. In the present
case, this procedure is based on the use of the integral
representation for the bulk-to-boundary propagator intro-
duced by Grigoryan and Radyushkin [29]:

_ 20 [t dx

V(Q,2) = K’z /;) T

where the variable x is equivalent to the light-cone mo-

mentum fraction [15]. Matching the respective expressions

for the nucleon form factors results (after performing the

integration over the holographic coordinate z) in the non-
forward parton densities of the nucleon as

Hi(x, 0%) = g(x)x4, (13)

X0 /4k% o= (k?2x/(1 —x), (12)

Ef(x, 0%) = e4(x)x". (14)
Here ¢g(x) and e?(x) are distribution functions given by

q(x) = aly,(x) + Blyy(x),  el(x) = Bly;(x), (15)
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where the flavor couplings @, 89 and functions y;(x) are
written as

at =2, ad= 1, 5“22771;+77m Bd:np+2nn
(16)
and

1 2

vi(x) = 5(5 — 8x + 3x%),

Y2(x) =1 — 10x + 21x> — 12x3, (17)
6my/2

y3(x) = : (1— x>

Equations (13)—(17), which display the nonforward parton
densities of the nucleon, are the main result of this match-
ing procedure. Notice that these functions have an expo-
nential form, which is typical when choosing an ansatz for
these functions. The distribution functions are also consis-
tent with a linear Regge behavior at small x [5,8]. In Figs. 1
and 2, we show the nonforward parton distributions HI and
E? for nucleons, obtained from the expressions deduced on
the AdS side, according to the holographical model con-
sidered in [11].

The parameters involved are the same as used in [11],
ie. k=350 MeV, n,=0.224, n, = —0.239, which
were fixed in order to reproduce the mass my = 2k\2
and the anomalous magnetic moments of the nucleon
k,=mp,—1=1791and k, = n, = —1.913.

For completeness, we also analyze the moments of the
valence GPDs Hi(x, Q%) and E¥(x, Q%) [7]:

hi(02) = L L e VHI(x, 02), (18)

FIG. 1 (color online). Hy(x, Q%) in the holographical model.
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FIG. 2 (color online). E¥(x, Q%) in the holographical model.

e1(0?) = [0 ' e ES (x, 02). (19)

Integration over x results in

n+a+5
n+a)..(n+a+2)
m+a—-—1)n+a—-3/2)
m+a)..n+a+3) "’
12B9my~2 1

K m+a)..(n+a+2)

H(Q%) = at

+4p4

en(Q%) = (20)

It can be useful to compare our predictions for the first
moments A{(Q?) and ef(Q?) with the available lattice

results of Ref. [41]. These lattice predictions have been
approximated by the dipole form formulas:

h(0) e{(0)
hi(0?) = 1 ) q(N2) — 1 )
O =Grommr 9T aToymy
(20
where M, =147*0.03GeV and M,=1.16=*

0.02 GeV are the dipole mass parameters. Then the slopes
of the lattice form factors 2{(Q?) and e{(Q?) are

1 hﬁl 2
12y = 6@V 516 2,
40 =0 22)
q 2
() = —6 12D | 347 e
dQ 02=0
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In our approach the slopes (r7) and (r2) are given by

5 B
D=1+ )
<rh> 2K2( 204

As for the radii of nucleon electromagnetic form factors,
these slopes are proportional to the 1/« and are therefore
well constrained. Since our predictions for the nucleon
electromagnetic radii are in agreement with data for a value
of k =350 MeV, fixed from the nucleon mass, our pre-
dictions for the slopes of the first moments of the nucleon
GPDs should also be consistent with data. In particular, we
get (r7) = 0.800 fm? for the u quark and 0.785 fm? for the
d quark; (r2) = 0.874 fm? (independent on the quark fla-
vor). Our results for the slopes (r7) and (r2) are larger in
comparison to lattice predictions. Obviously, more accu-
rate lattice results at the physical value of the pion mass are
necessary.

11
4r*

(r) = (23)

C. Nucleon GPDs in impact space

Another interesting aspect to consider is the nucleon
GPDs in impact space. As shown by Burkardt [35], the
GPDs in momentum space are related to the impact pa-
rameter dependent parton distributions by a Fourier trans-
form. GPDs in impact space give access to the distribution
of partons in the transverse plane, which is quite important
for understanding the nucleon structure.

Following Refs. [7,35,40], we define the following set of
nucleon quantities in impact space: i) the nucleon GPDs in
impact space

b= [LEL (ke
Q(xv L) - (277_)2 q(x’ _j_)e ’
24)
&k | (
el(x, b)) = L E,(x, k3)e ik,

(277.)2 q

ii) parton charge p%(b ) and magnetization p3;(b ) den-
sities in transverse impact space

1
pN(b,) = Zeﬁ}’fo dxq(x,b ),
L (25)
pb.) = Se [ et b,
q 0

where e}, = ¢ =2/3 and e} = ¢/, = —1/3,
iii) transverse width of the impact parameter dependent
GPD g(x, b))

[d*b b3 g(x, b))
Jd*bg(x, b))
3 logHy (x, Q%)
00? 02=0

(R (%) =

=—4 , (26)
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iv) transverse rms radius

N Jd*b b3 [ldxq(x, b))
(1 [d®, [Ldxq(x, b)) @7)

Notice that the GPDs in impact space can be derived
directly from the nucleon form factors using the pro-
cedure of light-front mapping and the bulk-to-boundary

FIG. 3 (color online).
x =0.1.
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propagator in impact space V(b |, z). The latter is related to
V(k |, z) via the Fourier transform:

d’k ,
Gy Vs el

4.2
K'Z 1
T 0

V(bl, Z) =

o~ (222x/(1=20) = (0% 2/ log(1/))

(1 — x)*log(1/x)

(28)

Plots for g(x, b ). The upper panels correspond to u(x, b | ) and the lower to d(x, b | ). Both cases are taken for
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FIG. 4 (color online).
proton (N = p) and neutron (N = n).

Soft-wall AdS/QCD gives the following predictions for the
impact space properties of nucleons:

2
K 2.2
b)) = glx)—C i/ log(1/)
q(x,b1) = gq(x) log(l e
a(x, b e~ (b1 x?/log(1/x))
00 by) = etx) ——7s g(l/x) i
o¥(b ):’Lzzezv f dX__ (x)e~ b1/ loxl1/0)
LY g — 1 Jo log(1/x) '

w(by) Kzz N/I o 4(x)e i/ logll/0)
=—>e¢ ——_e(x)e ,
PuidL T 7 Jo log(1/x)

)

(29)

Figure 3 shows some examples of ¢(x, b, ), and in Fig. 4
we plot p¥ (b, ) and p?)(b ) for proton and neutron. For
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Parton charge ppy = p¥ (b)) and magnetization p,y = p3(b ) densities in the transverse impact space for

the transverse rms radius of u#- and d-quark GPDs, we get
similar values:

(R3), = 0.527 fm?, (R})s=0.524 fm?>.  (30)

One should stress that the obtained nucleon GPDs both in
momentum and impact spaces correspond to the so-called
“Gaussian ansatz” and are consistent with general predic-
tions for their asymptotic behavior for x — 0 or x — 1 and
Q?— 0 or Q> — o [8,35].

III. CONCLUSIONS

We determined the nucleon GPDs both in momentum
and impact space using ideas of AdS/QCD, LFH, and sum
rules relating electromagnetic form factors to the GPD
functions Hy(x, Q%) and E¥(x, Q%). The procedure used
is similar to the one considered in some applications of
LFH, where by comparing form factors it is possible to
obtain mesonic light-front wave functions. In the present
case, it is not necessary to reinterpretate the holographical
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coordinate z as in standard LFH, where z is the distance
between constituent partons.

The nucleon GPDs obtained have an exponential form,
as in several phenomenological approaches, and their de-
tailed form is typical for the limit of x — 0.

In the future, we plan to extend the formalism of AdS/
QCD to obtain other parton distribution functions of nu-
cleons and also of other baryons, which could then be used
in the evaluation of different hadronic processes. Note
there exist in literature (see Refs. [42,43]) preliminary
results for deep inelastic scattering and deeply virtual
Compton scattering in AdS/QCD in case of scalar field.
The authors have doubts on the applicability of the AdS/
QCD framework to deep inelastic scattering and deeply
virtual Compton scattering reactions and thus on the con-
sistency of the AdS/QCD approach to access to GPDs. In
particular, they stressed that one should try 1) to include
nonmininal coupling of string mode dual to observable
hadron and electromagnetic bulk-to-boundary propagator;
2) to go beyond canonical dimension of the hadron opera-
tor (it means one can take into account its anomalous

PHYSICAL REVIEW D 83, 036001 (2011)

dimension). In addition, we would like to check other
possibilities: to include nonconformal warping of the
AdS metric which leads to modification of the effective
dilaton potential of the soft-wall model and to test different
dilaton profiles.
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