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We calculate the shift in the atomic energy levels induced by the presence of a scalar field which

couples to matter and photons. We find that a combination of atomic measurements can be used to probe

both these couplings independently. A new and stringent bound on the matter coupling springs from the

precise measurement of the 1s to 2s energy level difference in the hydrogen atom, while the coupling to

photons is essentially constrained by the Lamb shift. For a range of masses these constraints are not as

stringent as those from fifth force experiments or optical astrophysical and laboratory measurements.

However, they have the advantage that they are universal, applying to all scalars, even those that hide their

effects dynamically from fifth force searches, such as the chameleon and Galileon models. Combining

these constraints with current particle physics bounds we find that the contribution of a scalar field to the

recently claimed discrepancy in the proton radius measured using electronic and muonic atoms is

negligible.
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I. INTRODUCTION

Scalar fields coupled to matter occur in a wide variety of
fundamental contexts: The inflationary scalar field should
couple to matter in order to reheat the Universe, and such a
coupling seems likely to exist for the dark energy scalar
field too. Indeed most attempts at modifying gravity, or
unifying it with particle physics, predict new scalars
coupling to the standard model particles in the form of
nonrenormalizable interactions that are suppressed by the
energy scale characteristic of the energies probed by the
model. For example, many coupled scalars are present in
the four-dimensional effective theories arising from com-
pactifying the extra dimensions of string theory [1–3].

It is well known that light canonical scalar fields which
couple to matter are tightly constrained by experimental
searches for fifth forces and violations of the equivalence
principle [4], although nonlinear effects such as in the
chameleon [5,6] or Galileon [7] cases allow the fields to
easily avoid these constraints through dynamical mecha-
nisms. In this article we do not restrict ourselves to light
fields, specifying only that the field should not be so heavy
that its mass would lie above the cutoff of the low energy
effective field theory we wish to study. These will be
predominately atomic experiments for which we study an
effective field theory valid up to a cutoff high enough to
include effects from the standard model of particle physics.
Therefore we consider the effects of a theory in which
particles with masses * TeV have been integrated out.

We will find that the approximations required to obtain
constraints mean that they will only apply to scalars with
masses& 10 keV. The existence of very light scalars with
fixed mass & 10�3 eV and fixed coupling to matter are
excluded by searches for fifth forces [8]. However, as these
constraints can be avoided by nonlinear mechanisms such
as those of the chameleon and Galileon theories we con-
sider it important to obtain constraints which apply univer-
sally to all scalar fields.
The phenomenology of such fields is not restricted to

their effects in gravitational experiments. The minimal
scenario we consider is that the scalar field couples to
matter conformally, i.e. through a scalar field dependent
conformal rescaling of the metric. Classically a conformal
coupling means that the scalar field couples to fermions but
not to massless bosons such as the photon. It was shown in
[9,10], however, that, given a conformal coupling, quantum
effects lead to a coupling between photons and scalars in
the low energy effective theory. As already mentioned, in
this article we focus our attention on low energy atomic
experiments which we consider to be described by low
effective theories with a cutoff �TeV. We include a cou-
pling of the scalar field to photons as a generic property of
the low energy theory.
It is also possible to study the effects of coupled scalar

fields both in particle colliders and in low energy, high
precision experiments. If the scalar couples to photons, it
has a phenomenology similar to the Peccei-Quinn axion; in
particular, oscillations between photons and scalars can
occur in the presence of magnetic fields [11]. Much effort
has gone into exploring the consequences of such cou-
plings both in the laboratory [12–18] and in astrophysics
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[19–26]. For light particles with fixed masses m� &

10�3 eV and couplings these observations are extremely
constraining forcing the energy scale of the coupling of
the scalar to photons to be * 1010 GeV. However,
these constraints are also easily avoided in nonlinear mod-
els [27] and so in this article we focus on constraints which
are universal to all models. A scalar field coupled to the
fields of the standard model has also direct effects on the
properties of these particles—making the masses of ele-
mentary particles, and other energy scales of the theory,
become dependent on the scalar field. Consequently the
Hamiltonian describing the low energy behavior of any
fermion becomes scalar field dependent. Previously [28]
we have shown that this leads to electrons transitioning
between energy levels in atoms in the presence of a back-
ground scalar condensate. This gives rise to new possibil-
ities of searching for scalar fields via scalar field stimulated
photon emission. In this paper we show that the presence of
a scalar will also perturb the energy levels of atoms leading
to new constraints on coupled scalar fields from precision
atomic measurements.

The scalar field induced shift in energy levels can be
constrained by measurements of the energy gap between
the 1s and 2s orbitals of the hydrogen atom. A second
consequence of the shifts in energy levels is a scalar field
dependent change in the Lamb shift: the small difference in
energy between the 2s and 2p energy levels of hydrogen
caused by the interaction between the electron and the
background [29]. We will show that the scalar field depen-
dence of the Lamb shift, induced by a coupling between
fermions and the scalar field, will lead to different values of
the proton charge radius when measured with muons and
with electrons. Comparison of properties of electronic and
muonic atoms will be shown to be a sensitive probe of the
existence of new scalar fields. The recently proposed ex-
istence of a possible 5� discrepancy between the proton
charge radius [30] measured recently from the Lamb shift
in muonic hydrogen (an atom formed by a proton and a
negative muon), compared to that inferred previously from
hydrogen atom spectroscopy, will lead to a new constraint
on scalar couplings, i.e. an upper bound on the geometrical
mean of the couplings to matter and photons.

Scalar fields are not the only new physics that can
modify atomic spectra. The presence of additional, hidden
sector, Uð1Þ gauge groups also gives rise to a change in the
Lamb shift [31,32], as well as modifications of Coulomb’s
law which can be tested through atomic measurements.

In the following section, we recall standard properties of
coupled scalars. In Sec. III, we calculate the effect of a
scalar field on the atomic levels, with particular focus on
the energy level difference between the 1s and 2s states of
the hydrogen atom and the Lamb shift. The 1s to 2s energy
difference leads to a new and stringent upper bound on the
coupling of scalars to matter and the Lamb shift leads to a
looser upper bound on the geometrical mean of the photon

and matter couplings. We then combine these atomic con-
straints with those obtained from high energy particle
physics experiments. We find that the upper bound on the
matter coupling obtained from the 1s to 2s gap is stronger
than the particle physics bounds. On the other hand, the
constraint on the coupling to photons deduced from the
width of the Z boson and electroweak precision tests is
more restrictive than atomic physics bounds. We then
apply these results to the proton charge radius discrepancy
and find that it is incompatible with the Z width bound on
the coupling of scalars to gauge fields. Hence scalar fields
cannot provide an explanation to the proton radius anom-
aly. We conclude in Sec. IV.

II. COUPLED SCALAR FIELDS

We consider a scalar-tensor theory defined by the
Lagrangian

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2�2
4

� 1

2
ð@�Þ2 � Vð�Þ

�

þLmð�i; A
2ð�Þg��Þ; (1)

where the matter fields �i feel a metric ~g�� ¼ A2ð�Þg��.

It is possible to allow the scalar to couple differently to
different particle species [10]; however, we restrict our-
selves here to a universal coupling which captures all the
relevant phenomenology. Equation (1) is known as the
Einstein action for a coupled scalar field; a conformal
rescaling allows a classically equivalent description of
the theory in which particle properties are independent of
the scalar field, but the gravitational sector of the theory
becomes scalar dependent, known as the Jordan frame
description. For computational convenience we work in
the Einstein frame in what follows. We consider that the
Einstein frame theory (1) is an effective field theory valid
up to an energy cutoff and that couplings given by non-
renormalizable operators are suppressed by powers of the
cutoff scale.
In a nonrelativistic background the Klein-Gordon equa-

tion for the scalar field arising from (1) is modified and
becomes

D2� ¼ @V

@�
þ Að�Þ�; (2)

where � is the classical energy density. The dynamics of
the field � are determined by the effective potential

Veffð�Þ ¼ Vð�Þ þ �Að�Þ: (3)

We assume that this effective potential has a minimum at
� ¼ �0 so that the field is stabilized.
In addition to the terms in Eq. (1) quantum effects will

generate [9,10] a term which describes the coupling of the
scalar field to photons:

PHILIPPE BRAX AND CLARE BURRAGE PHYSICAL REVIEW D 83, 035020 (2011)

035020-2



L � ¼ �

2M�

F��F�� ¼ �

M�

ðE2 � B2Þ; (4)

where F�� is the electromagnetic field tensor and E and B

are the electric and magnetic fields, respectively. This
contributes to the scalar field effective potential in a similar
manner to the background matter energy density giving

Veffð�Þ ¼ Vð�Þ þ �Að�Þ þ �

M�

ðB2 �E2Þ: (5)

From this point onwards we assume that �0 minimizes the
effective potential including the background contributions
from the electric and magnetic fields.

In a homogeneous background the scalar field can be
expanded about its minimum value �0:

Að�Þ ¼ Að�0Þ
�
1þ A0ð�0Þ

Að�0Þ ��þ � � �
�
; (6)

where �� is the fluctuation induced by the presence of a
matter source. We assume that higher order terms in this
expression are small and can be consistently neglected. We
can write the coefficient of the second term as an inverse
energy scale:

A0ð�0Þ
Að�0Þ

¼ 1

Mm

: (7)

We view (1) as a low energy effective theory and therefore
expect Mm and M� to be of the order of the cutoff scale of

the theory in the relevant energy range as it will be sensi-
tive to fields that have been integrated out at higher energy.
We will be interested in an effective low energy theory
describing a muon, or an electron in the background of a
hydrogen nucleus; therefore, we expect Mm;M� * GeV,

larger than the muon and proton masses. Particle physics
effects at accelerators and therefore the effective theory
involving W bosons would require the coupling to � to be
determined by a cutoff scale larger than the mass of the W
boson. Constraints from particle physics impose that Mm

and M� should be at least in the TeV and MZ ranges,

respectively [33].
It has been recently argued [34] that the coupling of

scalars to matter in scalar-tensor theories is preserved
under renormalization and that the only effect of quantum
corrections is to induce a change due to the wave function
renormalization of the scalar field. When integrating out
momenta to obtain the effective scalar theory valid at a
lower energy scale, radiative corrections in the scalar
sector imply that the wave function renormalization Z�

should be affected by logarithmic terms and therefore

�low ¼ Z��high; (8)

where �low is the normalized field after integration over
momenta between the low energy and the high energy
cutoffs. This leads to a direct relation between the coupling
scale to matter at low and high energies:

Mlow
m ¼ M

high
m

Z�

: (9)

Logarithmic corrections do not entail a large scale depen-
dence of the coupling scale Mm.
Within the effective field theory approach used in this

paper, the various coupling scales are just an effective
parametrization which needs to be deduced from experi-
ment. In the absence of an underlying theory going beyond
the standard model coupled to scalars, we have simply
given a useful parametrization of the scalar-matter cou-
pling and its phenomenological consequences in atomic
physics.
The coupling of the scalar field to fermions implies that

the fermion masses mf become scalar field dependent:

mfð�Þ ¼ Að�Þmf0; (10)

where m0 is the bare mass as it appears in the Lagrangian.
Again expanding around the background value of the
scalar field we find

mfð�Þ ¼ mf

�
1þ ��

Mm

�
: (11)

We assume that the higher order terms in this expression
can be consistently neglected, and we have normalized
Að�0Þ ¼ 1. Notice that, viewed as a low energy operator,
the fermionic mass termmfð�Þ �c c is a nonrenormalizable

effective interaction term. When truncating this interaction
to first order in � it reduces to an effective Yukawa
interaction with a coupling mf=Mm which must be small

as the lepton of mass mf has not been integrated out.

III. ATOMIC ENERGY SHIFTS

In and around atoms the scalar field perturbation is
sourced by the presence of the nuclear electric field

E ¼ Zer

4	r3
; (12)

in cgs units, implying a perturbation to the effective
potential (4):

�V ¼ ��
Z2


4	M�r
4
; (13)

and by the pointlike density of the atomic nucleus,

�� ¼ mN�
ð3Þ, centered at the origin and depending on

the nuclear mass mN . In spherical coordinates, the static
scalar field perturbation then satisfies

d2��

dr2
þ 2

r

d��

dr
¼ � E2

M�

þ mN

Mm

�ð3Þ; (14)

where we have neglected the scalar mass term. This ap-
proximation is valid as long as the range of the scalar force
1=m� is larger than the size of the atom, implying that m�
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must be smaller than 104 eV. The solution which vanishes
far away from the nucleus is

�� ¼ � mN

4	Mmr
� Z2


8	M�r
2
: (15)

The sign of the scalar wave function is crucial as it leads
to a negative contribution to the energy levels. Notice
that, except extremely close to the nucleus, the first
contribution dominates over the second one. For example,
for a hydrogen atom the first term dominates when
r > 10�8ðMm=M�Þa0, with a0 the Bohr radius. However,

we retain the second term as we will find that the Lamb
shift is independent of the scalar field perturbation due to
the mass of the nucleus.

At low energy, and in the nonrelativistic limit, the fer-
mion wave function satisfies a Schrödinger equation with
the interaction Hamiltonian given by [28]

H ¼ p2

2m
þW þm� 1

2mMm

ð��p2 þ ð� � pÞ��ð� � pÞÞ

þ m

Mm

��; (16)

where m is the unperturbed fermion mass and W is a
potential describing the interactions of the fermion with
all the other fields in the theory. An order of magnitude
estimate shows that the dominant perturbation due to the
scalar field is

�H ¼ m

Mm

��: (17)

We consider the effect of the scalar field on the l ¼ 1 and
l ¼ 2 energy levels of a hydrogenic atom with nuclear
charge Ze. The wave functions for these states are (in
spherical polar coordinates)

c 1s ¼ 1ffiffiffiffi
	

p
�
Z

a0

�
3=2

e�ðZr=a0Þ; (18)

c 2p ¼ 1ffiffiffiffi
	

p
�
Z

2a0

�
5=2

e�ðZr=2a0Þr cos�; (19)

c 2s ¼ 1

4
ffiffiffiffiffiffiffi
2	

p
�
Z

a0

�
3=2

�
2� Zr

a0

�
e�ðZr=2a0Þ; (20)

where a0 ¼ ℏ=mfc
 is the Bohr radius, with mf the mass

of the fermion in the orbital, c the speed of light, and 
 the
fine structure constant. The corresponding energy levels
are shifted by the effects of the scalar field:

�E1s ¼ � ZmN

4	M2
ma0

m� Z4


4	a20MmM�

m; (21)

�E2s ¼ � ZmN

16	M2
ma0

m� Z4


32	a20MmM�

m; (22)

�E2p ¼ � ZmN

16	M2
ma0

m� Z4


96	a20MmM�

m: (23)

Notice that the higher levels are less affected by the scalar
field but that the gap between the levels has increased. We
will study two main effects: the energy gap between the 1s
and 2s levels and the Lamb shift which involves the
difference of energy between the 2s and 2p levels. It is
clear from Eqs. (21)–(23) that the Lamb shift is sensitive
only to the electric field contribution to the scalar wave
function and that the gap between the 1s and 2s levels is
essentially due to the nuclear point mass.

A. Precision measurements of hydrogenic atoms

A strong constraint on Mm can be deduced using the
precision measurements of hydrogenic energy levels,
as a low value ofMm would lead to large observable shifts.
The 1s-2s transition for a standard hydrogen atom has a
total uncertainty (experimental and theoretical) of order
10�9 eV at the 1-� level [32,35,36]. This transition
receives a contribution from the scalar field:

�E1s-2s ¼ 3mN

16	M2
ma0

me þ 7


32	a20M
2
me; (24)

where we have defined M2 ¼ MmM�. The contribution of

the term sourced by the atomic electric field satisfies the
bound if GeV & M. However, the nuclear mass term
exceeds the 10�9 eV bound unless

Mm * 10 TeV: (25)

B. The Lamb shift and the proton radius

A second crucial effect of the coupling of the fermions to
the scalar field is the change in the energy difference
between levels with differing angular momentum l. The
most important case is l ¼ 2, and the contribution to the
Lamb shift is

�E2s-2p ¼ Z4


48	a20M
2
m: (26)

The change in the Lamb shift induced by the scalar field
will vary between electronic and muonic atoms. For Z ¼ 1,
we find that for an electron with massme ¼ 0:51 MeV and
Bohr radius 5:3� 10�11 m the scalar contribution to the
Lamb shift is

�E2s-2pðe�Þ ¼ 3� 10�10

�
GeV

M

�
2
eV: (27)

For a muon of mass m� ¼ 106 MeV and Bohr radius

2:5� 10�13 m the contribution to the Lamb shift is

�E2s-2pð��Þ ¼ 3� 10�3

�
GeV

M

�
2
eV: (28)
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As discussed in the introduction the Lamb shift can be
used to infer the charge radius of the proton measured in
femtometers [37]:

�E

meV
¼ 210� 5:23

�
rp
fm

�
2 þ 0:035

�
rp
fm

�
3
: (29)

Measurements of the Lamb shift may give different
values for the charge radius depending on whether the
experiments are conducted with electronic or muonic
atoms. The Committee on Data for Science and
Technology value rp ¼ 0:8768� 0:0069 fm [38] is ex-

tracted mainly from spectroscopy of electronic hydrogen
atoms and is in agreement with the calculations of bound
state quantum electrodynamics [39,40]. Ensuring that the
electronic Lamb shift lies within the current experimental
limits requires 10�4 GeV & M. Then the muonic Lamb
shift corresponds to a negative variation of the proton
radius:

�rpð��Þ
rp

¼ �0:4

�
GeV

M

�
2
; (30)

so that the proton charge radius could vary between mea-
surements with muons and with electrons.

The recent measurement of the proton charge radius for
muonic hydrogen [37] gives rp ¼ 0:841 84 fm although

we note that it may yet be possible to explain this seem-
ingly anomalous measurement with conventional QED
[41] and QCD [42]. This corresponds to a negative varia-
tion of order 4% and would require a suppression scale

M � 3:2 GeV: (31)

This is a reasonable scale for an effective theory at low
energy which includes protons in its spectrum. Of course,
larger values of M lead to a smaller contribution to the
proton radius. The bound on Mm obtained in (25) is much
larger than the value of the averaged scaleM deduced from
the proton radius deviation, implying M� & 10�3 GeV. In

the following section we analyze whether such values are
compatible with high energy particle physics experiments.

The Lamb shift for hydrogenic atoms can also be used to
constrain M. For Z ¼ 2, the 2-� theoretical and experi-
mental uncertainty is 3� 10�9 eV [43], while for Z ¼ 15
it is 6� 10�4 eV [44,45] at the 1-� level and the theoreti-
cal uncertainty is 8 eV for Z ¼ 110 [45]. For M ¼
3:2 GeV, we find that the scalar contributions are respec-
tively 5� 10�10 eV, 2� 10�6 eV, and 4� 10�4, which
are within these bounds. Hence we find that the constraint
on M coming from the proton radius of muonic atoms is
compatible with high precision atomic tests for hydrogenic
atoms. Larger values of M would lead to even smaller
contributions from the scalar field.

We have obtained a strong constraint on Mm from the
1s-2s energy gap of the hydrogen atom, which implies a
constraint on M� through measurements of the charge

radius of muonic hydrogen. Independent constraints on
M� can be deduced from optical cavity experiments and

astrophysical observations which probe near vacuum
environments. Optical cavity experiments constrain
scalar fields with m� & meV to have M� * 107 GeV

[12,14,18,46]. Astrophysics constrains M� * 109 GeV

for masses of the scalar less than 10�12 eV in the inter-
stellar medium [22]. Stronger constraints from helioscope
experiments and the alteration of the star burning rate
would apply if scalars were produced in the very dense
environment inside stars. However, the dependence of the
properties of the scalar field on the density of its environ-
ment, as in (2), implies that scalars are difficult to produce
inside stars. This was first noticed in [27,47] in the chame-
leon context. In fact as shown in [48] the production of
scalars inside a dense plasma can only be realized when the
mass of the scalar is tuned to be resonant with the plasma
frequency. In other cases, scalars are most likely to be
very difficult to produce in stellar plasmas. For this reason,
we only consider here constraints on M� coming from

near vacuum experiments, and therefore for scalar fields
with masses in vacuum m� * 10�3 eV a coupling

M� < 10�3 GeV as required to explain the charge radius

of muonic hydrogen is permitted by optical experiments.

C. Anomalous magnetic moment, the Z width,
and electroweak precision tests

So far, we have only considered atomic precision tests.
In this subsection, we will confront the bounds deduced
from atomic physics with the ones obtained in particle
physics. A very stringent particle physics precision test
which could be affected by the coupling of scalar fields
to fermions is the anomalous magnetic moment gf � 2

[49]. Typically, the measurement of the anomalous
moment of fermions such as the muon involves the decay
of pions via weak interactions with resulting Oð1Þ GeV
scale muons. Therefore the cutoff of the effective theory
describing this decay must lie above the weak scale.
For such experiments, the contributions of scalars can be
calculated [27]:

gf � 2 ¼ 1

ð4	Þ2
m2

f

M2
m

ln
M2

m

m2
f

: (32)

A suppression ofMm � 600 GeV would lead to g� � 2 �
3� 10�9 and would explain the discrepancy between the
standard model prediction and the measured value of the
muonic anomalous magnetic moment [49,50]. In practice
the constraint Mm * 10 TeV obtained from the 1s-2s gap
of hydrogenic atoms is a stronger constraint on the strength
of the coupling than that from gf � 2 of the muon.

Gauge invariance at high energy implies that after elec-
troweak symmetry breaking, the coupling scale to photons
and the Z boson are the same at the weak scale. Radiative
corrections between the weak scale and the QCD scale will
not lead to large effects and the two couplings will be
essentially the same. Now the coupling of the Z boson to
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a light scalar implies that the width of the Z boson is
affected. Known bounds on the Z width can be applied to
the branching ratio [33]:

�ðZ ! � �fÞ
�ðZ ! f �fÞ � 1

80	3

m2
Z

M2
�

; (33)

where f �f is a fermion pair and mZ is the mass of the Z
boson. The uncertainty on the width is of order 0.0023 GeV
compared to a central value of 2.4952 GeV. This leads to a
bound M� * 60 GeV [33]. A stronger bound can also be

deduced from the electroweak precision tests [33]. If stan-
dard model particles can radiate into scalar states while
participating in some measurable process, then the possi-
bility of large corrections to standard model processes
arises. The most precise constraints on such corrections
come frommeasurements of electroweak precision observ-
ables at LEP, where the effects of scalar fields appear as
oblique corrections to the mixing angle �W , the mass of the
W boson, and cross sections and decay rates in the elec-
troweak sector [33]. It was found that large corrections
from new scalar fields are screened by a combination of
gauge invariance and the allowed structure of the cou-
plings. The remaining logarithmic corrections bound
M� * TeV. This implies the bound M * 3 TeV meaning

that a scalar coupling to both matter and photons cannot
explain the observed discrepancy in the proton radius. At
most we find that the effect of scalar on the proton radius
must be ��������

�rpð��Þ
rp

��������� 10�6: (34)

Of course, this is a completely unobservable result.

IV. CONCLUSIONS

We have shown that scalar fields coupled to matter will
shift atomic energy levels. Combinations of atomic preci-
sion measurements of electric and muonic hydrogen can be
used to probe both the coupling of the scalar field to matter
and to photons. The shifts follow from the form of the
coupling of scalars to fermions and photons, i.e. a non-
renormalizable operator with a suppression scale which
strongly depends on the cut off energy below which the
effective Lagrangian description is valid. It also depends
on the two types of sources for the scalar field perturbation
inside an atom: the nuclear energy density and the nuclear
electric field. We find that only the contribution from the
electric field has a direct effect on the Lamb shift but that
the nuclear energy density has an effect on the 1s-2s
energy gap of hydrogenic atoms.

Particle physics measurements at accelerators have pre-
viously been shown to require a large suppression scale for
the coupling of the scalar field to the gauge sector of the
standard model. We have shown that the constraint de-
duced from measurements of the 1s-2s energy gap of the
hydrogen atom is stronger and constrains Mm * 10 TeV.
We have obtained that the scalar field perturbation of the
Lamb shift is sensitive only to the product of the coupling
scalesMmM� and that the scalar field perturbation is much

larger for muonic that electric hydrogen atoms. However,
previously derived constraints on M� coming from the

electroweak precision tests, M� * 1 TeV, imply that the

anomalous measurement of the muonic Lamb shift cannot
be explained through the presence of a scalar field. This
would have required a low value of the coupling scale of
the scalar to photons M� �MeV.

In summary, we have shown that the best universal
atomic and particle physics bounds on the coupling scales
of matter and photons to a scalar field with mass
10�3 eV & m� & 103 eV are a new bound on the coupling

to matter Mm * 10 TeV from energy level shifts in the
hydrogen atom and the previously determined bound
M� * 1 TeV from electroweak precision tests. For light

scalar fields with fixed masses, & 10�3 eV, and couplings
the measurements of fifth force searches already exclude
all coupling to matter up to and beyond the Planck scale,
and optical experiments in the laboratory and astrophysics
lead to tighter bounds on the coupling to photons
M� * 1010 GeV. However, these constraints can be easily

avoided in models such as the chameleon and Galileon
theories by nonlinear mechanisms. In contrast the con-
straints discussed in this article are universal and should
be considered as a minimal set of requirements on any
coupled scalar with mass 10�3 eV & m� & 103 eV.

Although we have found that the Lamb shift in hydrogenic
and muonic atoms differs due to the difference of mass
between the electron and the muon, the large values ofMm

and M� imply that the shift in the proton radius due to a

scalar field is negligible. Therefore it seems that the best
possibility of detecting a coupled scalar field in laboratory
experiments is not with atomic measurements but with
optical cavity experiments.
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