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We use gauge/string duality to investigate the free energy of two static color sources (a heavy-quark–

antiquark pair) in a Yang-Mills theory in strongly interacting matter, varying temperature and chemical

potential. The dual space geometry is anti–de Sitter with a charged black hole to describe finite

temperature and density in the boundary theory, and we also include a background warp factor to

generate confinement. The resulting deconfinement line in the �� T plane is similar to the one obtained

by lattice and effective models of QCD.
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Consider QCD in a four-dimensional Euclidean space-
time and in nuclear matter and two static color sources, an
infinitely heavy quark and an infinitely heavy antiquark, at
distance r from each other. It is interesting to investigate
how the free energy of such a system behaves against
variations of temperature and chemical potential.

The study of a strongly coupled Yang-Mills theory, such
as QCD, is a challenge in spite of the methods developed
so far to deal with it (lattice simulations, models, and
effective field theories). The formulation of the gauge/
gravity [or anti–de Sitter (AdS)/conformal field theory]
correspondence [1–4] has suggested to face this problem
through the identification of a suitable higher-dimensional
gravity dual. Because of the strong/weak nature of the
duality, the gravity dual is a weakly coupled theory defined
in a higher-dimensional curved spacetime; since QCD is
not conformal, a mechanism for breaking conformal in-
variance must be included in the dual model.

This holographic framework can be adopted to analyze
finite temperature and density effects. In a bottom-up
approach, we use the soft wall AdS/QCD model, a five-
dimensional model formulated on AdS5 spacetime, in
which linear confinement at zero temperature and density
is obtained by inserting a background warp factor [5–7],
bringing a mass scale related to �QCD. To describe the

boundary theory at finite temperature, a black hole is
included in the five-dimensional space, whose horizon
position represents the (inverse) temperature [4].

On the other hand, in QCD the effect of finite
quark density is introduced by adding the term JD ¼
�c yðxÞc ðxÞ to the Lagrangian in the generating func-
tional, so that the chemical potential � appears as the
source of the quark density operator. According to the
AdS/CFT correspondence, the source of a QCD operator
in the generating functional is the boundary value of a dual

field in the bulk; therefore, the chemical potential can be
considered as the boundary value of the time component of
a Uð1Þ gauge field AM dual to the vector quark current.
Under the ansatz A0 ¼ A0ðzÞ (z is the fifth holographic
coordinate) and Ai ¼ Az ¼ 0 (i ¼ 1; 2; 3), one can find a
solution of the equations of motion of a 5D gravity action
with a negative cosmological constant interacting with an
electromagnetic field: The solution is known as the AdS/
Reissner-Nordström black-hole metric and describes a
charged black hole interacting with the electromagnetic
field [8,9]. We use this (Euclidean) metric in our model:

ds2 ¼ R2ec
2z2

z2

�
fðzÞdt2 þ d �x2 þ dz2

fðzÞ
�
;

fðzÞ ¼ 1�
�
1

z4h
þ q2z2h

�
z4 þ q2z6;

(1)

where R is the AdS radius, q the black-hole charge, and zh
the position of the horizon, defined by the condition

fðzhÞ ¼ 0. The ec
2z2 term, characterizing the soft wall

model, distorts the metric and brings the mass scale c
[6,10]. The positive sign in the exponent is chosen, follow-
ing Ref. [6], to obtain a confining �QQ potential at T ¼ 0.
The profile introduced in [7], with the negative sign, also
produces linear Regge trajectories and bound states for
light hadrons but does not provides an area law for the
Wilson loop, as discussed, in the framework of light front
holography, in [11].1 The boundary z ¼ 0 represents the
four-dimensional spacetime on which the Yang-Mills the-
ory is defined.

1Issues related to the choice of the dilaton profile have also
been discussed in [12].
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The Hawking temperature of the black hole is

T ¼ 1

4�

��������df

dz

��������z¼zh

¼ 1

�zh

�
1� 1

2
Q2

�
; (2)

where Q ¼ qz3h and 0 � Q � ffiffiffi
2

p
; moreover, the

Euclidean time is a periodic variable, with period � ¼
1=T [4,13]. Studies of this kind of models for q ¼ 0 can
be found in [14].

The relation between the parameters in the metric (1)
and the chemical potential can be obtained observing that,
on dimensional grounds, the low z behavior of the bulk
gauge field A0ðzÞ is

A0ðzÞ ¼ �� �z2 (3)

with � ¼ �q and � a dimensionless parameter in our
model. Together with the condition that A0 vanishes at
the horizon, A0ðzhÞ ¼ 0, Eq. (3) determines a relation
between � and the black-hole charge:

� ¼ �qz2h ¼ �
Q

zh
: (4)

The parameter c in the warp factor in (1) sets the scale: In
the following, we analyze quantities expressed in units of c
and comment on the numerical results at the end.

Let us now turn to the problem formulated at the begin-
ning of this study. At finite temperature, the free energy
Fðr; TÞ of an infinitely heavy-quark–antiquark pair at dis-
tance r can be obtained in QCD from the correlation
function of two Polyakov loops:

hP ð ~x1ÞP yð ~x2Þi ¼ e�ð1=TÞFðr;TÞþ�ðTÞ (5)

with r ¼ j ~x1 � ~x2j and �ðTÞ a normalization constant.
Moreover, the expectation value of a single Polyakov loop

hP i ¼ e�ð1=2TÞF1ðTÞ (6)

[F1ðTÞ ¼ Fðr ¼ 1; TÞ and neglecting the normalization]
is the order parameter for the deconfinement transition in a
pure SUðNÞ theory [15]. Within the gauge/string duality
approach, we can attempt a calculation of the expectation
values in (5) and [15] considering string configurations in
the 5D manifold having the Polyakov loops as a boundary,
looking at the configurations of minimal surfaces, and
computing their worldsheet action. The worldsheet action
is the Nambu-Goto one

SNG ¼ 1

2��0
Z

d2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½gMNð@aXMÞð@bXNÞ�

q
(7)

for a string with end points attached to the positions of the
heavy quark and antiquark, x ¼ �r=2 at z ¼ 0, so that
[16,17]

Fðr; TÞ ¼ TSNG: (8)

XM’s are the coordinates of the five-dimensional
spacetime, gMN the metric tensor associated to the line
element (1), and the determinant is taken over the indices

a; b ¼ 0; 1 labeling the worldsheet coordinates �a. We
parametrize them with �0 ¼ t and �1 ¼ x and look for a
static solution zðxÞ satisfying the conditions zðx ¼ 0Þ ¼ z0,
z0ðx ¼ 0Þ ¼ 0, and zðx ¼ �r=2Þ ¼ 0, the prime denoting
the derivative with respect to x. Examples of such configu-
rations are shown in Figs. 1(a)–1(d).
From (7) and (8) we obtain an expression for the free

energy:

Fðr; TÞ ¼ g

�

Z 0

�r=2
dx

ec
2z2

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞ þ ðz0Þ2

q
(9)

with g ¼ R2

�0 . Moreover, an equation of motion follows

from (9), with the first integral

H ¼ ec
2z2

z2
fðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðzÞ þ ðz0Þ2p ; (10)

which allows us to express Fðr; TÞ in terms of z0 and
f0 ¼ fðz0Þ. Defining v ¼ z=z0, after having subtracted
the UV (v ! 0) divergence (corresponding to subtracting
the infinite quark and antiquark mass in four-dimensional
QCD [16]), we obtain

F̂ð	Þ ¼ g

�	

�
�1þ

Z 1

0

dv

v2

�
e	

2v2


ðvÞ � 1

��
; (11)

where F̂ ¼ F=c, 	 ¼ cz0, and


ðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f0

fðz0vÞv
4e2	

2ð1�v2Þ
s

: (12)
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FIG. 1 (color online). String configurations corresponding to
the confined (a),(c) and deconfined phase (b),(d). In (a),(c) there
is one string with end points at the positions of the static color
sources, x ¼ �r=2 at z ¼ 0, which does not intersect the hori-
zon [dark cylinder in (c)]; in (b),(d) there are two strings
stretched between z ¼ 0 and the horizon z ¼ zh, with xðzÞ ¼
�r=2.
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The distance r̂ ¼ cr can also be expressed parametrically:

r̂ð	Þ ¼ 2	
ffiffiffiffiffi
f0

p Z 1

0
dv

v2e	
2ð1�v2Þ


ðvÞfðz0vÞ ; (13)

so that, from (11) and (13) we can write the free energy as a

function of the temperature T̂ ¼ T=c, for a range of values
of the chemical potential �̂ ¼ �=c. We fix the parameters
� and g to one, postponing to the end the discussion on the
numerical results.

As for �̂ ¼ 0 [17], also for a finite chemical potential
the distance r̂ð	Þ, written parametrically in (13), has two
branches, shown in Fig. 2(a). For 0 � 	 � 	1, r̂ increases
monotonically from r̂ð0Þ ¼ 0, spans the whole real axis,
and diverges when 	 ! 	1. For 	2 � 	 � ẑh ¼ czh, r̂
monotonically decreases from a finite value r̂ð	2Þ down
to r̂ðẑhÞ ¼ 0; for 	1 < 	< 	2, r̂ has an imaginary part.

Selecting the branch 0 � 	 � 	1, we can compute F̂ for
all distances, with the result depicted in Fig. 2(c). As
shown in the same figure, the values of the free energy
corresponding to the branch 	2 � 	 � ẑh are larger than
those for 0 � 	 � 	1. The resulting free energy can be
parameterized similarly to the Cornell expression for the
static quark-antiquark potential:

F̂ ¼ �a

r̂
þ b̂þ �̂2r̂: (14)

The coefficient a turns out to be essentially independent

of T and �; on the other hand, at fixed T̂ ¼ 0:05, the

parameter b̂ increases, from b̂ ¼ �0:073 at �̂ ¼ 0 to b̂ ¼
�0:051 at �̂ ¼ 0:6, while �̂ decreases from �̂ ¼ 0:64 to
�̂ ¼ 0:62 when �̂ is changed from �̂ ¼ 0 to �̂ ¼ 0:6.
For fixed values of the chemical potential �̂ ¼ �̂�,

increasing T̂, the two points 	1 and 	2 along the 	 axis

get closer to each other, and at a certain value T̂� they

coincide: 	1 ¼ 	2 ¼ 	�. For T̂ � T̂�, r̂ð	Þ is real for 0 �
	 � ẑh and never exceeds the value r̂ð	�Þ, as shown in

Fig. 2(b): At the point ð�̂�; T̂�Þ in the �̂� T̂ plane r̂ð	Þ is
always bounded. Therefore, taking �̂ ¼ �̂� and T̂ � T̂�, F̂
can be evaluated only for r̂ � r̂ð	�Þ [Fig. 2(d)]. For r̂ >
r̂ð	�Þ there is another string configuration, i.e. the one with
two strings stretched between the boundary ẑ ¼ 0 and the
black-hole horizon ẑ ¼ ẑh, plotted in Figs. 1(b) and 1(d)
[18]. This configuration holographically represents two
deconfined quarks. To evaluate the corresponding action
we choose a different parametrization of the worldsheet:
�0 ¼ t and �1 ¼ z, obtaining the regularized free energy

F̂ 1 ¼ g

�

�
� 1

ẑh
þ

Z ẑh

0

dẑ

ẑ2
ðeẑ2 � 1Þ

�
þ �ð�̂; T̂Þ (15)

with ẑ ¼ cz; �ð�̂; T̂Þ is a constant related to the regulari-

zation procedure and fixed by matching F̂ðr̂�Þ ¼ F̂1. In
this case the free energy does not depend on r̂ but only on
the temperature and chemical potential.
As a result, the free energy is depicted in Fig. 3. At large

values of r̂, for a given value of the chemical potential �̂
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FIG. 2 (color online). Interquark distance r̂ð	Þ in the confined (a) and deconfined phase (b). In (a) (here for �̂ ¼ 0:5 and T̂ ¼
0:82T�), for 0 � 	 � 	1, r̂ð	Þ spans the whole real axis (red solid line); as 	2 � 	 � ẑh, r̂ð	Þ monotonically decreases from a finite
value r̂ð	2Þ to r̂ðẑhÞ ¼ 0 (blue dashed line). The free energies corresponding to the two branches are plotted in (c). In (b) (here for
�̂ ¼ 0:5 and T̂ ¼ 1:65T�) r̂ð	Þ has a maximum for 	1 ¼ 	2 ¼ 	�; the free energy is plotted in (d).
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there is a temperature T̂�ð�̂Þ such that for T̂ less than T̂� the
free energy linearly grows with r̂, while for T̂ � T̂� the
solution coming from the connected string configuration
[Fig. 1(a)] is only valid up to r̂ ¼ r̂ð	�Þ; from that point on,

F̂ is constant (15). This behavior of the free energy with
distance and temperature has been observed in quenched
lattice simulations at �̂ ¼ 0 [19].

In the �̂� T̂ plane, the curve defined by the points

ð�̂; T̂�ð�̂ÞÞ is plotted in Fig. 4. This can be considered as
a picture of the deconfinement transition in the QCD phase
diagram. For low values of T and � there is a confined
phase characterized by a linearly increasing interquark
potential. Outside this region, a finite amount of energy
is sufficient to separate the quark-antiquark pair, as ex-
pected in a deconfined phase. The picture agrees with the
diagram obtained by, e.g., Nambu-Jona-Lasinio [20] and
other effective models [21].

In the same holographic framework, the Polyakov loop
hP i can be computed by Eq. (6). In the confined phase,

F̂ðr̂Þ diverges as r̂ ! 1, so hP i vanishes, while in the

deconfined one it is determined by F̂1 from the configu-
ration in Figs. 1(b) and 1(d). The result is depicted in
Fig. 5: For each value of �̂, the Polyakov loop vanishes

as T̂ < T̂�; it starts growing at T̂ ¼ T̂� [22]. The smooth
increase can be interpreted as a continuous transition be-
tween the hadron and the deconfined phase.
As pointed out in [9], the parameter � scales as �� ffiffiffiffiffiffi

Nc

p
and its numerical value is model-dependent. If we take the
limit Nc ! 1, the deconfinement line in Fig. 4 becomes

flat, with T̂� not depending on �̂, in agreement with the
result found in [23]. Considering a finite � in (4), the
deconfinement line has the shape shown in Fig. 4.
In order to discuss numerical results, we need to choose

the values of the parameter � in (4) and of the mass scale c
appearing in the warp factor. We fix � � 1=2 from the ratio

T̂c=�̂c � 0:5 found in [20], with T̂c ¼ T̂� at �̂ ¼ 0 and

�̂c ¼ �̂� at T̂ ¼ 0 (� could also be determined in this soft
wall model studying different observables, as done in [9]
for the hard wall model). The mass scale c induced by the
warp factor can be fixed from the result Tc � 170 MeV
[24]: c � 850 MeV. On the other hand, the value of this
scale from the 
 meson mass is c � 670 MeV [5], which
gives Tc � 134 MeV and �c � 248 MeV.2

The numerical values of the critical chemical potential
are a remarkable result of our study. The other result is that
the gauge/string duality approach can be used to obtain
information on the deconfinement transition in QCD, find-
ing an agreement with the outcome of effective theories
(even if the model is not sensitive to the structure of the
vacuum). The success of the holographic framework is
noticeable, considering the difficulty of lattice QCD to

0 1 2 3 4 5
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1
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1

2

F r

r

FIG. 3 (color online). Free energy in the confined phase, �̂ ¼
0:5, T̂ ¼ 0:82T� (blue solid line), and in the deconfined one, for
�̂ ¼ 0:5, T̂ ¼ 1:23T� (green dot-dashed line) and �̂ ¼ 0:5, T̂ ¼
1:65T� (red dashed line). For �̂ ¼ 0:5 the critical temperature is
T̂� ¼ 0:122.
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FIG. 4 (color online). Deconfinement transition line in the
�̂� T̂ plane. The line divides the plane in two regions: a hadron
phase near the origin and a deconfined phase beyond the curve.
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FIG. 5 (color online). Polyakov loop hP i versus T̂ (normalized
at its value for T ! 1) for �̂ ¼ 0:2 (blue, dashed, right curve)
and �̂ ¼ 0:7 (red, dotted, left curve).

2Values of the scale c have also been obtained in the frame-
work of light front holography: c ’ 540 MeV from the 
 meson
spectrum and c ’ 500 MeV from the baryon spectrum [11]. The
corresponding critical temperature at � ¼ 0 turns out to be quite
low.
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explore the phase diagram along the axis of the chemical
potential, and opens interesting perspectives for the analy-
sis, for example, of the superconducting phases of QCD.
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