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We study renormalization group invariant (RGI) quantities in the minimal supersymmetric standard

model and show that they are a powerful and simple instrument for testing high-scale models of

supersymmetry (SUSY) breaking. For illustration, we analyze the frameworks of minimal and general

gauge-mediated (MGM and GGM) SUSY breaking, with additional arbitrary soft Higgs mass parameters

at the messenger scale. We show that if a gaugino and two first generation sfermion soft masses are

determined at the LHC, the RGIs lead to MGM sum rules that yield accurate predictions for the other

gaugino and first generation soft masses. RGIs can also be used to reconstruct the fundamental MGM

parameters (including the messenger scale), calculate the hypercharge D-term, and find relationships

among the third generation and Higgs soft masses. We then study the extent to which measurements of the

full first generation spectrum at the LHC may distinguish different SUSY-breaking scenarios. In the case

of the MGM model, although most deviations violate the sum rules by more than estimated experimental

errors, we find a one-parameter family of GGM models that satisfy the constraints and produce the same

first generation spectrum. The GGM-MGM degeneracy is lifted by differences in the third generation

masses and the messenger scales.
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I. INTRODUCTION

Supersymmetry (SUSY) is an extension of the standard
model (SM) space-time symmetry algebra [1–3] that leads
to a tightly constrained set of new particles and interactions
and addresses a number of open problems in electroweak-
scale physics. These problems include the stabilization of
the weak/Planck scale hierarchy, the origin of the negative
Higgs mass parameter driving electroweak symmetry
breaking, and the existence of dark matter. However, if
SUSY is discovered in the laboratory, even the minimal
supersymmetric standard model (MSSM) will introduce a
significant collection of new Lagrangian parameters to be
measured. Many of these parameters are soft masses that
explicitly break SUSY and lift the superpartner spectrum
above that of the SM particles. It is expected that the
fundamental source of SUSY breaking should be sponta-
neous rather than explicit, and viable phenomenology is
most easily achieved if the breaking takes place in a hidden
sector of fields that couple to the MSSM only through
higher-dimensional operators. These operators may be
generated by integrating out degrees of freedom associated
with a characteristic ‘‘messenger scale’’ M. Eventually,
with experimental input for several soft masses, it will
become interesting to look for patterns that encode the
origin of these operators and explain precisely how
SUSY breaking is communicated to the MSSM.

There are several approaches to testing hypotheses about
the high-scale SUSY-breaking theory and reassembling its
parameters from low-scale data. One standard method is a
top-down fit of high-scale parameters to the TeV scale
measurements. In the top-down procedure, a Monte Carlo
scan is performed over the inputs atM, the soft parameters
are RG evolved to the TeV scale, observables are calcu-
lated, and a �2 statistic is computed for each point in the
scan [4–6]. In another method, the bottom-up approach,
one starts with low-scale soft parameters and RG evolves
them up until they reach a scale where some structure
emerges [7–19]. However, the � functions of all soft
sfermion and Higgs parameters are sensitive to both the
gaugino masses and the hypercharge D-term, DY �
TrðYm2Þ, while the third generation soft sfermion � func-
tions contain the soft trilinear parameters. Therefore, all
the low-scale soft parameters must be measured before
bottom-up reconstruction methods can be used reliably.
A third, complementary method is provided by one-loop

renormalization group invariant (RGI) quantities in the
MSSM [20]. Given a model for the generation of the soft
parameters atM, RGIs facilitate the construction of a wide
class of sum rules satisfied by the TeV scale masses. These
sum rules can be used either to increase confidence in the
model being correct, or to predict unmeasured masses from
known masses. RGIs can also be used to reconstruct fun-
damental parameters at the messenger scale. The RGI
reconstruction method is entirely algebraic, and most im-
portantly, it can provide considerable information even if
some of the RG-coupled masses in the theory are unknown.*http://theory.fnal.gov
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This feature is most apparent in models with& 10 degrees
of freedom at M, and occurs for two reasons: some mes-
senger scale parameters can be reconstructed with RGIs
that depend only on a limited set of TeV scale masses, and
every sum rule can be traded for an unknown TeV scale
parameter. Furthermore, the ability to determine messen-
ger scale parameters with RGIs suggests a useful comple-
mentarity to the top-down approach: every parameter that
can be constrained directly with the RGI method can have
its range considerably reduced in a Monte Carlo scan.

One powerful constraint on the SUSY-breaking media-
tion mechanism is already known, and comes from the
absence of experimental evidence for large flavor-changing
neutral currents. Although not the only method, the sim-
plest approach to achieve agreement with limits from flavor
physics is to assume flavor blindness of the soft parameters
at the messenger scale [21–38]. An attractive way to com-
municate SUSY breaking such that the soft sfermion
masses are automatically flavor universal is known as
gauge mediation [39–43], wherein the hidden sector cou-
ples to the MSSM only through SM gauge interactions. As
the name suggests, assuming a single messenger scale,
general gauge mediation (GGM) [44] is the most general
formulation of gauge mediation. In this class of models the
MSSM soft masses are determined at high scales by
current-current correlation functions in the hidden sector.

In Ref. [20] we studied the application of RGIs to flavor-
blind messenger scale models.1 We found that under the
well-motivated low-scale approximations of minimal fla-
vor violation and degenerate first and second generation
soft sfermion masses (as well as the assumption of no new
sources of CP violation in the sfermion sector), 14 RGIs
could be used to test the flavor-blindness hypothesis and
reconstitute all high-scale soft parameters as functions of a
single undetermined scale. We then applied the method
of RGIs to GGM and studied the sensitivity with which
certain invariants can detect deviations from a GGM pat-
tern of low-scale masses. GGM provides a particularly nice
illustration of the method, because under certain condi-
tions, there are exactly enough nonzero invariants so that
all parameters controlling the soft masses at the messenger
scale and the messenger scale itself can be determined.

Although the application to GGM emphasizes the sim-
plicity of the RGI method, the large number of free pa-
rameters in the theory obscures the usefulness of the fact
that no single invariant depends on all of the soft masses. It
is interesting to consider instead what can be done if only a
subset of the soft masses is determined. With this assump-
tion, it becomes necessary to consider more restrictive
models of SUSY breaking with fewer parameters. A

convenient example is minimal gauge mediation (MGM),
the simplest explicit implementation of gauge mediation.
In MGM, a single complete SUð5Þ representation2 (5þ �5)
of ‘‘messenger’’ particles with characteristic mass scale M
couples directly to the SUSY-breaking vacuum expectation
value in the hidden sector, while coupling only to the gauge
sector of the MSSM. Integrating out the messengers at the
scaleM produces soft masses of the same form as in GGM,
but with specific relationships between all the soft masses
(gauginos as well as the sfermions) controlled by only one
mass parameter and the gauge couplings at the messenger
scale. Additional contributions to the soft SUSY-breaking
masses in the Higgs sector may be required by the solution
to the � problem, and these contributions can be included
with the unknown parameters of the model.
In this study we continue the analysis of the RGIs and

focus on their use in the case of less-than-complete infor-
mation about the low energy soft spectrum. For illustration,
we work in the context of MGM and consider RGIs that are
functions only of the gaugino and the first generation soft
masses. If a third generation mass goes unmeasured, it will
not be possible to test the flavor-blindness hypothesis
completely. However, the vanishing of one particular
RGI, D�1

, in addition to two standard RGI sum rules

encoding gaugino mass unification, will still provide a
strong hint that a gauge-mediated mechanism is at work.
Wewill use the remaining RGIs to reconstruct fundamental
MGM input parameters and to build two new sum rules
satisfied by the gaugino and the first generation soft masses
in MGM.
In Sec. I we briefly review the RGIs in GGM and MGM

and use them to formulate new sum rules in the latter. In
Sec. II we study the MGM sum rules from the first of two
directions. Analyzing a minimal set of ‘‘realistic’’ experi-
mental measurements, and after making a simple approxi-
mation to absorb the bulk of the two-loop corrections [20],
we find that the gluino mass M3, the left-handed squark
mass m ~Q1

, and the right-handed selectron mass m~e1 are

sufficient to predict the rest of the first generation and
gaugino MGM soft spectrum using the sum rules. From
these measurements we also extract the messenger scale
gauge couplings (and thus the messenger scale itself), non-
MGM corrections to the Higgs masses at the messenger
scale [encoded in DYðMÞ], and the values of the hyper-
charge, baryon number, and lepton number D-terms
[DY3H

ðMcÞ,DB3
ðMcÞ, andDL3

ðMcÞ] for the third generation
and Higgs at the superpartner scale Mc. In Sec. III we
consider the complementary scenario in which all of the
first generation and gaugino masses have been measured.
The sum rules can then be checked directly, and the

1For other studies of RGIs and sum rules in supersymmetry,
see Refs. [44–51]. Reference [46] also discusses RGIs in varia-
tions of the MSSM by the addition of singlets and extra gauge
groups. For simplicity, we restrict our attention to RGIs existing
strictly in the MSSM.

2A common generalization of MGM is to increase the number
of messengers into N (5þ �5) representations, which alters the
relationship between the gaugino and the sfermion masses; we
will comment on this possibility further below, but for our
purposes in this work we define MGM to be the case N ¼ 1.
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following question arises: how well can a MGM mecha-
nism of SUSY breaking be distinguished from more gen-
eral gauge-mediated mechanisms? We concentrate, in
particular, on the new sum rules involving the sfermion
mass parameters, which are more complex than the well-
known sum rules of gaugino mass unification. A one-
parameter GGM family of deviations from MGM is found
that yields the same first generation and gaugino spectrum,
and thus does not violate the sum rules. We discuss meth-
ods to distinguish these GGMmodels from MGM. We find
formulations of the sum rules that efficiently test other
deviations from MGM and follow the analytical analysis
with a detailed numerical investigation of the constraints.
A discussion and conclusions are given in Sec. IV.

A. RGIs in general and minimal gauge mediation

The GGM framework introduces six parameters Ar and
Br controlling the soft masses, as well as the messenger
scaleM at which the sector transmitting SUSY breaking to
the MSSM can be integrated out, for a total of 7 degrees of
freedom in the observed soft spectrum at low scales.
Additional model parameters include the bilinear Higgs
mass term [or, alternatively, the corresponding value of
tanð�Þ, the ratio of the Higgs vacuum expectation values]
and the soft trilinear couplings, but they do not appear in
the RGIs and we will not need to consider them further in
our analysis. Explicitly, the gaugino masses are propor-
tional to three constants Br,

3

Mr ¼ g2rBr; (1.1)

and the soft sfermion and Higgs masses are proportional to
three additional parameters Ar,

m2
~f
¼ X3

r¼1

g4rCrðfÞAr; (1.2)

where r runs over the three gauge groups and the Cr are
quadratic Casimirs for the sfermion representations.
In order to achieve a realistic value for the Higgsino

mass parameter �, GGM may need to be modified by the
inclusion of the parameters �u and �d, which represent
additional contributions to the soft supersymmetry-
breaking parameters of the Higgs bosons beyond those
given in Eq. (1.2):

m2
Hu

¼ m2
~L1
þ �u; m2

Hd
¼ m2

~L1
þ �d: (1.3)

The 14 one-loop invariants discussed in Ref. [20] and
their definitions in terms of the gauge couplings and the 15
soft masses at any scale above the heaviest sparticle mass
are given in the first two columns of Table I. The third and
fourth columns list their values in terms of MGM and
GGM fundamental parameters at the messenger scale.
Small deviations will occur at low scales due to effects
of higher order corrections to the � functions, and we will
discuss them further below.
In GGM, with or without the �u and �d modifications,

the invariants DB13
, DL13

, and D�1
are zero at M. The

vanishing of DB13
and DL13

provides a stringent test of

the flavor-blindness hypothesis, while the vanishing of
D�1

strongly constrains the parameter space consistent

with GGM. If �u � �d, there are precisely 11 nonzero
RGIs, and so all six Ar and Br parameters of GGM, as
well as �u, �d, and the three gauge couplings at the
messenger scale, can be determined from simple algebraic
combinations of the invariants. Explicit formulas are given
in Ref. [20]. This method relies on the ratio DY13H

=IY�
in

order to extract the hypercharge gauge coupling at the
messenger scale, which can then be converted into the

TABLE I. One-loop RG invariants in the MSSM.

RGI Definition in terms of soft masses MGMðMÞ GGMðMÞ
DB13

2ðm2
~Q1
�m2

~Q3
Þ �m2

~u1
þm2

~u3
�m2

~d1
þm2

~d3
0 0

DL13
2ðm2

~L1
�m2

~L3
Þ �m2

~e1
þm2

~e3
0 0

D�1
3ð3m2

~d1
� 2ðm2

~Q1
�m2

~L1
Þ �m2

~u1
Þ �m2

~e1
0 0

DY13H
m2

~Q1
� 2m2

~u1
þm2

~d1
�m2

~L1
þm2

~e1
� 10

13 ðm2
~Q3
� 2m2

~u3
þm2

~d3
�m2

~L3
þm2

~e3
þm2

Hu
�m2

Hd
Þ � 10

13 ð�u � �dÞ � 10
13 ð�u � �dÞ

DZ 3ðm2
~d3
�m2

~d1
Þ þ 2ðm2

~L3
�m2

Hd
Þ �2�d �2�d

IY� ðm2
Hu

�m2
Hd

þP
genðm2

~Q
� 2m2

~u þm2
~d
�m2

~L
þm2

~eÞÞ=g21 ð�u � �dÞ=g21 ð�u � �dÞ=g21
IBr

Mr=g
2
r B Br

IM1
M2

1 � 33
8 ðm2

~d1
�m2

~u1
�m2

~e1
Þ 38

5 g
4
1B

2 g41ðB2
1 þ 33

10A1Þ
IM2

M2
2 þ 1

24 ð9ðm2
~d1
�m2

~u1
Þ þ 16m2

~L1
�m2

~e1
Þ 2g42B

2 g42ðB2
2 þ 1

2A2Þ
IM3

M2
3 � 3

16 ð5m2
~d1
þm2

~u1
�m2

~e1
Þ �2g43B

2 g43ðB2
3 � 3

2A3Þ
Ig2 1=g21 � 33=ð5g22Þ � �10:9 � �10:9
Ig3 1=g21 þ 11=ð5g23Þ � 6:2 � 6:2

3Relative to the definitions of Ref. [44] and our previous work
[20], for convenience we absorb a factor of the messenger scale
M into the definitions of the Br.
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other high-scale gauge couplings with the invariants Ig2
and Ig3 . Using the analytic expression for the integrated

gauge coupling one-loop RGE, the messenger scale is
determined. On the other hand, if �u ¼ �d, then there is
one less free parameter, but there are two more constraints
on the GGM parameter space given by the vanishing
of DY13H

and IY�
. Only nine nonvanishing RGIs are then

available for the determination of ten unknown high energy
parameters. Therefore, from the RGIs one can obtain pre-
dictions for nine of the high energy parameters in terms of
a single undetermined one, which can be taken to be one of
the gauge couplings at the messenger scale, or equivalently
the messenger scale itself.

First generation masses and RGIs

We note from the second column of Table I that, of the
14 RGIs, nine depend only on the gaugino masses, the first
generation masses, and the gauge couplings: D�1

, IMr
, IBr

,

and Igi (r ¼ 1, 2, 3 and i ¼ 1, 2). D�1
vanishes in gauge-

mediated models and thus provides an MGM/GGM sum
rule, but cannot be used to determine high-scale
parameters.

Since m ~Q1
only appears in D�1

, the eight nonvanishing

RGIs depend on 10Mc scale values (four sfermion masses,
three gaugino masses, and three gauge couplings).
Although the Higgs mass parameters �u;d affect the spec-

trum through their contribution to the hyperchargeD-term,
these eight RGIs do not depend explicitly on them, and in
GGM they are fixed in terms of the nine parameters [Ar,Br,
and grðMÞ]. Consequently, these RGIs link a total of 19
low- and high-scale parameters. Measurement of the 10Mc

scale masses would allow the reconstruction of eight of
the messenger scale parameters as a function of a single
undetermined one, which can be taken to be g3ðMÞ.

On the other hand, MGM is a four-dimensional subset of
the parameter space of GGM defined by five constraints:

A1¼A2¼A3�A; B1¼B2 ¼B3�B; A¼2B2:

(1.4)

The relevant parameters of MGM can therefore be taken to
be grðMÞ, B, �u, and �d. From the third column of Table I
we see that in MGM, the number of nonvanishing first
generationþ gaugino RGIs is greater than the number of
the high-scale parameters they depend on. The eight rele-
vant RGIs are functions of the same 10Mc scale values as
GGM, but are fixed by only four messenger scale parame-
ters (B and the three gauge couplings), for a total of 14
parameters. Thus, given six measurements (three gauge
couplings and three masses) at the scale Mc, not only can
the B and grðMÞ be reconstructed, but the remaining four
unmeasured low-scale masses can also be predicted (the
constraint equation D�1

¼ 0 allows the determination of

m ~Q1
from the other sfermion masses and thus does not

modify this counting).

If the entire first generation spectrum is measured, the
four predictions at Mc become sum rules. The equality of
the IBr

provide two familiar constraints [and are satisfied

more generally in any high-scale SUSY-breaking model
with gaugino mass unification at the grand unified theory
(GUT) scale]. The other two sum rules can be formulated
by demanding that the reconstructed gauge couplings at
M satisfy the relationships encoded in Ig2 and Ig3 . These

four constraints on the low-scale soft parameters are
related to the five constraints given in Eq. (1.4). The
fifth constraint implied by Eq. (1.4) cannot be used to
generate a low-scale sum rule when considering only the
first generationþ gaugino RGIs, but instead it allows the
extraction of g3ðMÞ from these RGIs in MGM models.
We will discuss the implications of this property in
Sec. III.
The RGI reconstruction of the high-scale parameters of

MGM or GGM depends on the parameters that can be
measured at the low energy scale, and if the MGM sum
rules can be checked. We depict the different cases de-
scribed above graphically in Fig. 1.

FIG. 1 (color online). The green (light grey) region is GGM
parameter space, extending over different Ar, Br, �u, �d, and M.
The blue (medium grey) region denotes the MGM subspace
of GGM, with universal Ar and Br constrained to satisfy the
relationship A ¼ 2B2. Using the RGIs and assuming a high-scale
MGM structure, low-scale experimental measurements of only
three soft masses (small red circle at low scale), including at
least two scalar masses, can determine consistent B and mes-
senger scale values (middle red arrow). A low-scale measure-
ment of all the gauginos and the first generation masses (purple
shaded oval at low scale), on the other hand, leads to the
determination of a consistent region of GGM parameter space
(shaded region between outer purple arrows).
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II. PREDICTING AN MGM MASS SPECTRUM

A. Mass measurements at the LHC

In Ref. [20], we analyzed the possibility of distinguish-
ing different SUSY-breaking structures using the RGIs if
precise experimental measurements exist for the entire
sparticle mass spectrum at the TeV scale. Although this
may be possible, it is not the most plausible assumption
for the near future. It is more likely that only a subset of
all the sparticle and Higgs mass parameters will be deter-
mined with good precision at the LHC. Assuming a par-
ticular minimal SUSY-breaking scenario, the RGIs can still
be used to make predictions for the unmeasured sparticle
masses, which can then be tested at a higher luminosity
LHC or at future accelerators. To make a detailed program,
we try to infer a minimal set of mass measurements that
have the most reasonable chance of being performed at the
LHC in the coming years.

The LHCwill primarily search for supersymmetry by the
production of heavy colored particles, which cascade decay
into lighter particles. Mass determination of those particles
which appear off shell in the cascade decays will be very
difficult, while on-shell particle masses can be determined
with relatively good precision. In addition, due to the large
backgrounds, the determination of masses in cascade de-
cays containing leptons will be easier to perform compared
to those containing only jets plus missing energy (and
eventually photons if the messenger scale is low enough).
In MGM models, the squarks tend to be heavier than the
gluino, and therefore they tend to appear off shell in the
gluino-initiated cascades. Similarly, left-handed sleptons
are heavier than the second-lightest neutralino and there-
fore tend to appear off shell in cascade decays containing
leptons, which will then be dominated by lighter, right-
handed sleptons. Cascade decays of gluinos will thus
provide information on the gluino mass, the right-handed
slepton masses, and the first and second lightest neutralino
masses. Further information about themessenger scale may
be obtained by the decay of the next-to-lightest superpart-
ner (NLSP) to the gravitino lightest superpartner (LSP), if
the messenger scale is low enough (M & 107 GeV).

Although produced at a lower rate than gluinos, first and
second generation left-handed squarks may be produced at
a sufficiently high rate to be measured in the first years of
LHC running. These squarks will decay in cascades in-
volving jets, leptons, and missing energy. Using the masses
obtained in the gluino decays, the left-handed squark
masses may be extracted reasonably precisely.

As indicated above, from these cascade decays, infor-
mation on the first and second neutralino masses may be
obtained. However, due to the possible mixing of the
gauginos with relatively light Higgsinos, these masses
will provide only approximate information on the gaugino
soft masses M1 and M2. On the contrary, after computing
the relevant radiative corrections, the gluino mass will be
directly translatable into M3. We shall therefore assume

that we have good information on the massesM3, m~e1 , and

m ~Q1
at the scale of the largest supersymmetric particle

mass, which we have denoted Mc as it tends to be the
heaviest colored sparticle. The quantum corrections trans-
forming the measured pole masses into running masses at
Mc introduce an uncertainty that depends on the unknown
spectrum. This problem can be solved by a simple iteration
in the calculation of masses, and we shall consider that no
significant new uncertainty is induced by the presence of
these radiative corrections.
In the last section, we showed that knowledge of three

masses and three couplings at the scale Mc is sufficient to
determine the MGM parameters as well as the rest of the
first generation spectrum. We will then assume that M3,
m ~Q1

, and m~e1 are measured experimentally with a few

percent precision at Mc, and that the high-scale SUSY-
breaking structure is MGM.4

B. MGM parameters and sum rules

From the invariants IBr
¼ B in Table I and the knowl-

edge of the gauge couplings at Mc, we obtain

B¼ M3

g23ðMcÞ
; M1¼g21ðMcÞB; M2¼g22ðMcÞB; (2.1)

which can then be compared with the values obtained from
cascade decay measurements. The predictions for M1;2 are

equivalent to the two sum rules for GUT-scale gaugino
mass unification. We stress that in our work we have
modified the above predictions with two-loop corrections
to the RGIs, using the simple parametrization given in
Ref. [20]. [Effectively, in the expressions for M1 and M2

in Eq. (2.1), B will be shifted by a term given by the log of
an intermediate messenger scale times the difference be-
tween the approximate two-loop � functions for the invar-
iants IB3

and IBr
.]

From Table I we see that knowledge of B determines a
linear relationship between the invariants IMr

and the

gauge couplings g4rðMÞ at the messenger scale. Imposing
the relationships encoded in Ig2 and Ig3 that should be

satisfied by the reconstructed messenger scale gauge cou-
plings, we obtain two new sum rules:

CMGM
1 �

ffiffiffiffiffiffiffiffiffiffi
38I2B
5IM1

vuut � 33

5

ffiffiffiffiffiffiffiffi
2I2B
IM2

vuut � Ig2 � 0;

CMGM
2 �

ffiffiffiffiffiffiffiffiffiffi
38I2B
5IM1

vuut þ 11

5

ffiffiffiffiffiffiffiffiffiffiffiffi
�2I2B
IM3

vuut � Ig3 � 0:

(2.2)

Once expressed in terms of low energy mass parameters,
Eq. (2.2), together with the constraint

4In this work, we assume the MGM scenario as an example. It
should be noted that a similar analysis can be carried out for any
choice of SUSY-breaking model.
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D�1
¼ 0; (2.3)

allow the determination of three sfermion masses in terms
of two measured ones.

Additionally, from IM3
, g3ðMÞ satisfies

g43ðMÞ ¼ � IM3

2B2

� 1

2
g43ðMcÞ

�
3

16M2
3

ð5m2
~d1
þm2

~u1
�m2

~e1
Þ � 1

�
;

(2.4)

while the other two couplings may be determined from
the Igi ,

g21ðMÞ ¼
�
Ig3 �

11

5g23ðMÞ
��1

;

g22ðMÞ ¼ 33

5

�
Ig3 � Ig2 �

11

5g23ðMÞ
��1

:

(2.5)

Thus, once the spectrum is determined from Eqs. (2.1),
(2.2), and (2.3), the messenger scale can also be determined
from the measurement of a single gaugino mass and two
sfermion masses. Note that instead of using Eq. (2.4), one
could determine g41ðMÞ or g42ðMÞ through their relation-
ships to the invariants IM1

and IM2
. Provided the relation-

ships given in Eq. (2.5) are fulfilled, any choice would lead
to an equivalent result, with errors that will depend on the
experimental errors on the associated measured quantities.
Finally, as with the gaugino masses, the RGIs given above
should be modified to account for the two-loop corrections.
The most important two-loop effect is in Ig2 , which can

shift by a few percent. We stress that these corrections do
not assume the measurement of any additional parameters.
We shall also implement them in all subsequent numerical
calculations and refer the reader to Ref. [20] for details and
expressions.

C. Parametric solutions

Although the determination of the unknown low-scale
sfermion masses from Eqs. (2.2) and (2.3) is generally a
valid procedure, it is not transparent, since the unknown
masses appear in the denominators of square root expres-
sions. Below we give useful parametric solutions for the
predicted masses as functions of grðMÞ, which clarifies the
dependences on the measured masses and the expected
uncertainties in the predictions. The solutions can be easily
generalized to cases in which the known masses are differ-
ent from M3, m ~Q1

, and m~e1 . For simplicity of presentation,

we shall ignore two-loop corrections.
Once the gaugino masses are determined using Eq. (2.1),

one can use D�1
¼ 0 and the IM1;2

in Table I to express the

first generation sfermion masses as functions of the mea-
sured masses and the gauge couplings at the high scale,

m2
~L1
¼ 3

22

M2
3

g43ðMcÞ
�
g41ðMcÞ

�
38

5

g41ðMÞ
g41ðMcÞ

� 1

�

þ 11g42ðMcÞ
�
2
g42ðMÞ
g42ðMcÞ

� 1

��
� 1

2
m2

~e1
; (2.6)

m2
~u1
¼ 3

22

M2
3

g43ðMcÞ
�
5

3
g41ðMcÞ

�
38

5

g41ðMÞ
g41ðMcÞ

�1

�

�11g42ðMcÞ
�
2
g42ðMÞ
g42ðMcÞ

�1

��
�5

6
m2

~e1
þm2

~Q1
; (2.7)

m2
~d1
¼� 3

22

M2
3

g43ðMcÞ
�
1

9
g41ðMcÞ

�
38

5

g41ðMÞ
g41ðMcÞ

�1

�

þ11g42ðMcÞ
�
2
g42ðMÞ
g42ðMcÞ

�1

��
þ1

6
m2

~e1
þm2

~Q1
: (2.8)

Similarly, rewriting Eqs. (2.5) in terms of the measured
gauge couplings and g3ðMÞ, we get

g21ðMÞ ¼ g21ðMcÞ
�
1þ 11

5

g21ðMcÞ
g23ðMcÞ

�
1� g23ðMcÞ

g23ðMÞ
���1

;

g22ðMÞ ¼ g22ðMcÞ
�
1þ 1

3

g22ðMcÞ
g23ðMcÞ

�
1� g23ðMcÞ

g23ðMÞ
���1

:

(2.9)

Substituting in Eq. (2.4) the values of m~u1 and m~d1
from

Eqs. (2.7) and (2.8) and g1ðMÞ and g2ðMÞ from Eqs. (2.9),
Eq. (2.4) becomes a high-degree polynomial equation in
g3ðMÞ, with coefficients that are functions of the measured
gaugino and sfermion masses. Ignoring very small terms,
it reads

g43ðMÞ ¼ C
162

g43ðMcÞ
�
1� 32

3C
g43ðMÞ
g43ðMcÞ

�

�
�
1�

�
1þ 3

g23ðMcÞ
g22ðMcÞ

�
g23ðMÞ
g23ðMcÞ

�
2
; (2.10)

where

C ¼ 1

M2
3

�
6m2

~Q1
�m2

~e1
� 5

33
M2

1þ9M2
2�

16

3
M2

3

�
: (2.11)

Generically, with Mc �Oð1Þ TeV, g2ðMcÞ � 0:65 and
g3ðMcÞ � 1:1. Defining � ¼ g23ðMÞ=g23ðMcÞ, Eq. (2.10)

can be roughly approximated by

162

C
�2 �

�
1� 32

3C
�2

�
ð1� 9�Þ2: (2.12)

We additionally assume that the messenger scale should be
in the range 105 & M & 1016 GeV and therefore

0:25 & g43ðMÞ & 1; (2.13)

or equivalently,

0:40 & � & 0:85: (2.14)
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Note that in MGM, C is a number of order 10, which
becomes somewhat smaller for larger values of the mes-
senger scale. Inspection of Eq. (2.12) then determines that
typically only one g3ðMÞ solution satisfies Eq. (2.13) and is
therefore physically realistic.

It is simple to solve Eq. (2.10) numerically, even adding
the small terms ignored for simplicity above. It can then be
used to calculate the mass spectrum of the first generation
by insertion into Eqs. (2.6), (2.7), and (2.8).

Furthermore, looking at DY13H
and IY�

, we see that the

Higgs and third generation masses appear in the same
combination in both RGIs. Therefore, once the quantities
in Eqs. (2.1), (2.2), (2.3), (2.4), and (2.5) have been com-
puted, DYðMÞ and DY3H

ðMcÞ can be predicted from DY13H

and IY�
:

DYðMÞ¼�u��d

¼33

10

�
g21ðMcÞ
g21ðMÞ �1

��1ðm2
~Q1
þm2

~d1
�2m2

~u1
�m2

~L1
þm2

~e1
Þ

¼33

10

�
g21ðMcÞ
g21ðMÞ �1

��1
DY1

ðMcÞ; (2.15)

DY3H
ðMcÞ ¼ 2

�
1þ 13

20

g21ðMcÞ
g21ðMÞ

��
g21ðMcÞ
g21ðMÞ � 1

��1

� ðm2
~Q1
þm2

~d1
� 2m2

~u1
�m2

~L1
þm2

~e1
Þ

¼ 20

33

�
1þ 13

20

g21ðMcÞ
g21ðMÞ

�
DYðMÞ: (2.16)

Similarly, since flavor blindness implies DB13
¼

DB1
�DB3

¼ 0 and DL13
¼ DL1

�DL3
¼ 0, DB3

and

DL3
can be predicted from the assumed measurements:

DB3
ðMcÞ ¼ DB1

ðMcÞ ¼ 2m2
~Q1
�m2

~u1
�m2

~d1
; (2.17)

DL3
ðMcÞ ¼ DL1

ðMcÞ ¼ 2m2
~L1
�m2

~e1
: (2.18)

Equations (2.16), (2.17), and (2.18) imply that the deter-
mination of four soft parameters in the third generation and
Higgs sector, in addition to the three soft masses of the first
generationþ gauginos, would be sufficient to fix the soft
spectrum entirely.
In Tables II and III, we give two example points in the

MGM parameter space where the mass spectrum of the first
generation, the messenger scale gauge couplings, DYðMÞ,

TABLE II. Predicted spectrum of masses and parameters given a minimal set of measurements
for the MGM model: A ¼ 2B2 ¼ 0:3 TeV2, DYðMÞ ¼ �u � �d ¼ 0 TeV2, and M ¼ 107 GeV.
The scale Mc ¼ 1 TeV. The data column gives the model parameters and the associated
spectrum obtained by running the soft masses down to the scale Mc. The calculated column
gives the predicted mass spectrum and reconstructed model parameters, calculated using Eqs.
(2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.8), (2.9), (2.10), (2.11), (2.12), (2.13), (2.14), (2.15),
(2.16), (2.17), and (2.18). The final two columns give the estimated experimental uncertainties in
the calculated quantities, assuming universal soft mass errors of 1% and 5% for the input soft
masses.

Data Calculated �1% �5%

g1ðMcÞ 0.4693 0.0047 (1%)

g2ðMcÞ 0.6481 0.0065 (1%)

g3ðMcÞ 1.0800 0.0108 (1%)

M3 (GeV) 446.8 4.5 22.3

m ~Q1
(GeV) 641.6 6.4 32

m~e1 (GeV) 114.0 1.1 5.7

g1ðMÞ 0.5159 0.5153 0.0093 0.0329

g2ðMÞ 0.6679 0.6647 0.0080 0.0131

g3ðMÞ 0.9144 0.9093 0.0218 0.0880

M1 (GeV) 84.2 84.4 2.5 4.9

M2 (GeV) 159.4 158.5 4.8 9.1

m ~L1
(GeV) 227.2 221.3 10.4 31.1

m~u1 (GeV) 608.37 611.6 7.3 34.8

m~d1
(GeV) 604.7 607.5 8.2 38.7

Log10M (GeV) 7 6.7 0.6 2.4

A ðTeVÞ2 0.3 0.3 0.013 0.03

DYðMÞ ðTeVÞ2 0 �0:0075 0.09 0.31

DY3H
ðMcÞ ðTeVÞ2 �0:0085 �0:0130 0.08 0.28

DB3
ðMcÞ ðTeVÞ2 0.0889 0.0904 0.0067 0.0157

DL3
ðMcÞ ðTeVÞ2 0.0902 0.0933 0.0096 0.0287
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DY3H
ðMcÞ, DB3

ðMcÞ, and DL3
ðMcÞ are calculated using the

equations above. The points correspond to different
choices of A ¼ 2B2, ð�u � �dÞ, and the messenger scale.
To estimate the uncertainties, we assume that the input
sparticle masses fM3; m ~Q1

; m~e1g have been experimentally

measured with central values equal to their MGM values
and uncertainties of about 5%. Although the real errors
may be larger than 5%, since we choose a flat uncertainty
profile for all the input masses and couplings, the errors in
the determined quantities scale roughly linearly with this
value, and 5% provides an easy reference point to establish
the rescaling. For comparison, we also present results for a
1% uncertainty in the masses, corresponding to future
precision measurements.

The examples in Tables II and III demonstrate that the
method is quite powerful: the propagated errors remain
relatively small, and all predicted quantities are within 1
standard deviation of their true values. The uncertainty in
the masses depends on their quantum numbers as well as
on the messenger scale. The largest uncertainty is induced
by the first terms of Eqs. (2.6), (2.7), and (2.8), associated
with the determination of the gauge couplings at the mes-
senger scale. The squark masses m~u1 and m~d1

depend only

weakly on these terms and predominantly on m ~Q1
. Their

relative uncertainty is then small, of the order of a few
percent. On the contrary, m ~L1

depends dominantly on the

first term and hence its uncertainty tends to be larger,
growing with larger values of the messenger scale.
Finally, the messenger scale can be determined. Since the
parameters are only mildly logarithmically sensitive to M,
an accurate determination will demand a precise measure-
ment of the relevant low energy masses. However, we note
that the uncertainties inM are much smaller in MGM than
what is generically achieved (when reconstructing M is
possible) in GGM [20], since fewer parameters are
involved and the reconstruction is insensitive to the
ð�u � �dÞ splitting.

III. IDENTIFYING AND DIFFERENTIATING
MINIMALWITHIN GGM MODELS

A. GGM/MGM models with
degenerate low energy spectra

If all first generation and gaugino masses are measured
at a higher luminosity LHC, the MGM prediction for the
spectrum can be tested. However, for each MGM model,

TABLE III. Predicted spectrum of masses and parameters given a minimal set of measure-
ments for the MGM model: A ¼ 2B2 ¼ 0:8 TeV2, DYðMÞ ¼ �u � �d ¼ 0:4 TeV2, and M ¼
1012 GeV. The scale Mc ¼ 1 TeV. The data column gives the model parameters and the
associated spectrum obtained by running the soft masses down to the scale Mc. The calculated
column gives the predicted mass spectrum and reconstructed model parameters, calculated using
Eqs. (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.8), (2.9), (2.10), (2.11), (2.12), (2.13), (2.14),
(2.15), (2.16), (2.17), and (2.18). The final two columns give the estimated experimental
uncertainties in the calculated quantities, assuming universal soft mass errors of 1% and 5%
for the input soft masses.

Data Calculated �1% �5%

g1ðMcÞ 0.4686 0.0047 (1%)

g2ðMcÞ 0.6446 0.0064 (1%)

g3ðMcÞ 1.0670 0.0107 (1%)

M3 (GeV) 707.6 7.1 35.5

m ~Q1
(GeV) 934.5 9.3 46.5

m~e1 (GeV) 228.6 2.3 11.5

g1ðMÞ 0.5981 0.5881 0.0267 0.1130

g2ðMÞ 0.6905 0.6812 0.0112 0.0284

g3ðMÞ 0.7803 0.7823 0.0281 0.1511

M1 (GeV) 136.0 136.5 4.1 7.8

M2 (GeV) 254.0 254.5 7.7 14.7

m ~L1
(GeV) 430.5 409.2 32.4 115.8

m~u1 (GeV) 869.5 874.9 9.6 41.9

m~d1
(GeV) 848.4 857.0 17.5 76.7

Log10M (GeV) 12 11.7 1.4 5.6

A ðTeVÞ2 0.8 0.78 0.035 0.086

DYðMÞ ðTeVÞ2 0.4 0.27 0.37 1.5

DY3H
ðMcÞ ðTeVÞ2 0.313 0.22 0.31 1.2

DB3
ðMcÞ ðTeVÞ2 0.273 0.273 0.023 0.049

DL3
ðMcÞ ðTeVÞ2 0.316 0.309 0.055 0.197
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there is a corresponding set of nonminimal GGM models
which produces the same first generationþ gaugino spec-
trum and thus satisfies the sum rules. These models form a
one-parameter family which can be parametrized by
g3ðMÞ.

To identify the degenerate models, it is convenient to
introduce the parameters xr:

xr � Ar=2B
2
r : (3.1)

Then the GGM input parameters are Br, xr, �u;d, and the

gauge couplings at the messenger scale. The three parame-
ters Br can be obtained from the RGIs given by the ratios of
the gaugino masses to the gauge couplings squared,

Br ¼ IBr
: (3.2)

Furthermore, the ratios I2Br
=IMr

constrain the GGM gauge

couplings grðMÞGGM and the xr to satisfy the relationships

1

g23ðMÞGGM
¼

��2I2B3

IM3

�
1� 3

2
ð1� x3Þ

��
1=2

;

1

g22ðMÞGGM
¼

�2I2B2

IM2

�
1� 1

2
ð1� x2Þ

��
1=2

;

1

g21ðMÞGGM
¼

�38I2B1

5IM1

�
1� 33

38
ð1� x1Þ

��
1=2

;

(3.3)

while Eq. (2.5) allows the determination of g1;2ðMÞGGM as

a function of the Igr and g3ðMÞGGM. Therefore, in GGM the

xr are directly related to the invariants via

CGGM
1 �

�38I2B1

5IM1

�
1� 33

38
ð1� x1Þ

��
1=2

� 33

5

�2I2B2

IM2

�
1� 1

2
ð1� x2Þ

��
1=2 � Ig2 ¼ 0;

CGGM
2 �

�38I2B1

5IM1

�
1� 33

38
ð1� x1Þ

��
1=2

þ 11

5

��2I2B3

IM3

�
1� 3

2
ð1� x3Þ

��
1=2 � Ig3 ¼ 0:

(3.4)

For xr ¼ 1, Eq. (3.4) becomes the soft mass sum rules of
MGM given in Eq. (2.2), but note that (3.4) holds in GGM
even if MGM is not a solution.

Given a measured first generation and gaugino spec-
trum, the nonzero RGIs are fixed, and thus Eq. (3.4) defines
a curve in the xr space corresponding to a set of GGM
models. The Ar, Br, and grðMÞ parameters of these models
are set by Eqs. (3.1), (3.2), and (3.3). Monotonicity implies
that the curve can parametrized by (for instance)
g3ðMÞGGM. If, in addition, the RGIs satisfy the MGM
sum rules in Eq. (2.2), then the curve passes through the
point xr ¼ 1, and all the models on the curve possess a first
generationþ gaugino spectrum satisfying the sum rules.

Moreover, these sectors of the spectrum can be made
equivalent for all of the models on the curve by changing
ð�u � �dÞ so that DY1

ðMcÞ remains constant. This can be

seen as follows. Given values for the 3IMr
and the con-

straintD�1
¼ 0, four out of five first generation masses can

be fixed. If DY1
ðMcÞ is also specified, then the fifth mass is

fixed. From Eq. (2.15) we see thatDY1
ðMcÞ is controlled by

ð�u � �dÞ. Therefore, adjusting ð�u � �dÞ along the curve
can render the models identical in the first generation and
gaugino sectors alone.5

Consequently, although Eq. (2.2) provides necessary
conditions for a MGM spectrum, it is not completely
sufficient to rule out more general GGM models.
However, Eq. (2.13) limits the physically realizable values
of the gauge couplings at the messenger scale, and there-
fore places bounds on the curve. For completeness, let us
mention that for 105 GeV & M & 1016 GeV, g1ðMÞ and
g2ðMÞ must lie in the ranges

0:05 & g41ðMÞ & 0:25; 0:2 & g42ðMÞ & 0:25: (3.5)

It is very useful to consider a particular linear combina-
tion of the invariants possessing small experimental un-
certainties. By themselves the invariants IM1

and IM2

appearing in the constraint functions tend to have large
experimental uncertainties: the squark mass terms appear
with large coefficients and approximately cancel in gauge
mediation, while the experimental uncertainties tend to
grow linearly with the squark masses. However, the com-
bination IM12

, defined as

IM12
¼ IM1

þ11IM2
¼M2

1þ
11

3
ð3M2

2þ2m2
~L1
þm2

~e1
Þ; (3.6)

is manifestly independent of the squark masses, and there-
fore is likely to be determined more precisely than IM1

or

IM2
alone. Since all terms are positive, its fractional error

is controlled by the error in the measurement of the weakly
interacting sparticle masses. Therefore, in addition to
CGGM
1 and CGGM

2 , we will use

CGGM
5 � IM12

I2B2

þ IM3

I2B3

�
1� 3

2
ð1� x3Þ

��1

�
�
95

11

I2B1

I2B2

�
1� 33

38
ð1� x1Þ

�

�
�
11� 5Ig3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�IM3

2ð1� 3
2 ð1� x3ÞÞI2B3

vuut ��2

þ 1089

�
1� 1

2
ð1� x2Þ

�

�
�
11þ 5ðIg2 � Ig3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�IM3

2ð1� 3
2 ð1� x3ÞÞI2B3

vuut ��2
�
¼ 0;

(3.7)

5Note, however, that sufficiently large positive values of ð�u �
�dÞ may prevent electroweak symmetry breaking at low scales.
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where the constraint function CGGM
5 is now a function of

IM12
and IM3

.

Examples of the curve and bounds are given in Figs. 2
and 3 for a sample MGM point with Ar ¼ 2B2

r ¼ 0:8 TeV2

and M ¼ 1012 GeV2. The two plots in each figure reflect
an assumption of 1% and 5% experimental errors, respec-
tively, in the measured low-scale soft masses. Each point in
the xr space is constrained to satisfy CGGM

1 , CGGM
2 , CGGM

5 ,

and the gauge coupling inequalities within 1� (blue/dark
grey) and 2� (green/light grey). These plots show that
while x2 and x3 can, in general, be well constrained, the
limits on x1 are not as strong. There are two reasons for this
behavior. First, a large range of x1 values can be found,
satisfyingCGGM

1 andCGGM
2 even for values of x2;3 relatively

close to 1. In other words, Eqs. (3.4) and (3.7) are relatively
insensitive to x1. Second, from Eq. (3.3), large (small)
values of x1 correspond to small (large) values of the
messenger scale. Therefore, given low (high) scale MGM
model, significant low (high) deviations from x1 ¼ 1 can
be tolerated before the upper (lower) bounds of Eq. (3.5)
are violated.

As explained above, the value of ð�u � �dÞ varies along
the curve in order to maintain a fixed first generationþ
gaugino spectrum. Thus the value of the invariant DY13H

is changing, implying that the third generationþ
Higgs hypercharge D-term, DY3H

ðMcÞ, is different at each
point along the curve. Therefore, the spectrum degeneracy
will not hold in the third generation and Higgs sectors, and
this fact could eventually be used to select the propermodel.

B. GGM models that can be distinguished from MGM

We expect that most deviations from MGM into the
more general parameter space of GGM will result in vio-
lations of the sum rules. Since the degree of violation
should be measured relative to expected uncertainties in
the experimental determination of the sum rules, it is
important to study them in some detail, looking for
alternative formulations that could lead to more stringent

constraints. In this section we will discuss useful reformu-
lations of the constraints CMGM

1 and CMGM
2 and analyze

numerically their ability to rule out deviations from MGM.
We will consider simple one-parameter deviations along
different vectors in the xr space, and then revisit the full
class of nonminimal GGM models that satisfy the two
constraints.
If Eq. (2.4) or Eq. (2.5) is used to reconstruct a MGM

gauge coupling g2rðM0ÞMGM at a messenger scaleM0, but in
reality the spectrum is generated by a nonminimal GGM
mechanism, then the MGM reconstruction is related to the
gauge coupling g2rðMÞGGM at the real messenger scale M
via

g2rðM0ÞMGM ¼ g2rðMÞGGM½1� crð1� xrÞ�1=2; (3.8)

where cr ¼ f33=38; 1=2; 3=2g. Correspondingly, if the con-
straints in Eq. (2.2) are imposed on a nonminimal GGM
model, they can be expressed in terms of relations between
the messenger scale parameters as

CMGM
1 � 1

g21ðMÞGGM
�
1� 33

38
ð1� x1Þ

��1=2

� 33

5

1

g22ðMÞGGM
�
1� 1

2
ð1� x2Þ

��1=2 � Ig2 ¼ 0;

CMGM
2 � 1

g21ðMÞGGM
�
1� 33

38
ð1� x1Þ

��1=2

þ 11

5

1

g23ðMÞGGM
�
1� 3

2
ð1� x3Þ

��1=2 � Ig3 ¼ 0:

(3.9)

Since we do not restrict our attention to a fixed low-scale
spectrum as in the previous section, these equations define
a surface in ðM; xrÞ parameter space containing the line
ðM; 1; 1; 1Þ as well as the MGM-degenerate curve dis-
cussed in the previous section. For a fixed value of M, a
new curve within the surface is obtained from Eq. (3.9). We
will refer to this curve as the invariant line, because it is

FIG. 2 (color online). Constrained x1 vs x3 GGM parameter space satisfying Eq. (3.4) and fulfilling the gauge coupling inequalities
given in Eqs. (2.13), (3.5), and (3.7) within 1� (blue/dark grey) or 2� (green/light grey) for a sample MGM spectrum with
M ¼ 1012 GeV and A ¼ 2B2 ¼ 0:8. Left panel: 1% uncertainty. Right panel: 5% uncertainty.
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independent of the way the individual constraint functions
are formulated.

In addition to the two ‘‘hard’’ constraints of Eq. (3.9), we
require that the reconstructed couplings grðM0ÞMGM lie in a
physically reasonable range. Equations (2.13) and (3.5)
become

0:05 &
5

38

IM1

I2B
& 0:25; 0:2 &

1

2

IM2

I2B
& 0:25;

0:25 & � 1

2

IM3

I2B
& 1:0:

(3.10)

From the form of Eqs. (3.9) we see that the effectiveness
of the constraint functions at detecting deviations from
MGM is dependent on the messenger scale through the
running gauge couplings. At low M, g3ðMÞGGM grows
rapidly, g2ðMÞGGM decreases slowly, and g1ðMÞGGM de-
creases rapidly, reducing the sensitivities to x2 and x3. On
the other hand, the constant coefficients are such that the
sensitivity to variations in x1 alone is typically less than
that to variations in x2 or x3 for all but the lowest messenger
scales. Numerically, this can be seen by linearizing
Eq. (3.9) around (1, 1, 1) for a sample messenger scale of
105 GeV,

CMGM
1 � �1:8ðx1 � 1Þ þ 3:8ðx2 � 1Þ;

CMGM
2 � �1:7ðx1 � 1Þ � 1:7ðx3 � 1Þ; (3.11)

and for 1016 GeV,

CMGM
1 � �0:8ðx1 � 1Þ þ 3:2ðx2 � 1Þ;

CMGM
2 � �0:8ðx1 � 1Þ � 3:2ðx3 � 1Þ: (3.12)

Considering the limited reactivity of the constraint func-
tions to x1 and x3 in significant regions of parameter space,
it is worthwhile to search for other formulations that have
minimal expected experimental uncertainties. For this pur-
pose we write the constraints in a form obtained by con-
structing the invariants IM1

=I2B and IM2
=I2B out of the

reconstructed B and g43ðM0ÞMGM. Using Eq. (2.5) and the

relations in Eq. (3.3) for xr ¼ 1, we arrive at the new
constraint functions

CMGM
3 � 5IM1

38I2B
þ 50IM3

=I2B

ð22� 5Ig3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2IM3

=I2B

q
Þ2
;

CMGM
4 � IM2

2I2B
þ 2178IM3

=I2B

ð22� 5ðIg3 � Ig2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2IM3

=I2B

q
Þ2
:

(3.13)

Equation (3.13) may be rewritten in terms of the xr,

CMGM
3 ¼g41ðMÞGGM

�
1�33

38
ð1�x1Þ

�
�g43ðMÞGGM

�
�
g23ðMÞGGMIg3 �

11

5ð1� 3
2ð1�x3ÞÞ1=2

��2
;

CMGM
4 ¼g42ðMÞGGM

�
1�1

2
ð1�x2Þ

�
�9g43ðMÞGGM

�
�
5

11
g23ðMÞGGMðIg3 �Ig2Þ�

1

ð1� 3
2ð1�x3ÞÞ1=2

��2
:

(3.14)

Linearizing Eq. (3.14) around (1, 1, 1), for a messenger
scale of 105 GeV, gives

CMGM
3 � 0:05ðx1 � 1Þ þ 0:05ðx3 � 1Þ;

CMGM
4 � 0:09ðx2 � 1Þ þ 0:04ðx3 � 1Þ; (3.15)

and for 1016 GeV,

CMGM
3 � 0:2ðx1 � 1Þ þ 0:8ðx3 � 1Þ;

CMGM
4 � 0:1ðx2 � 1Þ þ 0:1ðx3 � 1Þ: (3.16)

We stress that CMGM
3 and CMGM

4 are not independent of

CMGM
1 and CMGM

2 on the constraint subsurface defined by

fCi ¼ 0g. To reduce experimental errors, we can define

CMGM
5 � 19

5
CMGM
3 þ 11CMGM

4 ¼ 0; (3.17)

FIG. 3 (color online). Constrained x2 vs x3 GGM parameter space satisfying Eq. (3.4) and fulfilling the gauge coupling inequalities
given in Eqs. (2.13), (3.5), and (3.7) within 1� (blue/dark grey) or 2� (green/light grey) for a sample MGM spectrum with
M ¼ 1012 GeV and A ¼ 2B2 ¼ 0:8. Left panel: 1% uncertainty. Right panel: 5% uncertainty.
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which is again a function of IM12
and IM3

, similarly to

CGGM
5 . For a messenger scale of 105 GeV,

CMGM
5 � 0:19ðx1 � 1Þ þ 0:99ðx2 � 1Þ þ 0:63ðx3 � 1Þ;

(3.18)

and for 1016 GeV,

CMGM
5 � 0:76ðx1 � 1Þ þ 1:1ðx2 � 1Þ þ 4:14ðx3 � 1Þ:

(3.19)

Although CMGM
5 will prove to be quite a powerful dis-

criminator, the different constraint functions are sensitive
to different deviations from MGM, and so it is still useful
to apply all of the CMGM

i as well as the gauge coupling
bounds in Eq. (3.10). For example, CMGM

3 involves a square

that destroys sign information, so that for low x1 there
always exists an x3 that satisfies CMGM

3 ¼ 0. CMGM
2 , on

the other hand, clearly cannot be satisfied for sufficiently
low x1, because the first term can become larger than Ig3 .

Second, at large M, CMGM
3 and CMGM

5 lose sensitivity for

values of x3 < 1, which can be anticipated as follows. In
this region g3ðM0ÞMGM is less than g3ðMÞGGM. For high
messenger scales, the lower g3ðM0ÞMGM is then translated
via Ig3 into a reconstructed value of g1ðM0ÞMGM that is

increasingly closer to the Landau pole above the GUT
scale. Since CMGM

3 contains a positive power of the recon-

structed g1ðM0ÞMGM, the constraint is then violated signifi-
cantly; however, for constant fractional errors in the low-
scale masses, the experimental uncertainties grow even
faster (this is just the consequence of the fact that the
derivative of a function near a simple pole grows faster
than the function itself). As a result, CMGM

3 and CMGM
5 both

become ineffective in this region. On the other hand,
precisely because g3ðM0ÞMGM is less than g3ðMÞGGM, it
easily violates Eq. (3.10) when M is large. For these and
similar reasons, the constraints provide complementarity
to each other in different regions of parameter space.

Numerical analysis

We turn now to a numerical study of the constraints
and inequalities presented in the previous section. For
this purpose, we perform scans over GGM parameter space
for low and high values ofM. Since we are interested in the
case where ð�u � �dÞ is poorly known, and our constraint
functions are insensitive to �u and �d, we fix them to
constant values. We compute the soft spectrum at M and
evolve it down numerically to the TeV scale using the full
two-loop RGEs [52]. At the TeV scale we assign 5%
uncertainties to each soft mass and add errors in quadrature
to obtain final uncertainties on the constraint functions.
Although errors in the soft masses may be larger in prac-
tice, they are also likely to be highly correlated and may
experience cancellations. The simple approximation used
here is intended only to provide a qualitative picture of
the effectiveness of the RGI method for distinguishing
MGM from GGM.
As discussed previously, the simplicity of the IBr

RGIs

makes it unlikely that any sizable deviation from B1 ¼
B2 ¼ B3 � B will escape detection once the neutralino
spectrum is determined. The Ar-dependent constraints are
less straightforward, and so as an example we consider
deviations fromMGM that satisfy the universality of the Br

and the universality of the Ar, but not necessarily A ¼ 2B2.
In Fig. 4 we plot the scan points in the GGM subspace,

coloring them by the maximum number of standard devia-
tions by which Eq. (3.9), (3.10), or (3.17) is violated. We
present results forM ¼ 107 GeV andM ¼ 1015 GeV, and
restrict to a range 0:3< A, 2B2 < 3:0 TeV2 for illustration.
For these parameter choices, the low-scale soft masses
range from about 500–2000 GeV for the first generation
colored sfermions, 220–900 GeV for the slepton doublet,
110–650 GeV for the slepton singlet, 80–270 GeV for the
bino, and 400–1400 GeV for the gluino.
For x < 1, the sensitivity to displacements from x ¼ 1 is

stronger at large M and is governed by CMGM
1 , CMGM

2 , and

FIG. 4 (color online). Ability to rule out MGM in the presence of a deformation in the A direction in GGM parameter space. Left
panel: M ¼ 107 GeV. Right panelM ¼ 1015 GeV.
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g3ðM0ÞMGM, as discussed in the previous section. For x > 1
the dominant constraint comes from CMGM

5 . Displacements

at lower M are also controlled by CMGM
5 . The slight weak-

ening of the sensitivity towards the upper right in all plots
is due to the fact that a constant step size in A or 2B2

corresponds to a smaller deviation in x for larger values
of 2B2.

Note that the space of x � 1 models includes those that
are relevant for N > 1. If the only deviation from MGM is
in the number of messenger multiplets, then the sensitivity
reflected in Fig. 4 suggests that a constraint requiring N to
be an integer may be reasonably effective. However, we do
not investigate this possibility further in this work.

The sensitivity to other types of simple deviations can be
understood similarly. Variations purely in x1 for low scales
will be the most difficult to detect, as they are weakly felt
by CMGM

1 and CMGM
2 at both scales, while the dependence

of CMGM
5 on x1 indicates that it is more sensitive at higher

scales where g1ðMÞGGM is larger. Meanwhile the sensitivity
to pure x2 deviations is slightly stronger at low M where
the CMGM

5 constraint is more powerful.

While simple deviations are instructive, it is interesting
to consider more general displacements from MGM, par-
ticularly those that fall directly along the invariant line.
As stressed previously, a moderate probe of such cases is
offered by enforcing the inequalities in Eq. (3.10). To
estimate the power of the inequalities, in Fig. 5 we plot
the projection of the invariant line onto the ðx1; x3Þ and
ðx2; x3Þ planes for three values of the messenger scale,
coloring points according to whether or not an inequality
is violated outside of the error bars. For the estimation of
the uncertainties, we use a fixed spectrum near 500 GeV
and retain the 5% uncertainties. A more precise calculation
does not qualitatively alter the results. Since values of
x1;2 > 1 and x3 < 1 lead to reconstructed MGMmessenger

scales that are larger than the true M, for low M such

deviations are difficult to detect. On the other hand,
x1;2 < 1 and x3 > 1 easily violate the inequalities. At large
M the reverse holds since there is not a large margin for the
allowed overestimation of the scale.

IV. CONCLUSIONS

In this work we have shown that one-loop renormaliza-
tion group invariant quantities in the MSSM may be used
to study the structure and parameters of SUSY breaking,
even if only a subset of the soft breaking parameters can
be determined experimentally. Working in the specific
example of minimal gauge mediation, we found RGI
sum rules in the first generation and gaugino sectors that
may be used to make predictions for unknown soft masses.
We demonstrated that the measurement of one gaugino
mass and two first generation sfermion masses at the
LHC is sufficient to determine the rest of the first genera-
tion and gaugino spectrum in MGM models, three D-term
relations constraining the third generation and Higgs spec-
trum, and the high energy input parameters B, ð�u � �dÞ,
and the messenger scale. It is of particular interest that the
relevant RGIs are independent of the Higgs sector soft
parameters, the soft trilinear couplings, and all third gen-
eration soft masses, which may be more difficult to extract
from experimental data.
In the case that the first generation and gaugino masses

are known, we showed that the sum rules are sensitive to
most deviations into the broader parameter space of gen-
eral gauge mediation, including variations in the sfermion
mass parameters that are more complicated to assess
than those in the gaugino sector. However, the sum rules
cannot completely differentiate MGM from GGM. A one-
parameter subset of GGM models is consistent with the
same low energy first generation and gaugino spectrum as a
given MGM model, but is associated with different values

FIG. 5 (color online). GGM points that survive the constraints may still be distinguished from MGM by demanding that the
reconstructed MGM messenger scale is in a physically acceptable range. Here we plot the projections of the unconstrained points onto
the ðx1; x3Þ plane (left panel) and the ðx2; x3Þ plane (right panel), for values of the messenger scale of 107 GeV and 1015 GeV. Blue and
green (dark and light grey) points remain consistent with the MGM constraints within 2� after the application of the messenger scale
inequality; red (medium grey) points are outside the uncertainties.
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of ð�u � �dÞ and the messenger scale. Therefore, the GGM
models that survive the MGM constraints are limited by
the requirement that the reconstructed messenger scale lies
within an acceptable window.

It would be interesting to study the breakdown of the
degeneracy between MGM and GGM models in the third
generation and Higgs spectrum, as well as the determina-
tion of ð�u þ �dÞ in MGM models. Furthermore, it is of
great interest to investigate the complementarity between
the RGI method and the top-down approach to SUSY
parameter determination. In the event that a parameter
can be fixed via RGI relations, it can be restricted in a �2

fit, potentially improving the uncertainties from the fit.
Also omitted from our study is a full analysis of
other SUSY-breaking scenarios, including MGM with

N > 1 SUð5Þ representations of messenger particles.
We leave such work for the future.
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