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We unveil the general features of the phase diagram for any gauge theory with fermions transforming

according to distinct representations of the underlying gauge group, at the four-loop order. We classify and

analyze the zeros of the perturbative beta function and discover the existence of a rich phase diagram. The

anomalous dimension of the fermion masses, at the infrared stable fixed point, are presented. We show that

the infrared fixed point, and associated anomalous dimension, are well described by the all-orders beta

function for any theory. We also argue the possible existence, to all orders, of a nontrivial ultraviolet fixed

point for gauge theories at large number of flavors.
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Determining the phase structure of generic gauge theo-
ries of fundamental interactions is crucial in order to be
able to select relevant extensions of the standard model
of particle interactions [1]. In particular we are interested
in elucidating the physics of non-Abelian gauge theories
as function of the number of flavors, colors, and matter
representation.

To gain a quantitative analytic understanding of the
phase structure of different gauge theories we investigate
the zeros of the perturbative beta function to the maximum
known order and for one of the zeros also the limit of large
number of flavors to all orders.

I. ZEROLOGY

We consider the perturbative expression of the beta
function and the fermion mass anomalous dimension for
a generic gauge theory with only fermionic matter in the

MS scheme to four loops which was derived in [2,3],

da

d ln�2 ¼ �ðaÞ

¼ ��0a
2 � �1a

3 � �2a
4 � �3a

5 þOða6Þ; (1)

� d lnm

d ln�2
¼ �ðaÞ

2

¼ �0aþ �1a
2 þ �2a

3 þ �3a
4 þOða5Þ; (2)

where m ¼ mð�2Þ is the renormalized (running) fermion

mass and � is the renormalization point in theMS scheme
and a ¼ �=4� ¼ g2=16�2, where g ¼ gð�2Þ is the renor-
malized coupling constant of the theory.

The explicit expression of the coefficients above are
reported in the Appendix for completeness. Note also
that the beta function is gauge independent, order by order
in perturbation theory [2]. The same also holds for the
anomalous dimension of the fermion mass �.

Here we investigate the structure of the zeros of the four-
loop beta function for any matter representation and gauge
group. Interestingly we find a universal classification of
the behavior of the zeros as a function of the number of
flavors nf.

The first observation is that, due to the fact that the beta
function is a polynomial of degree five in �, there are five
complex zeros. Since one can factor out �2, the beta
function will always have a double zero at the origin.
The other three zeros determine the interesting properties
of the theory, to this loop order. In the following we will
focus on these three zeros which can be either all real or
one real and two complex.
To elucidate the landscape of possible topologies we plot

the real nontrivial zeros as a function of the number of flavors
normalized to the one above which asymptotic freedom is
lost ( �nf) inFig. 1. Solid lines correspond to the location of the

ultraviolet (UV) zeros (in black) and infrared (IR) stable
fixed points (in gray/red). The shaded areas denote the re-
gions where the beta function is positive. We have rescaled
the vertical axis using the function a� ¼ 2 arctanð5aÞ=�,
mapping ½�1;þ1� into the interval ½�1; 1�.
The best way to read these figures is to imagine a straight

vertical line corresponding to a fixed value of nf. The

intersection of this line with the solid curve determines
the number of the zeros, the color of the curves, the type of
zeros (if gray/red is IR and if black is UV), and finally the
corresponding horizontal value is the coupling location.
We term the landscape of the zeros the zerology.
We investigate also the negative values of � since this is

the most natural mathematical setting. In fact, the proper-
ties of the pure Yang-Mills theory at negative � have
already been studied on the lattice by Li and Meurice in
[4]. There the authors have shown interesting relations
between the positive and negative regions of �.
The beta function to the order we are considering might

lead to several types of distinct topologies representing the
zerology of the theory under investigation. The types and
numbers of inequivalent topologies depend on the gauge
group and matter representation. To our surprise, and by
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explicit enumeration, we discovered that it is possible to
identify just four distinct topologies which are able to fully
represent the entire zerology for any gauge group and
matter representation. These are reported in Fig. 1.

We start by summarizing a number of general features
that we have identified:

(i) At small number of flavors there is only a negative
ultraviolet zero.

(ii) At around and above �nf we observe the existence of

three zeros, two ultraviolets and one infrared. The
infrared one, near �nf, is the Banks-Zaks [5] point.

Above �nf, the IR fixed point is now at a negative

value of � and at a new critical number of flavors
collides with the UV fixed point zero at a negative
value of the coupling, forming a double zero. At this
point the beta function is positive for any negative
alpha.

(iii) At very large number of flavors the UV fixed point,
for positive values of alpha, always exists and

approaches zero asymptotically as n�2=3
f . The ex-

plicit derivation is provided in Sec. III.
(iv) By increasing nf from zero there is always a critical

number of flavors above which an IR fixed point
emerges for positive �.

The distinguishing feature of different topologies is how
the zeros merge or disappear as function of nf.

Topology A [Fig. 1(a)] is characterized by the fact that
the zeros always remain at finite values of the coupling.
This means that when a zero disappears it has to annihilate
with another one. This happens at two distinct locations.
One at a positive value of the coupling and the other at a
negative one occurring after asymptotic freedom is lost.
In topology B, represented in Fig. 1(a), as for the pre-

vious case, we still observe the merging of the IR and UV
zeros at two different numbers of flavors. In this case,
however, there is a region in the number of flavors, where
the UV fixed point located at positive couplings reaches

FIG. 1 (color online). The four different topologies displayed classify the entire zerology landscape. We show, in each plot, the
regions of positive (gray) and negative (white) values of the beta function for different gauge theories. The solid lines, per each figure,
are the locations of the zeros of the beta functions. The lines of UV fixed points are in black while the IR ones in gray/red. We have
defined a� ¼ 2

� arctanð5aÞ. The vertical dashed lines correspond to the location where one zero approaches infinity.
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infinity at finite nf and appears on the negative axis as an

IR fixed point. The region where the new IR fixed point
appears (on the negative coupling constant axis) ends
before asymptotic freedom is lost.

The defining feature shown in Fig. 1(c) for topology C
is the appearance of two more merging points at negative
values of �.

In Fig. 1(d), topology D, one observes that the IR zero at
a positive value of the coupling reaches infinity at a finite
value of the number of flavors, which is the distinctive
feature of this topology.

A new feature at the four-loop order is that two positive
nontrivial zeros, one IR and the other UV, can emerge
simultaneously and can annihilate at a particular value of
nf. At the two-loop level this feature does not exist and, in

particular, no nontrivial ultraviolet fixed point is seen.
As an example where these topologies arise we consider

SUðNÞ with fundamental fermions as a function of N.
For N ¼ 2 and 3, topology A occurs. Increasing N the
maximum value reached by the positive UV zero increases
and for N ¼ 4 it reaches infinity and therefore it enters
topology B. Increasing N further the local maximum of the
IR negative zero-curve increases till it pinches the UV
negative zero line for N ¼ 11 entering topology C.
Topology D is not realized in this case. On the other
hand any SUðNÞ gauge theory with N � 2 fermions and
fermions in the adjoint representation lead to topology D.

In Table I we catalog the four-loop zerology for SUðNÞ,
SOðNÞ, and SPð2NÞ gauge theories with fermions trans-
forming according to the fundamental and the two-index
representations.

II. CONFORMALWINDOW

The conformal window is defined as the region in
theory space, as a function of number of flavors and colors,
where the underlying gauge theory displays large distance
conformality for a positive value of the coupling �. �nf

constitutes the upper boundary of the conformal window
and the lower boundary here is estimated by identifying for
which number of flavors the theory loses the infrared fixed
point at a given number of colors. Because of the fact that
we are using a truncated beta function the true window will
be quantitatively different.
We summarize the results for the SUðNÞ gauge groups

in Fig. 2 for the fundamental, two-index symmetric,
two-index antisymmetric, and adjoint representation. The
conformal window at the four-loop level is considerably
wider, for any representation, when compared with the
Schwinger-Dyson results [6,7] or the one obtained using
the critical number of flavors where the free energy
changes sign, as suggested in [8]. For completeness we

TABLE I. Catalog of the four-loop zerology for SUðNÞ, SOðNÞ, and SPð2NÞ gauge theories
with fermions transforming according to the fundamental and the two-index representations.

Representation Topology A Topology B Topology C Topology D

SUðNÞ
Fundamental N ¼ 2, 3 4 � N � 11 N � 12
Adjoint N � 2
2-symmetric N � 2
2-antisymmetric N ¼ 3, 4, 5 N ¼ 6, 7 8 � N � 26 N � 27
SOðNÞ
Fundamental N � 6 N ¼ 5 N ¼ 3, 4
Adjoint N � 3
2-symmetric N � 3
SPð2NÞ
Fundamental N ¼ 1, 2 3 � N � 4 N � 5
Adjoint N � 1
2-antisymmetric N ¼ 3, 4 N ¼ 2, 5 6 � N � 14 N � 15
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FIG. 2 (color online). Conformal window for SUðNÞ groups
for the fundamental representation (upper, light blue), two-index
antisymmetric (next to the highest, light green), two-index
symmetric (third window from the top, light-brown) and finally
the adjoint representation (bottom, light pink). The lower bound-
ary corresponds to the point where the infrared fixed point
disappears at four loops. The solid thick lines correspond to
the number of flavors for which the all-orders beta function
predicts an anomalous dimension equal to unity.
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also show the conformal window for the orthogonal and
symplectic gauge groups, respectively, in Figs. 3 and 4.
There is a universal trend toward the widening of the
conformal regions with respect to earlier estimates using
other nonperturbative methods.

A. All-orders beta function comparison

We have recently demonstrated the existence of a
scheme in which the all-orders beta function is [9]

�ðaÞ
a

¼ �a

3

11CA � 2TFnfð2þ �F�Þ
1� 2a 17

11CA

; (3)

with

�F ¼ 1þ 7

11

CA

CF

: (4)

This form of the beta function is similar in spirit to the
one advocated in [10]. The scheme-independent analytical
expression of the anomalous dimension of the mass at the
IR positive zero is1

� ¼ 11CA � 4TFnf

2nfTFð1þ 7
11

CA

CF
Þ : (5)

We plot, for reference, in Figs. 2–4 the lines corresponding
to this anomalous dimension equal to unity. These are the
solid thick curves for the different representations. These
lines could be viewed as the lower boundary of the con-
formal window under the assumption that this boundary
corresponds to the anomalous dimension being equal to 1.
The sizes of these regions are consistent with the ones
derived via gauge dualities in [12,13]. Gauge duals have
also been employed in [14,15] to compute important physi-
cal correlators such as the conformal S parameter [16].

B. Four-loop anomalous dimensions

For illustration, we plot in Fig. 5 the anomalous dimen-
sion of the mass for the SUð3Þ gauge theory, as a function
of the number of fundamental flavors, at the IR positive
zero. The three solid lines correspond, respectively, from
top to bottom, to the two-, three-, and four-loop results.
Perturbation theory is reliable only in a small range of
flavors near �nf. A similar behavior is observed for any

other gauge group, matter representation, and different
number of colors. We note that the perturbative analysis
of the anomalous dimension appeared in [17], while this
paper was being completed. There it has also been noted
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FIG. 3 (color online). Conformal window for SOðNÞ groups
for the fundamental representation (upper, light blue), two-index
antisymmetric [which is the adjoint and second from the top
(pink region)], and two-index symmetric (bottom window in
light-brown).
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FIG. 4 (color online). Conformal window for SPð2NÞ groups
for the fundamental representation (upper, light blue), two-index
antisymmetric (next to the highest, light-green), and two-index
symmetric, i.e. the adjoint, (bottom window in light-pink).
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FIG. 5 (color online). Anomalous dimension of the mass, at
the infrared fixed point, for SUð3Þ as function of the number of
fundamental flavors at two loops (upper brown curve), three
loops (second curve from the top in magenta), all-orders (dashed
curve in black), and four loops (bottom curve in blue).

1The same anomalous dimension was introduced in [11]
motivated by the AdS/QCD correspondence.
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that the anomalous dimension, to this order in perturbation
theory, is smaller than for the three- and two-loop case.

Having at hand an all-order scheme-independent result,
we compare it with the perturbative one. The dashed line,
in Fig. 5, is the all-order anomalous dimension from (5).
It is striking that the all-order result is much more well
behaved than the four-loop predictions which, in this ex-
ample, reach large and negative values long before losing
the IR positive zero.

Because of the phenomenological interest in models
of minimal walking technicolor [6,18,19] we report the
anomalous dimension at the fixed point also for the SUð2Þ
gauge theory with two-adjoint fermions in Fig. 6. These
theories are being subject to intensive numerical investi-
gations via lattice simulations [20–44].

III. ASYMPTOTIC SAFETYAT LARGE nf

To the four-loop order a positive UV zero appears for a
sufficiently large number of flavors. We have already ob-
served that the value of the zero as a function of the number

of flavors decreases monotonically as n�2=3
f at four loops.

In fact, it is possible to generalize this behavior to any finite
order in perturbation theory. Consider the equation for the
zeros of the beta function in which the leading powers in
the number of flavors are made explicit,

b0nf þ
X1

k¼1

bkn
k
f�

k ¼ 0; (6)

where b0 ¼ �0=nf and bk ¼ �k=n
k
f. We used the fact that

the first and second coefficient of the beta function are
linear in the number of flavors and, in general, the succes-
sive coefficients have one extra power of nf [45].

Therefore the coefficients bk are finite at a large number
of flavors.

We define

x ¼ nf�; (7)

and the equation at any fixed perturbative order P reads

b0nf þ
XP

k¼1

bkx
k ¼ 0: (8)

At large nf the solution approaches

x ¼
�
�b0nf

bP

�
1=P ! � ¼

�
� b0
bP

�
1=P

nð1�PÞ=P
f : (9)

There are P complex solutions for x lying on a circle in the
complex plane. A positive solution exists only if bP is
positive at large nf. This is indeed the case, at the four-

loop order, for any gauge theory showing that the UV

positive zero vanishes as n�2=3
f . If this UV zero persists

to higher orders its location will change although it will
vanish faster as a function of nf when increasing P, i.e. the

exponent ð1� PÞ=P increases in absolute value. The case

n�2=3
f is recovered for P ¼ 3.

Interestingly it is possible to sum exactly the perturba-
tive infinite sum for the beta function, at a large of number
of flavors, given that the leading coefficients are known.
The result is

3

4nfTF

�ðaÞ
a2

¼ 1þHðxÞ
nf

þOðn�2
f Þ: (10)

The explicit form of HðxÞ can be found in [45]. The
important feature, here, is that HðxÞ possesses a negative
singularity at x ¼ 3�=TF. This demonstrates that there
always is a solution for the existence of a nontrivial UV
fixed point at the leading order in nf for the following

positive value of the coupling:

�UV ¼ 3�

TFnf
: (11)

The function HðxÞ has also other singularities which might
signal the presence of new zeros which we will not con-
sider here, but that would be worth exploring.
Higher order terms in n�1

f can, in principle, modify the

result if the singularity structure is such to remove or
modify its location.
A more complete discussion of the singularity structure

of the coefficients of the n�1
f expansion has appeared in

[45] also for QED. It seems plausible that the smallest UV
fixed point is an all-orders feature.

IV. CONCLUSIONS

We presented the general features of the phase diagram
for any gauge theory with fermions transforming according
to distinct representations of the underlying gauge group,
at the four-loop order. The topology of the zeros of the
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FIG. 6 (color online). Anomalous dimension of the mass, at
the infrared fixed point, for SUð2Þ as function of the number of
adjoint Dirac flavors at two loops (upper green curve), three
loops (second curve from the top), four loops (third curve, in
blue), and all-orders (dashed curve in black).
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perturbative beta function has been investigated. We dis-
covered that only four distinct topologies are sufficient to
classify the gauge dynamics of any theory.

At the IR stable fixed point, for positive values of the �
coupling, we computed the anomalous dimensions. We
have also shown that these are well described by the all-
orders beta function for any theory.

Finally, by investigating the large nf limit we argued the

possible existence, to all orders, of a nontrivial UV fixed
point for any non-Abelian gauge theory at a large number
of flavors.
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APPENDIX: GROUP FACTORS AND
PERTURBATIVE COEFFICIENTS

The four-loop beta function coefficients are [2]

�0 ¼ 11

3
CA � 4

3
TFnf;

�1 ¼ 34

3
C2
A � 4CFTFnf � 20

3
CATFnf;

�2 ¼ 2857

54
C3
A þ 2C2

FTFnf � 205

9
CFCATFnf � 1415

27
C2
ATFnf þ 44

9
CFT

2
Fn

2
f þ

158

27
CAT

2
Fn

2
f;

�3 ¼ C4
A

�
150 653

486
� 44

9
�3

�
þ C3

ATFnf

�
� 39 143

81
þ 136

3
�3

�
þ C2

ACFTFnf

�
7073

243
� 656

9
�3

�

þ CAC
2
FTFnf

�
� 4204

27
þ 352

9
�3

�
þ 46C3

FTFnf þ C2
AT

2
Fn

2
f

�
7930

81
þ 224

9
�3

�
þ C2

FT
2
Fn

2
f

�
1352

27
� 704

9
�3

�

þ CACFT
2
Fn

2
f

�
17 152

243
þ 448

9
�3

�
þ 424

243
CAT

3
Fn

3
f þ

1232

243
CFT

3
Fn

3
f þ

dabcdA dabcdA

NA

�
� 80

9
þ 704

3
�3

�

þ nf
dabcdF dabcdA

NA

�
512

9
� 1664

3
�3

�
þ n2f

dabcdF dabcdF

NA

�
� 704

9
þ 512

3
�3

�
: (A1)

TABLE II. Relevant group factors for SUðNÞ, SOðNÞ and SPð2NÞ.
Representation NF TF CF dabcdF dabcdA =NF dabcdF dabcdF =NF

SUðNÞ
Fundamental N 1

2
N2�1
2N

1
48 ðN � 1ÞðN þ 1ÞðN2 þ 6Þ ðN�1ÞðNþ1ÞðN4�6N2þ18Þ

96N3

Adjoint N2 � 1 N N 1
24N

2ðN þ 36Þ 1
4N

2ðN2 þ 36Þ
2-symmetric 1

2NðN þ 1Þ Nþ2
2 N � 2

N þ 1 1
24 ðN � 1ÞðN þ 2ÞðN2 þ 6N þ 24Þ ðN�1ÞðNþ2ÞðN5�14N4þ72N3�48N2�288Nþ576Þ

48N3

2-antisymmetric 1
2 ðN � 1ÞN N�2

2 N � 2
N � 1 1

24 ðN � 2ÞðN þ 1ÞðN2 � 6N þ 24Þ ðN�2ÞðNþ1ÞðN5þ14N4þ72N3þ48N2�288N�576Þ
48N3

SOðNÞ
Fundamental N 1 N�1

2
ðN�1ÞðN5�10N4þ315N3�1250N2þ1840N�1408Þ

384ðN2�Nþ4Þ
ðN�1ÞðN4�2N3þ107N2�106Nþ128Þ

384ðN2�Nþ4Þ

Adjoint 1
2 ðN � 1ÞN N � 2 N � 2 N6�185N5þ875N4�6170N3þ17600N2�25728Nþ18944

192ðN2�Nþ4Þ
N6�18N5þ875N4�6170N3þ17600N2�25728Nþ18944

192ðN2�Nþ4Þ

2-symmetric 1
2 ðN2 þ N � 2Þ N þ 2 N NðN5�4N4þ723N3�2576N2þ2752N�1792Þ

192ðN2�Nþ4Þ
NðN5þ12N4787N3þ1824N2þ1344Nþ3328Þ

192ðN2�Nþ4Þ
SPð2NÞ
Fundamental 2N 1

2
1
2 ð2N þ 1Þ ð2Nþ1Þð4N5þ20N4þ15N3�50N2þ10Nþ101Þ

96ð2N2þNþ2Þ
ð2Nþ1Þð8N4þ8N3�26N2�14Nþ49Þ

384ð2N2þNþ2Þ

Adjoint Nð2N þ 1Þ N þ 1 N þ 1 4N6þ36N5þ125N4þ85N3�100N2þ216Nþ434
24ð2N2þNþ2Þ

4N6þ36N5þ125N4þ85N3�100N2þ216Nþ434
24ð2N2þNþ2Þ

2-antisymmetric Nð2N � 1Þ � 1 N � 1 N Nð4N5þ8N4�27N3�62N2þ238Nþ374Þ
24ð2N2þNþ2Þ

Nð4N5�24N4þ37N3þ138N2þ6N�386Þ
24ð2N2þNþ2Þ
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Here �x is the Riemann zeta function evaluated at x, Ta
F

with a ¼ 1; . . . ; NF are the generators for a generic repre-
sentation F with dimension NF. The generators are nor-
malized via trðTa

FT
b
FÞ ¼ TF�

ab and the quadratic Casimirs
are ½Ta

FT
a
F�ij ¼ CF�ij. The subscript A refers to the adjoint

representation in the formulas in the text. Here the number
of fermions is indicated by nf.

The symbols dabcdF are the fourth-order group invariants
expressed in terms of contractions between the following
fully symmetrical tensors:

dabcdF ¼ 1

6
Tr½Ta

FT
b
FT

c
FT

d
F þ Ta

FT
b
FT

d
FT

c
F þ Ta

FT
c
FT

b
FT

d
F

þ Ta
FT

c
FT

d
FT

b
F þ Ta

FT
d
FT

b
FT

c
F þ Ta

FT
d
FT

c
FT

b
F�:
(A2)

For readers’ convenience we provide in Table II the rele-
vant group factors.
The coefficients of the anomalous dimension to four-

loops are [3]

�0 ¼ 3CF

�1 ¼ 3

2
C2
F þ 97

6
CFCA � 10

3
CFTFnf

�2 ¼ 129

2
C3
F � 129

4
C2
FCA þ 11 413

108
CFC

2
A þ C2

FTFnfð�46þ 48�3Þ þ CFCATFnf

�
� 556

27
� 48�3

�
� 140

27
CFT

2
Fn

2
f

�3 ¼ C4
F

�
� 1261

8
� 336�3

�
þ C3

FCA

�
15 349

12
þ 316�3

�
þ C2

FC
2
A

�
� 34 045

36
� 152�3 þ 440�5

�

þ CFC
3
A

�
70 055

72
þ 1418

9
�3 � 440�5

�
þ C3

FTFnf

�
� 280

3
þ 552�3 � 480�5

�
þ C2

FCATFnf

�
� 8819

27
þ 368�3

� 264�4 þ 80�5

�
þ CFC

2
ATFnf

�
� 65 459

162
� 2684

3
�3 þ 264�4 þ 400�5

�
þ C2

FT
2
Fn

2
f

�
304

27
� 160�3 þ 96�4

�

þ CFCAT
2
Fn

2
f

�
1342

81
þ 160�3 � 96�4

�
þ CFT

3
Fn

3
f

�
� 664

81
þ 128

9
�3

�
þ dabcdF dabcdA

NF

ð�32þ 240�3Þ

þ nf
dabcdF dabcdF

NF

ð64� 480�3Þ: (A3)

The results of (A1) and (A3) are valid for an arbitrary semisimple compact Lie group. The result for QED [i.e. the group
U(1)] is included in Eq. (A3) by substituting CA ¼ 0, dabcdA ¼ 0, CF ¼ 1, TF ¼ 1, ðdabcdF Þ2 ¼ 1, NF ¼ 1.

These coefficients were obtained in an arbitrary covariant gauge for the gluon field and are gauge independent.
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