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We investigate the conditions on the Higgs sector that allow supersymmetric SOð10Þ grand unified

theories to break spontaneously to the standard electroweak model at the renormalizable level. If one

considers Higgs representations of dimension up to the adjoint, a supersymmetric standard model vacuum

requires, in most cases, the presence of nonrenormalizable operators. The active role of Planck-induced

nonrenormalizable operators in the breaking of the gauge symmetry introduces a hierarchy in the mass

spectrum at the grand unified theory scale that may be an issue for gauge unification and proton decay. We

show that the minimal Higgs scenario that allows for a renormalizable breaking to the standard model is

obtained by considering flipped SOð10Þ �Uð1Þ with one adjoint (45H) and two pairs of 16H � 16H Higgs

representations. We consider a nonanomalous matter content and discuss the embedding of the model in

an E6 grand unified scenario just above the flipped SOð10Þ scale.
DOI: 10.1103/PhysRevD.83.035002 PACS numbers: 12.10.�g, 12.15.Ff, 12.60.Jv

I. INTRODUCTION

It has been shown recently [1,2] that quantum effects
solve the long-standing issue [3] of the incompatibility
between the dynamics of the simplest Higgs sectors in the
renormalizable nonsupersymmetric SOð10Þ grand unified
theory (GUT) and the gauge unification constraints. In
particular, such minimal grand unified scenarios not only
support viable SOð10Þ breaking patterns passing through
intermediate SUð4ÞC � SUð2ÞL �Uð1ÞR or SUð3Þc �
SUð2ÞL � SUð2ÞR �Uð1ÞB�L gauge symmetries [or their
SUð3Þc � SUð2ÞL �Uð1ÞR �Uð1ÞB�L intersection], but
they also include all the ingredients necessary for a poten-
tially realistic description of the standard model (SM)
flavor structure.

On the other hand, the simplest scenario featuring the
Higgs scalars in 10H � 16H � 45H of SOð10Þ fails when
addressing the neutrino spectrum: in nonsupersymmetric
models, the B� L breaking scale MB�L turns out to be
generally a few orders of magnitude below the GUT scale
MG. Thus, the scale of the right-handed (RH) neutrino
masses MN �M2

B�L=MP emerging first at the d ¼ 5 level
from an operator of the form 162Fð16�HÞ2=MP (with MP

typically identified with the Planck scale) undershoots by
orders of magnitude the range of about 1012 to 1014 GeV
naturally suggested by the seesaw mechanism. The same
effective result is obtained in the nonsupersymmetric case
within the radiative seesaw scheme [4].

This issue can be somewhat alleviated by considering
126H in place of 16H in the Higgs sector, since in such a

case the neutrino masses can be generated at the renorma-
lizable level by the term 162F126

�
H. This lifts the problem-

atic MB�L=MP suppression factor inherent to the d ¼ 5
effective mass and yields MN �MB�L, which might be, at
least in principle, acceptable. This scenario, though con-
ceptually simple, cf. [2], involves a detailed one-loop
analysis of the scalar potential governing the dynamics of
the 10H � 126H � 45H Higgs sector that, to our knowl-
edge, still remains to be done.
Invoking TeV-scale supersymmetry (SUSY), the quali-

tative picture changes dramatically. Indeed, the gauge run-
ning within the MSSM prefers MB�L in the proximity of
MG and, hence, the Planck-suppressed d ¼ 5 RH neutrino

mass operator 162F16
2
H=MP, available whenever 16H � 16H

is present in the Higgs sector, can naturally reproduce the

desired range for MN . Let us recall that both 16H and 16H
are required in order to retain SUSY below the GUT scale.
On the other hand, it is well known [5–7] that the relevant

superpotential does not support, at the renormalizable level,
a supersymmetric breakingof theSOð10Þgaugegroup to the
SM. This is due to the constraints on the vacuum manifold
imposed by the F- and D-flatness conditions which, apart
from linking the magnitudes of the SUð5Þ-singlet 16H and

16H vacuum expectation values (VEVs), make the adjoint

VEV h45Hi aligned with h16H16Hi. As a consequence, an
SUð5Þ subgroup of the initial SOð10Þ gauge symmetry
remains unbroken. In this respect, a renormalizable Higgs

sectorwith126H � 126H in place of16H � 16H suffers from

the same ‘‘SUð5Þ lock,’’ because also in 126H the SM-
singlet direction is SUð5Þ invariant.
This issue can be addressed by giving up renormaliz-

ability. However, this option may be rather problematic
since it introduces a delicate interplay between physics
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at two different scales, MG � MP, with the consequence
of splitting the GUT-scale thresholds over several orders of
magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and may force the
B� L scale below the GUT scale. The latter is harmful for

the setting with 16H � 16H relying on a d ¼ 5 RH neutrino

mass operator. The models with 126H � 126H are also
prone to trouble with gauge unification, due to the number
of large Higgs multiplets spread around the GUT scale.

Thus, in none of the cases above does the simplest con-
ceivable SOð10Þ Higgs sector, spanned over the smallest
irreducible representations (up to the adjoint), offer a natu-
ral scenario for realistic model building. Since the option of
a simple GUT-scale Higgs dynamics involving small rep-
resentations governed by a simple renormalizable super-
potential is particularly attractive, we aimed at studying the
conditions under which the seemingly ubiquitous SUð5Þ
lock can be overcome, while keeping only spinorial and
adjoint SOð10Þ representations.

Let us emphasize that the assumption that the gauge
symmetry breaking is driven by the renormalizable part of
the Higgs superpotential does not clash with the fact that, in

models with 16H � 16H, the neutrino masses are generated
at the nonrenormalizable level, and other fermions may be
sensitive to physics beyond the GUT scale. As far as sym-
metry breaking is concerned, Planck-induced d � 5 effec-
tive interactions are irrelevant perturbations in this picture.

The simplest attempt to break the SUð5Þ lock by dou-

bling either 16H � 16H or 45H in order to relax the
F-flatness constraints is easily shown not to work. In the
former case, there is only one SM-singlet field direction

associated with each of the 16H � 16H pairs. Thus, F flat-
ness makes the VEVs in 45H align along this direction

regardless of the number of 16H � 16H ’s contributing to
the relevant F term, @W=@45H (see, for instance, Eq. (6) in
Ref. [7]). Doubling the number of 45H ’s does not help
either. Since there is no mixing among the 45’s besides the
mass term, F flatness aligns both h45Hi’s in the SUð5Þ
direction of 16H � 16H. For three (and more) adjoints a
mixing term of the form 451452453 is allowed, but it turns
out to be irrelevant to the minimization so that the align-
ment is maintained.

From this brief excursus onemight conclude that, as far as
theHiggs content is considered, the price for tractability and
predictivity is high on SUSY SOð10Þmodels, as the desired
group-theoretical simplicity of the Higgs sector, with
representations up to the adjoint, appears to be nonviable.

In this paper, we point out that all these issues are
alleviated if one considers a flipped variant of the SUSY
SOð10Þ unification. In particular, we shall show that the
flipped SOð10Þ �Uð1Þ scenario [8–10] offers an attractive
option to break the gauge symmetry to the SM at the
renormalizable level by means of a quite simple Higgs

sector, namely, a couple of SOð10Þ spinors 161;2 � 161;2
and one adjoint 45H.

Within the extended SOð10Þ �Uð1Þ gauge algebra, one
finds, in general, three inequivalent embeddings of the SM
hypercharge. In addition to the two solutions with the
hypercharge stretching over the SUð5Þ or the SUð5Þ �
Uð1Þ subgroups of SOð10Þ [respectively dubbed as the
‘‘standard’’ and ‘‘flipped’’ SUð5Þ embeddings], there is a
third, flipped SOð10Þ, solution inherent to the SOð10Þ �
Uð1Þ case, with a nontrivial projection of the SM hyper-
charge onto the Uð1Þ factor.
While the difference between the standard and the

flipped SUð5Þ embeddings is semantical from the SOð10Þ
point of view, the flipped SOð10Þ case is qualitatively
different. In particular, the symmetry-breaking ‘‘power’’
of the SOð10Þ spinor and adjoint representations is boosted
with respect to the standard SOð10Þ case, increasing the
number of SM-singlet fields that may acquire nonvanishing
VEVs. Technically, flipping allows for a pair of SM sin-

glets in each of the 16H and 16H ‘‘Weyl’’ spinors, together
with four SM singlets within 45H. This is at the root of the
possibility of implementing the gauge symmetry breaking
by means of a simple renormalizable Higgs sector. Let us
just remark that, if renormalizability is not required, the
breaking can be realized without the adjoint Higgs field;
see, for instance, the flipped SOð10Þ model with an addi-
tional anomalous Uð1Þ of Ref. [11].
Nevertheless, flipping is not per se sufficient to cure the

SUð5Þ lock of standard SOð10Þ with 16H � 16H � 45H in
the Higgs sector. Indeed, the adjoint does not reduce the
rank, and the bispinor, in spite of the two qualitatively
different SM singlets involved, can lower it only by a single
unit, leaving a residual SUð5Þ �Uð1Þ symmetry [the two
SM-singlet directions in the 16H still retain an SUð5Þ
algebra as a little group]. Only when two sets of 16H �
16H (interacting via 45H) are introduced, the two pairs of
SM-singlet VEVs in the spinor multiplets are not generally
aligned and the little group is reduced to the SM.
Thus, the simplest renormalizable SUSY Higgs model

that can provide the spontaneous breaking of the SOð10Þ
GUT symmetry to the SM by means of Higgs representa-
tions not larger than the adjoint is the flipped SOð10Þ �
Uð1Þ scenario with two copies of the 16 � 16 bi-spinor
supplemented by the adjoint 45. Notice further that in the
flipped embedding the spinor representations also include
weak doublets that may trigger the electroweak symmetry
breaking and allow for renormalizable Yukawa interactions
with the chiral matter fields distributed in the flipped
embedding over 16 � 10 � 1.
Remarkably, the basics of the mechanism we advo-

cate can be embedded in an underlying nonrenormalizable

E6 Higgs model featuring a pair of 27H � 27H and the
adjoint 78H.
Technical similarities apart, there is, however, a crucial

difference between the SOð10Þ �Uð1Þ and E6 scenarios,
which is related to the fact that the Lie algebra of E6 is
larger than that of SOð10Þ �Uð1Þ. It has been shown long
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ago [12] that the renormalizable SUSY E6 Higgs model

spanned on a single copy of 27H � 27H � 78H leaves an

SOð10Þ symmetry unbroken. Two pairs of 27H � 27H are
needed to reduce the rank by two units. In spite of the fact
that the two SM-singlet directions in the 27H are exactly
those of the flipped 16H, the little group of the SM-singlet

directions h27H � 27Hi and h78Hi remains at the renorma-
lizable level SUð5Þ, as we will explicitly show.

Adding NR adjoint interactions allows for a disentan-
glement of the h78Hi, such that the little group is reduced to
the SM. Since a one-step E6 breaking is phenomenologi-
cally problematic as mentioned earlier, we argue for a two-
step breaking, via flipped SOð10Þ �Uð1Þ, with the E6 scale
near the Planck scale.

In summary, we make the case for an anomaly-free
flipped SOð10Þ �Uð1Þ partial unification scenario. We
provide a detailed discussion of the symmetry-breaking
pattern obtained within the minimal flipped SOð10Þ
SUSY Higgs model and consider its possible E6 embed-
ding. We finally present an elementary discussion of the
flavor structure offered by these settings.

II. THE GUT-SCALE LITTLE HIERARCHY

In supersymmetric SOð10Þ models with just 45H �
16H � 16H governing the GUT breaking, one way to obtain
the misalignment between the adjoint and the spinors is by
invoking new physics at the Planck scale, parametrized in a
model-independent way by a tower of effective operators
suppressed by powers of MP.

What we call the ‘‘GUT-scale little hierarchy’’ is the
hierarchy induced in the GUT spectrum by MG=MP sup-
pressed effective operators, which may split the GUT-scale
thresholds over several orders of magnitude. In turn, this
may be highly problematic for proton stability and the
gauge unification in low-energy SUSY scenarios (as dis-
cussed, for instance, in Ref. [13]). It may also jeopardize
the neutrino mass generation in the seesaw scheme. We
briefly review the relevant issues here.

A. Proton decay and effective neutrino masses

In Ref. [14] the emphasis is set on a class of neutrino-
mass-related operators which turns out to be particularly
dangerous for proton stability in scenarios with a non-
renormalizable GUT-breaking sector. The relevant interac-
tions can be schematically written as

WY � 1

MP

16Fg16F16H16H þ 1

MP

16Ff16F16H16H

� vR

MP

ðQgL �T þQfQTÞ; (1)

where g and f are matrices in the family space, vR 	
jh16Hij ¼ jh16Hij, and T ( �T) is the color triplet (antitriplet)

contained in the 16H (16H). Integrating out the color
triplets, whose mass term is labeled MT , one obtains the

following effective superpotential involving fields belong-
ing to SUð2ÞL doublets,

WL
eff ¼

v2
R

M2
PMT

ðuTFd0ÞðuTGV 0‘� d0TGV 0�0Þ; (2)

where u and ‘ denote the physical left-handed up-quarks
and charged lepton superfields in the basis in which neutral
gaugino interactions are flavor diagonal. The d0 and �0
fields are related to the physical down-quark and light
neutrino fields d and � by d0 ¼ VCKMd and �0 ¼
VPMNS�. In turn, V

0 ¼ Vy
u V‘, where Vu and V‘ diagonalize

the left-handed up-quark and charged lepton mass matri-
ces, respectively. The 3
 3 matrices ðG;FÞ are given by
ðG;FÞ ¼ VT

u ðg; fÞVu.
By exploiting the correlations between the g and f

matrices and the matter masses and mixings and by taking
into account the uncertainties related to the low-energy
SUSY spectrum, the GUT thresholds, and the hadronic
matrix elements, the authors of Ref. [14] argue that the
effective operators in Eq. (2) lead to a proton lifetime

��1ð ��KþÞ � ð0:6–3Þ 
 1033 yrs; (3)

at the verge of the current experimental lower bound of
0:67
 1033 yrs [15]. In obtaining Eq. (3) the authors
assume that the color triplet masses cluster about the
GUT scale, MT � h16Hi � h45Hi 	 MG. On the other
hand, in scenarios where at the renormalizable level
SOð10Þ is broken to SUð5Þ and the residual SUð5Þ sym-
metry is broken to SM by means of nonrenormalizable
operators, the effective scale of the SUð5Þ breaking physics
is typically suppressed by h16Hi=MP or h45Hi=MP with
respect to MG. As a consequence, the SUð5Þ part of the
colored triplet Higgsino spectrum is effectively pulled
down to the M2

G=MP scale, clashing with proton stability.

B. GUT-scale thresholds and one-step unification

The ‘‘delayed’’ residual SUð5Þ breakdown has obvious
implications for the shape of the gauge coupling unifica-
tion pattern. Indeed, the gauge bosons associated with the
SUð5Þ=SM coset, together with the relevant part of the
Higgs spectrum, tend to be uniformly shifted [6] by a factor
MG=MP � 10�2 below the scale of the SOð10Þ=SUð5Þ
gauge spectrum, which sets the unification scale MG.
These thresholds may jeopardize the successful one-step
gauge unification pattern favored by the TeV-scale SUSY
extension of the SM (MSSM).

C. GUT-scale thresholds and neutrino masses

With a nontrivial interplay among several GUT-scale
thresholds [6], one may, in principle, end up with a viable
gauge unification pattern. Namely, the threshold effects in
different SM gauge sectors may be such that unification is
preserved at a larger scale. In such a case the MG=MP

suppression is at least partially undone. This, in turn, is
unwelcome for the neutrino mass scale because the VEVs

MINIMAL FLIPPED SOð10Þ �Uð1Þ . . . PHYSICAL REVIEW D 83, 035002 (2011)

035002-3



entering the d ¼ 5 effective operator responsible for the

RH neutrino Majorana mass term 162F16
2
H=MP are raised

accordingly, and thus MR �M2
G=MP tends to overshoot

the upper limit MR & 1014 GeV implied by the light neu-
trino masses generated by the seesaw mechanism.

Thus, although the Planck-induced operators can pro-
vide a key to overcoming the SUð5Þ lock of the minimal
SUSY SOð10Þ ! SUð3Þc � SUð2ÞL �Uð1ÞY Higgs model

with 16H � 16H � 45H, such an effective scenario is prone
to failure when addressing the measured proton stability
and light neutrino phenomenology.

III. MINIMAL FLIPPED SOð10Þ HIGGS MODEL

As already anticipated in the previous sections, in a
standard SOð10Þ framework with a Higgs sector built off
the lowest-dimensional representations (up to the adjoint),
it is rather difficult to achieve a phenomenologically viable
symmetry-breaking pattern even when admitting multiple
copies of each type of multiplet. First, with a single 45H at
play, at the renormalizable level the little group of all SM-

singlet VEVs is SUð5Þ regardless of the number of 16H �
16H pairs. The reason is that one cannot get anything more
than an SUð5Þ singlet out of a number of SUð5Þ singlets.
The same is true with a second 45H added into the Higgs
sector because there is no renormalizable mixing among
the two 45H’s apart from the mass term that, without loss of
generality, can be taken diagonal. With a third adjoint
Higgs representation at play, a cubic 451452453 interaction
is allowed. However, due to the total antisymmetry of the
invariant and to the fact that the adjoints commute on
the SM vacuum, the cubic term does not contribute to the
F-term equations [16]. This makes the simple flipped
SOð10Þ �Uð1Þ model proposed in this work a framework
worth considering. For the sake of completeness, let us also
recall that by admitting Higgs representations larger than
the adjoint, a renormalizable SOð10Þ ! SM breaking can

be devised with the Higgs sector of the form 54H � 45H �
16H � 16H [17], or 54H � 45H � 126H � 126H [7] for a
renormalizable seesaw mechanism.

In Tables I and II we collect a list of the supersymmetric
vacua that are obtained in the basic SOð10Þ Higgs models
and their E6 embeddings by considering a set of Higgs

representations of the dimension of the adjoint and smaller,
with all SM-singlet VEVs turned on. The cases of a re-
normalizable (R) or nonrenormalizable (NR) Higgs poten-
tial are compared. We quote reference papers where results
relevant for the present study were obtained without any
aim of exhausting the available literature. The results
without a reference are either verified by us or follow by
comparison with other cases and rank counting. The main
results of this study are shown in boldface.
We are going to show that by considering a nonstandard

hypercharge embedding in SOð10Þ �Uð1Þ [flipped
SOð10Þ], the breaking to the SM is achievable at the

renormalizable level with 45H � 2
 ð16H � 16HÞ Higgs
fields. Let us stress that what we require is that the GUT
symmetry breaking is driven by the renormalizable part of
the superpotential, while Planck-suppressed interactions
may be relevant for the fermion mass spectrum, in particu-
lar, for the neutrino sector.

A. Introducing the model

1. Hypercharge embeddings in SOð10Þ �Uð1Þ
The so-called flipped realization of the SOð10Þ gauge

symmetry requires an additional Uð1ÞX gauge factor in
order to provide an extra degree of freedom for the
SM hypercharge identification. For a fixed embedding of
the SUð3Þc � SUð2ÞL subgroup within SOð10Þ, the SM
hypercharge can be generally spanned over the three re-
maining Cartans generating the AbelianUð1Þ3 subgroup of
the SOð10Þ �Uð1ÞX=ðSUð3Þc � SUð2ÞLÞ coset. There are
two consistent implementations of the SM hypercharge
within the SOð10Þ algebra [commonly denoted by standard
and flipped SUð5Þ], while a third one becomes available
due to the presence of Uð1ÞX.

TABLE II. Same as in Table I for the E6 gauge group with
fundamental and adjoint Higgs representations.

Higgs superfields R NR

27 � 27 E6 SOð10Þ
2
 ð27 � 27Þ E6 SUð5Þ
78 � 27 � 27 SOð10Þ [12] SM � Uð1Þ
78 � 2
 ð27 � 27Þ SUð5Þ SM

TABLE I. Comparative summary of supersymmetric vacua left invariant by the SM-singlet
VEVs in various combinations of spinorial and adjoint Higgs representations of standard SOð10Þ
and flipped SOð10Þ �Uð1Þ. The results for a renormalizable and a nonrenormalizable Higgs
superpotential are, respectively, listed.

Standard SOð10Þ Flipped SOð10Þ � Uð1Þ
Higgs superfields R NR R NR

16 � 16 SOð10Þ SUð5Þ SOð10Þ �Uð1Þ SUð5Þ �Uð1Þ
2
 ð16 � 16Þ SOð10Þ SUð5Þ SOð10Þ �Uð1Þ SM

45 � 16 � 16 SUð5Þ [5] SM [6] SUð5Þ �Uð1Þ SM � Uð1Þ
45 � 2
 ð16 � 16Þ SUð5Þ SM SM SM
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In order to discuss the different embeddings, we find it
useful to consider two bases for the Uð1Þ3 subgroup.
Adopting the traditional left-right (LR) basis correspond-
ing to the SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L subalge-
bra of SOð10Þ, one can span the SM hypercharge on the
generators of Uð1ÞR �Uð1ÞB�L �Uð1ÞX:

Y ¼ �Tð3Þ
R þ �ðB� LÞ þ �X: (4)

The normalization of the Tð3Þ
R and B� L charges is chosen

so that the decompositions of the spinorial and vector
representations of SOð10Þ with respect to SUð3Þc �
SUð2ÞL �Uð1ÞR �Uð1ÞB�L read

16 ¼ ð3; 2; 0;þ1
3Þ � ð�3; 1;þ1

2;�1
3Þ � ð�3; 1;�1

2;�1
3Þ

� ð1; 2; 0;�1Þ � ð1; 1;þ1
2;þ1Þ � ð1; 1;�1

2;þ1Þ;
10 ¼ ð3; 1; 0;�2

3Þ � ð�3; 1; 0;þ2
3Þ � ð1; 2;þ1

2; 0Þ
� ð1; 2;�1

2; 0Þ; (5)

which account for the standard B� L and Tð3Þ
R

assignments.
Alternatively, considering the SUð5Þ �Uð1ÞZ subalge-

bra of SOð10Þ, we identify the Uð1ÞY0 �Uð1ÞZ �Uð1ÞX
subgroup of SOð10Þ �Uð1ÞX, and equivalently write

Y ¼ ~�Y0 þ ~�Zþ ~�X; (6)

where Y0 and Z are normalized so that the SUð3Þc �
SUð2ÞL �Uð1ÞY0 �Uð1ÞZ analogue of Eqs. (5) reads

16 ¼ ð3; 2;þ1
6;þ1Þ � ð�3; 1;þ1

3;�3Þ � ð�3; 1;�2
3;þ1Þ

� ð1; 2;�1
2;�3Þ � ð1; 1;þ1;þ1Þ � ð1; 1; 0;þ5Þ;

10 ¼ ð3; 1;�1
3;�2Þ � ð�3; 1;þ1

3;þ2Þ � ð1; 2;þ1
2;�2Þ

� ð1; 2;�1
2;þ2Þ: (7)

In both cases, the Uð1ÞX charge has been conveniently
fixed to X16 ¼ þ1 for the spinorial representation [and
thus X10 ¼ �2 and also X1 ¼ þ4 for the SOð10Þ vector
and singlet, respectively; this is also the minimal way to
obtain an anomaly-free Uð1ÞX that allows SOð10Þ �Uð1ÞX
to be naturally embedded into E6].

It is a straightforward exercise to show that in order to
accommodate the SM quark multiplets with quantum num-
bers Q ¼ ð3; 2;þ 1

6Þ, uc ¼ ð�3; 1;� 2
3Þ, and dc ¼ ð�3; 1;þ 1

3Þ,
there are only three solutions.

On theUð1Þ3 bases of Eqs. (4) and (6) (respectively) one
obtains

� ¼ 1; � ¼ 1
2; � ¼ 0;

ð~� ¼ 1; ~� ¼ 0; ~� ¼ 0Þ; (8)

which is nothing but the standard embedding of the SM

matter into SOð10Þ. Explicitly, Y ¼ Tð3Þ
R þ 1

2 ðB� LÞ in the
LR basis [while Y ¼ Y0 in the SUð5Þ picture].
The second option is characterized by

� ¼ �1; � ¼ 1
2; � ¼ 0;

ð~� ¼ �1
5;
~� ¼ 1

5; ~� ¼ 0Þ; (9)

which is usually denoted as a ‘‘flipped SUð5Þ’’ [18,19]
embedding because the SM hypercharge is spanned
nontrivially on the SUð5Þ �Uð1ÞZ subgroup1 of SOð10Þ,
Y ¼ 1

5 ðZ� Y0Þ. Remarkably, from the SUð3Þc � SUð2ÞL �
SUð2ÞR �Uð1ÞB�L perspective this setting corresponds to

a sign flip of the SUð2ÞR Cartan operator Tð3Þ
R , namely Y ¼

�Tð3Þ
R þ 1

2 ðB� LÞ, which can be viewed as a � rotation in

the SUð2ÞR algebra.
A third solution corresponds to

� ¼ 0; � ¼ � 1

4
; � ¼ 1

4
;�

~� ¼ � 1

5
; ~� ¼ � 1

20
; ~� ¼ 1

4

�
; (10)

denoted as a ‘‘flipped SOð10Þ’’ [8–10] embedding of the
SM hypercharge. Notice, in particular, the fundamental
difference between the setting (10) with � ¼ ~� ¼ 1

4 and

the two previous cases (8) and (9) where Uð1ÞX does not
play any role.
Analogously to what is found for Y, once we consider

the additional anomaly-free Uð1ÞX gauge factor, there are
three SM-compatible ways of embedding the physical
ðB� LÞ into SOð10Þ �Uð1ÞX. Using the SUð5Þ compatible
description they are, respectively, given by (see Ref. [20]
for a complete set of relations)

ðB� LÞ ¼ 1
5ð4Y0 þ ZÞ; (11)

ðB� LÞ ¼ 1

20
ð16Y0 � Zþ 5XÞ; (12)

ðB� LÞ ¼ � 1

20
ð8Y0 � 3Z� 5XÞ; (13)

where the first assignment is the standard B� L embed-
ding in Eq. (4). Out of 3
 3 possible pairs of Y and
ðB� LÞ charges, only six correspond to the quantum
numbers of the SM matter [20]. By focusing on the
flipped SOð10Þ hypercharge embedding in Eq. (10), the
two SM-compatible ðB� LÞ assignments are those in

1By definition, a flipped variant of a specific GUT model based
on a simple gauge group G is obtained by embedding the SM
hypercharge nontrivially into the G � Uð1Þ tensor product.
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Eqs. (12) and (13) (they are related by a sign flip in Tð3Þ
R ). In

what follows we shall employ the ðB� LÞ assignment in
Eq. (13).

2. Spinor and adjoint SM singlets in flipped SOð10Þ
The active role of the Uð1ÞX generator in the SM hyper-

charge (and B� L) identification within the flipped
SOð10Þ scenario has relevant consequences for model
building. In particular, the SM decomposition of the
SOð10Þ representations changes so that there are additional
SM singlets both in 16H � 16H and in 45H.

The pattern of SM-singlet components in flipped SOð10Þ
has a simple and intuitive interpretation from the SOð10Þ �
Uð1ÞX � E6 perspective, where 16þ1 � 16�1 [with the
subscript indicating the Uð1ÞX charge] are contained in

27 � 27 while 450 is part of the E6 adjoint 78. The point
is that the flipped SM hypercharge assignment makes the
various SM singlets within the complete E6 representations
‘‘migrate’’ among their different SOð10Þ submultiplets;
namely, the two SM singlets in the 27 of E6 that in the
standard embedding (8) reside in the SOð10Þ singlet 1 and
spinorial 16 components both happen to fall into just the
single 16 � 27 in the flipped SOð10Þ case.

Similarly, there are two additional SM-singlet directions
in 450 in the flipped SOð10Þ scenario, that, in the standard

SOð10Þ embedding, belong to the 16�3 � 16þ3 compo-
nents of the 78 of E6, thus accounting for a total of four
adjoint SM singlets.

In Tables III, IV, and V we summarize the decomposi-
tion of the 10�2, 16þ1, and 450 representations of
SOð10Þ �Uð1ÞX under the SM subgroup, in both the stan-
dard and the flipped SOð10Þ cases [and in both the LR and
SUð5Þ descriptions]. The pattern of the SM-singlet compo-
nents is emphasized in boldface.

3. The supersymmetric flipped SOð10Þ model

The presence of additional SM singlets [some of
them transforming nontrivially under SUð5Þ] in the

lowest-dimensional representations of the flipped realiza-
tion of the SOð10Þ gauge symmetry provides the ground for
obtaining a viable symmetry breaking with a significantly
simplified renormalizable Higgs sector. Naively, one may
guess that the pair of VEVs in 16H (plus another conju-

gated pair in 16H to maintain the requiredD flatness) might
be enough to break the GUT symmetry entirely, since one
component transforms as a 10 of SUð5Þ � SOð10Þ, while
the other one is identified with the SUð5Þ singlet (cf.
Table IV). Notice that even in the presence of an additional
four-dimensional vacuum manifold of the adjoint Higgs
multiplet, the little group is determined by the 16H VEVs
since, due to the simple form of the renormalizable super-
potential, F flatness makes the VEVs of 45H align with

those of 16H16H, providing just enough freedom for them
to develop nonzero values.

TABLE III. Decomposition of the fundamental ten-
dimensional representation under SUð3Þc � SUð2ÞL � Uð1ÞY ,
for standard SOð10Þ and flipped SOð10Þ � Uð1ÞX (SOð10Þf),
respectively. In the first two columns (LR) the subscripts keep
track of the SUð4ÞC origin of the multiplets (the extra symbols
correspond to the eigenvalues of the Tð3Þ

R Cartan generator),

while in the last two columns the SUð5Þ content is shown.
LR SUð5Þ

SOð10Þ SOð10Þf SOð10Þ SOð10Þf
ð3; 1;� 1

3Þ6 ð3; 1;� 1
3Þ6 ð3; 1;� 1

3Þ5 ð3; 1;� 1
3Þ5

ð�3; 1;þ 1
3Þ6 ð�3; 1;� 2

3Þ6 ð1; 2;þ 1
2Þ5 ð1; 2;� 1

2Þ5
ð1; 2;þ 1

2Þ1þ ð1; 2;� 1
2Þ1þ ð�3; 1;þ 1

3Þ�5 ð�3; 1;� 2
3Þ�5

ð1; 2;� 1
2Þ1� ð1; 2;� 1

2Þ1� ð1; 2;� 1
2Þ�5 ð1; 2;� 1

2Þ�5

TABLE IV. The same as in Table III for the spinor 16-
dimensional representation. The SM singlets are emphasized in
boldface and shall be denoted, in the SUð5Þ description, as e 	
ð1; 1; 0Þ10 and � 	 ð1; 1; 0Þ1. The LR decomposition shows that e
and � belong to an SUð2ÞR doublet.

LR SUð5Þ
SOð10Þ SOð10Þf SOð10Þ SOð10Þf
ð3; 2;þ 1

6Þ4 ð3; 2;þ 1
6Þ4 ð�3; 1;þ 1

3Þ�5 ð�3; 1;þ 1
3Þ�5

ð1; 2;� 1
2Þ4 ð1; 2;þ 1

2Þ4 ð1; 2;� 1
2Þ�5 ð1; 2;þ 1

2Þ�5
ð�3; 1;þ 1

3Þ�4þ ð�3; 1;þ 1
3Þ�4þ ð3; 2;þ 1

6Þ10 ð3; 2;þ 1
6Þ10

ð�3; 1;� 2
3Þ�4� ð�3; 1;þ 1

3Þ�4� ð�3; 1;� 2
3Þ10 ð�3; 1;þ 1

3Þ10
ð1; 1;þ1Þ�4þ ð1; 1; 0Þ�4þ ð1; 1;þ1Þ10 ð1; 1; 0Þ10
ð1; 1; 0Þ�4� ð1; 1; 0Þ�4� ð1; 1; 0Þ1 ð1; 1; 0Þ1

TABLE V. The same as in Table III for the 45 representation.
The SM singlets are given in boldface and labeled throughout the
text as !Y 	 ð1; 1; 0Þ15, !þ 	 ð1; 1; 0Þ1þ , !R 	 ð1; 1; 0Þ10 , and
!� 	 ð1; 1; 0Þ1� , where again the LR notation has been used.
The LR decomposition also shows that !þ, !R, and !� belong
to an SUð2ÞR triplet, while !Y is a B� L singlet.

LR SUð5Þ
SOð10Þ SOð10Þf SOð10Þ SOð10Þf
ð1; 1; 0Þ10 ð1; 1; 0Þ10 ð1; 1; 0Þ1 ð1; 1; 0Þ1
ð1; 1; 0Þ15 ð1; 1; 0Þ15 ð1; 1; 0Þ24 ð1; 1; 0Þ24
ð8; 1; 0Þ15 ð8; 1; 0Þ15 ð8; 1; 0Þ24 ð8; 1; 0Þ24
ð3; 1;þ 2

3Þ15 ð3; 1;� 1
3Þ15 ð3; 2;� 5

6Þ24 ð3; 2;þ 1
6Þ24

ð�3; 1;� 2
3Þ15 ð�3; 1;þ 1

3Þ15 ð�3; 2;þ 5
6Þ24 ð�3; 2;� 1

6Þ24ð1; 3; 0Þ1 ð1; 3; 0Þ1 ð1; 3; 0Þ24 ð1; 3; 0Þ24
ð3; 2;þ 1

6Þ6þ ð3; 2;þ 1
6Þ6þ ð3; 2;þ 1

6Þ10 ð3; 2;þ 1
6Þ10

ð�3; 2;þ 5
6Þ6þ ð�3; 2;� 1

6Þ6þ ð�3; 1;� 2
3Þ10 ð�3; 1;þ 1

3Þ10ð1; 1;þ1Þ1þ ð1; 1; 0Þ1þ ð1; 1;þ1Þ10 ð1; 1; 0Þ10
ð�3; 2;� 1

6Þ6� ð�3; 2;� 1
6Þ6� ð�3; 2;� 1

6Þ10 ð�3; 2;� 1
6Þ10

ð3; 2;� 5
6Þ6� ð3; 2;þ 1

6Þ6� ð3; 1;þ 2
3Þ10 ð3; 1;� 1

3Þ10ð1; 1;�1Þ1� ð1; 1; 0Þ1� ð1; 1;�1Þ10 ð1; 1; 0Þ10
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Unfortunately, this is still not enough to support the
desired symmetry-breaking pattern. The two VEV direc-
tions in 16H are equivalent to only one, and a residual
SUð5Þ �Uð1Þ symmetry is always preserved by h16iH
[21]. Thus, even in the flipped SOð10Þ �Uð1Þ setting the

Higgs model spanned on 16H � 16H � 45H suffers from
an SUð5Þ �Uð1Þ lock analogous to the one of the standard
SUSY SOð10Þ models with the same Higgs sector. This
can be understood by taking into account the freedom in
choosing the basis in the SOð10Þ algebra so that the pair of
VEVs within 16 can be ‘‘rotated’’ onto a single compo-
nent, which can then be viewed as the direction of the
singlet in the decomposition of 16 ¼ �5 � 10 � 1 with
respect to an SUð5Þ subgroup of the original SOð10Þ
gauge symmetry.

On the other hand, with a pair of interacting

16H � 16H’s the vacuum directions in the two 16H’s
need not be aligned and the intersection of the two differ-
ent invariant subalgebras [e.g., standard and flipped SUð5Þ
for a specific VEV configuration] leaves as a little group
the SUð3Þc � SUð2ÞL �Uð1ÞY of the SM. F flatness then
makes the adjoint VEVs (45H is the needed carrier of
the 16H interaction at the renormalizable level) aligned to
the SM vacuum. Hence, as we will show in the next

section, 2
 ð16H þ 16HÞ � 45H defines the minimal re-
normalizable Higgs setting for the SUSY flipped
SOð10Þ �Uð1ÞX model. For comparison, let us reiterate
that in the standard renormalizable SOð10Þ setting the
SUSY vacuum is always SUð5Þ regardless of how many

copies of 16H � 16H are employed together with, at most,
a pair of adjoints.

4. The matter sector

Because of the flipped hypercharge assignment, the
SM matter can no longer be fully embedded into the
16-dimensional SOð10Þ spinor, as in the standard case.
By inspecting Table IV one can see that in the flipped
setting the pair of the SM submultiplets of 16 transforming

as uc and ec is traded for an extra dc-like state and an extra
SM singlet. The former pair is instead found in the SOð10Þ
vector and the singlet (the lepton doublet appears in
the vector multiplet as well). Thus, flipping spreads each
of the SM matter generations across 16 � 10 � 1 of
SOð10Þ, which, by construction, can be viewed as the
complete 27-dimensional fundamental representation of
E6 � SOð10Þ �Uð1ÞX. This brings in a set of additional
degrees of freedom, in particular, ð1; 1; 0Þ16, ð�3; 1;þ 1

3Þ16,
ð1; 2;þ 1

2Þ16, ð3; 1;� 1
3Þ10, and ð1; 2;� 1

2Þ10, where the sub-

script indicates their SOð10Þ origin. Notice, however, that
these SM ‘‘exotics’’ can be grouped into superheavy
vectorlike pairs, and thus no extra states appear in the
low-energy spectrum. Furthermore, the Uð1ÞX anomalies
associated with each of the SOð10Þ �Uð1ÞX matter mul-
tiplets cancel when summed over the entire reducible
representation 161 � 10�2 � 14. An elementary discussion
of the matter spectrum in this scenario is deferred to Sec. V.

B. Supersymmetric vacuum

The most general renormalizable Higgs superpotential,

made of the representations 45 � 161 � 161 � 162 � 162, is
given by

WH ¼ �

2
Tr452 þ �ij16i16j þ �ij16i4516j; (14)

where i, j ¼ 1, 2 and the notation is explained in
Appendix A 1. Without loss of generality, we can take �
real by a global phase redefinition, while � (or �) can be
diagonalized by a bi-unitary transformation acting on the

flavor indices of the 16 and the 16. Let us choose, for
instance, �ij ¼ �i	ij, with �i real. We label the SM singlets

contained in the 16’s in the following way: e 	 ð1; 1; 0Þ10
[only for flipped SOð10Þ] and � 	 ð1; 1; 0Þ1 (for all
embeddings).
By plugging in the SM-singlet VEVs !R, !Y , !

þ, !�,
e1;2, �e1;2, �1;2, and ��1;2 (cf. Appendix A 1), the super-

potential on the vacuum reads

hWHi ¼ �ð2!2
R þ 3!2

Y þ 4!�!þÞ þ �11ðe1 �e1 þ �1 ��1Þ þ �21ðe2 �e1 þ �2 ��1Þ þ �12ðe1 �e2 þ �1 ��2Þ þ �22ðe2 �e2 þ �2 ��2Þ
þ �1

�
�!�e1 ��1 �!þ�1 �e1 �!Rffiffiffi

2
p ðe1 �e1 � �1 ��1Þ þ 3

2

!Yffiffiffi
2

p ðe1 �e1 þ �1 ��1Þ
�

þ �2

�
�!�e2 ��2 �!þ�2 �e2 �!Rffiffiffi

2
p ðe2 �e2 � �2 ��2Þ þ 3

2

!Yffiffiffi
2

p ðe2 �e2 þ �2 ��2Þ
�
: (15)

In order to retain SUSY down to the TeV scale we must
require that the GUT gauge symmetry breaking preserves
supersymmetry. In Appendix A 2 we work out the relevant
D- and F-term equations. We find that the existence of a
nontrivial vacuum requires � (and � for consistency) to be

Hermitian matrices. This is a consequence of the fact
that D-term flatness for the flipped SOð10Þ embedding
implies h16ii ¼ h16ii� [see Eq. (A30) and the discussion
next to it]. With this restriction the vacuum manifold is
given by
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8�!þ ¼ �1r
2
1 sin2�1e

ið
e1
�
�1

Þ þ �2r
2
2 sin2�2e

ið
e2
�
�2

Þ;

8�!� ¼ �1r
2
1 sin2�1e

�ið
e1
�
�1

Þ

þ �2r
2
2 sin2�2e

�ið
e2
�
�2

Þ;

4
ffiffiffi
2

p
�!R ¼ �1r

2
1 cos2�1 þ �2r

2
2 cos2�2;

4
ffiffiffi
2

p
�!Y ¼ ��1r

2
1 � �2r

2
2;

e1;2 ¼ r1;2 cos�1;2e
i
e1;2 ;

�1;2 ¼ r1;2 sin�1;2e
i
�1;2 ;

�e1;2 ¼ r1;2 cos�1;2e
�i
e1;2 ;

��1;2 ¼ r1;2 sin�1;2e
�i
�1;2 ; (16)

where r1;2 and � 	 �1  �2 are fixed in terms of the
superpotential parameters,

r21 ¼ � 2�ð�22�1 � 5�11�2Þ
3�21�2

; (17)

r22 ¼ � 2�ð�11�2 � 5�22�1Þ
3�1�

2
2

; (18)

cos�� ¼ �
sin�� � sin�e

sinð�� ��eÞ ; (19)

cos�þ ¼ �
sin�� þ sin�e

sinð�� ��eÞ ; (20)

with

� ¼ 6j�12jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 5�2

11
�2

�1
� 5�2

22
�1

�2
þ 26�22�11

r : (21)

The phase factors �� and �e are defined as

�� 	 
�1
�
�2

þ
�12
; �e 	 
e1 �
e2 þ
�12

;

(22)

in terms of the relevant phases 
�1;2
, 
e1;2 , and 
�12

.
Equations (19) and (20) imply that for �� ¼ �e ¼ �,
Eq. (19) reduces to cos�� ! � cos� while �þ is unde-
termined (thus parametrizing an orbit of isomorphic
vacua).

In order to determine the little group of the vacuum
manifold, we explicitly compute the corresponding gauge
boson spectrum in Appendix A 3. We find that, for �� � 0
and/or�� � �e, the vacuum in Eq. (16) does preserve the
SM algebra.

As already mentioned in the Introduction, this result is a
consequence of the misalignment of the spinor VEVs,
which is made possible at the renormalizable level by the

interaction with the 45H. If we choose to align the 161 �
161 and 162 � 162 VEVs (�� ¼ 0 and �� ¼ �e) or,
equivalently, to decouple one of the Higgs spinors from

the vacuum (r2 ¼ 0, for instance), the little group is
SUð5Þ �Uð1Þ.
This result can be easily understood by observing that in

the case with just one pair of 16H � 16H (or with two pairs

of 16H � 16H aligned) the two SM-singlet directions, eH
and �H, are connected by an SUð2ÞR transformation. This
freedom can be used to rotate one of the VEVs to zero, so
that the little group is standard or flipped SUð5Þ �Uð1Þ,
depending on which of the two VEVs is zero.
In this respect, the Higgs adjoint plays the role of a

renormalizable agent that prevents the two pairs of spinor
vacua from aligning with each other along the SUð5Þ �
Uð1Þ direction. Actually, by decoupling the adjoint Higgs,

F flatness makes the (aligned) 16i � 16i vacuum trivial, as
one verifies by inspecting the F terms in Eq. (A14) of
Appendix A 2 for h45Hi ¼ 0 and det� � 0.

The same result with just two pairs of 16H � 16H Higgs
multiplets is obtained by adding NR spinor interactions, at
the cost of introducing a potentially critical GUT-scale
threshold hierarchy. In the flipped SOð10Þ setup proposed
here, the GUT symmetry breaking is driven by the renor-
malizable part of the Higgs superpotential, thus naturally
allowing for a one-step matching with the minimal super-
symmetric extension of the SM (MSSM).
Before addressing the possible embedding of the model

in a unified E6 scenario, we comment in brief on the
naturalness of the doublet-triplet mass splitting in flipped
embeddings.

C. Doublet-triplet splitting in flipped models

Flipped embeddings offer a rather economical way to
implement the doublet-triplet (DT) splitting through the
so-called missing partner (MP) mechanism [22,23]. In
order to show the relevant features, let us consider first
the flipped SUð5Þ �Uð1ÞZ.
In order to implement the MP mechanism in the flipped

SUð5Þ �Uð1ÞZ, the Higgs superpotential is required to
have the couplings

WH � 10þ110þ15�2 þ 10�110�1
�5þ2; (23)

where the subscripts correspond to the Uð1ÞZ quantum
numbers, but not the 5�2

�5þ2 mass term. From Eq. (23)
we extract the relevant terms that lead to a mass for the
Higgs triplets,

WH � hð1; 1; 0Þ10ið�3; 1;þ1
3Þ10ð3; 1;�1

3Þ5 þ hð1; 1; 0Þ10i

 ð3; 1;�1

3Þ10ð�3; 1;þ1
3Þ�5: (24)

On the other hand, the Higgs doublets, contained in the
5�2 � �5þ2, remain massless since they have no partner in

the 10þ1 � 10�1 to couple with.
The MP mechanism cannot be implemented in stan-

dard SOð10Þ. The relevant interactions, the analogue of
Eq. (23), are contained in the SOð10Þ invariant term
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WH � 16 16 10þ 16 16 10; (25)

which, however, gives a mass to the doublets as well, via
the superpotential terms

WH � hð1; 1; 0Þ116ið1; 2;�1
2Þ�516ð1; 2;þ1

2Þ510 þ hð1; 1; 0Þ1
16
i


 ð1; 2;þ1
2Þ516ð1; 2;�1

2Þ�510 : (26)

Flipped SOð10Þ �Uð1ÞX, on the other hand, offers again
the possibility of implementing the MP mechanism. The
price to pay is the necessity of avoiding a large number of
terms, both bilinear and trilinear, in the Higgs superpoten-
tial. In particular, the analogue of Eq. (23) is given by the
NR term [11]

WH � 1

MP

161162162161 þ 1

MP

161162162161: (27)

By requiring that 161 (161) takes a VEV in the 116 (116)

direction while 162 (162) in the 1016 (1016) component,

one gets

WH � 1

MP

h1161ih10162i101625161 þ
1

MP

h1161i


 h10162i10162 �5161 ; (28)

which closely resembles Eq. (23), leading to massive trip-
lets and massless doublets. In order to have, minimally, one
pair of electroweak doublets, one must further require that
the 2
 2 mass matrix of the 16’s has rank equal to 1.
Because of the active role of NR operators, the Higgs
triplets turn out to be 2 orders of magnitude below the
flipped SOð10Þ �Uð1ÞX scale, reintroducing the issues
discussed in Sec. II.

An alternative possibility for naturally implementing the
DT splitting in SOð10Þ is the Dimopoulos-Wilczek (DW)
(or the missing VEV) mechanism [24]. In order to explain
the key features, it is convenient to decompose the relevant
SOð10Þ representations in terms of the SUð4ÞC � SUð2ÞL �
SUð2ÞR group,

45 	 ð1; 1; 3Þ � ð15; 1; 1Þ � . . . ;

16 	 ð4; 2; 1Þ � ð�4; 1; 2Þ;
16 	 ð�4; 2; 1Þ � ð4; 1; 2Þ;
10 	 ð6; 1; 1Þ � ð1; 2; 2Þ; (29)

where !R 	 hð1; 1; 3Þi and !Y 	 hð15; 1; 1Þi. In the stan-
dard SOð10Þ case (see [25–27] for a recent discussion) one
assumes that the SUð2ÞL doublets are contained in two
vector multiplets (101 and 102). From the decompositions
in Eq. (29) it is easy to see that the interaction 10145 102
(where the antisymmetry of 45 requires the presence of
two 10’s) leaves the SUð2ÞL doublets massless provided
that !R ¼ 0. Naturalness requires the absence of other

superpotential terms, such as a direct mass term for one

of the 10’s and the interaction term 16 45 16. The
latter aligns the SUSY vacuum in the SUð5Þ direction
(!R ¼ !Y), thus destabilizing the DW solution.

On the other hand, the absence of the 16 45 16 interac-
tion enlarges the global symmetries of the scalar potential
with the consequent appearance of a set of light pseudo-
Goldstone bosons in the spectrum. To avoid this, the ad-
joint and the spinor sector must be coupled in an indirect
way by adding extra fields and symmetries (see, for in-
stance, [25–27]).
Our flipped SOð10Þ �Uð1ÞX setting offers the rather

economical possibility of embedding the electroweak dou-
blets directly into the spinors without the need of 10H (see
Sec. V). As a matter of fact, there exists a variant of the DW
mechanism where the SUð2ÞL doublets, contained in the

16H � 16H, are kept massless by the condition!Y ¼ 0 (see
e.g. [28]). However, in order to satisfy in a natural way the
F flatness for the configuration !Y ¼ 0, again a contrived
superpotential is required, when compared to that in
Eq. (14). In conclusion, we cannot implement in our simple
setup any of the natural mechanisms proposed so far (see
also [29]), and we have to resort to the standard minimal
fine-tuning.

IV. MINIMAL E6 EMBEDDING

The natural and minimal unified embedding of the
flipped SOð10Þ �Uð1Þ model is E6 with one 78H and

two pairs of 27H � 27H in the Higgs sector. The three
matter families are contained in three 27F chiral super-
fields. The decomposition of the 27 and 78 representations
under the SM quantum numbers is detailed in Tables VI,
VII, VIII, and IX, according to the different hypercharge
embeddings.

TABLE VI. Decomposition of the fundamental representation
27 of E6 under SUð3Þc � SUð2ÞL � Uð1ÞY , according to the
three SM-compatible different embeddings of the hypercharge
(f stands for flipped). The numerical subscripts keep track of the
SUð5Þ and SOð10Þ origin.
SUð5Þ SUð5Þf SOð10Þf
ð�3; 1;þ 1

3Þ�516 ð�3; 1;� 2
3Þ�516 ð�3; 1;þ 1

3Þ�516
ð1; 2;� 1

2Þ�516 ð1; 2;� 1
2Þ�516 ð1; 2;þ 1

2Þ�516
ð3; 2;þ 1

6Þ1016 ð3; 2;þ 1
6Þ1016 ð3; 2;þ 1

6Þ1016
ð�3; 1;� 2

3Þ1016 ð�3; 1;þ 1
3Þ1016 ð�3; 1;þ 1

3Þ1016ð1; 1;þ1Þ1016 ð1; 1; 0Þ1016 ð1; 1; 0Þ1016ð1; 1; 0Þ116 ð1; 1;þ1Þ116 ð1; 1; 0Þ116ð3; 1;� 1
3Þ510 ð3; 1;� 1

3Þ510 ð3; 1;� 1
3Þ510

ð1; 2;þ 1
2Þ510 ð1; 2;� 1

2Þ510 ð1; 2;� 1
2Þ510

ð�3; 1;þ 1
3Þ�510 ð�3; 1;þ 1

3Þ�510 ð�3; 1;� 2
3Þ�510

ð1; 2;� 1
2Þ�510 ð1; 2;þ 1

2Þ�510 ð1; 2;� 1
2Þ�510ð1; 1; 0Þ11 ð1; 1; 0Þ11 ð1; 1;þ1Þ11
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In analogy with the flipped SOð10Þ discussion, we shall
label the SM singlets contained in the 27 as e 	 ð1; 1; 0Þ11
and � 	 ð1; 1; 0Þ116 .

As we are going to show, the little group of a super-

symmetric h78 � 271 � 272 � 271 � 272i vacuum is SUð5Þ

in the renormalizable case. This is just a consequence of
the larger E6 algebra. In order to obtain a SM vacuum, we
need to resort to a NR scenario that allows for a disentan-
glement of the h78Hi directions and, consistently, for a
flipped SOð10Þ �Uð1Þ intermediate stage. We shall make
the case for an E6 gauge symmetry broken near the Planck
scale, leaving an effective flipped SOð10Þ scenario down to
the 1016 GeV.

A. Y and B� L into E6

Interpreting the different possible definitions of the SM
hypercharge in terms of the E6 maximal subalgebra
SUð3Þc � SUð3ÞL � SUð3ÞR, one finds that the three as-
signments in Eqs. (8)–(10) are each orthogonal to the three
possible ways of embedding SUð2ÞI (with I ¼ R, R0, E)
into SUð3ÞR [20]. Working in the Gell-Mann basis (cf.
Appendix B 1) the SUð3ÞR Cartan generators read

Tð3Þ
R ¼ 1

2ðT10
10 � T20

20 Þ; (30)

Tð8Þ
R ¼ 1

2
ffiffiffi
3

p ðT10
10 þ T20

20 � 2T30
30 Þ; (31)

which defines the SUð2ÞR embedding. The SUð2ÞR0 and
SUð2ÞE embeddings are obtained from Eqs. (30) and (31)

TABLE VII. The same as in Table VI, where the subscripts
keep track of the SUð4ÞC and SOð10Þ origins. The symbols 
refer to the eigenvalues of Tð3Þ

R .

SUð5Þ SUð5Þf SOð10Þf
ð3; 2;þ 1

6Þ416 ð3; 2;þ 1
6Þ416 ð3; 2;þ 1

6Þ416
ð1; 2;� 1

2Þ416 ð1; 2;� 1
2Þ416 ð1; 2;þ 1

2Þ416
ð�3; 1;þ 1

3Þ�4þ16 ð�3; 1;� 2
3Þ�4þ16 ð�3; 1;þ 1

3Þ�4þ16
ð�3; 1;� 2

3Þ�4�16 ð�3; 1;þ 1
3Þ�4�16 ð�3; 1;þ 1

3Þ�4�16
ð1; 1;þ1Þ�4þ

16
ð1; 1; 0Þ�4þ

16
ð1; 1; 0Þ�4þ

16ð1; 1; 0Þ�4�
16

ð1; 1;þ1Þ�4�
16

ð1; 1; 0Þ�4�
16

ð3; 1;� 1
3Þ610 ð3; 1;� 1

3Þ610 ð3; 1;� 1
3Þ610

ð�3; 1;þ 1
3Þ610 ð�3; 1;þ 1

3Þ610 ð�3; 1;� 2
3Þ610

ð1; 2;þ 1
2Þ1þ10 ð1; 2;� 1

2Þ1þ10 ð1; 2;� 1
2Þ1þ10

ð1; 2;� 1
2Þ1�10 ð1; 2;þ 1

2Þ1�10 ð1; 2;� 1
2Þ1�10ð1; 1; 0Þ11 ð1; 1; 0Þ11 ð1; 1;þ1Þ11

TABLE VIII. The same as in Table VI for the 78 representation.

SUð5Þ SUð5Þf SOð10Þf
ð1; 1; 0Þ11 ð1; 1; 0Þ11 ð1; 1; 0Þ11ð1; 1; 0Þ145 ð1; 1; 0Þ145 ð1; 1; 0Þ145ð8; 1; 0Þ2445 ð8; 1; 0Þ2445 ð8; 1; 0Þ2445ð3; 2;� 5

6Þ2445 ð3; 2;þ 1
6Þ2445 ð3; 2;þ 1

6Þ2445ð�3; 2;þ 5
6Þ2445 ð�3; 2;� 1

6Þ2445 ð�3; 2;� 1
6Þ2445ð1; 3; 0Þ2445 ð1; 3; 0Þ2445 ð1; 3; 0Þ2445ð1; 1; 0Þ2445 ð1; 1; 0Þ2445 ð1; 1; 0Þ2445ð3; 2;þ 1

6Þ1045 ð3; 2;� 5
6Þ1045 ð3; 2;þ 1

6Þ1045
ð�3; 1;� 2

3Þ1045 ð�3; 1;� 2
3Þ1045 ð�3; 1;þ 1

3Þ1045
ð1; 1;þ1Þ1045 ð1; 1;�1Þ1045 ð1; 1; 0Þ1045ð�3; 2;� 1

6Þ1045 ð�3; 2;þ 5
6Þ1045 ð�3; 2;� 1

6Þ1045
ð3; 1;þ 2

3Þ1045 ð3; 1;þ 2
3Þ1045 ð3; 1;� 1

3Þ1045
ð1; 1;�1Þ1045 ð1; 1;þ1Þ1045 ð1; 1; 0Þ1045ð�3; 1;þ 1

3Þ�516 ð�3; 1;� 2
3Þ�516 ð�3; 1;� 2

3Þ�516
ð1; 2;� 1

2Þ�516 ð1; 2;� 1
2Þ�516 ð1; 2;� 1

2Þ�516
ð3; 2;þ 1

6Þ1016 ð3; 2;þ 1
6Þ1016 ð3; 2;� 5

6Þ1016
ð�3; 1;� 2

3Þ1016 ð�3; 1;þ 1
3Þ1016 ð�3; 1;� 2

3Þ1016ð1; 1;þ1Þ1016 ð1; 1; 0Þ1016 ð1; 1;�1Þ1016ð1; 1; 0Þ116 ð1; 1;þ1Þ116 ð1; 1;�1Þ116ð3; 1;� 1
3Þ516 ð3; 1;þ 2

3Þ516 ð3; 1;þ 2
3Þ516

ð1; 2;þ 1
2Þ516 ð1; 2;þ 1

2Þ516 ð1; 2;þ 1
2Þ516

ð�3; 2;� 1
6Þ10

16

ð�3; 2;� 1
6Þ10

16

ð�3; 2;þ 5
6Þ10

16ð3; 1;þ 2
3Þ10

16

ð3; 1;� 1
3Þ10

16

ð3; 1;þ 2
3Þ10

16ð1; 1;�1Þ10
16

ð1; 1; 0Þ10
16

ð1; 1;þ1Þ10
16ð1; 1; 0Þ1

16
ð1; 1;�1Þ1

16
ð1; 1;þ1Þ1

16

TABLE IX. The same as in Table VII for the 78 representation.

SUð5Þ SUð5Þf SOð10Þf
ð1; 1; 0Þ11 ð1; 1; 0Þ11 ð1; 1; 0Þ11ð1; 1; 0Þ1545 ð1; 1; 0Þ1545 ð1; 1; 0Þ1545ð8; 1; 0Þ1545 ð8; 1; 0Þ1545 ð8; 1; 0Þ1545ð3; 1;þ 2

3Þ1545 ð3; 1;þ 2
3Þ1545 ð3; 1;� 1

3Þ1545
ð�3; 1;� 2

3Þ1545 ð�3; 1;� 2
3Þ1545 ð�3; 1;þ 1

3Þ1545ð1; 3; 0Þ145 ð1; 3; 0Þ145 ð1; 3; 0Þ145ð1; 1;þ1Þ1þ
45

ð1; 1;�1Þ1þ
45

ð1; 1; 0Þ1þ
45ð1; 1; 0Þ10

45
ð1; 1; 0Þ10

45
ð1; 1; 0Þ10

45ð1; 1;�1Þ1�
45

ð1; 1;þ1Þ1�
45

ð1; 1; 0Þ1�
45ð3; 2;þ 1

6Þ6þ45 ð3; 2;� 5
6Þ6þ45 ð3; 2;þ 1

6Þ6þ45
ð3; 2;� 5

6Þ6�45 ð3; 2;þ 1
6Þ6�45 ð3; 2;þ 1

6Þ6�45
ð�3; 2;þ 5

6Þ6þ45 ð�3; 2;� 1
6Þ6þ45 ð�3; 2;� 1

6Þ6þ45
ð�3; 2;� 1

6Þ6�45 ð�3; 2;þ 5
6Þ6�45 ð�3; 2;� 1

6Þ6�45
ð3; 2;þ 1

6Þ416 ð3; 2;þ 1
6Þ416 ð3; 2;� 5

6Þ416
ð1; 2;� 1

2Þ416 ð1; 2;� 1
2Þ416 ð1; 2;� 1

2Þ416
ð�3; 1;þ 1

3Þ�4þ16 ð�3; 1;� 2
3Þ�4þ16 ð�3; 1;� 2

3Þ�4þ16
ð�3; 1;� 2

3Þ�4�16 ð�3; 1;þ 1
3Þ�4�16 ð�3; 1;� 2

3Þ�4�16ð1; 1;þ1Þ�4þ
16

ð1; 1; 0Þ�4þ
16

ð1; 1;�1Þ�4þ
16ð1; 1; 0Þ�4�

16
ð1; 1;þ1Þ�4�

16
ð1; 1;�1Þ�4�

16ð�3; 2;� 1
6Þ�416 ð�3; 2;� 1

6Þ�416 ð�3; 2;þ 5
6Þ�416

ð1; 2;þ 1
2Þ�416 ð1; 2;þ 1

2Þ�416 ð1; 2;þ 1
2Þ�416

ð3; 1;� 1
3Þ4�

16

ð3; 1;þ 2
3Þ4�

16

ð3; 1;þ 2
3Þ4�

16ð3; 1;þ 2
3Þ4þ

16

ð3; 1;� 1
3Þ4þ

16

ð3; 1;þ 2
3Þ4þ

16ð1; 1;�1Þ4�
16

ð1; 1; 0Þ4�
16

ð1; 1;þ1Þ4�
16ð1; 1; 0Þ4þ

16

ð1; 1;�1Þ4þ
16

ð1; 1;þ1Þ4þ
16
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by flipping, respectively, 20 $ 30 and 30 $ 10. Considering
the standard and flipped SOð10Þ embeddings of the hyper-
charge in Eqs. (8) and (10), in the SUð3Þ3 notation they
respectively read

Y ¼ 1ffiffiffi
3

p Tð8Þ
L þ Tð3Þ

R þ 1ffiffiffi
3

p Tð8Þ
R ¼ 1ffiffiffi

3
p Tð8Þ

L � 2ffiffiffi
3

p Tð8Þ
E (32)

and

Y ¼ 1ffiffiffi
3

p Tð8Þ
L � 2ffiffiffi

3
p Tð8Þ

R ¼ 1ffiffiffi
3

p Tð8Þ
L þ Tð3Þ

E þ 1ffiffiffi
3

p Tð8Þ
E : (33)

The three SM-compatible assignments of B� L in
Eqs. (11)–(13) are also orthogonal to the three possible
ways of embedding SUð2ÞI into SUð3ÞR. However, once we
fix the embedding of the hypercharge, we have only two
consistent choices for B� L available. They correspond to
the pairs where Y and B� L are not orthogonal to the same
SUð2ÞI [20].

For the standard hypercharge embedding, the B� L
assignment in Eq. (11) reads

B� L ¼ 2ffiffiffi
3

p ðTð8Þ
L þ Tð8Þ

R Þ ¼ 2ffiffiffi
3

p Tð8Þ
L � Tð3Þ

E � 1ffiffiffi
3

p Tð8Þ
E ;

(34)

while the B� L assignment in Eq. (13), consistent with the
flipped SOð10Þ embedding of the hypercharge, reads

B� L ¼ 2ffiffiffi
3

p Tð8Þ
L � Tð3Þ

R � 1ffiffiffi
3

p Tð8Þ
R ¼ 2ffiffiffi

3
p ðTð8Þ

L þ Tð8Þ
E Þ:

(35)

B. The E6 vacuum manifold

The most general renormalizable Higgs superpotential,

made of the representations 78 � 271 � 272 � 271 � 272, is
given by

WH ¼ �

2
Tr782 þ �ij27i27j þ �ij27i7827j

þ �ijk27i27j27k þ �ijk27i27j27k; (36)

where i, j ¼ 1, 2. The couplings �ijk and �ijk are totally

symmetric in ijk, so that each one of them contains four
complex parameters. Without loss of generality, we can
take � real by a phase redefinition of the superpotential,
while � can be diagonalized by a bi-unitary transformation

acting on the indices of the 27 and the 27. We take �ij ¼
�i	ij, with �i real. Notice that � and � are not relevant for

the present study, since the corresponding invariants vanish
on the SM orbit.

In the standard hypercharge embedding of Eq. (32), the
SM-preserving vacuum directions are parametrized by

h78i ¼ a1T
30
20 þ a2T

20
30 þ

a3ffiffiffi
6

p ðT10
10 þ T20

20 � 2T30
30 Þ

þ a4ffiffiffi
2

p ðT10
10 � T20

20 Þ þ
b3ffiffiffi
6

p ðT1
1 þ T2

2 � 2T3
3Þ; (37)

and

h27ii ¼ ðeiÞv3
30 þ ð�iÞv3

20 ; (38)

h27ii ¼ ð �eiÞu303 þ ð ��iÞu203 ; (39)

where a1, a2, a3, a4, b3, e1;2, �e1;2, �1;2, and ��1;2 are 13 SM-

singlet VEVs (see Appendix B 1 for the notation). Given
the B� L expression in Eq. (34) and the fact that we can
rewrite the Cartan part of h78i as

ffiffiffi
2

p
a4T

ð3Þ
R þ 1ffiffiffi

2
p ða3 þ b3ÞðTð8Þ

R þ Tð8Þ
L Þ

þ 1ffiffiffi
2

p ða3 � b3ÞðTð8Þ
R � Tð8Þ

L Þ; (40)

we readily identify the standard SOð10Þ VEVs used in the
previous section with the present E6 notation as !R / a4,
!Y / a3 þ b3, while � / a3 � b3 is the SOð10Þ �Uð1ÞX
singlet VEV in E6 (TX / Tð8Þ

R � Tð8Þ
L ).

We can also write the vacuum manifold in such a way
that it is manifestly invariant under the flipped SOð10Þ
hypercharge in Eq. (33). This can be obtained by flipping
10 $ 30 in Eqs. (37)–(39), yielding

h78i ¼ a1T
10
20 þ a2T

20
10 þ

ffiffiffi
2

p
a04T

ð3Þ
E

þ 1ffiffiffi
2

p ða03 þ b3ÞðTð8Þ
E þ Tð8Þ

L Þ

þ 1ffiffiffi
2

p ða03 � b3ÞðTð8Þ
E � Tð8Þ

L Þ; (41)

h27ii ¼ ðeiÞv3
10 þ ð�iÞv3

20 ; (42)

h27ii ¼ ð �eiÞu103 þ ð ��iÞu203 ; (43)

where we recognize the B� L generator defined in
Eq. (35). Notice that the Cartan subalgebra is actually
invariant under both the standard and the flipped SOð10Þ
form of Y. We have

a03T
ð8Þ
E þ a04T

ð3Þ
E ¼ a3T

ð8Þ
R þ a4T

ð3Þ
R ; (44)

with

2a03 ¼ �a3 �
ffiffiffi
3

p
a4; (45)

2a04 ¼ � ffiffiffi
3

p
a3 þ a4; (46)

thus making the use of the a3;4 or a03;4 directions in

the flipped or standard vacuum manifold completely
equivalent. We can now complete the identification of the
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notation used for E6 with that of the flipped SOð10Þ �
Uð1ÞX model studied in Sec. III, by ! / a1;2.

From the E6 standpoint, the analyses of the standard
and flipped vacuum manifolds given, respectively, in
Eqs. (37)–(39) and Eqs. (41)–(43) lead, as expected, to
the same results, with the roles of the standard and the

flipped hypercharge interchanged (see Appendix B). In
order to determine the vacuum little group, we may there-
fore proceed with the explicit discussion of the standard
setting.
By writing the superpotential in Eq. (36) on the SM-

preserving vacuum in Eqs. (37)–(39), we find

hWHi ¼ �

�
a1a2 þ a23

2
þ a24

2
þ b23

2

�
þ �11ðe1 �e1 þ �1 ��1Þ þ �21ðe2 �e1 þ �2 ��1Þ þ �12ðe1 �e2 þ �1 ��2Þ þ �22ðe2 �e2 þ �2 ��2Þ

þ �1

�
�a1e1 ��1 � a2�1 �e1 þ

ffiffiffi
2

3

s
a3

�
e1 �e1 � 1

2
�1 ��1

�
þ a4�1 ��1ffiffiffi

2
p �

ffiffiffi
2

3

s
b3ðe1 �e1 þ �1 ��1Þ

�

þ �2

�
�a1e2 ��2 � a2�2 �e2 þ

ffiffiffi
2

3

s
a3

�
e2 �e2 � 1

2
�2 ��2

�
þ a4�2 ��2ffiffiffi

2
p �

ffiffiffi
2

3

s
b3ðe2 �e2 þ �2 ��2Þ

�
: (47)

When applying the constraints coming fromD- and F-term
equations, a nontrivial vacuum exists if � and � are
Hermitian, as in the flipped SOð10Þ case. This is a conse-
quence of the fact that D flatness implies h27ii ¼ h27ii�
(see Appendix B 2 for details).

After imposing all the constraints due to D and F flat-
ness, the E6 vacuum manifold can be finally written as

2�a1 ¼ �1r
2
1 sin2�1e

ið
�1
�
e1

Þ þ �2r
2
2 sin2�2e

ið
�2
�
e2

Þ;

2�a2 ¼ �1r
2
1 sin2�1e

�ið
�1
�
e1

Þ

þ �2r
2
2 sin2�2e

�ið
�2
�
e2

Þ;

2
ffiffiffi
6

p
�a3 ¼ ��1r

2
1ð3 cos2�1 þ 1Þ � �2r

2
2ð3 cos2�2 þ 1Þ;ffiffiffi

2
p

�a4 ¼ ��1r
2
1sin

2�1 � �2r
2
2sin

2�2;ffiffiffi
3

p
�b3 ¼

ffiffiffi
2

p
�1r

2
1 þ

ffiffiffi
2

p
�2r

2
2;

e1;2 ¼ r1;2 cos�1;2e
i
e1;2 ;

�1;2 ¼ r1;2 sin�1;2e
i
�1;2 ;

�e1;2 ¼ r1;2 cos�1;2e
�i
e1;2 ;

��1;2 ¼ r1;2 sin�1;2e
�i
�1;2 ; (48)

where r1;2 and � 	 �1  �2 are fixed in terms of super-

potential parameters as follows:

r21 ¼ ��ð�22�1 � 4�11�2Þ
5�21�2

; (49)

r22 ¼ ��ð�11�2 � 4�22�1Þ
5�1�

2
2

; (50)

cos�� ¼ �
sin�� � sin�e

sinð�� ��eÞ ; (51)

cos�þ ¼ �
sin�� þ sin�e

sinð�� ��eÞ ; (52)

with

� ¼ 5j�12jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 4�2

11
�2

�1
� 4�2

22
�1

�2
þ 17�22�11

r : (53)

The phase factors �� and �e are defined as

�� 	 
�1
�
�2

þ
�12
; �e 	 
e1 �
e2 þ
�12

:

(54)

In Appendix B 3 we show that the little group of the
vacuum manifold in Eq. (48) is SUð5Þ.
It is instructive to look at the configuration in which one

pair of 27H, let us say 272 � 272, is decoupled. This case
can be obtained by setting �2 ¼ �12 ¼ �22 ¼ 0 in the
relevant equations. In agreement with Ref. [12], we find
that �1 turns out to be undetermined by the F-term con-
straints, thus parametrizing a set of isomorphic solutions.
We may therefore take in Eq. (48) �1 ¼ �2 ¼ 0 and show
that the little group corresponds in this case to SOð10Þ (see
Appendix B 3), thus recovering the result of Ref. [12].
The same result is obtained in the case in which the

vacua of the two copies of 27H � 27H are aligned, i.e.
�� ¼ 0 and �� ¼ �e. Analogously to the discussion in
Sec. III B, �þ is, in this case, undetermined and it can be

set to zero, which leads us again to the one 27H � 27H case,
with SOð10Þ as the preserved algebra.
These results are intuitively understood by considering

that, in case there is just one pair of 27H � 27H (or the

vacua of the two pairs of 27i � 27i are aligned), the SM-
singlet directions e and � are connected by an SUð2ÞR
transformation which can be used to rotate one of the
VEVs to zero, so that the little group is locked to an
SOð10Þ configuration. On the other hand, two misaligned

27H � 27H VEVs in the e� � plane lead (just by inspec-
tion of the VEV quantum numbers) to an SUð5Þ little
group.
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In analogy with the flipped SOð10Þ case, the Higgs
adjoint plays the role of a renormalizable agent that pre-

vents the two pairs of h27i � 27ii from aligning within each
other along the SOð10Þ vacuum. Actually, by decoupling
the adjoint Higgs, F flatness makes the (aligned) 27i � 27i
vacuum trivial, as one verifies by inspecting the F terms in
Eq. (B18) of Appendix B 2 for h78Hi ¼ 0 and det� � 0.

In conclusion, due to the larger E6 algebra, the vacuum
little group remains SUð5Þ. In this respect we guess that

the authors of Ref. [30], who advocate a 78H � 2
 ð27H �
27HÞ Higgs sector, implicitly refer to a NR setting.

C. Breaking the residual SUð5Þ
via effective interactions

In this section we consider the possibility of breaking the
residual SUð5Þ symmetry of the renormalizable E6 vacuum
through the inclusion of effective adjoint Higgs interac-
tions near the Planck scale MP. We argue that an effective
flipped SOð10Þ �Uð1ÞX 	 SOð10Þf may survive down to

the Mf � 1016 GeV scale, with thresholds spread in be-

tweenMP andMf in such a way that they do not affect the

proton stability but lead to realistic neutrino masses.
The relevant part of the nonrenormalizable superpoten-

tial at the E6 scale ME <MP can be written as

WNR
H ¼ 1

MP

½�1ðTr782Þ2 þ �2 Tr78
4 þ . . .�; (55)

where the ellipsis stands for terms which include powers of
the 27’s representations and D � 5 operators. Projecting
Eq. (55) along the SM-singlet vacuum directions in
Eqs. (37)–(39), we obtain

hWNR
H i ¼ 1

MP

�
�1ð2a1a2 þ a23 þ a24 þ b23Þ2

þ �2

�
2a1a2

�
a21a

2
2 þ a23 þ a24 þ

1ffiffiffi
3

p a3a4

�

þ 1

2
ða23 þ a24Þ2 þ

1

2
b43

�
þ . . .

�
: (56)

One verifies that including the NR contribution in the
F-term equations allows for a disentanglement of the

h78i and h271 � 271 � 272 � 272i VEVs, so that the break-
ing to the SM is achieved. In particular, the SUSY vacuum
allows for an intermediate SOð10Þf stage [that is pre-

vented by the simple renormalizable vacuum manifold in
Eq. (48)]. By including Eq. (56) in the F-term equations,
we can consistently neglect all VEVs except for the
SOð10Þ �Uð1Þ singlet �, which reads

�2 ¼ � �MP

5�1 þ 1
2�2

: (57)

It is therefore possible to envisage a scenario where the
E6 symmetry is broken at a scale ME <MP, leaving an
effective flipped SOð10Þ �Uð1ÞX scenario down to the

1016 GeV, as discussed in Sec. III. All remaining SM-

singlet VEVs are contained in 45 � 161 � 161 � 162 �
162 which are the only Higgs multiplets required to survive
at the Mf � ME scale. It is clear that this is a plausibility

argument and that a detailed study of the E6 vacuum and
related thresholds is needed to ascertain the feasibility of
the scenario.
The NR breaking of E6 through an intermediate SOð10Þf

stage driven by � � Mf, while allowing (as we shall

discuss next) for a consistent unification pattern, avoids
the issues arising within a one-step breaking. As a matter of
fact, the colored triplets responsible for D ¼ 5 proton
decay live naturally at the �2=MP >Mf scale, while the

masses of the SM-singlet neutrino states which enter
the ‘‘extended’’ type-I seesaw formula are governed by
the h27i �Mf (see the discussion in Sec. V).

D. A unified E6 scenario

Let us examine the plausibility of the two-step gauge
unification scenario discussed in the previous subsection.
We consider here just a simplified description that neglects
threshold effects. As a first quantitative estimate of the
running effects on the SOð10Þf couplings, let us introduce
the quantity

�ðMfÞ 	
��1
X̂
ðMfÞ � ��1

10 ðMfÞ
��1
E

¼ 1

��1
E

bX̂ � b10
2�

log
ME

Mf

;

(58)

whereME is the E6 unification scale and�E is the E6 gauge
coupling. The Uð1ÞX charge has been properly normalized

to X̂ ¼ X=
ffiffiffiffiffiffi
24

p
. The one-loop beta coefficients for the

superfield content 45H � 2
 ð16H � 16HÞ � 3
 ð16F �
10F � 1FÞ � 45G are found to be b10 ¼ 1 and bX̂ ¼ 67=24.
Taking, for the sake of an estimate, a typical MSSM

value for the GUT coupling ��1
E � 25, forME=Mf < 102,

one finds �ðMfÞ< 5%.

In order to match the SOð10Þf couplings with the mea-

sured SM couplings, we consider as a typical setup the
two-loop MSSM gauge running with a 1 TeV SUSY scale.
The (one-loop) matching of the non-Abelian gauge cou-
plings (in dimensional reduction) at the scale Mf reads

��1
10 ðMfÞ ¼ ��1

2 ðMfÞ ¼ ��1
3 ðMfÞ; (59)

while for the properly normalized hypercharge Ŷ one
obtains

��1
Ŷ
ðMfÞ ¼ ð�̂2 þ �̂2Þ��1

10 ðMfÞ þ �̂2��1
X̂
ðMfÞ: (60)

Here we have implemented the relation among the properly
normalized Uð1Þ generators [see Eq. (10)]

Ŷ ¼ �̂Ŷ0 þ �̂ Ẑþ�̂ X̂; (61)

with f�̂; �̂; �̂g ¼ f� 1
5 ;� 1

5

ffiffi
3
2

q
; 3ffiffiffiffi

10
p g.
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The result of this simple exercise is depicted in Fig. 1.
Barring detailed threshold effects, it is interesting to see
that the qualitative behavior of the relevant gauge cou-
plings is, indeed, consistent with the basic picture of the
flipped SOð10Þ �Uð1ÞX embedded into a genuine E6 GUT
emerging below the Planck scale.

V. TOWARDS A REALISTIC FLAVOR

The aim of this section is to provide an elementary
discussion of the main features and of the possible issues
arising in the Yukawa sector of the flipped SOð10Þ �Uð1ÞX
model under consideration. In order to keep the discussion
simple, we shall consider a basic Higgs content with just

one pair of 16H � 16H. As a complement to the tables
given in Sec. III, we summarize the SM decomposition
of the representations relevant to the Yukawa sector in
Table X.

For what follows, we refer to [31–34] and references
therein, where the basic features of models with extended
matter sector are discussed in the E6 and the standard
SOð10Þ context. For a scenario employing flipped
SOð10Þ �Uð1Þ [with an additional anomalous Uð1Þ] see
Ref. [11].

A. Yukawa sector of the flipped SOð10Þ model

Considering, for simplicity, just one pair of spinor Higgs
multiplets, and imposing a Z2 matter parity (negative for
matter and positive for Higgs superfields), the Yukawa
superpotential (up to d ¼ 5 operators) reads

WY ¼ YU16F10F16H þ 1

MP

½YE10F1F16H16H

þ YD16F16F16H16H�; (62)

where family indices are understood. Notice (cf. Table XI)
that due to the flipped embedding the up quarks receive
mass at the renormalizable level, while all the other fer-
mion masses need Planck-suppressed effective contribu-
tions in order to achieve a realistic texture.

1. Mass matrices

In order to avoid the recursive 1=MP factors, we intro-
duce the following notation for the relevant VEVs (see
Table X): v̂d 	 vd=MP, �̂H 	 �H=MP, and ŝH 	 sH=MP.
The Mf-scale mass matrices for the matter fields sharing

the same unbroken SUð3Þc �Uð1ÞQ quantum numbers can

be extracted readily by inspecting the SM decomposition
of the relevant 1þ 10þ 16matter multiplets in the flipped
SOð10Þ setting:

Mu ¼ YUvu; (63)

Md ¼ YD�̂Hvd YDŝHvd

YUsH YU�H

� �
; (64)

Me ¼ YE�̂Hvd YUsH
YEŝHvd YU�H

� �
; (65)

M� ¼

0 0 YUsH 0 YUvu

0 0 YU�H YUvu 0
YUsH YU�H YDv̂dvd 2YDv̂d�H 2YDv̂dsH
0 YUvu 2YD�̂Hvd YD�̂H�H 2YD�̂HsH

YUvu 0 2YDŝHvd 2YDŝH�H YDŝHsH

0
BBBBB@

1
CCCCCA;

(66)

15.0 15.5 16.0 16.5 17.0 17.5 18.0

24

25

26

27

28

29

i
1

U 1 Y

SU 2 L

SU 3 C

U 1 X

SO 10 E6

log10 GeV

FIG. 1 (color online). Sample picture of the gauge coupling
unification in the E6-embedded SOð10Þ �Uð1ÞX model.

TABLE X. SM decomposition of SOð10Þ representations relevant for the Yukawa sector in the
standard and flipped hypercharge embedding. In the SOð10Þf case B� L is assigned according

to Eq. (13). A self-explanatory SM notation is used, with the outer subscripts labeling the SUð5Þ
origin. The SUð2ÞL doublets decompose as Q ¼ ðU;DÞ, L ¼ ðN;EÞ, � ¼ ð�0;��Þ, and �c ¼
ð�cþ;�c0Þ. Accordingly, hHui ¼ ð0; vuÞ and hHdi ¼ ðvd; 0Þ. The D-flatness constraint on the
SM-singlet VEVs, sH and �H, is taken into account.

SOð10Þ SOð10Þf
16F ðDc � LÞ�5 � ðUc �Q � EcÞ10 � ðNcÞ1 ðDc ��cÞ�5 � ð�c �Q � SÞ10 � ðNcÞ1
10F ð� ��cÞ5 � ð�c ��Þ�5 ð� � LÞ5 � ðUc ��Þ�5
1F ðSÞ1 ðEcÞ1
h16Hi ð0 � hHdiÞ�5 � ð0 � 0 � 0Þ10 � ð�HÞ1 ð0 � hHuiÞ�5 � ð0 � 0 � sHÞ10 � ð�HÞ1
h16Hi ð0 � hHuiÞ5 � ð0 � 0 � 0Þ10 � ð�HÞ1 ð0 � hHdiÞ5 � ð0 � 0 � sHÞ10 � ð�HÞ1
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where, for convenience, we redefined YD ! YD=2 and
YE ! YE=2. The basis ðUÞðUcÞ is used for Mu, ðD;�Þ

ð�c; DcÞ for Md, and ð��; EÞðEc;�cþÞ for Me. The
Majorana mass matrix M� is written in the basis
ð�0; N;�c0; Nc; SÞ.

2. Effective mass matrices

Below the Mf � sH � �H scale, the exotic (vector) part

of the matter spectrum decouples, and one is left with the
three standard MSSM families. In what follows, we shall
use the calligraphic symbol M for the 3
 3 effective
MSSM fermion mass matrices in order to distinguish
them from the mass matrices in Eqs. (63)–(66).

(i) Up-type quarks: The effective up-quark mass matrix
coincides with the mass matrix in Eq. (63),

M u ¼ YUvu: (67)

(ii) Down-type quarks and charged leptons: The 6
 6
mass matrices in Eqs. (64) and (65) can be brought
into a convenient form by means of the transforma-
tions

Md ! MdU
y
d 	 M0

d; Me ! U�
eMe 	 M0

e;

(68)

where Ud;e are 6
 6 unitary matrices such that M0
d

and M0
e are block-triangular,

M0
d¼O

v v
0 Mf

� �
; M0

e¼O
v 0
v Mf

� �
: (69)

Here v denotes weak scale entries. This corresponds
to the change of basis

dc

~�c

� �
	 Ud

�c

Dc

� �
;

e
~��

� �
	 Ue

��
E

� �
;

(70)

in the RH down-quark and left-handed charged
lepton sectors, respectively. The upper components
of the rotated vectors (dc and e) correspond to the
light MSSM degrees of freedom. Since the residual
rotations acting on the left-handed down-quark and
RH charged lepton components, which transform

the M0
d;e matrices into fully block-diagonal forms,

are extremely tiny [of Oðv=MfÞ], the 3
 3 upper-

left blocks (ULB) in Eq. (69) can be identified with
the effective light down-type quark and charged
lepton mass matrices, i.e., Md 	 ðM0

dÞULB and

Me 	 ðM0
eÞULB.

It is instructive to work out the explicit form of the
unitary matrices Ud and Ue. For the sake of sim-
plicity, in what follows we shall stick to the single
family case and assume the reality of all the relevant
parameters. Dropping same order Yukawa factors as
well, one writes Eqs. (64) and (65) as

Md ¼ v� vs

sH �H

� �
; Me ¼ v� sH

vs �H

� �
; (71)

and the matrices Ud and Ue are explicitly given by

Ud;e ¼ cos� � sin�
sin� cos�

� �
: (72)

By applying Eq. (68) we get that M0
d and M0

e have

the form in Eq. (69) provided that tan� ¼ sH=�H.
In particular, with a specific choice of the global
phase, we can write

cos�¼ �Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2Hþ�2

H

q ; sin�¼ sHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2Hþ�2

H

q ; (73)

so that the mass eigenstates [up toOðv=MfÞ effects]
are finally given by [see Eq. (70)]

dc

~�c

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2H þ �2
H

q �H�
c � sHD

c

sH�
c þ �HD

c

� �
(74)

and

e
~��

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2H þ �2
H

q �H�
� � sHE

sH�
� þ �HE

� �
; (75)

where the upper (SM) components have mass of
Oðv�;sÞ and the lower (exotic) ones have mass of

OðMfÞ.

TABLE XI. Decomposition of the invariants in Eq. (62) according to flipped SUð5Þ and the SM. The number in the round brackets
stands for the multiplicity of the invariant. The contractions �510F11F h10Hih10Hi and �516F116F h10Hih10Hi yield no SM invariant.

16F10Fh16Hi 10F1Fh16Hih16Hi 16F16Fh16Hih16Hi
(1) 10F �5Fh�5Hi � ðQUc þ S�ÞhHui (2) �5F1Fh5Hih�1Hi � �EchHdi�H (1) 1F1Fh�1Hih�1Hi � NcNc�2

H

(1) 1F5Fh�5Hi � NcLhHui (2) 5F1Fh10Hih5Hi � LEchHdisH (1) 10F10Fh10Hih10Hi � SSs2H
(1) �5F5Fh1Hi � ðDc�þ�cLÞ�H (4) 10F1Fh10Hih�1Hi � SNcsH�H

(1) �5F �5Fh10Hi � �c�sH (1) �5F �5Fh5Hih5Hi � �c�chHdihHdi
(1) 10F5Fh10Hi � �c�sH (4) 10F �5Fh10Hih5Hi � ð�cSþQDcÞhHdisH

(2) 10F10Fh5Hih�1Hi � Q�chHdi�H

(4) �5F1Fh5Hih�1Hi � �cNchHdi�H
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(iii) Neutrinos: Working again in the same approxima-
tion, the lightest eigenvalue of M� in Eq. (66) is
given by

m� � ð�2
H þ s2HÞ2 þ 2s2H�

2
H

3s2H�
2
Hðs2H þ �2

HÞ
MPv

2
u: (76)

For sH � �H �Mf � 1016 GeV, MP � 1018 GeV,

and vu � 102 GeV, one obtains

m� � v2
u

M2
f=MP

� 0:1 eV; (77)

which is within the ballpark of the current lower
bounds on the light neutrino masses set by the
oscillation experiments.
It is also useful to examine the composition of the
lightest neutrino eigenstate �. At the leading order,
the light neutrino eigenvector obeys the equation
M�� ¼ 0 which, in the components � ¼
ðx1; x2; x3; x4; x5Þ, reads

sHx3 ¼ 0; (78)

�Hx3 ¼ 0; (79)

sHx1 þ �Hx2 ¼ 0; (80)

�̂ H�Hx4 þ 2�̂HsHx5 ¼ 0; (81)

2ŝH�Hx4 þ ŝHsHx5 ¼ 0: (82)

By inspection, Eqs. (81) and (82) are compatible
only if x4 ¼ x5 ¼ 0, while Eqs. (78) and (79) imply
x3 ¼ 0. Thus, the nonvanishing components of the
neutrino eigenvector are just x1 and x2. From
Eq. (80), up to a phase factor, we obtain

� ¼ �Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
H þ s2H

q �0 þ �sHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
H þ s2H

q N: (83)

Notice that the lightest neutrino eigenstate � and
the lightest charged lepton show the same admix-
tures of the corresponding electroweak doublet
components. Actually, this can be easily under-
stood by taking the limit vu ¼ vd ¼ 0 in which
the preserved SUð2ÞL gauge symmetry imposes the
same Ue transformation on the ð�0; NÞ compo-
nents. Explicitly, given the form of Ue in Eq. (72),
one obtains in the rotated basis

M0
� ¼

0 0 0 0 0
0 0 Mf 0 0
0 Mf 0 0 0

0 0 0
M2

f

MP
2
M2

f

MP

0 0 0 2
M2

f

MP

M2
f

MP

0
BBBBBBBB@

1
CCCCCCCCA
; (84)

where we have taken sH � �H �Mf.M
0
� is defined

on the basis ð�; ~�0;�c0; Nc; SÞ, where
�
~�0

� �
¼ 1ffiffiffi

2
p �0 � N

�0 þ N

� �
: (85)

In conclusion, we see that the ‘‘light’’ eigenstate �
decouples from the heavy spectrum,

m�M1
��M2

f=MP; �M1
� 1ffiffiffi

2
p ðNc�SÞ; (86)

m�M2
�3 �M2

f=MP; �M2
� 1ffiffiffi

2
p ðNcþSÞ; (87)

m�PD1
��Mf; �PD1

� 1ffiffiffi
2

p ð~�0 ��c0Þ; (88)

m�PD2
�Mf; �PD2

� 1ffiffiffi
2

p ð~�0 þ�c0Þ; (89)

where �M1
and �M2

are two Majorana neutrinos of

intermediate mass, Oð1014Þ GeV, while the states
�PD1

and �PD2
form a pseudo-Dirac neutrino ofmass

Oð1016Þ GeV.
Notice finally that the charged currentWL ��LeL coupling

is unaffected [cf. Eq. (83) with Eq. (75)], contrary to the
claim in Refs. [31,32] that are based on the unjustified
assumption that the physical electron e is predominantly
made of E.

VI. CONCLUSIONS

In this paper we attempted to pin down the minimal
Higgs setting within the framework of the supersymmetric
SOð10Þ and E6 unifications, consistent with a breaking of
the unified gauge symmetry down to the SUð3Þc �
SUð2ÞL �Uð1ÞY of the standard model driven by renorma-
lizable interactions.
The breaking of the GUT symmetries down to the SM at

the renormalizable level is a very interesting option which,
simplicity apart, is supported by the success of the single-
step gauge unification inherent to the TeV-scale minimal
SUSY extension of the SM. Indeed, if any part of the
GUT ! SM symmetry breakdown were due to nonrenor-
malizable (Planck-induced) operators, one has to face a
plethora of thresholds spread below the GUT scale, which
may dramatically affect the gauge running and also the
proton lifetime.
On top of that, the B� L breaking scale in the vicinity

of MG � 1016 GeV is particularly favored by the experi-
mental lower limit on the light neutrino mass scale

(
ffiffiffiffiffiffiffiffiffiffiffi
�m2

A

q
� 0:05 eV) in models in which the RH neutrinos,

driving the singlet (type-I) variant of the seesaw
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mechanism, receive their masses from Planck-suppressed
operators, as in the scenarios discussed in this work.

We argued that the simplest SUSY SOð10Þ Higgs
model that can support a full breaking of the unified
symmetry down to the SM at the renormalizable level
corresponds to the flipped SOð10Þ �Uð1Þ scenario with a

2
 ð16H � 16HÞ � 45H Higgs sector. The enhanced break-

ing power of the spinorial pairs 16H � 16H and the adjoint
45H in the flipped case, each with twice as many SM
singlets as the same multiplet in the standard SOð10Þ
context, does make room for the desired single-step break-
ing of the rank ¼ 6 SOð10Þ �Uð1Þ gauge symmetry down
to the rank ¼ 4 SM. These results follow from a detailed
analysis of the relevant F- andD-flatness constraints on the
gauge boson spectrum.

We also considered the natural embedding of the flipped
SOð10Þ �Uð1Þ model into the exceptional group E6. With

an extra copy of the fundamental conjugated pair of 27H �
27H of E6 [comprising 16H � 16H of its SOð10Þ subgroup]
on top of the simplest nontrivial renormalizable SUSY E6

Higgs sector spanned over 27H � 27H � 78H, the original
symmetry is reduced to rank ¼ 4. However, due to the rich
structure of E6 as compared to its SOð10Þ �Uð1Þ sub-
group, the breaking chain stops at the SUð5Þ level and
nonrenormalizable operators are still needed for a full
E6 ! SM breaking.

We made the case for a two-step breaking of an E6

GUT realized in the vicinity of the Planck scale via an
intermediate flipped SOð10Þ �Uð1Þ stage. Remarkably
enough, even in the simplest picture, the few percent
mismatch observed within the two-loop MSSM gauge
coupling evolution at the scale of the ‘‘one-step’’ grand
unification is naturally accommodated in this scheme,
and it is understood as an artefact of a delayed E6

unification superseding the flipped SOð10Þ �Uð1Þ partial
unification. A study of GUT threshold effects and a
detailed discussion of the matter spectrum will be part
of future work.
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APPENDIX A: FLIPPED SOð10Þ VACUUM
1. Flipped SOð10Þ notation

We work in the basis of Ref. [35], where the adjoint is
projected along the positive-chirality spinorial generators

45 	 45ij�
þ
ij ; (A1)

with i, j ¼ 1; . . . ; 10. Here

�þ
��

� �
	 1

2
ðI32  �Þ�; (A2)

where I32 is the 32-dimensional identity matrix and � is

the ten-dimensional analogue of the Dirac �5 matrix de-
fined as

� 	 �i�1�2�3�4�5�6�7�8�9�10: (A3)

The �i factors are given by the following tensor products
of ordinary Pauli matrices �i and the two-dimensional
identity I2:

�1 	 �1 � �1 � I2 � I2 � �2;

�2 	 �1 � �2 � I2 � �3 � �2;

�3 	 �1 � �1 � I2 � �2 � �3;

�4 	 �1 � �2 � I2 � �2 � I2;

�5 	 �1 � �1 � I2 � �2 � �1;

�6 	 �1 � �2 � I2 � �1 � �2;

�7 	 �1 � �3 � �1 � I2 � I2;

�8 	 �1 � �3 � �2 � I2 � I2;

�9 	 �1 � �3 � �3 � I2 � I2;

�10 	 �2 � I2 � I2 � I2 � I2;

(A4)

which satisfy the Clifford algebra

f�i;�jg ¼ 2	ijI32: (A5)

The spinorial generators �ij are then defined as

�ij 	 i

4
½�i;�j�: (A6)

On the flipped SOð10Þ vacuum the adjoint representation
reads

h45i ¼ h45iL �
� h45iR

� �
; (A7)

where

h45iL ¼ diagð�1; �2; �3; �4; �5; �6; �7; �8Þ; (A8)

and
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h45iR ¼

�9 � � � !þ � � �
� �10 � � � !þ � �
� � �11 � � � !þ �
� � � �12 � � � !þ

!� � � � �13 � � �
� !� � � � �14 � �
� � !� � � � �15 �
� � � !� � � � �16

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

(A9)

In the convention defined in Sec. III B (cf. also the caption
of Table V), the diagonal entries are given by

�1 ¼�2 ¼�3 ¼�5 ¼�6 ¼�7 ¼ !Y

2
ffiffiffi
2

p ;

�4 ¼�8 ¼�3!Y

2
ffiffiffi
2

p ;

�9 ¼�10 ¼�11 ¼� !Y

2
ffiffiffi
2

p �!Rffiffiffi
2

p ; �12 ¼ 3!Y

2
ffiffiffi
2

p �!Rffiffiffi
2

p ;

�13 ¼�14 ¼�15 ¼� !Y

2
ffiffiffi
2

p þ!Rffiffiffi
2

p ; �16 ¼ 3!Y

2
ffiffiffi
2

p þ!Rffiffiffi
2

p ;

(A10)

where !Y and !R are real, while !þ ¼ !��.
Analogously, the spinor and the antispinor SM-obedient

vacuum directions are given by

h16iT ¼ ð� � � � � � � � � � �e � � � � �Þ; (A11)

h16iT ¼ ð� � � �� � � � �e � � � � � � � �Þ; (A12)

where the dots stand for zeros, and the nonvanishing VEVs
are generally complex.

It is worth reminding the reader that the shorthand

notation 1616 and 16 45 16 in Eq. (14) stands for 16TC16
and 16T45TC16, where C is the ‘‘charge conjugation’’
matrix obeying ð�þÞTCþ C�� ¼ 0. In the current con-
vention, C is given by

C ¼
� � � �I4
� � I4 �
� I4 � �

�I4 � � �

0
BBB@

1
CCCA; (A13)

where I4 is the four-dimensional identity matrix.

2. Supersymmetric vacuum manifold

In order for SUSY to survive the spontaneous GUT
symmetry breakdown at MG, the vacuum manifold must
be D and F flat at the GUT scale. The relevant super-
potential WH given in Eq. (14), with the SUð3Þc �
SUð2ÞL �Uð1ÞY-preserving vacuum parametrized by
Eqs. (A7), (A11), and (A12), yields the following
F-flatness equations:

F!R
¼�4�!Rþ �1ffiffiffi

2
p ðe1 �e1��1 ��1Þþ �2ffiffiffi

2
p ðe2 �e2��2 ��2Þ

¼0;

2

3
F!Y

¼4�!Yþ �1ffiffiffi
2

p ðe1 �e1þ�1 ��1Þþ �2ffiffiffi
2

p ðe2 �e2þ�2 ��2Þ¼0;

F!þ ¼4�!���1�1 �e1��2�2 �e2¼0;

F!� ¼4�!þ��1e1 ��1��2e2 ��2¼0;

Fe1 ¼�1

�
�!� ��1� �e1!Rffiffiffi

2
p þ3�e1!Y

2
ffiffiffi
2

p
�
þ�11 �e1þ�12 �e2¼0;

Fe2 ¼�2

�
�!� ��2� �e2!Rffiffiffi

2
p þ3�e2!Y

2
ffiffiffi
2

p
�
þ�21 �e1þ�22 �e2¼0;

F�1
¼�1

�
�!þ �e1þ ��1!Rffiffiffi

2
p þ3 ��1!Y

2
ffiffiffi
2

p
�
þ�11 ��1þ�12 ��2¼0;

F�2
¼�2

�
�!þ �e2þ ��2!Rffiffiffi

2
p þ3 ��2!Y

2
ffiffiffi
2

p
�
þ�21 ��1þ�22 ��2¼0;

F �e1 ¼�1

�
�!þ�1�e1!Rffiffiffi

2
p þ3e1!Y

2
ffiffiffi
2

p
�
þ�11e1þ�21e2¼0;

F �e2 ¼�2

�
�!þ�2�e2!Rffiffiffi

2
p þ3e2!Y

2
ffiffiffi
2

p
�
þ�12e1þ�22e2¼0;

F ��1
¼�1

�
�!�e1þ�1!Rffiffiffi

2
p þ3�1!Y

2
ffiffiffi
2

p
�
þ�11�1þ�21�2¼0;

F ��2
¼�2

�
�!�e2þ�2!Rffiffiffi

2
p þ3�2!Y

2
ffiffiffi
2

p
�
þ�12�1þ�22�2¼0:

(A14)

One can use the first four equations above to replace !R,
!Y , !

þ, and !� in the remaining eight (complex) rela-
tions, which can be rewritten in the form

16�F!
e1 ¼ 16�ð�11 �e1 þ �12 �e2Þ � 5�21ð�1 ��1 þ e1 �e1Þ �e1

� �1�2ð�2 ��2 �e1 þ ð4�2 ��1 þ 5e2 �e1Þ �e2Þ ¼ 0;

16�F!
�e1
¼ 16�ð�11e1 þ �21e2Þ � 5�21ð ��1�1 þ �e1e1Þe1

� �1�2ð ��2�2e1 þ ð4 ��2�1 þ 5 �e2e1Þe2Þ ¼ 0;

16�F!
�1

¼ 16�ð�11 ��1 þ �12 ��2Þ � 5�21ðe1 �e1 þ �1 ��1Þ ��1

� �1�2ðe2 �e2 ��1 þ ð4e2 �e1 þ 5�2 ��1Þ ��2Þ ¼ 0;

16�F!
��1
¼ 16�ð�11�1 þ �21�2Þ � 5�21ð �e1e1 þ ��1�1Þ�1

� �1�2ð �e2e2�1 þ ð4�e2e1 þ 5 ��2�1Þ�2Þ ¼ 0;

(A15)

where the other four equations are obtained from these by
exchanging 1 $ 2.
There are two classes of D-flatness conditions corre-

sponding, respectively, to the VEVs of the Uð1ÞX and the
SOð10Þ generators. For the X charge one finds
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DX ¼ h45iyXh45i þ h161iyXh161i þ h161iyXh161i
þ h162iyXh162i þ h162iyXh162i

¼ je1j2 þ j�1j2 � j �e1j2 � j ��1j2 þ je2j2 þ j�2j2
� j �e2j2 � j ��2j2 ¼ 0; (A16)

while for the SOð10Þ generators one has
Dij 	 D45

ij þD16�16
ij ¼ 0; (A17)

where

D45
ij ¼ Trh45iy½�þ

ij ; h45i� (A18)

and

D16�16
ij ¼ h161iy�þ

ij h161i þ h161iy��
ij h161i

þ h162iy�þ
ij h162i þ h162iy��

ij h162i: (A19)

Given that

Tr h45iy½�þ
ij ; h45i� ¼ Tr�þ

ij ½h45i; h45iy�; (A20)

we obtain

½h45i; h45iy� ¼ � �
� DR

� �
; (A21)

where

DR ¼

A � � � ffiffiffi
2

p
B� � � �

� A � � � ffiffiffi
2

p
B� � �

� � A � � � ffiffiffi
2

p
B� �

� � � A � � � ffiffiffi
2

p
B�ffiffiffi

2
p

B � � � �A � � �
� ffiffiffi

2
p

B � � � �A � �
� � ffiffiffi

2
p

B � � � �A �
� � � ffiffiffi

2
p

B � � � �A

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; (A22)

and

A ¼ j!þj2 � j!�j2; B ¼ ð!þÞ�!R � ð!RÞ�!�:
(A23)

Since!R is real and!þ ¼ ð!�Þ�,D45
ij ¼ 0 as it should be.

Notice that F! flatness implies

�1e1 ��1 þ �2e2 ��2 ¼ �1ð�1 �e1Þ� þ �2ð�2 �e2Þ�; (A24)

where the reality of �1;2 has been taken into account.
For the spinorial contribution in (A17) we find

D16�16
ij ¼ ð�þ

ij Þ12;12ðje1j2 þ je2j2Þ þ ð�þ
ij Þ16;16


 ðj�1j2 þ j�2j2Þ þ ð��
ij Þ4;4ðj ��1j2 þ j ��2j2Þ

þ ð��
ij Þ8;8ðj �e1j2 þ j �e2j2Þ � ð�þ

ij Þ12;16

 ðe�1�1 þ e�2�2Þ � ð�þ

ij Þ16;12ð��
1e1 þ ��

2e2Þ
þ ð��

ij Þ4;8ð ���
1 �e1 þ ���

2 �e2Þ þ ð��
ij Þ8;4ð �e�1 ��1 þ �e�2 ��2Þ:

(A25)

Given �� ¼ �C�1ð�þÞTC and the explicit form of C in
Eq. (A13), one can verify readily that

ð��
ij Þ4;4 ¼ �ð�þ

ij Þ16;16;
ð��

ij Þ8;8 ¼ �ð�þ
ij Þ12;12;

ð��
ij Þ4;8 ¼ þð�þ

ij Þ12;16: (A26)

Thus, D16�16
ij can be simplified to

ð�þ
ij Þ12;12ðje1j2þje2j2�j �e1j2�j �e2j2Þ
þð�þ

ij Þ16;16ðj�1j2þj�2j2�j ��1j2�j ��2j2Þ
�½ð�þ

ij Þ12;16ðe�1�1þe�2�2� ���
1 �e1� ���

2 �e2Þþc:c:�¼0;

(A27)

or, with Eq. (A16) at hand, to

½ð�þ
ij Þ16;16 � ð�þ

ij Þ12;12�ðj�1j2 þ j�2j2 � j ��1j2 � j ��2j2Þ
� ½ð�þ

ij Þ12;16ðe�1�1 þ e�2�2 � ���
1 �e1 � ���

2 �e2Þ þ c:c:� ¼ 0:

(A28)

Taking into account the basic features of the spinorial
generators �þ

ij {e.g., the bracket ½ð�þ
ij Þ16;16 � ð�þ

ij Þ12;12�
and ð�þ

ij Þ12;16 can never act against each other because at

least one of them always vanishes, or the fact that ð�þ
ij Þ12;16

is complex}, Eq. (A28) can be satisfied for all ij if and
only if

je1j2 þ je2j2 � j �e1j2 � j �e2j2 ¼ 0;

j�1j2 þ j�2j2 � j ��1j2 � j ��2j2 ¼ 0;

e�1�1 þ e�2�2 � ���
1 �e1 � ���

2 �e2 ¼ 0:

(A29)

Combining this with Eq. (A24), the required D and F
flatness can be, in general, maintained only if e�1;2 ¼ �e1;2
and ��

1;2 ¼ ��1;2. Hence, we can write
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e1;2 	 je1;2jei
e1;2 ; �e1;2 	 je1;2je�i
e1;2 ;

�1;2 	 j�1;2jei
�1;2 ; ��1;2 	 j�1;2je�i
�1;2 :
(A30)

With this at hand, one can further simplify the F-flatness
conditions, Eq. (A15). To this end, it is convenient to define
the following linear combinations,

L�
V 	 CV

1 cos
V � CV
2 sin
V; (A31)

Lþ
V 	 CV

1 sin
V þ CV
2 cos
V; (A32)

where

CV
1 	 1

2i
ðF!

�V
� F!

V Þ; CV
2 	 1

2
ðF!

�V
þ F!

V Þ;
with V running over the spinorial VEVs e1, e2, �1, and �2.
For �, �1, and �2 real by definition, the requirement of
L
V ¼ 0 for all V is equivalent to

4�ReL�
e1 ¼ je2jð�1�2j�1jj�2j sinð
e1 �
e2 �
�1

þ
�2
Þ � 2�ðj�21j sinð
e1 �
e2 �
�21

Þ
þ j�12j sinð
e1 �
e2 þ
�12

ÞÞÞ
¼ 0;

4�ReL�
�1
¼j�2jð�1�2je1jje2jsinð
�1

�
�2
�
e1 þ
e2Þ

�2�ðj�21jsinð
�1
�
�2

�
�21
Þ

þj�12jsinð
�1
�
�2

þ
�12
ÞÞÞ¼0; (A33)

�2 ImL�
e1 ¼ je2jðj�21j cosð
e1 �
e2 �
�21

Þ
� j�12j cosð
e1 �
e2 þ
�12

ÞÞ ¼ 0;

�2 ImL�
�1

¼ j�2jðj�21j cosð
�1
�
�2

�
�21
Þ

� j�12j cosð
�1
�
�2

þ
�12
ÞÞ ¼ 0; (A34)

and

� 16�ReLþ
e1 ¼ �16�je1jj�11j cosð
�11

Þ � 8�je2jðj�21j cosð
e1 �
e2 �
�21
Þ þ j�12j cosð
e1 �
e2 þ
�12

ÞÞ
þ 5�21ðje1j2 þ j�1j2Þje1j þ �1�2ðð5je2j2 þ j�2j2Þje1j þ 4j�1jj�2jje2j cosð
e1 �
e2 �
�1

þ
�2
ÞÞ

¼ 0;

�16�ReLþ
�1

¼ �16�j�1jj�11j cosð
�11
Þ � 8�j�2jðj�21j cosð
�1

�
�2
�
�21

Þ þ j�12j cosð
�1
�
�2

þ
�12
ÞÞ

þ 5�21ðj�1j2 þ je1j2Þj�1j þ �1�2ðð5j�2j2 þ je2j2Þj�1j þ 4je1jje2jj�2j cosð
�1
�
�2

�
e1 þ
e2ÞÞ ¼ 0;

(A35)

2 ImLþ
e1 ¼ 2je1jj�11j sinð
�11

Þ þ je2jðj�12j sinð
e1 �
e2 þ
�12
Þ � j�21j sinð
e1 �
e2 �
�21

ÞÞ ¼ 0;

2 ImLþ
�1

¼ 2j�1jj�11j sinð
�11
Þ þ j�2jðj�12j sinð
�1

�
�2
þ
�12

Þ � j�21j sinð
�1
�
�2

�
�21
ÞÞ ¼ 0; (A36)

where, as before, the remaining eight real equations for
V ¼ e2, �2 are obtained by swapping 1 $ 2.

Focusing first on L�, one finds that je1jL�
e1 þ je2jL�

e2 ¼
0 and j�1jL�

�1
þ j�2jL�

�2
¼ 0. Thus, we can consider just

L�
e1 and L�

�1
as independent equations. For instance, from

ImL�
e1 ¼ 0 one readily gets

j�21j
j�12j

¼ cosð
e1 �
e2 þ
�12
Þ

cosð
e1 �
e2 �
�21
Þ : (A37)

On top of that, the remaining ReL�
V ¼ ImL�

V ¼ 0 equa-
tions can be solved only for
�12

¼ �
�21
, which, plugged

into Eq. (A37), gives j�12j ¼ j�21j. Thus, we end up with
the following condition for the off-diagonal entries of the �
matrix:

�21 ¼ ��
12: (A38)

Inserting this into theReL�
e1 ¼ 0 andReL�

�1
¼ 0 equations,

they simplify to

� 4�j�12j ¼ �1�2j�1jj�2j sinð�� ��eÞ csc�e; (A39)

4�j�12j ¼ �1�2je1jje2j sinð�� ��eÞ csc��; (A40)

where we have denoted

�� 	 
�1
�
�2

þ
�12
; �e 	 
e1 �
e2 þ
�12

:

(A41)

These, taken together, yield

je1jje2j sin�e ¼ �j�1jj�2j sin�� (A42)

and

j�1jj�2j þ je1jje2j ¼ 4�j�12j
�1�2

sin�� � sin�e

sinð�� ��eÞ : (A43)
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Notice that in the zero phase limit the constraint (A42) is

trivially relaxed, while sin���sin�e

sinð����eÞ ! 1.

Returning to the Lþ
V ¼ 0 equations, the constraint (A38)

implies, e.g.,

ImLþ
e1 ¼ je1jj�11j sinð
�11

Þ ¼ 0;

ImLþ
e2 ¼ je2jj�22j sinð
�22

Þ ¼ 0;

ImLþ
�1

¼ j�1jj�11j sinð
�11
Þ ¼ 0;

ImLþ
�2

¼ j�2jj�22j sinð
�22
Þ ¼ 0:

(A44)

For generic VEVs, these relations require 
�11
and 
�22

to

vanish. In conclusion, a nontrivial vacuum requires � (and
hence � for consistency) to be Hermitian. This is a con-
sequence of the fact that D flatness for the flipped SOð10Þ
embedding implies h16ii ¼ h16ii�, cf. Eq. (A30). Let us
also note that such a setting is preserved by supersymmet-
ric wave-function renormalization.
Taking � ¼ �y in the remaining ReLþ

V ¼ 0 equations
and trading j�12j for j�1jj�2j in ReLþ

e1;2 ¼ 0 by means of

Eq. (A39) and for je1jje2j in ReLþ
�1;2

¼ 0 via Eq. (A40),

one obtains

� 16�ReLþ
e1 ¼ je1j½�16��11 þ 5�21ðj�1j2 þ je1j2Þ þ �1�2ðj�2j2 þ 5je2j2Þ� þ 4�1�2j�1jj�2jje2j sin�� csc�e ¼ 0;

�16�ReLþ
e2 ¼ je2j½�16��22 þ 5�22ðj�2j2 þ je2j2Þ þ �1�2ðj�1j2 þ 5je1j2Þ� þ 4�1�2j�1jj�2jje1j sin�� csc�e ¼ 0;

�16�ReLþ
�1

¼ j�1j½�16��11 þ 5�21ðje1j2 þ j�1j2Þ þ �1�2ðje2j2 þ 5j�2j2Þ� þ 4�1�2j�2jje1jje2j csc�� sin�e ¼ 0;

�16�ReLþ
�2

¼ j�2j½�16��22 þ 5�22ðje2j2 þ j�2j2Þ þ �1�2ðje1j2 þ 5j�1j2Þ� þ 4�1�2j�1jje1jje2j csc�� sin�e ¼ 0:

(A45)

Since only two out of these four equations are independent
constraints, it is convenient to consider the following linear
combinations,

C3 	 j�1j2ðje1jReLþ
e1 � je2jReLþ

e2Þ
� je1j2ðj�1jReLþ

�1
� j�2jReLþ

�2
Þ; (A46)

C4 	 j�2j2ðje1jReLþ
e1 � je2jReLþ

e2Þ
� je2j2ðj�1jReLþ

�1
� j�2jReLþ

�2
Þ; (A47)

which admit for a simple factorized form

16�C3 ¼ ðj�2j2je1j2 � j�1j2je2j2Þ½5�22ðj�2j2 þ je2j2Þ
þ �1�2ðj�1j2 þ je1j2Þ � 16��22� ¼ 0; (A48)

16�C4 ¼ ðj�2j2je1j2 � j�1j2je2j2Þ½5�21ðj�1j2 þ je1j2Þ
þ �1�2ðj�2j2 þ je2j2Þ � 16��11� ¼ 0: (A49)

These relations can be generically satisfied only if the
square brackets are zero, providing

16��11 ¼ 5�21ðj�1j2 þ je1j2Þ þ �1�2ðj�2j2 þ je2j2Þ;
16��22 ¼ 5�22ðj�2j2 þ je2j2Þ þ �1�2ðj�1j2 þ je1j2Þ:

(A50)

By introducing a pair of symbolic two-dimensional vectors
~r1 ¼ ðj�1j; je1jÞ and ~r2 ¼ ðj�2j; je2jÞ, one can write

r21 ¼ j�1j2 þ je1j2; r22 ¼ j�2j2 þ je2j2;
~r1: ~r2 ¼ j�1jj�2j þ je1jje2j;

(A51)

which, in combination with Eqs. (A43) and (A50), yields

r21 ¼ � 2�ð�22�1 � 5�11�2Þ
3�21�2

;

r22 ¼ � 2�ð�11�2 � 5�22�1Þ
3�1�

2
2

;

~r1: ~r2 ¼ 4�j�12j
�1�2

sin�� � sin�e

sinð�� ��eÞ :

(A52)

With this at hand, the vacuum manifold can be conven-
iently parametrized by means of two angles �1 and �2,

j�1j ¼ r1 sin�1; je1j ¼ r1 cos�1;

j�2j ¼ r2 sin�2; je2j ¼ r2 cos�2;
(A53)

which are fixed in terms of the superpotential parameters.
By defining � 	 �1  �2, Eqs. (A51)–(A53) give

cos�� ¼ ~r1: ~r2
r1r2

¼ �
sin�� � sin�e

sinð�� ��eÞ ; (A54)

where

� ¼ 6j�12jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 5�2

11
�2

�1
� 5�2

22
�1

�2
þ 26�22�11

r : (A55)

Analogously, Eq. (A42) can be rewritten as

cos�1 cos�2 sin�e ¼ � sin�1 sin�2 sin��; (A56)

which gives
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sin�e

sin��

¼ cos�þ � cos��

cos�� þ cos�þ ; (A57)

and thus, using Eq. (A54), we obtain

cos�þ ¼ �
sin�� þ sin�e

sinð�� ��eÞ : (A58)

Notice also that in the real case (i.e., �� ¼ �e ¼ 0) �þ is
undetermined, while cos�� ¼ �.

This justifies the shape of the vacuum manifold given in
Eq. (16) of Sec. III B.

3. Gauge boson spectrum

In order to determine the residual symmetry correspond-
ing to a specific vacuum configuration, we compute ex-
plicitly the gauge spectrum. Given the SOð10Þ �Uð1ÞX
covariant derivatives for the scalar components of the
Higgs chiral superfields

D�16 ¼ @�16� igðA�ÞðijÞ�þ
ðijÞ16� igXX�16;

D�16 ¼ @�16� igðA�ÞðijÞ��
ðijÞ16þ igXX�16;

D�45 ¼ @�45� igðA�ÞðijÞ½�þ
ðijÞ; 45�;

(A59)

where the indices in brackets ðijÞ stand for ordered pairs,
and the properly normalized kinetic terms

D�16
yD�16; D�16

yD�16;
1
4 TrD�45

yD�45;

(A60)

one can write the 46-dimensional gauge boson mass matrix
governing the mass bilinear of the form

1
2 ððA�ÞðijÞ; X�ÞM2ðA; XÞððA�ÞðklÞ; X�ÞT (A61)

as

M 2ðA; XÞ ¼ M2
ðijÞðklÞ M2

ðijÞX
M2

XðklÞ M2
XX

 !
: (A62)

The relevant matrix elements are given by

M2
ðijÞðklÞ ¼ g2ðh16iyf�þ

ðijÞ;�
þ
ðklÞgh16i þ h16iyf��

ðijÞ;�
�
ðklÞg


 h16i þ 1
2 Tr½�þ

ðijÞ; h45i�y½�þ
ðklÞ; h45i�Þ;

M2
ðijÞX ¼ 2ggXðh16iy�þ

ðijÞh16i � h16iy��
ðijÞh16iÞ;

M2
XðklÞ ¼ 2ggXðh16iy�þ

ðklÞh16i � h16iy��
ðklÞh16iÞ;

M2
XX ¼ 2g2Xðh16iyh16i þ h16iyh16iÞ: (A63)

a. Spinorial contribution

Considering first the contribution of the reducible rep-

resentation h161 � 162 � 161 � 162i to the gauge boson
mass matrix, we find

M 2
16ð1; 3; 0Þ145 ¼ 0; (A64)

M 2
16ð8; 1; 0Þ1545 ¼ 0; (A65)

M 2
16ð3; 1;�1

3Þ1545 ¼ g2ðje1j2 þ j�1j2 þ je2j2 þ j�2j2
þ j �e1j2 þ j ��1j2 þ j �e2j2 þ j ��2j2Þ:

(A66)

In the ð6�45; 6þ45Þ basis (see Table V for the labeling of the

states) we obtain

M 2
16

�
3; 2;þ 1

6

�
¼ g2ðj�1j2 þ j�2j2 þ j ��1j2 þ j ��2j2Þ �ig2ðe�1�1 þ e�2�2 þ ���

1 �e1 þ ���
2 �e2Þ

ig2ðe1��
1 þ e2�

�
2 þ ��1 �e

�
1 þ ��2 �e

�
2Þ g2ðje1j2 þ je2j2 þ j �e1j2 þ j �e2j2Þ

� �
: (A67)

The five-dimensional SM-singlet mass matrix in the ð1545; 1�45; 1045; 1þ45; 11Þ basis reads

M 2
16ð1; 1; 0Þ ¼

3
2 g

2S1 i
ffiffiffi
3

p
g2S3 �

ffiffi
3
2

q
g2S2 �i

ffiffiffi
3

p
g2S�3 � ffiffiffi

3
p

ggXS1

�i
ffiffiffi
3

p
g2S�3 g2S1 0 0 2iggXS3

�
ffiffi
3
2

q
g2S2 0 g2S1 0

ffiffiffi
2

p
ggXS2

i
ffiffiffi
3

p
g2S3 0 0 g2S1 �2iggXS

�
3

� ffiffiffi
3

p
ggXS1 �2iggXS

�
3

ffiffiffi
2

p
ggXS2 2iggXS3 2g2XS1

0
BBBBBBBBB@

1
CCCCCCCCCA
; (A68)

where S1	je1j2þje2j2þj�1j2þj�2j2þj �e1j2þj �e2j2þ
j ��1j2þj ��2j2, S2	je1j2þje2j2�j�1j2�j�2j2þj �e1j2þ
j �e2j2�j ��1j2�j ��2j2, and S3	e1�

�
1þe2�

�
2þ �e�1 ��1þ �e�2 ��2.

For generic VEVs RankM2
16ð1; 1; 0Þ ¼ 4, and we re-

cover 12 massless gauge bosons with the quantum numbers
of the standard model algebra.

We verified that this result is maintained when imple-
menting the constraints of the flipped vacuum manifold in
Eq. (16). Since it is, by construction, the smallest algebra
that can be preserved by the whole vacuum manifold, it
must be maintained when adding the h45Hi contribution.
We can therefore claim that the invariant algebra on the
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generic vacuum is the SM. On the other hand, the 45H
already plays an active role in this result since it allows for

a misalignment of the VEV directions in the two 16H �
16H spinors such that the spinor vacuum preserves SM and
not SUð5Þ �Uð1Þ. More details shall be given in the next
section.

b. Adjoint contribution

Considering the contribution of h45Hi to the gauge
spectrum, we find

M 2
45ð1; 3; 0Þ145 ¼ 0; (A69)

M 2
45ð8; 1; 0Þ1545 ¼ 0; (A70)

M 2
45ð3; 1;�1

3Þ1545 ¼ 4g2!2
Y: (A71)

Analogously, in the ð6�45; 6þ45Þ basis, we have

M 2
45

�
3; 2;þ 1

6

�
¼ g2ðð!R þ!YÞ2 þ 2!�!þÞ i2

ffiffiffi
2

p
g2!Y!

�
�i2

ffiffiffi
2

p
g2!Y!

þ g2ðð!R �!YÞ2 þ 2!�!þÞ
 !

: (A72)

The SM-singlet mass matrix in the ð1545; 1�45; 1045; 1þ45; 11Þ basis reads

M 2
45ð1; 1; 0Þ ¼

0 0 0 0 0
0 4g2ð!2

R þ!�!þÞ �i4g2!R!
� 4g2ð!�Þ2 0

0 i4g2!R!
þ 8g2!�!þ �i4g2!R!

� 0
0 4g2ð!þÞ2 i4g2!R!

þ 4g2ð!2
R þ!�!þÞ 0

0 0 0 0 0

0
BBBB@

1
CCCCA: (A73)

For generic VEVs we find RankM2
45ð1; 1; 0Þ ¼ 2, leading

globally to the 14 massless gauge bosons of the SUð3Þc �
SUð2ÞL �Uð1Þ3 algebra.

As a consistency check, by switching on just the !R and
!Y VEVs, we recover the results of [2] for standard
SOð10Þ.

c. Vacuum little group

With the results of Appendixes A 3 a and A 3 b at hand,
the residual gauge symmetry can be readily identified from
the properties of the complete gauge boson mass matrix.
For the sake of simplicity, here we shall present the results
in the real VEV approximation.

Trading the VEVs for the superpotential parameters, one
can immediately identify the strong and weak gauge
bosons of the SM that, as expected, remain massless:

M 2ð8; 1; 0Þ1545 ¼ 0; M2ð1; 3; 0Þ145 ¼ 0: (A74)

Similarly, it is straightforward to obtain

M2

�
3; 1;� 1

3

�
1545

¼ 4g2

9�21�
2
2

ð3�ð�22�1ð5�1 � �2Þ

þ �11�2ð5�2 � �1ÞÞ
þ 2ð�22�1 þ �11�2Þ2Þ: (A75)

On the other hand, the complete matrices M2ð3; 2;þ 1
6Þ

and M2ð1; 1; 0Þ turn out to be quite involved once the
vacuum constraints are imposed, and we do not show
them here explicitly. Nevertheless, it is sufficient to
consider

TrM2

�
3; 2;þ 1

6

�
¼ g2

8�2
½16�2ðr21 þ r22Þ þ �21r

4
1 þ �22r

4
2

þ �1�2r
2
1r

2
2ð1þ cos2��Þ� (A76)

and

detM2

�
3; 2;þ 1

6

�
¼ g4r21r

2
2

128�4
½512�4 þ 32�2ð�21r21 þ �22r

2
2Þ

þ �21�
2
2r

2
1r

2
2ð1� cos2��Þ�sin2��

(A77)

to see that for a generic nonzero value of sin�� one gets
RankM2ð3; 2;þ 1

6Þ ¼ 2. On the other hand, when �� ¼ 0

(i.e., h161i / h162i) or r2 ¼ 0 (i.e., h162i ¼ 0),
RankM2ð3; 2;þ 1

6Þ ¼ 1 and one is left with an additional

massless ð3; 2;þ 1
6Þ � ð�3; 2;� 1

6Þ gauge boson, correspond-

ing to an enhanced residual symmetry.
In the case of the five-dimensional matrix M2ð1; 1; 0Þ it

is sufficient to notice that for a generic nonzero sin��,

Rank M2ð1; 1; 0Þ ¼ 4; (A78)

on the vacuum manifold, which leaves a massless
Uð1ÞY gauge boson, thus completing the SM algebra.
As before, for �� ¼ 0 or for r2 ¼ 0, we find
RankM2ð1; 1; 0Þ ¼ 3. Taking into account the massless
states in the ð3; 2;þ 1

6Þ � ð�3; 2;� 1
6Þ sector, we recover, as

expected, the flipped SUð5Þ �Uð1Þ algebra.

APPENDIX B: E6 VACUUM

1. The SUð3Þ3 formalism

Following closely the notation of Ref. [12], we decom-
pose the adjoint and fundamental representations of E6
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under its SUð3ÞC � SUð3ÞL � SUð3ÞR maximal sub-
algebra as

78 	 ð8; 1; 1Þ � ð1; 8; 1Þ � ð1; 1; 8Þ � ð�3; 3; 3Þ � ð3; �3; �3Þ
� T�

� � Ti
j � Ti0

j0 �Q�
ij0 �Qij0

� ; (B1)

27 	 ð3; 3; 1Þ � ð1; �3; 3Þ � ð�3; 1; �3Þ 	 v�i � vi
j0 � v�j0 ;

(B2)

27 	 ð�3; �3; 1Þ � ð1; 3; �3Þ � ð3; 1; 3Þ 	 u�i � uj
0
i � u�j0 ;

(B3)
where the Greek, Latin, and primed-Latin indices, corre-
sponding to SUð3Þc, SUð3ÞL, and SUð3ÞR, respectively, run
from 1 to 3. As far as the SUð3Þ algebras in Eq. (B1) are
concerned, the generators follow the standard Gell-Mann
convention

Tð1Þ ¼ 1

2
ðT1

2 þ T2
1Þ; Tð2Þ ¼ i

2
ðT1

2 � T2
1Þ;

Tð3Þ ¼ 1

2
ðT1

1 � T2
2Þ; Tð4Þ ¼ 1

2
ðT1

3 þ T3
1Þ;

Tð5Þ ¼ i

2
ðT1

3 � T3
1Þ; Tð6Þ ¼ 1

2
ðT2

3 þ T3
2Þ;

Tð7Þ ¼ i

2
ðT2

3 � T3
2Þ; Tð8Þ ¼ 1

2
ffiffiffi
3

p ðT1
1 þ T2

2 � 2T3
3Þ;
(B4)

with ðTa
b Þkl ¼ 	k

b	
a
l , so they are all normalized so that

TrTðaÞTðbÞ ¼ 1
2	

ab.

Taking into account Eqs. (B1)–(B4), the E6 algebra can
be written as

½T�
�; T

�
�� ¼ 	�

�T
�
� � 	�

�T
�
�;

½Ti
j; T

k
l � ¼ 	i

lT
k
j � 	k

jT
i
l ;

½Ti0
j0 ; T

k0
l0 � ¼ 	i0

l0T
k0
j0 � 	k0

j0T
i0
l0 ;

½T�
�; T

i
j� ¼ ½T�

�; T
i0
j0 � ¼ ½Ti

j; T
i0
j0 � ¼ 0; (B5)

½Q�
ij0 ; T

�
�� ¼ 	�

�Q
�
ij0 ;

½Qij0
� ; T�

�� ¼ �	�
�Q

ij0
� ;

½Q�
ij0 ; T

k
l � ¼ �	k

iQ
�
lj0 ;

½Qij0
� ; Tk

l � ¼ 	i
lQ

kj0
� ;

½Q�
ij0 ; T

k0
l0 � ¼ �	k0

j0Q
�
il0 ;

½Qij0
� ; Tk0

l0 � ¼ 	j0
l0Q

ik0
� ; (B6)

½Q�
ij0 ; Q

kl0
� � ¼ �	�

�	
k
i T

l0
j0 � 	�

�	
l0
j0T

k
i þ 	k

i 	
l0
j0T

�
�;

½Q�
ij0 ; Q

�
kl0 � ¼ �����ikp�j0l0q0Q

pq0
� ;

½Qij0
� ;Qkl0

� � ¼ ������
ikp�j

0l0q0Q�
pq0 :

(B7)

The action of the algebra on the fundamental 27 represen-
tation reads

T�
�v�i ¼ 	�

�v�i;

Tk
l v�i ¼ 	k

i v�l;

Tk0
l0 v�i ¼ 0;

Q�
pq0v�i ¼ 	�

��pikv
k
q0 ;

Qpq0
� v�i ¼ 	p

i ����v
�q0 ; (B8)

T�
�vi

j0 ¼ 0;

Tk
l v

i
j0 ¼ �	i

lv
k
j0 ;

Tk0
l0 v

i
j0 ¼ 	k0

j0v
i
l0 ;

Q�
pq0v

i
j0 ¼ �	i

p�q0j0k0v
�k0 ;

Qpq0
� vi

j0 ¼ 	q0
j0 �

pikv�k; (B9)

T�
�v�j0 ¼ �	�

�v
�j0 ;

Tk
l v

�j0 ¼ 0;

Tk0
l0 v

�j0 ¼ �	j0
l0v

�k0 ;

Q�
pq0v

�j0 ¼ �	j0
q0�

���v�p;

Qpq0
� v�j0 ¼ �	�

��
q0j0k0vp

k0 ; (B10)

and accordingly on 27,

T�
�u�i ¼ �	�

�u
�i;

Tk
l u

�i ¼ �	i
lu

�k;

Tk0
l0 u

�i ¼ 0;

Q�
pq0u

�i ¼ �	i
p�

���u�q0 ;

Qpq0
� u�i ¼ �	�

��
pikuq

0
k ; (B11)

T�
�u

j0
i ¼ 0;

Tk
l u

j0
i ¼ 	k

i u
j0
l ;

Tk0
l0 u

j0
i ¼ �	j0

l0u
k0
i ;

Q�
pq0u

j0
i ¼ �	j0

q0�piku
�k;

Qpq0
� uj

0
i ¼ 	p

i �
q0j0k0u�k0 ; (B12)

T�
�u�j0 ¼ 	�

�u�j0 ;

Tk
l u�j0 ¼ 0;

Tk0
l0 u�j0 ¼ 	k0

j0u�l0 ;

Q�
pq0u�j0 ¼ 	�

��q0j0k0u
k0
p ;

Qpq0
� u�j0 ¼ 	q0

j0 ����u
�p: (B13)

Given the SM hypercharge definition
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Y ¼ 1ffiffiffi
3

p Tð8Þ
L þ Tð3Þ

R þ 1ffiffiffi
3

p Tð8Þ
R ; (B14)

the SM-preserving vacuum direction corresponds to [12]

h78i ¼ a1T
30
20 þ a2T

20
30 þ

a3ffiffiffi
6

p ðT10
10 þ T20

20 � 2T30
30 Þ

þ a4ffiffiffi
2

p ðT10
10 � T20

20 Þ þ
b3ffiffiffi
6

p ðT1
1 þ T2

2 � 2T3
3Þ; (B15)

h27i ¼ ev3
30 þ �v3

20 ; h27i ¼ �eu3
0

3 þ ��u2
0

3 ; (B16)

where a1, a2, a3, a4, b3, e, �e, �, and �� are SM-singlet
VEVs. This can be checked by means of Eqs. (B5)–(B13).
Notice that the adjoint VEVs a3, a4, and b3 are real, while

a1 ¼ a�2. The VEVs of 27 � 27 are generally complex.

2. E6 vacuum manifold

Working out the D-flatness equations, one finds that the
nontrivial constraints are given by

DE�
¼
�
3a3ffiffiffi
6

p � a4ffiffiffi
2

p
�
a�2 � a1

�
3a�3ffiffiffi
6

p � a�4ffiffiffi
2

p
�
þ e�1�1 � �e1 ��

�
1

þ e�2�2 � �e2 ��
�
2 ¼ 0;

D
Tð8Þ
R
¼ 3ðja1j2 � ja2j2Þ þ 2ðj �e1j2 � je1j2Þ

þ 2ðj �e2j2 � je2j2Þ þ j�1j2 � j ��1j2
þ j�2j2 � j ��2j2 ¼ 0;

D
Tð3Þ
R
¼ ja2j2 � ja1j2 þ j ��1j2 � j�1j2 þ j ��2j2 � j�2j2

¼ 0;

D
Tð8Þ
L
¼ je1j2 þ j�1j2 þ je2j2 þ j�2j2 � j �e1j2

� j ��1j2 � j �e2j2 � j ��2j2 ¼ 0; (B17)

where DE�
is the ladder operator from the (1, 1, 8) sub-

multiplet of 78. Notice that the relations corresponding to
D

Tð8Þ
R
, D

Tð3Þ
R
, and D

Tð8Þ
L

are linearly dependent, since the

linear combination associated with the SM hypercharge
in Eq. (B14) vanishes.

The superpotential WH in Eq. (36) evaluated on the
vacuum manifold (B15) and (B16) yields Eq. (47).
Accordingly, one finds the following F-flatness equations:

Fa1 ¼�a2��1e1 ��1��2e2 ��2¼0;

Fa2 ¼�a1��1�1 �e1��2�2 �e2¼0;

Fa3 ¼�a3� 1ffiffiffi
6

p ð�1ð�1 ��1�2e1 �e1Þþ�2ð�2 ��2�2e2 �e2ÞÞ

¼0;

Fa4 ¼�a4þ 1ffiffiffi
2

p ð�1�1 ��1þ�2�2 ��2Þ¼0;

Fb3 ¼�b3�
ffiffiffi
2

3

s
ð�1ð�1 ��1þe1 �e1Þþ�2ð�2 ��2þe2 �e2ÞÞ¼0;

3Fe1 ¼3ð�11 �e1þ�12 �e2Þ��1ð
ffiffiffi
6

p ðb3�a3Þ �e1þ3a1 ��1Þ¼0;

3Fe2 ¼3ð�21 �e1þ�22 �e2Þ��2ð
ffiffiffi
6

p ðb3�a3Þ �e2þ3a1 ��2Þ¼0;

6F�1
¼6ð�11 ��1þ�12 ��2Þ��1ð

ffiffiffi
2

p ð ffiffiffi
3

p
a3�3a4

þ2
ffiffiffi
3

p
b3Þ ��1þ6a2 �e1Þ¼0;

6F�2
¼6ð�21 ��1þ�22 ��2Þ��2ð

ffiffiffi
2

p ð ffiffiffi
3

p
a3�3a4

þ2
ffiffiffi
3

p
b3Þ ��2þ6a2 �e2Þ¼0;

3F �e1 ¼3ð�11e1þ�21e2Þ��1ð
ffiffiffi
6

p ðb3�a3Þe1þ3a2�1Þ¼0;

3F �e2 ¼3ð�12e1þ�22e2Þ��2ð
ffiffiffi
6

p ðb3�a3Þe2þ3a2�2Þ¼0;

6F ��1
¼6ð�11�1þ�21�2Þ��1ð

ffiffiffi
2

p ð ffiffiffi
3

p
a3�3a4

þ2
ffiffiffi
3

p
b3Þ�1þ6a1e1Þ¼0;

6F ��2
¼6ð�12�1þ�22�2Þ��2ð

ffiffiffi
2

p ð ffiffiffi
3

p
a3�3a4

þ2
ffiffiffi
3

p
b3Þ�2þ6a1e2Þ¼0: (B18)

Following the strategy of Appendix A 2 one can solve the
first five equations above for a1, a2, a3, a4, and b3:

�a1 ¼ �1�1 �e1 þ �2�2 �e2;

�a2 ¼ �1e1 ��1 þ �2e2 ��2;ffiffiffi
6

p
�a3 ¼ �1ð�1 ��1 � 2e1 �e1Þ þ �2ð�2 ��2 � 2e2 �e2Þ;ffiffiffi

2
p

�a4 ¼ ��1�1 ��1 � �2�2�2;ffiffiffi
3

p
�b3 ¼

ffiffiffi
2

p ð�1ð�1 ��1 þ e1 �e1Þ þ �2ð�2 ��2 þ e2 �e2ÞÞ:
(B19)

Since a1 ¼ a�2 and �1 and �2 can be taken real without loss
of generality (see Sec. IVB), the first two equations above
imply

�1�1 �e1 þ �2�2 �e2 ¼ �1ðe1 ��1Þ� þ �2ðe2 ��2Þ�: (B20)

Using (B19) the remaining F-flatness conditions in
Eq. (B18) can be rewritten in the form

3�Fa
e1 ¼ 3�ð�11 �e1 þ �12 �e2Þ � 4�21ð�1 ��1 þ e1 �e1Þ �e1

� �1�2ð3�2 ��1 �e2 þ ð�2 ��2 þ 4e2 �e2Þ �e1Þ ¼ 0;

3�Fa
�e1
¼ 3�ð�11e1 þ �21e2Þ � 4�21ð ��1�1 þ �e1e1Þe1

� �1�2ð3 ��2�1e2 þ ð ��2�2 þ 4�e2e2Þe1Þ ¼ 0;

3�Fa
�1

¼ 3�ð�11 ��1 þ �12 ��2Þ � 4�21ðe1 �e1 þ �1 ��1Þ ��1

� �1�2ð3e2 �e1 ��2 þ ðe2 �e2 þ 4�2 ��2Þ ��1Þ ¼ 0;

3�Fa
��1
¼ 3�ð�11�1 þ �21�2Þ � 4�21ð �e1e1 þ ��1�1Þ�1

� �1�2ð3 �e2e1�2 þ ð �e2e2 þ 4 ��2�2Þ�1Þ ¼ 0;

(B21)

and the additional four relations can again be obtained
by exchanging 1 $ 2. Similarly, the triplet of linearly
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independent D-flatness conditions in Eq. (B17) can be
brought to the form

DE�
¼ e�1�1 � �e1 ��

�
1 þ e�2�2 � �e2 ��

�
2 ¼ 0;

D
Tð3Þ
R
¼ j ��1j2 � j�1j2 þ j ��2j2 � j�2j2 ¼ 0;

D
Tð8Þ
L
¼ je1j2 þ j�1j2 þ je2j2 þ j�2j2 � j �e1j2

� j ��1j2 � j �e2j2 � j ��2j2 ¼ 0: (B22)

Combining these with Eq. (B20), the D-flatness condition
is ensured if and only if e�1;2 ¼ �e1;2 and �

�
1;2 ¼ ��1;2. Hence,

in complete analogy with the flipped SOð10Þ case,
Eq. (A30), one can write

e1;2 	 je1;2jei
e1;2 ; �e1;2 	 je1;2je�i
e1;2 ;

�1;2 	 j�1;2jei
�1;2 ; ��1;2 	 j�1;2je�i
�1;2 :
(B23)

From now on, the discussion of the vacuum manifold
very closely follows that for the flipped SOð10Þ in
Sec. II A, and we shall not repeat it here. In particular,
the existence of a nontrivial vacuum requires the
Hermiticity of the � and � couplings. This is related to

the fact that D- and F-flatness conditions require h27ii ¼
h27ii�. The detailed shape of the resulting vacuum mani-
fold so obtained is given in Eq. (48) of Sec. IVB.

3. Vacuum little group

In order to find the algebra left invariant by the vacuum
configurations in Eq. (48), we need to compute the action

of the E6 generators on the h78 � 271 � 272 � 271 � 272i
VEV. From Eqs. (B5) and (B6) one obtains

T�
�h78i ¼ 0;

Ti
jh78i ¼

b3ffiffiffi
6

p ð	i
1T

1
j � 	1

jT
i
1 þ 	i

2T
2
j � 	2

jT
i
2 � 2	i

3T
3
j þ 2	3

jT
i
3Þ;

Ti0
j0 h78i ¼ a1ð	i0

20T
30
j0 � 	30

j0T
i0
20 Þ þ a2ð	i0

30T
20
j0 � 	20

j0T
i0
30 Þ þ

a3ffiffiffi
6

p ð	i0
10T

10
j0 � 	10

j0T
i0
10 þ 	i0

20T
20
j0 � 	20

j0T
i0
20 � 2	i0

30T
30
j0 þ 2	30

j0T
i0
30 Þ

þ a4ffiffiffi
2

p ð	i0
10T

10
j0 � 	10

j0T
i0
10 � 	i0

20T
20
j0 þ 	20

j0T
i0
20 Þ;

Q�
ij0 h78i ¼ �a1ð	30

j0Q
�
i20 Þ � a2ð	20

j0Q
�
i30 Þ �

a3ffiffiffi
6

p ð	10
j0Q

�
i10 þ 	20

j0Q
�
i20 � 2	30

j0Q
�
i30 Þ �

a4ffiffiffi
2

p ð	10
j0Q

�
i10 � 	20

j0Q
�
i20 Þ

� b3ffiffiffi
6

p ð	1
i Q

�
1j0 þ 	2

i Q
�
2j0 � 2	3

i Q
�
3j0 Þ;

Qij0
� h78i ¼ a1ð	j0

20Q
i30
� Þ þ a2ð	j0

30Q
i20
� Þ þ a3ffiffiffi

6
p ð	j0

10Q
i10
� þ 	j0

20Q
i20
� � 2	j0

30Q
i30
� Þ þ a4ffiffiffi

2
p ð	j0

10Q
i10
� � 	j0

20Q
i20
� Þ

þ b3ffiffiffi
6

p ð	i
1Q

1j0
� þ 	i

2Q
2j0
� � 2	i

3Q
3j0
� Þ; (B24)

on the adjoint vacuum. For h271 � 272i one finds
T�
�h271 � 272i ¼ 0;

Ti
jh271 � 272i ¼ �ðe1 þ e2Þ½	3

jv
i
30 � � ð�1 þ �2Þ½	3

jv
i
20 �;

Ti0
j0 h271 � 272i ¼ ðe1 þ e2Þ½	i0

30v
3
j0 � þ ð�1 þ �2Þ½	i0

20v
3
j0 �;

Q�
ij0 h271 � 272i ¼ �ðe1 þ e2Þ½	3

i �j030k0v
�k0 � � ð�1 þ �2Þ½	3

i �j020k0v
�k0 �;

Qij0
� h271 � 272i ¼ ðe1 þ e2Þ½	j0

30�
i3kv�k� þ ð�1 þ �2Þ½	j0

20�
i3kv�k�; (B25)

and, accordingly, for h271 � 272i,
T�
�h271 � 272i ¼ 0;

Ti
jh271 � 272i ¼ ð �e1 þ �e2Þ½	i

3u
30
j � þ ð�1 þ ��2Þ½	i

3u
20
j �;

Ti0
j0 h271 � 272i ¼ �ð �e1 þ �e2Þ½	30

j0u
i0
3 � � ð ��1 þ ��2Þ½	20

j0u
i0
3 �;

Q�
ij0 h271 � 272i ¼ �ð �e1 þ �e2Þ½	30

j0�i3ku
�k� � ð ��1 þ ��2Þ½	20

j0 �i3ku
�k�;

Qij0
� h271 � 272i ¼ ð �e1 þ �e2Þ½	i

3�
j030k0u�k0 � þ ð ��1 þ ��2Þ½	i

3�
j020k0u�k0 �: (B26)
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On the vacuum manifold in Eq. (48) one finds that the

generators generally preserved by the VEVs of 78 � 271 �
272 � 271 � 272 are

Tð1Þ
c Tð2Þ

c Tð3Þ
c Tð4Þ

c Tð5Þ
c Tð6Þ

c Tð7Þ
c Tð8Þ

c : ð8; 1; 0Þ;
Tð1Þ
L Tð2Þ

L Tð3Þ
L : ð1; 3; 0Þ;

Y: ð1; 1; 0Þ;
Q�

110Q
�
210Q

110
� Q210

� : ð�3; 2;þ5
6Þ � ð3; 2;�5

6Þ; (B27)

which generate an SUð5Þ algebra. As an example showing
the nontrivial constraints enforced by the vacuum manifold
in Eq. (48), let us inspect the action of one of the lepto-
quark generators, say Q�

110 :

Q�
110 h78i ¼ � 1ffiffiffi

6
p ða3 þ

ffiffiffi
3

p
a4 þ b3ÞQ�

110 ;

Q�
110 h271 � 272i ¼ 0;

Q�
110 h271 � 272i ¼ 0: (B28)

It is easy to check that a3 þ
ffiffiffi
3

p
a4 þ b3 vanishes on the

whole vacuum manifold in Eq. (48) and, thus, Q�
110 is

preserved. Let us also remark that theUð1ÞY charges above
correspond to the standard SOð10Þ embedding (see the
discussion in Sec. IVB). In the flipped SOð10Þ embedding,
the ð�3; 2Þ � ð3; 2Þ generators in Eq. (B27) carry hyper-
charges � 1

6 , respectively.

Considering instead the vacuum manifold invariant
with respect to the flipped SOð10Þ hypercharge [see
Eqs. (41)–(43)], the preserved generators, in addition to

those of the SM, are Q�
130Q

�
230Q

130
� Q230

� . These, for the

standard hypercharge embedding of Eq. (32), transform

as ð�3; 2;� 1
6Þ � ð3; 2;þ 1

6Þ, whereas with the flipped hyper-

charge assignment in Eq. (33), the same transform as
ð�3; 2;þ 5

6Þ � ð3; 2;� 5
6Þ. Needless to say, one finds again

SUð5Þ as the vacuum little group.
It is interesting to consider the configuration �1 ¼

�2 ¼ 0, which can be chosen without loss of generality

once a pair, let us say 272 � 272, is decoupled or when the

two copies of 27H � 27H are aligned. According to
Eq. (48) this implies that all VEVs are equal to zero but
a3 ¼ �b3 and e1 (e2). Then, from Eqs. (B24)–(B26), one
verifies that the preserved generators are [see Eq. (B4) for
notation]

Tð1Þ
c Tð2Þ

c Tð3Þ
c Tð4Þ

c Tð5Þ
c Tð6Þ

c Tð7Þ
c Tð8Þ

c : ð8; 1; 0Þ;
Tð1Þ
L Tð2Þ

L Tð3Þ
L : ð1; 3; 0Þ;

Tð1Þ
R Tð2Þ

R Tð3Þ
R : ð1; 1;�1Þ � ð1; 1; 0Þ � ð1; 1;þ1Þ;

Tð8Þ
L þ Tð8Þ

R : ð1; 1; 0Þ;
Q�

110Q
�
210Q

110
� Q210

� : ð�3; 2;þ5
6Þ � ð3; 2;�5

6Þ;
Q�

120Q
�
220Q

120
� Q220

� : ð�3; 2;�1
6Þ � ð3; 2;þ1

6Þ;
Q�

330Q
330
� : ð�3; 1;�2

3Þ � ð3; 1;þ2
3Þ;

(B29)

which support an SOð10Þ algebra. In particular, a3 ¼ �b3
preserves SOð10Þ �Uð1Þ, where the extra Uð1Þ generator,
which commutes with all SOð10Þ generators, is propor-

tional to Tð8Þ
L � Tð8Þ

R . On the other hand, the VEV e1
breaks Tð8Þ

L � Tð8Þ
R (while preserving the sum). We there-

fore recover the result of Ref. [12] for the E6 setting with

78H � 27H � 27H.
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