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We investigate the conditions on the Higgs sector that allow supersymmetric SO(10) grand unified
theories to break spontaneously to the standard electroweak model at the renormalizable level. If one
considers Higgs representations of dimension up to the adjoint, a supersymmetric standard model vacuum
requires, in most cases, the presence of nonrenormalizable operators. The active role of Planck-induced
nonrenormalizable operators in the breaking of the gauge symmetry introduces a hierarchy in the mass
spectrum at the grand unified theory scale that may be an issue for gauge unification and proton decay. We
show that the minimal Higgs scenario that allows for a renormalizable breaking to the standard model is
obtained by considering flipped SO(10) ® U(1) with one adjoint (45,) and two pairs of 16, ® 16, Higgs
representations. We consider a nonanomalous matter content and discuss the embedding of the model in
an Eg grand unified scenario just above the flipped SO(10) scale.
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I. INTRODUCTION

It has been shown recently [1,2] that quantum effects
solve the long-standing issue [3] of the incompatibility
between the dynamics of the simplest Higgs sectors in the
renormalizable nonsupersymmetric SO(10) grand unified
theory (GUT) and the gauge unification constraints. In
particular, such minimal grand unified scenarios not only
support viable SO(10) breaking patterns passing through
intermediate  SU(4)- ® SU(2);, ® U(1)y or SUQ3).®
SUQ2), ® SUR)g ® U(1)z_; gauge symmetries [or their
SU(B),® SU2);, ® U(1)p ® U(1)z_; intersection], but
they also include all the ingredients necessary for a poten-
tially realistic description of the standard model (SM)
flavor structure.

On the other hand, the simplest scenario featuring the
Higgs scalars in 10y @ 165 @ 455 of SO(10) fails when
addressing the neutrino spectrum: in nonsupersymmetric
models, the B — L breaking scale Mp_; turns out to be
generally a few orders of magnitude below the GUT scale
M. Thus, the scale of the right-handed (RH) neutrino
masses My ~ M%_, /Mp emerging first at the d = 5 level
from an operator of the form 16%(16},)?/Mp (with Mp
typically identified with the Planck scale) undershoots by
orders of magnitude the range of about 10'? to 10'* GeV
naturally suggested by the seesaw mechanism. The same
effective result is obtained in the nonsupersymmetric case
within the radiative seesaw scheme [4].

This issue can be somewhat alleviated by considering
1264 in place of 16y in the Higgs sector, since in such a
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case the neutrino masses can be generated at the renorma-
lizable level by the term 16%1267,. This lifts the problem-
atic Mg_; /Mp suppression factor inherent to the d = 5
effective mass and yields My ~ Mp_;, which might be, at
least in principle, acceptable. This scenario, though con-
ceptually simple, cf. [2], involves a detailed one-loop
analysis of the scalar potential governing the dynamics of
the 105 ® 126, ® 455 Higgs sector that, to our knowl-
edge, still remains to be done.

Invoking TeV-scale supersymmetry (SUSY), the quali-
tative picture changes dramatically. Indeed, the gauge run-
ning within the MSSM prefers Mp_; in the proximity of
M and, hence, the Planck-suppressed d = 5 RH neutrino
mass operator 16167,/ M p, available whenever 16, & 16
is present in the Higgs sector, can naturally reproduce the
desired range for M. Let us recall that both 16, and 16,
are required in order to retain SUSY below the GUT scale.

On the other hand, it is well known [5-7] that the relevant
superpotential does not support, at the renormalizable level,
asupersymmetric breaking of the SO(10) gauge group to the
SM. This is due to the constraints on the vacuum manifold
imposed by the F- and D-flatness conditions which, apart
from linking the magnitudes of the SU(5)-singlet 165 and
16, vacuum expectation values (VEVs), make the adjoint
VEV (45, aligned with (16,16,). As a consequence, an
SU(5) subgroup of the initial SO(10) gauge symmetry
remains unbroken. In this respect, a renormalizable Higgs
sector with 126,; @ 126, in place of 16;; @ 16, suffers from
the same “SU(5) lock,” because also in 126, the SM-
singlet direction is SU(5) invariant.

This issue can be addressed by giving up renormaliz-
ability. However, this option may be rather problematic
since it introduces a delicate interplay between physics
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at two different scales, M; << Mp, with the consequence
of splitting the GUT-scale thresholds over several orders of
magnitude around M. This may affect proton decay as
well as the SUSY gauge unification, and may force the
B — L scale below the GUT scale. The latter is harmful for
the setting with 16, @ 16, relying on ad = 5 RH neutrino
mass operator. The models with 126, & 126, are also
prone to trouble with gauge unification, due to the number
of large Higgs multiplets spread around the GUT scale.

Thus, in none of the cases above does the simplest con-
ceivable SO(10) Higgs sector, spanned over the smallest
irreducible representations (up to the adjoint), offer a natu-
ral scenario for realistic model building. Since the option of
a simple GUT-scale Higgs dynamics involving small rep-
resentations governed by a simple renormalizable super-
potential is particularly attractive, we aimed at studying the
conditions under which the seemingly ubiquitous SU(5)
lock can be overcome, while keeping only spinorial and
adjoint SO(10) representations.

Let us emphasize that the assumption that the gauge
symmetry breaking is driven by the renormalizable part of
the Higgs superpotential does not clash with the fact that, in
models with 16, ® 16, the neutrino masses are generated
at the nonrenormalizable level, and other fermions may be
sensitive to physics beyond the GUT scale. As far as sym-
metry breaking is concerned, Planck-induced d = 5 effec-
tive interactions are irrelevant perturbations in this picture.

The simplest attempt to break the SU(5) lock by dou-
bling either 16, & 16, or 45, in order to relax the
F-flatness constraints is easily shown not to work. In the
former case, there is only one SM-singlet field direction
associated with each of the 16 & 16, pairs. Thus, F flat-
ness makes the VEVs in 45, align along this direction
regardless of the number of 16, @ 16;’s contributing to
the relevant F term, dW /945, (see, for instance, Eq. (6) in
Ref. [7]). Doubling the number of 45y’s does not help
either. Since there is no mixing among the 45’s besides the
mass term, F flatness aligns both (454)’s in the SU(5)
direction of 16, & 16,. For three (and more) adjoints a
mixing term of the form 45,45,455 is allowed, but it turns
out to be irrelevant to the minimization so that the align-
ment is maintained.

From this brief excursus one might conclude that, as far as
the Higgs content is considered, the price for tractability and
predictivity is high on SUSY SO(10) models, as the desired
group-theoretical simplicity of the Higgs sector, with
representations up to the adjoint, appears to be nonviable.

In this paper, we point out that all these issues are
alleviated if one considers a flipped variant of the SUSY
SO(10) unification. In particular, we shall show that the
flipped SO(10) ® U(1) scenario [8—10] offers an attractive
option to break the gauge symmetry to the SM at the
renormalizable level by means of a quite simple Higgs
sector, namely, a couple of SO(10) spinors 16,, ® 16, ,
and one adjoint 454.
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Within the extended SO(10) ® U(1) gauge algebra, one
finds, in general, three inequivalent embeddings of the SM
hypercharge. In addition to the two solutions with the
hypercharge stretching over the SU(5) or the SU(5) ®
U(1) subgroups of SO(10) [respectively dubbed as the
“standard” and “flipped” SU(5) embeddings], there is a
third, flipped SO(10), solution inherent to the SO(10) ®
U(1) case, with a nontrivial projection of the SM hyper-
charge onto the U(1) factor.

While the difference between the standard and the
flipped SU(5) embeddings is semantical from the SO(10)
point of view, the flipped SO(10) case is qualitatively
different. In particular, the symmetry-breaking “‘power”
of the SO(10) spinor and adjoint representations is boosted
with respect to the standard SO(10) case, increasing the
number of SM-singlet fields that may acquire nonvanishing
VEVs. Technically, flipping allows for a pair of SM sin-
glets in each of the 16, and 16, “Weyl” spinors, together
with four SM singlets within 455. This is at the root of the
possibility of implementing the gauge symmetry breaking
by means of a simple renormalizable Higgs sector. Let us
just remark that, if renormalizability is not required, the
breaking can be realized without the adjoint Higgs field;
see, for instance, the flipped SO(10) model with an addi-
tional anomalous U(1) of Ref. [11].

Nevertheless, flipping is not per se sufficient to cure the
SU(5) lock of standard SO(10) with 16, & 16, ® 45, in
the Higgs sector. Indeed, the adjoint does not reduce the
rank, and the bispinor, in spite of the two qualitatively
different SM singlets involved, can lower it only by a single
unit, leaving a residual SU(5) ® U(1) symmetry [the two
SM-singlet directions in the 16y still retain an SU(5)
algebra as a little group]. Only when two sets of 165 &
164 (interacting via 455) are introduced, the two pairs of
SM-singlet VEVs in the spinor multiplets are not generally
aligned and the little group is reduced to the SM.

Thus, the simplest renormalizable SUSY Higgs model
that can provide the spontaneous breaking of the SO(10)
GUT symmetry to the SM by means of Higgs representa-
tions not larger than the adjoint is the flipped SO(10) ®
U(1) scenario with two copies of the 16 & 16 bi-spinor
supplemented by the adjoint 45. Notice further that in the
flipped embedding the spinor representations also include
weak doublets that may trigger the electroweak symmetry
breaking and allow for renormalizable Yukawa interactions
with the chiral matter fields distributed in the flipped
embedding over 16 ® 10 ® 1.

Remarkably, the basics of the mechanism we advo-
cate can be embedded in an underlying nonrenormalizable
E¢ Higgs model featuring a pair of 27, ® 27, and the
adjoint 78.

Technical similarities apart, there is, however, a crucial
difference between the SO(10) ® U(1) and E4 scenarios,
which is related to the fact that the Lie algebra of Eg is
larger than that of SO(10) ® U(1). It has been shown long
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ago [12] that the renormalizable SUSY E4 Higgs model
spanned on a single copy of 27, ® 27, ® 78, leaves an
SO(10) symmetry unbroken. Two pairs of 27, @ 27 are
needed to reduce the rank by two units. In spite of the fact
that the two SM-singlet directions in the 27y are exactly
those of the flipped 164, the little group of the SM-singlet
directions (27, ® 27,) and (78,) remains at the renorma-
lizable level SU(5), as we will explicitly show.

Adding NR adjoint interactions allows for a disentan-
glement of the (78), such that the little group is reduced to
the SM. Since a one-step E4 breaking is phenomenologi-
cally problematic as mentioned earlier, we argue for a two-
step breaking, via flipped SO(10) ® U(1), with the E4 scale
near the Planck scale.

In summary, we make the case for an anomaly-free
flipped SO(10) ® U(1) partial unification scenario. We
provide a detailed discussion of the symmetry-breaking
pattern obtained within the minimal flipped SO(10)
SUSY Higgs model and consider its possible Eq embed-
ding. We finally present an elementary discussion of the
flavor structure offered by these settings.

II. THE GUT-SCALE LITTLE HIERARCHY

In supersymmetric SO(10) models with just 45, &
16, ® 16, governing the GUT breaking, one way to obtain
the misalignment between the adjoint and the spinors is by
invoking new physics at the Planck scale, parametrized in a
model-independent way by a tower of effective operators
suppressed by powers of Mp.

What we call the “GUT-scale little hierarchy” is the
hierarchy induced in the GUT spectrum by M;/Mp sup-
pressed effective operators, which may split the GUT-scale
thresholds over several orders of magnitude. In turn, this
may be highly problematic for proton stability and the
gauge unification in low-energy SUSY scenarios (as dis-
cussed, for instance, in Ref. [13]). It may also jeopardize
the neutrino mass generation in the seesaw scheme. We
briefly review the relevant issues here.

A. Proton decay and effective neutrino masses

In Ref. [14] the emphasis is set on a class of neutrino-
mass-related operators which turns out to be particularly
dangerous for proton stability in scenarios with a non-
renormalizable GUT-breaking sector. The relevant interac-
tions can be schematically written as

1 1 _
Wy Do 167816516165 + i 162 £16,16, 16

) %(QgLT + QfQT), (1)
P

where g and f are matrices in the family space, vy =
[{16;)| = [(164,)], and T (T) is the color triplet (antitriplet)
contained in the 165 (16y). Integrating out the color
triplets, whose mass term is labeled M7, one obtains the
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following effective superpotential involving fields belong-
ing to SU(2), doublets,

Vi
MMy
where u and € denote the physical left-handed up-quarks
and charged lepton superfields in the basis in which neutral
gaugino interactions are flavor diagonal. The d’ and v/
fields are related to the physical down-quark and light
neutrino fields d and v by d = Vegmd and v =
Vpmns V- In turn, V! = vi Ve, where V, and V, diagonalize
the left-handed up-quark and charged lepton mass matri-
ces, respectively. The 3 X 3 matrices (G, F) are given by
(G, F) = V(g [V,

By exploiting the correlations between the g and f
matrices and the matter masses and mixings and by taking
into account the uncertainties related to the low-energy
SUSY spectrum, the GUT thresholds, and the hadronic
matrix elements, the authors of Ref. [14] argue that the
effective operators in Eq. (2) lead to a proton lifetime

I Y(K*) ~ (0.6-3) X 103 yrs, 3)

Wk = W'Fd"(u"GV'€ — dTGV'Y), (2)

at the verge of the current experimental lower bound of
0.67 X 103 yrs [15]. In obtaining Eq. (3) the authors
assume that the color triplet masses cluster about the
GUT scale, My = (16y) ~ (45,) = M. On the other
hand, in scenarios where at the renormalizable level
SO(10) is broken to SU(5) and the residual SU(5) sym-
metry is broken to SM by means of nonrenormalizable
operators, the effective scale of the SU(5) breaking physics
is typically suppressed by (16y)/Mp or (45y)/Mp with
respect to M. As a consequence, the SU(5) part of the
colored triplet Higgsino spectrum is effectively pulled
down to the MZ /M scale, clashing with proton stability.

B. GUT-scale thresholds and one-step unification

The “delayed” residual SU(5) breakdown has obvious
implications for the shape of the gauge coupling unifica-
tion pattern. Indeed, the gauge bosons associated with the
SU(5)/SM coset, together with the relevant part of the
Higgs spectrum, tend to be uniformly shifted [6] by a factor
Mg/Mp ~ 1072 below the scale of the SO(10)/SU(5)
gauge spectrum, which sets the unification scale M.
These thresholds may jeopardize the successful one-step
gauge unification pattern favored by the TeV-scale SUSY
extension of the SM (MSSM).

C. GUT-scale thresholds and neutrino masses

With a nontrivial interplay among several GUT-scale
thresholds [6], one may, in principle, end up with a viable
gauge unification pattern. Namely, the threshold effects in
different SM gauge sectors may be such that unification is
preserved at a larger scale. In such a case the M;/Mp
suppression is at least partially undone. This, in turn, is
unwelcome for the neutrino mass scale because the VEVs
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TABLE 1.
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Comparative summary of supersymmetric vacua left invariant by the SM-singlet

VEVs in various combinations of spinorial and adjoint Higgs representations of standard SO(10)
and flipped SO(10) ® U(1). The results for a renormalizable and a nonrenormalizable Higgs

superpotential are, respectively, listed.

Standard SO(10)

Flipped SO(10) ® U(1)

Higgs superfields R R NR
1616 S0(10) SU(5) SO(10)® U(1) SU(B) e U(1)
2% (16 ® 16) 50(10) SU(5) S0(10) ® U(1) SM
45016016 SU(5) [5] SM [6] SU(5)® U(1) SMe® U(1)
4502 X (16 @ 16) SU(5) SM SM

entering the d = 5 effective operator responsible for the
RH neutrino Majorana mass term 162.167,/M are raised
accordingly, and thus Mp ~ Mé/M p tends to overshoot
the upper limit My < 10'* GeV implied by the light neu-
trino masses generated by the seesaw mechanism.

Thus, although the Planck-induced operators can pro-
vide a key to overcoming the SU(5) lock of the minimal
SUSY SO(10) — SU(3). ® SU(2); ® U(1)y Higgs model
with 16, @ 16, ® 45, such an effective scenario is prone
to failure when addressing the measured proton stability
and light neutrino phenomenology.

III. MINIMAL FLIPPED SO(10) HIGGS MODEL

As already anticipated in the previous sections, in a
standard SO(10) framework with a Higgs sector built off
the lowest-dimensional representations (up to the adjoint),
it is rather difficult to achieve a phenomenologically viable
symmetry-breaking pattern even when admitting multiple
copies of each type of multiplet. First, with a single 45, at
play, at the renormalizable level the little group of all SM-
singlet VEVs is SU(5) regardless of the number of 16, &
164 pairs. The reason is that one cannot get anything more
than an SU(5) singlet out of a number of SU(5) singlets.
The same is true with a second 45, added into the Higgs
sector because there is no renormalizable mixing among
the two 45, s apart from the mass term that, without loss of
generality, can be taken diagonal. With a third adjoint
Higgs representation at play, a cubic 45,45,455 interaction
is allowed. However, due to the total antisymmetry of the
invariant and to the fact that the adjoints commute on
the SM vacuum, the cubic term does not contribute to the
F-term equations [16]. This makes the simple flipped
SO(10) ® U(1) model proposed in this work a framework
worth considering. For the sake of completeness, let us also
recall that by admitting Higgs representations larger than
the adjoint, a renormalizable SO(10) — SM breaking can
be devised with the Higgs sector of the form 54 & 45, &
165 ® 16 [17], or 54, ® 45, & 126, ® 1265 [7] for a
renormalizable seesaw mechanism.

In Tables I and IT we collect a list of the supersymmetric
vacua that are obtained in the basic SO(10) Higgs models
and their E¢ embeddings by considering a set of Higgs

representations of the dimension of the adjoint and smaller,
with all SM-singlet VEVs turned on. The cases of a re-
normalizable (R) or nonrenormalizable (NR) Higgs poten-
tial are compared. We quote reference papers where results
relevant for the present study were obtained without any
aim of exhausting the available literature. The results
without a reference are either verified by us or follow by
comparison with other cases and rank counting. The main
results of this study are shown in boldface.

We are going to show that by considering a nonstandard
hypercharge embedding in SO(10) ® U(1) [flipped
SO(10)], the breaking to the SM is achievable at the
renormalizable level with 45, @ 2 X (16, ® 16,) Higgs
fields. Let us stress that what we require is that the GUT
symmetry breaking is driven by the renormalizable part of
the superpotential, while Planck-suppressed interactions
may be relevant for the fermion mass spectrum, in particu-
lar, for the neutrino sector.

A. Introducing the model
1. Hypercharge embeddings in SO(10) ® U(1)

The so-called flipped realization of the SO(10) gauge
symmetry requires an additional U(1)y gauge factor in
order to provide an extra degree of freedom for the
SM hypercharge identification. For a fixed embedding of
the SU(3), ® SU(2); subgroup within SO(10), the SM
hypercharge can be generally spanned over the three re-
maining Cartans generating the Abelian U(1)? subgroup of
the SO(10) ® U(1),/(SU@3). ® SU(2);) coset. There are
two consistent implementations of the SM hypercharge
within the SO(10) algebra [commonly denoted by standard
and flipped SU(5)], while a third one becomes available
due to the presence of U(1)y.

TABLE II. Same as in Table I for the E4 gauge group with
fundamental and adjoint Higgs representations.

Higgs superfields R NR

27 @27 Eg S0(10)
2X (27 ®27) Eq¢ SU(5)
78 @27 ®27 SO(10) [12] SM e U(1)

78@2 X (27 @ 27) SU(5) SM
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In order to discuss the different embeddings, we find it
useful to consider two bases for the U(1)® subgroup.
Adopting the traditional left-right (LR) basis correspond-
ing to the SU(3), ® SU(2);, ® SU(2)z ® U(1)z_; subalge-
bra of SO(10), one can span the SM hypercharge on the
generators of U(1)z ® U(1)z_; ® U(1)y:

Y=al¥ + BB — L)+ yX. )

The normalization of the T1(e3) and B — L charges is chosen
so that the decompositions of the spinorial and vector
representations of SO(10) with respect to SU(3), ®
SUQR), ® U(l)g ® U(1)z_; read

16 = (3,2;0, +%) ® (3, 1;+1 —%) (3 1;-1 _%)

® (1,20, -De (L, L+, +De ;-5 +1),
10=(3,1;0,—3) @ (3,150, +3) & (1,2; +1,0)

® (1,2, —30), (5)

which account for the standard B — L and Tg)
assignments.

Alternatively, considering the SU(5) ® U(1), subalge-
bra of SO(10), we identify the U(1)y, ® U(1), ® U(1)y
subgroup of SO(10) ® U(1)y, and equivalently write

Y =aY + BZ+ yX, (6)

where Y’ and Z are normalized so that the SU(3). ®
SUQ2);, ® U(1)y» ® U(1), analogue of Egs. (5) reads

16=0G2+,+D)e(B 1;+5 -3)e (3, 1; -3 +1)
®(1,2;—L -3)e (L L+ +D (L 1;0,+5),

10=0G1-%-2e3 L+, +2)e(1,2;+} -2)
®(1,2; -4 +2). (7

In both cases, the U(1)y charge has been conveniently
fixed to X = +1 for the spinorial representation [and
thus X;, = —2 and also X, = +4 for the SO(10) vector
and singlet, respectively; this is also the minimal way to
obtain an anomaly-free U(1)y that allows SO(10) ® U(1)y
to be naturally embedded into Eg].

It is a straightforward exercise to show that in order to
accommodate the SM quark multiplets with quantum num-
bers 0 = (3,2, +3), u¢ = (3,1, —3),and d° = (3, 1, +4),
there are only three solutions.

On the U(1)3 bases of Egs. (4) and (6) (respectively) one
obtains

(@=1,B8=07%y=0), (8)
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which is nothing but the standard embedding of the SM
matter into SO(10). Explicitly, ¥ = T + 1(B—L)inthe
LR basis [while Y = Y’ in the SU(5) picture].

The second option is characterized by

(a=-Lp=Ly=0), 9)

which is usually denoted as a “flipped SU(5)” [18,19]
embedding because the SM hypercharge is spanned
nontrivially on the SU(5) ® U(1), subgroup' of SO(10),

= 1(Z — Y’). Remarkably, from the SU(3), ® SU(2),, ®
SU(2)g ® U(1)p_; perspective this setting corresponds to
a sign flip of the SU(2)y Cartan operator Tg), namely Y =
—TS) + %(B — L), which can be viewed as a 7 rotation in
the SU(2)y algebra.

A third solution corresponds to

1
4)

a=0  p=-7 =

denoted as a “flipped SO(10)” [8-10] embedding of the
SM hypercharge. Notice, in particular, the fundamental
difference between the setting (10) with v =y :% and
the two previous cases (8) and (9) where U(1)y does not
play any role.

Analogously to what is found for Y, once we consider
the additional anomaly-free U(1)y gauge factor, there are
three SM-compatible ways of embedding the physical
(B — L)into SO(10) ® U(1)yx. Using the SU(5) compatible
description they are, respectively, given by (see Ref. [20]
for a complete set of relations)

(B—L)=14Y'+2), (11)
1
(B—L)= %(16Y’ — 7 + 5X), (12)
Lo
(B—L)= —%(SY 3Z — 5X), (13)

where the first assignment is the standard B — L embed-
ding in Eq. (4). Out of 3 X 3 possible pairs of Y and
(B — L) charges, only six correspond to the quantum
numbers of the SM matter [20]. By focusing on the
flipped SO(10) hypercharge embedding in Eq. (10), the
two SM-compatible (B — L) assignments are those in

1By definition, a flipped variant of a specific GUT model based
on a simple gauge group G is obtained by embedding the SM
hypercharge nontrivially into the G ® U(1) tensor product.
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Eqs. (12) and (13) (they are related by a sign flip in 7). In
what follows we shall employ the (B — L) assignment in
Eq. (13).

2. Spinor and adjoint SM singlets in flipped SO(10)

The active role of the U(1)y generator in the SM hyper-
charge (and B — L) identification within the flipped
SO(10) scenario has relevant consequences for model
building. In particular, the SM decomposition of the
SO(10) representations changes so that there are additional
SM singlets both in 16 & 16, and in 45,.

The pattern of SM-singlet components in flipped SO(10)
has a simple and intuitive interpretation from the SO(10) ®
U(1)y C E¢ perspective, where 16,, ® 16_, [with the
subscript indicating the U(1)y charge] are contained in
27 ® 27 while 45, is part of the E adjoint 78. The point
is that the flipped SM hypercharge assignment makes the
various SM singlets within the complete Eg representations
“migrate” among their different SO(10) submultiplets;
namely, the two SM singlets in the 27 of Ej that in the
standard embedding (8) reside in the SO(10) singlet 1 and
spinorial 16 components both happen to fall into just the
single 16 C 27 in the flipped SO(10) case.

Similarly, there are two additional SM-singlet directions
in 45 in the flipped SO(10) scenario, that, in the standard
SO(10) embedding, belong to the 16_5 ® 16,5 compo-
nents of the 78 of E¢, thus accounting for a total of four
adjoint SM singlets.

In Tables III, IV, and V we summarize the decomposi-
tion of the 10_,, 164;, and 45, representations of
SO(10) ® U(1)x under the SM subgroup, in both the stan-
dard and the flipped SO(10) cases [and in both the LR and
SU(5) descriptions]. The pattern of the SM-singlet compo-
nents is emphasized in boldface.

3. The supersymmetric flipped SO(10) model

The presence of additional SM singlets [some of
them transforming nontrivially under SU(5)] in the

TABLE III. Decomposition of the fundamental ten-
dimensional representation under SU(3).® SU(2); ® U(1)y,
for standard SO(10) and flipped SO(10) ® U(1)y (SO(10)),
respectively. In the first two columns (LR) the subscripts keep
track of the SU(4) origin of the multiplets (the extra symbols *
correspond to the eigenvalues of the Tg) Cartan generator),
while in the last two columns the SU(5) content is shown.

LR SU(5)
SO(10) SO(]O)f SO(10) SO(]O)f
(3,1, =g (3.1, G, 1;—Ds (B 1= s
G, 15+ (3.1, (1,2;+ D)5 (1,2; = s
(1,2 + 1)+ (1,2, = %) G L+ s (B 1;-%;
(1,2, =9 (L2; =1~ (1,2: = Y3 (1,2, -1
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TABLE IV. The same as in Table III for the spinor 16-
dimensional representation. The SM singlets are emphasized in
boldface and shall be denoted, in the SU(5) description, as e =
(1,1;0);9 and » = (1, 1;0),. The LR decomposition shows that e
and v belong to an SU(2)y doublet.

LR SU(5)
S0(10) SO(10), S0(10) S0(10),
(3.2:+ P (3.2 +d), G L+ (G 1+
(1,2; = 24 (1,2;+ %), (1,25 = 3)s (1,2;+ s
G 1+ s G 1+ 95 (3,2;+ 9o (3,2;+ 9o
G 1,—95 G L+ (G, ;=90 G L+
(1, 15 +1)3+ (1, 1;0)z+ (1, 15+ 1)y (1,1;0)49
(1, 1;0)3- (1, 1,0)3- (1,1;0), (1,1,0),

lowest-dimensional representations of the flipped realiza-
tion of the SO(10) gauge symmetry provides the ground for
obtaining a viable symmetry breaking with a significantly
simplified renormalizable Higgs sector. Naively, one may
guess that the pair of VEVs in 16 (plus another conju-
gated pair in 16, to maintain the required D flatness) might
be enough to break the GUT symmetry entirely, since one
component transforms as a 10 of SU(5) C SO(10), while
the other one is identified with the SU(5) singlet (cf.
Table IV). Notice that even in the presence of an additional
four-dimensional vacuum manifold of the adjoint Higgs
multiplet, the little group is determined by the 165 VEVs
since, due to the simple form of the renormalizable super-
potential, F flatness makes the VEVs of 45, align with
those of 16,16, providing just enough freedom for them
to develop nonzero values.

TABLE V. The same as in Table III for the 45 representation.
The SM singlets are given in boldface and labeled throughout the
text as wy = (1, 1;0);5, ot = (1, 1;0),+, wg = (1, 1;0),0, and
o~ = (1,1;0),-, where again the LR notation has been used.
The LR decomposition also shows that ™, wg, and @~ belong
to an SU(2) triplet, while wy is a B — L singlet.

LR SU(s)
SO(10) SO(]O)f SO(10) SO(IO)f
(1,1;0)p (1, 1;0)p (1,1;0), (1,1,0),
(1,1;0)5 (1,1;0)5 (1,1;0),4 (1,1;0),4
(8,1;0);5 (8, 1;0);5 (8,1;0)p4 (8,1;0)p4
G 1 +3)s G L=Dis (3,25 g (3.2 +
G L= G L +Ds (3.2, +dy (3.2: =
(1,3;0), (1,3;0), (1,3;0)p4 (1,3;0)p4
(3,2 + Do+ (3,2 + D+ (3.2 + Do (3,2 + Hio
(3,2 + 2 (3,2 = D+ G L =3 (G, 1+
(LI +1), (1,1;0);- (L I+ 1) (1,1;0)y9
(3.2; = Ds- (3.2; = Ds- (3,2 - D (3.2 - D5
62-Dr  Gx+De  GL+dy  GL-Dp
(1, 1;=1),- (1,1;0);- (1, 1; =Dy (1, 1;0)55
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Unfortunately, this is still not enough to support the
desired symmetry-breaking pattern. The two VEV direc-
tions in 16y are equivalent to only one, and a residual
SU(5) ® U(1) symmetry is always preserved by (16)y
[21]. Thus, even in the flipped SO(10) ® U(1) setting the
Higgs model spanned on 165 & 165 ® 45, suffers from
an SU(5) ® U(1) lock analogous to the one of the standard
SUSY SO(10) models with the same Higgs sector. This
can be understood by taking into account the freedom in
choosing the basis in the SO(10) algebra so that the pair of
VEVs within 16 can be “rotated” onto a single compo-
nent, which can then be viewed as the direction of the
singlet in the decomposition of 16 =5@® 10@® 1 with
respect to an SU(5) subgroup of the original SO(10)
gauge symmetry.

On the other hand, with a pair of interacting
16, ® 16’s the vacuum directions in the two 16y’s
need not be aligned and the intersection of the two differ-
ent invariant subalgebras [e.g., standard and flipped SU(5)
for a specific VEV configuration] leaves as a little group
the SU(3). ® SU(2); ® U(1)y of the SM. F flatness then
makes the adjoint VEVs (45y is the needed carrier of
the 16y interaction at the renormalizable level) aligned to
the SM vacuum. Hence, as we will show in the next
section, 2 X (16 + 165) ® 45, defines the minimal re-
normalizable Higgs setting for the SUSY flipped
SO(10) ® U(1)xy model. For comparison, let us reiterate
that in the standard renormalizable SO(10) setting the
SUSY vacuum is always SU(5) regardless of how many
copies of 16, & 16, are employed together with, at most,
a pair of adjoints.

4. The matter sector

Because of the flipped hypercharge assignment, the
SM matter can no longer be fully embedded into the
16-dimensional SO(10) spinor, as in the standard case.
By inspecting Table IV one can see that in the flipped
setting the pair of the SM submultiplets of 16 transforming
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as u¢ and e€ is traded for an extra d°-like state and an extra
SM singlet. The former pair is instead found in the SO(10)
vector and the singlet (the lepton doublet appears in
the vector multiplet as well). Thus, flipping spreads each
of the SM matter generations across 16® 10& 1 of
SO(10), which, by construction, can be viewed as the
complete 27-dimensional fundamental representation of
E¢ D SO(10) ® U(1)y. This brings in a set of additional
degrees of freedom, in particular, (1, 1,0),6, (3,1, + %)16,
(1,2, + 316, (3.1, =210, and (1,2, — 3);0, where the sub-
script indicates their SO(10) origin. Notice, however, that
these SM “‘exotics” can be grouped into superheavy
vectorlike pairs, and thus no extra states appear in the
low-energy spectrum. Furthermore, the U(1)y anomalies
associated with each of the SO(10) ® U(1)y matter mul-
tiplets cancel when summed over the entire reducible
representation 16; ® 10_, & 1,. An elementary discussion
of the matter spectrum in this scenario is deferred to Sec. V.

B. Supersymmetric vacuum

The most general renormalizable Higgs superpotential,
made of the representations 45 ® 16, ® 16, ® 16, ® 16,, is
given by

W, = % Trd5? + p;;16,16; + 7,;16,4516,  (14)

where i, j=1, 2 and the notation is explained in
Appendix A 1. Without loss of generality, we can take u
real by a global phase redefinition, while 7 (or p) can be
diagonalized by a bi-unitary transformation acting on the
flavor indices of the 16 and the 16. Let us choose, for
instance, 7;; = 7;8;;, with 7; real. We label the SM singlets
contained in the 16’s in the following way: ¢ = (1, 1;0),o
[only for flipped SO(10)] and » = (1, 1;0); (for all
embeddings).

By plugging in the SM-singlet VEVS wg, wy, o™, o™,
€12, €12, V1, and vy, (cf. Appendix A 1), the super-
potential on the vacuum reads

(Wy) = nQRwy + 3w} + 4w~ ™) + pyi(ee, + v17)) + py(ere; + vypy) + pralejes + viy) + palerdy + vain)

+ 7| —w e 5 — 0 — 2R
71 w e v w Ve ﬁ
WR
V2

+ TZI:—a)_ezl?z —wtve, —

In order to retain SUSY down to the TeV scale we must
require that the GUT gauge symmetry breaking preserves
supersymmetry. In Appendix A 2 we work out the relevant
D- and F-term equations. We find that the existence of a
nontrivial vacuum requires p (and 7 for consistency) to be

_ B 3
(€28 — 1y 7)) + 3

B _ 3w
(e1ey — vypy) + =

Y _ _
—(eje; + viv
s e+ )]

w

\/—g(ezéz + Vzljz)]. (15)

Hermitian matrices. This is a consequence of the fact
that D-term flatness for the flipped SO(10) embedding
implies (16,) = (16,)* [see Eq. (A30) and the discussion
next to it]. With this restriction the vacuum manifold is
given by

035002-7



BERTOLINI, DI LUZIO, AND MALINSKY

8wt = 7 r}sin2a; e ) + 7,13 sin2a, el P90,

Suw™ = Tll‘% sin2ale_i(¢“l ~¢w)

+ Tzr% sin2a237i(¢”27¢vz),
AI2uwp = 1772 cos2a + 7,12 cos2as,
MWR 177 1 21 2

4\/5,u,a)y = —Tlr% - Tzr%,

61’2 == }’1’2 COS&1‘261¢€12,

VI,Z = r1,2 Sinaue'(ﬁ”ll,

EI,Z =T2 Cosal,ze_”b‘"ll,

171,2 =T sinal,ze_’d’”ll,

(16)

where r, and @™ = a; = a, are fixed in terms of the
superpotential parameters,

2 _ 2p(pnTi = 5p11T2)

, 17
d 37%72 a7
2u(pi1T9 — 5p»nT)
r% _ _ M P1132 5 P27 ’ (18)
7'17'2
sin®, — sin®
I e A —— 19
cosa ¢ sin(®, — ®,) (19)
+ _ sin®, +sin®,
=" 20
cosa ¢ sin(®, — ®,) (20)
with
6lp 1ol
J—Sp;—irz - 5,2_271 +26p2p11

The phase factors @, and ®, are defined as

(I)V = ¢V1 - ¢V2 + (bpu’ q)e = (bel - ¢ez + ¢p12r
(22)

in terms of the relevant phases ¢, ., ¢, ,, and ¢, .
Equations (19) and (20) imply that for ®, = &, = O,
Eq. (19) reduces to cosa™ — &cos® while @™ is unde-
termined (thus parametrizing an orbit of isomorphic
vacua).

In order to determine the little group of the vacuum
manifold, we explicitly compute the corresponding gauge
boson spectrum in Appendix A 3. We find that, fora™ # 0
and/or @, # ®,, the vacuum in Eq. (16) does preserve the
SM algebra.

As already mentioned in the Introduction, this result is a
consequence of the misalignment of the spinor VEVs,
which is made possible at the renormalizable level by the
interaction with the 454. If we choose to align the 16, ®
16, and 16, ® 16, VEVs (¢~ =0 and ®, = ®,) or,
equivalently, to decouple one of the Higgs spinors from
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the vacuum (r, = 0, for instance), the little group is
SU5) ® U(1).

This result can be easily understood by observing that in
the case with just one pair of 16, @ 16, (or with two pairs
of 16, ® 16, aligned) the two SM-singlet directions, ey,
and vy, are connected by an SU(2) transformation. This
freedom can be used to rotate one of the VEVs to zero, so
that the little group is standard or flipped SU(5) ® U(1),
depending on which of the two VEVs is zero.

In this respect, the Higgs adjoint plays the role of a
renormalizable agent that prevents the two pairs of spinor
vacua from aligning with each other along the SU(5) ®
U(1) direction. Actually, by decoupling the adjoint Higgs,
F flatness makes the (aligned) 16, ® 16; vacuum trivial, as
one verifies by inspecting the F terms in Eq. (Al14) of
Appendix A 2 for (45,) = 0 and detp # 0.

The same result with just two pairs of 16, ® 16, Higgs
multiplets is obtained by adding NR spinor interactions, at
the cost of introducing a potentially critical GUT-scale
threshold hierarchy. In the flipped SO(10) setup proposed
here, the GUT symmetry breaking is driven by the renor-
malizable part of the Higgs superpotential, thus naturally
allowing for a one-step matching with the minimal super-
symmetric extension of the SM (MSSM).

Before addressing the possible embedding of the model
in a unified E¢ scenario, we comment in brief on the
naturalness of the doublet-triplet mass splitting in flipped
embeddings.

C. Doublet-triplet splitting in flipped models

Flipped embeddings offer a rather economical way to
implement the doublet-triplet (DT) splitting through the
so-called missing partner (MP) mechanism [22,23]. In
order to show the relevant features, let us consider first
the flipped SU(5) ® U(1);.

In order to implement the MP mechanism in the flipped
SU(5) ® U(1),, the Higgs superpotential is required to
have the couplings

Wy D 10,1045, + 10_,10_,5,,, (23)
where the subscripts correspond to the U(1), quantum
numbers, but not the 5_,5,, mass term. From Eq. (23)
we extract the relevant terms that lead to a mass for the
Higgs triplets,

W D {(1, 1001003, 1; 9103, 1; =15 + (1, 150)5)
X (3, 1; =GB 15 +)s. (24)
On the other hand, the Higgs doublets, contained in the
5_, ®5,,, remain massless since they have no partner in
the 10, ® 10_, to couple with.
The MP mechanism cannot be implemented in stan-
dard SO(10). The relevant interactions, the analogue of
Eq. (23), are contained in the SO(10) invariant term
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Wy 2161610 + 1616 10, (25)

which, however, gives a mass to the doublets as well, via
the superpotential terms

WH ) <(1: 1;0)116>(1’ 23 _%)51()(1’ 23 +%)510 + <(1) 130)1E>
X (1,2; +9)5_(1, 2 =)s,,. (26)

Flipped SO(10) ® U(1)y, on the other hand, offers again
the possibility of implementing the MP mechanism. The
price to pay is the necessity of avoiding a large number of
terms, both bilinear and trilinear, in the Higgs superpoten-
tial. In particular, the analogue of Eq. (23) is given by the
NR term [11]

1 — — 1 =
Wy D M—P161162162161 + o, 16,16,16,16,.  (27)

By requiring that 16, (16,) takes a VEV in the 1,4 (I1p)
direction while 16, (16,) in the 10,5 (107z) component,
one gets

1 1
Wy D M_p<1%‘ )1046,)1046,515, + M_P<1161>

X (105501055 516, (28)

which closely resembles Eq. (23), leading to massive trip-
lets and massless doublets. In order to have, minimally, one
pair of electroweak doublets, one must further require that
the 2 X 2 mass matrix of the 16’s has rank equal to 1.
Because of the active role of NR operators, the Higgs
triplets turn out to be 2 orders of magnitude below the
flipped SO(10) ® U(1)y scale, reintroducing the issues
discussed in Sec. II.

An alternative possibility for naturally implementing the
DT splitting in SO(10) is the Dimopoulos-Wilczek (DW)
(or the missing VEV) mechanism [24]. In order to explain
the key features, it is convenient to decompose the relevant
SO(10) representations in terms of the SU(4) ® SU(2); ®
SU(2)x group,

45=(1,,3)e (151, ) ®...,
16=4,21)e41,2),
16=42141,2),
10=(,1,1)&(1,2,2), (29)

where wp =((1, 1, 3)) and wy = {(15, 1, 1)). In the stan-
dard SO(10) case (see [25-27] for a recent discussion) one
assumes that the SU(2); doublets are contained in two
vector multiplets (10, and 10,). From the decompositions
in Eq. (29) it is easy to see that the interaction 10,45 10,
(where the antisymmetry of 45 requires the presence of
two 10’s) leaves the SU(2); doublets massless provided
that wr = 0. Naturalness requires the absence of other
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superpotential terms, such as a direct mass term for one
of the 10’s and the interaction term 164516. The
latter aligns the SUSY vacuum in the SU(5) direction
(wp = wy), thus destabilizing the DW solution.

On the other hand, the absence of the 1645 16 interac-
tion enlarges the global symmetries of the scalar potential
with the consequent appearance of a set of light pseudo-
Goldstone bosons in the spectrum. To avoid this, the ad-
joint and the spinor sector must be coupled in an indirect
way by adding extra fields and symmetries (see, for in-
stance, [25-27]).

Our flipped SO(10) ® U(1)y setting offers the rather
economical possibility of embedding the electroweak dou-
blets directly into the spinors without the need of 10y (see
Sec. V). As a matter of fact, there exists a variant of the DW
mechanism where the SU(2), doublets, contained in the
16, ® 16, are kept massless by the condition wy = 0 (see
e.g. [28]). However, in order to satisfy in a natural way the
F flatness for the configuration wy = 0, again a contrived
superpotential is required, when compared to that in
Eq. (14). In conclusion, we cannot implement in our simple
setup any of the natural mechanisms proposed so far (see
also [29]), and we have to resort to the standard minimal
fine-tuning.

IV. MINIMAL E4 EMBEDDING

The natural and minimal unified embedding of the
flipped SO(10) ® U(1) model is Eg with one 78 and
two pairs of 27, ® 27, in the Higgs sector. The three
matter families are contained in three 275 chiral super-
fields. The decomposition of the 27 and 78 representations
under the SM quantum numbers is detailed in Tables VI,
VII, VIII, and IX, according to the different hypercharge
embeddings.

TABLE VI. Decomposition of the fundamental representation
27 of Eg under SU(3). ® SU(2); ® U(1)y, according to the
three SM-compatible different embeddings of the hypercharge
(f stands for flipped). The numerical subscripts keep track of the
SU(5) and SO(10) origin.

SU(5) SU(S)f SO(IO)f

G, 1+ Y5, G, 1;-3)s, G 1495,
(1,2: =D, (1,2: = 9s, (1,2:+ 95,
(3, 2; + Do, (3,2;+ Do, (3, 2; + Do,
G 1=, (G, 1+ Do, G, 1+ Do,
(1, 1; + 1), (1, 1;0)y0,, (1, 1;0)yp,,
(1,1;0)y,, (1, 1, +1),, (1, 1;0);,,

G.1:=Ds, G.1:=Ds, G, 1;— s,
(1,2 + s, (1,2:=Ds,, (1,2;= s,
G, 1:+9s, G 1+, G 1:-3s,
(1,2, = D)s,, (1,2, + 33, (1,2; =33,
(1, 1;0)y, (1, 1;0)y, (L 15 +1)y,
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TABLE VII. The same as in Table VI, where the subscripts
keep track of the SU(4)- and SO(10) origins. The symbols *
refer to the eigenvalues of TS).

SU(5) SUG), $0(10),

(3,25 + gayg (3,25 + gy, (3,25 + Py,
(1,25 Da, (1,25 = Da, (1234 s,
G L+ G 19 G 1+ s
G 1= i G L+ i G L+ i
(1,1 +1)4+ (1, 1:0)3. (1, 1:0);

(1, 1;0);. (1, 1,+1)47 (1, 1,0)47

G 1 3)610 G 15— 3)610 G 15— 3)6]0
(G, 1+ D, (3, 1;+ 1), (3. 1=,
(1,2;—&-%)1% (1,2;—%)% (1, 2;_%)1]+0
(1,2;_%)1&) (1,2;—!—%)11—0 (1, 2;_%)1;0
(1, 1,0), (1, 1,0);, (1, 1;+1),

In analogy with the flipped SO(10) discussion, we shall
label the SM singlets contained in the 27 as e = (1, 1;0);,
and v = (1, 1;0), .

As we are going to show, the little group of a super-
symmetric (78 & 27, ® 27, ® 27, ® 27,) vacuum is SU(5)
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TABLE IX. The same as in Table VII for the 78 representation.

SU(5)

SUG),

50(10);

(1, 1;0)y,
(1,105,
(8, 1;0)y5,
(B 1 +3)s,,
(B 1;-2)s,
(1,3:0),,
(1, 1; +1)1+
1,1;0)0

21 1; )11*517
(3,2 + Do
(:j: 2, = 6)6;5
(3.2 + s,
(32— é)é;s
(3,25 + Py
(1,25 = Dy,

(1, 1;0),
(1, 1;0);5,,
(8» 1 5 0)21545
(%» 1+ 915,
(3) ls - %)1545
(1,3;0)y,,
(1L 1= 1)
(1, 1;0)°
(1, 1; +1)17
(3,2; ——)6+
(3, 2, + 6)6;5
3.1
(-i’, 2= 8o,
(3,2 + %)64}
(3,2:+ Da,,
(1,25 = sy,

(1, 1;0)y,
(l, 1;0)1545
(8’ 1;0)1]545
(:j’, 1= 3)is,
(3: 1, +%)1545
(1, 3;0)145
(1, 1, 0)1+
(1, l,O)lo
(1,1 0)1
(3,2, + )
(%, 2’ + ?) -/Is
(25, 2, = 8,
(3,25 _%)6;5
. 5
(3,25 = Day
(1,25 = Dy,

TABLE VIII. The same as in Table VI for the 78 representation.
SU(5) SUS)y S0(10),
(1, 1,0), (1, 1,0);, (1, 1;0),
(1, 1;0)145 (1, 1;0)145 (1,1;0)145

(8, 1;0)a4,,
(§’ 2; - %)2445
(3» 2’ + %)2445
(1,3;0)54,,
({1, 1;0)21445
(3,2:+ 5)1045
(3’ 1; - %)1045
(1, I; +1)1045
(32— 9,
(01: 1)10
Gt by
(lv 25 2)51()
(3, 2, + é)]olﬁ
(G, 1= 3o,
(1, 15+ 1o,
(1, 1;0)11]6
G 1i—3)s
(1,2;+ %)SE
(3,2;— é)mﬁ
G 1L+ i)ﬁﬁ
(1, 1;- l)mﬁ
(1,1;0),

(8, 150)a4,,
(3,25 + Poas
(?,1 2; —0)%)2445

,3;0)2

(1, 1,0,
(3,2 =)y,
(3, 1= 31,
(L, 15 = 1)y,
ES, 2: + §3ﬁ45
31+ g,
(1,1 +1)1045
(G, 1:-3s,
(1,2, = D)3,
(%', 2+ Doy,
(3, 1+ Do,

(1, 1;0)y9,,
(I 1;+1),,,
G L +39s
(1,2;+ %)5E

(32— %)mﬁ

(31 —%)m_
(1, 1; 0)10_
(1L 1;= 1),

8, .1;0)]2445
G b
d 672%45
(1, 3;0)24,,
(L, 150)p4,,
(3.2;+ Do,
(3G 1;+ %)1045
iz
T
G 15— %)@
(1,1 0)1045
(G, 1:—3)s,
(1,2; - 2)516
(3’ 2; - %)10]6
G, 1=,
(1 1; 1)y,
(1, I, =1y,
G L+

(_1, 2; JF%)SE
(3,2 +%)ﬁﬁ
G 1 +%)ﬁﬁ
(1,1 -f—l)mE
(L 1;+1),

(3, 1; + ]);ﬁ (3 1 - %);ﬁ (3 1 - %);ﬁ
G 1—3s. G L+3s, G =9

(1,1 +1)4+ (1,1:0): " (1,1 1)4{
(1,1;0)3. (1, 1’“)42, (1,1; - 1)476
(32— 6)4_ (32— (3, 2+ s

(1,2 + 95 (1,25 + D (1,2: +2)4_
(3 I 3)4; (3 L; _{—';)4’6 (3’ 1’+3)4’
G 1 +g)4+ (1= P @3, 1,+3>4+
(11— 1)4; (1, 1;0)4- (1,1,+1)4;
(1 1:0),: (1,1 =1y (L 1 +1),"

in the renormalizable case. This is just a consequence of
the larger E4 algebra. In order to obtain a SM vacuum, we
need to resort to a NR scenario that allows for a disentan-
glement of the (78) directions and, consistently, for a
flipped SO(10) ® U(1) intermediate stage. We shall make
the case for an E¢ gauge symmetry broken near the Planck
scale, leaving an effective flipped SO(10) scenario down to
the 10'6 GeV.

A.Y and B — L into E4

Interpreting the different possible definitions of the SM
hypercharge in terms of the E, maximal subalgebra
SU(3), ® SU(3); ® SU(3)g, one finds that the three as-
signments in Eqgs. (8)—(10) are each orthogonal to the three
possible ways of embedding SU(2); (with I = R, R', E)
into SU(3)z [20]. Working in the Gell-Mann basis (cf.
Appendix B 1) the SU(3)y Cartan generators read

T = YT — 12), (30)
= g
R 2\/5 1

which defines the SU(2); embedding. The SU(2)x and
SU(2); embeddings are obtained from Egs. (30) and (31)

T2 — 2T3), 31)

035002-10



MINIMAL FLIPPED SO(10) ® U(1) ...

by flipping, respectively, 2’ < 3/ and 3’ < 1’. Considering
the standard and flipped SO(10) embeddings of the hyper-
charge in Egs. (8) and (10), in the SU(3)? notation they
respectively read

1 1 2
_ ey 0 ® _ Lo (®)
Y=©2TP+ T + =T = =T — =T (32)
3T The T gl = gl = mle €
and
1 2 1 1
Y=—=T% - 218 = =18 + 19 + =79, (33)

BB V3

The three SM-compatible assignments of B — L in
Egs. (11)—(13) are also orthogonal to the three possible
ways of embedding SU(2); into SU(3)z. However, once we
fix the embedding of the hypercharge, we have only two
consistent choices for B — L available. They correspond to
the pairs where Y and B — L are not orthogonal to the same
SU(2); [20].

For the standard hypercharge embedding, the B — L
assignment in Eq. (11) reads

2 1
T® + 1) = =1 -1 — =71,

V3 V3

)
NG

B—L
(34)

while the B — L assignment in Eq. (13), consistent with the
flipped SO(10) embedding of the hypercharge, reads

2 1 2
B—L=-"72TY -1 - =18 = =1 + ).

V3t V3R B
(35)

B. The E4 vacuum manifold

The most general renormalizable Higgs superpotential,
made of the representations 78 & 27, ® 27, ® 27, ® 27,, is
given by

m o —

+ a”k27127]27k + Bijkﬁiﬁjﬁk’ (36)

where i, j = 1, 2. The couplings a;j and B, are totally
symmetric in ijk, so that each one of them contains four
complex parameters. Without loss of generality, we can
take p real by a phase redefinition of the superpotential,
while 7 can be diagonalized by a bi-unitary transformation
acting on the indices of the 27 and the 27. We take 7; =
7;0,j, with 7; real. Notice that & and B are not relevant for
the present study, since the corresponding invariants vanish
on the SM orbit.

In the standard hypercharge embedding of Eq. (32), the
SM-preserving vacuum directions are parametrized by
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as v 2 _ A3
% (Tl/ + Tz/ 2T3!)

(78) = a, T3 + a,T2 +
2 3

bs

+ %(Tll,’ - 72) + \/—E(Tll + 72213, (37)

and
(27;) = (e)v3, + (v))v3, (38)
(27 = (Ei)ui' + (771')M%/y (39)

where ag, dp, ds, Ay, b3, €12, é1,2, V12, and 771,2 are 13 SM-
singlet VEVs (see Appendix B 1 for the notation). Given
the B — L expression in Eq. (34) and the fact that we can
rewrite the Cartan part of (78) as

1
V2a,TY + —2(a3 + b)(TY + 1)

NG

1
+5las = by)(T — 1) (40)
we readily identify the standard SO(10) VEVs used in the
previous section with the present E¢ notation as wp % ay,
wy % as + by, while ) o« a3 — bs is the SO(10) ® U(1)y
singlet VEV in Eg (Ty o T\ — 7%,

We can also write the vacuum manifold in such a way
that it is manifestly invariant under the flipped SO(10)
hypercharge in Eq. (33). This can be obtained by flipping
1" — 3" in Egs. (37)—(39), yielding

(18) = ay T + a, T2 + 24, TS

1
e b)(TY + 1)

NGl

1
v i )T — 1)), 41)
(27;) = (e)v}, + (v)v3, (42)
(27) = (éi)u! + (771')”%/, (43)

where we recognize the B — L generator defined in
Eq. (35). Notice that the Cartan subalgebra is actually
invariant under both the standard and the flipped SO(10)
form of Y. We have

AT + ayTY) = asT) + a Ty, (44)

with
2a, = —ay — ay, (45)
2a, = —Ba; + a,, (46)

thus making the use of the as4 or aj, directions in

the flipped or standard vacuum manifold completely
equivalent. We can now complete the identification of the
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notation used for E4; with that of the flipped SO(10) ®
U(1)x model studied in Sec. III, by @™ = a,,.

From the E¢ standpoint, the analyses of the standard
and flipped vacuum manifolds given, respectively, in
Egs. (37)—(39) and Egs. (41)—(43) lead, as expected, to
the same results, with the roles of the standard and the

2
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flipped hypercharge interchanged (see Appendix B). In
order to determine the vacuum little group, we may there-
fore proceed with the explicit discussion of the standard
setting.

By writing the superpotential in Eq. (36) on the SM-
preserving vacuum in Egs. (37)—(39), we find

P
a a b _ _ _ _ _ _ _ _
(Wy) = M(alaz + 73 + 74 + —%) + pileie, + vipy) + py(ee) + vapy) + ppleey + vi9y) + palerey, + vav,)

2

2 1
+ Tl[—alelﬂl - aZVIEI + \/;613(6151 - Eljl]}l) +
_ _ 2 _ 1
+ Tyl —ajeVy — avre) + 5(13 €r€6y — EVzVZ +

When applying the constraints coming from D- and F-term
equations, a nontrivial vacuum exists if p and 7 are
Hermitian, as in the flipped SO(10) case. This is a conse-
quence of the fact that D flatness implies (27,) = (27,)*
(see Appendix B 2 for details).

After imposing all the constraints due to D and F flat-
ness, the E4 vacuum manifold can be finally written as

2ua; = 12 sin2aq e’ %) + 7,2 sin2ay e’ P b,
2ua, = TII’% sin2alefi(¢”17¢”l)
+ 7'2}"% sin2a267"(¢”27¢“2),

2W6pay = —72(3cos2a; + 1) — 1533 cos2a, + 1),

V2ua, = —7sin2a; — myrisinay,
\/§/.Lb3 =27 ri+ \/Eq-zr%,

€12 =" cosameid’“ll,

Vip = Fio sinal,ze"d’”'l,

81y ="rp cosa1’267i¢”1v2,

. i,

VLZ == r1,2 Sina1,2€7 (48)

where ry, and ™ = @ = a, are fixed in terms of super-
potential parameters as follows:

2 p(pnTi —4p117))

, 49

g 57%72 “49)
2 _ M(Plsz - 4/)227'1)

= — , 50

"2 57'17'% (50
sin®, — sin®

- = S 7 S 51

cosa ¢ sin(®, — ®,) D
in®, + sin®

cosat = gsm v TSI (52)

sin(®d, — ®,)’

Cl4V117] 2 _ _]
— a|=bs(eje; + vp
= \f33<11 )

Cl4V2772 2 _ _ ]
— 4|=bs(ere, + vy0s) |. 47
NG \/; s(e28; + vy 75) 47)
[
with
5lpial
s
\/_ 4p;i72 - 4p;fﬂ +17ppnpn

The phase factors @, and @, are defined as

(I)V = ¢V1 - d’l/z + d)plzr (I)e = d)el - d)ez + ¢p12'
(54)

In Appendix B 3 we show that the little group of the
vacuum manifold in Eq. (48) is SU(5).

It is instructive to look at the configuration in which one
pair of 27, let us say 27, ® 27,, is decoupled. This case
can be obtained by setting 7, = p; = pyp = 0 in the
relevant equations. In agreement with Ref. [12], we find
that «; turns out to be undetermined by the F-term con-
straints, thus parametrizing a set of isomorphic solutions.
We may therefore take in Eq. (48) a; = a, = 0 and show
that the little group corresponds in this case to SO(10) (see
Appendix B 3), thus recovering the result of Ref. [12].

The same result is obtained in the case in which the
vacua of the two copies of 27, @ 27, are aligned, i.e.
a” =0 and ®, = ®,. Analogously to the discussion in
Sec. IIIB, a™ is, in this case, undetermined and it can be
set to zero, which leads us again to the one 27, & 27 case,
with SO(10) as the preserved algebra.

These results are intuitively understood by considering
that, in case there is just one pair of 27, ® 27, (or the
vacua of the two pairs of 27; ® 27, are aligned), the SM-
singlet directions e and v are connected by an SU(2)g
transformation which can be used to rotate one of the
VEVs to zero, so that the little group is locked to an
SO(10) configuration. On the other hand, two misaligned
27, ® 27, VEVs in the e — v plane lead (just by inspec-
tion of the VEV quantum numbers) to an SU(5) little
group.
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In analogy with the flipped SO(10) case, the Higgs
adjoint plays the role of a renormalizable agent that pre-
vents the two pairs of (27; ® 27;) from aligning within each
other along the SO(10) vacuum. Actually, by decoupling
the adjoint Higgs, F' flatness makes the (aligned) 27; & 27,
vacuum trivial, as one verifies by inspecting the F terms in
Eq. (B18) of Appendix B 2 for (78) = 0 and detp # 0.

In conclusion, due to the larger E¢ algebra, the vacuum
little group remains SU(5). In this respect we guess that
the authors of Ref. [30], who advocate a 78y @ 2 X (27 @
27y) Higgs sector, implicitly refer to a NR setting.

C. Breaking the residual SU(5)
via effective interactions

In this section we consider the possibility of breaking the
residual SU(5) symmetry of the renormalizable Eg vacuum
through the inclusion of effective adjoint Higgs interac-
tions near the Planck scale Mp. We argue that an effective
flipped SO(10) ® U(1)y = SO(10); may survive down to
the M, = 10'® GeV scale, with thresholds spread in be-
tween Mp and M in such a way that they do not affect the
proton stability but lead to realistic neutrino masses.

The relevant part of the nonrenormalizable superpoten-
tial at the E4 scale My < Mp can be written as

I
Wi = g T8 + L T8t L (59)

where the ellipsis stands for terms which include powers of
the 27’s representations and D = 5 operators. Projecting
Eq. (55) along the SM-singlet vacuum directions in
Egs. (37)-(39), we obtain

1
<WINIR> = M—P{/\I(Zalaz + Cl% + Clﬁ + b%)z

1
+ A2|:2a1a2(a%a% + a% + aﬁ + —a3a4)

Ng

1 1
+5(a§ + a3)? +§b‘3‘:| + } (56)

One verifies that including the NR contribution in the
F-term equations allows for a disentanglement of the
(78) and (27, ® 27, ® 27, ® 27,) VEVs, so that the break-
ing to the SM is achieved. In particular, the SUSY vacuum
allows for an intermediate SO(10), stage [that is pre-
vented by the simple renormalizable vacuum manifold in
Eq. (48)]. By including Eq. (56) in the F-term equations,
we can consistently neglect all VEVs except for the
SO(10) ® U(1) singlet ), which reads

M
0r=-_H7r (57)
It is therefore possible to envisage a scenario where the
E¢ symmetry is broken at a scale My < Mp, leaving an
effective flipped SO(10) ® U(1)yx scenario down to the

PHYSICAL REVIEW D 83, 035002 (2011)

10'® GeV, as discussed in Sec. IIl. All remaining SM-
singlet VEVs are contained in 45 @ 16, ® 16, ® 16, ®
16, which are the only Higgs multiplets required to survive
at the My < My scale. It is clear that this is a plausibility
argument and that a detailed study of the E4 vacuum and
related thresholds is needed to ascertain the feasibility of
the scenario.

The NR breaking of Eq through an intermediate SO(10)
stage driven by () > M/, while allowing (as we shall
discuss next) for a consistent unification pattern, avoids
the issues arising within a one-step breaking. As a matter of
fact, the colored triplets responsible for D =5 proton
decay live naturally at the Q%/Mp > M scale, while the
masses of the SM-singlet neutrino states which enter
the “extended” type-I seesaw formula are governed by
the (27) ~ M (see the discussion in Sec. V).

D. A unified E4 scenario

Let us examine the plausibility of the two-step gauge
unification scenario discussed in the previous subsection.
We consider here just a simplified description that neglects
threshold effects. As a first quantitative estimate of the
running effects on the SO(10), couplings, let us introduce
the quantity

ag'(My) — agy (My) _ 1

bg — by logﬂ
My
(58)

-1 -1
ag ap 2

where M is the Eg unification scale and «, is the Eq gauge
coupling. The U(1)y charge has been properly normalized
to X = X/\/24. The one-loop beta coefficients for the
superfield content 45, ®2 X (16, ® 16) ® 3 X (16, &
10, & 1) ® 45 are found to be by, = 1 and by = 67/24.

Taking, for the sake of an estimate, a typical MSSM
value for the GUT coupling a;;! = 25, for My/M; < 107,
one finds A(M) < 5%.

In order to match the SO(10); couplings with the mea-
sured SM couplings, we consider as a typical setup the
two-loop MSSM gauge running with a 1 TeV SUSY scale.
The (one-loop) matching of the non-Abelian gauge cou-
plings (in dimensional reduction) at the scale M reads

while for the properly normalized hypercharge ¥ one
obtains

a; ' (My) = (&2 + BHay (M)) + $2a;' (My).  (60)

Here we have implemented the relation among the properly
normalized U(1) generators [see Eq. (10)]

Y=a¥' +BZ+%X, (61)

with {&, B, P =1{- %’ - %\/%’ 7%}
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FIG. 1 (color online). Sample picture of the gauge coupling
unification in the Eg-embedded SO(10) ® U(1)y model.

The result of this simple exercise is depicted in Fig. 1.
Barring detailed threshold effects, it is interesting to see
that the qualitative behavior of the relevant gauge cou-
plings is, indeed, consistent with the basic picture of the
flipped SO(10) ® U(1)yx embedded into a genuine Eg GUT
emerging below the Planck scale.

V. TOWARDS A REALISTIC FLAVOR

The aim of this section is to provide an elementary
discussion of the main features and of the possible issues
arising in the Yukawa sector of the flipped SO(10) ® U(1)y
model under consideration. In order to keep the discussion
simple, we shall consider a basic Higgs content with just
one pair of 165 ® 16;. As a complement to the tables
given in Sec. III, we summarize the SM decomposition
of the representations relevant to the Yukawa sector in
Table X.

For what follows, we refer to [31-34] and references
therein, where the basic features of models with extended
matter sector are discussed in the Eg and the standard
SO(10) context. For a scenario employing flipped
SO(10) ® U(1) [with an additional anomalous U(1)] see
Ref. [11].

PHYSICAL REVIEW D 83, 035002 (2011)
A. Yukawa sector of the flipped SO(10) model

Considering, for simplicity, just one pair of spinor Higgs
multiplets, and imposing a Z, matter parity (negative for
matter and positive for Higgs superfields), the Yukawa
superpotential (up to d = 5 operators) reads

1 o
WY = YU16F10F16H + M_[YE10F1F16H16H
P

+ Ypl6;16,16,164], (62)

where family indices are understood. Notice (cf. Table XI)
that due to the flipped embedding the up quarks receive
mass at the renormalizable level, while all the other fer-
mion masses need Planck-suppressed effective contribu-
tions in order to achieve a realistic texture.

1. Mass matrices

In order to avoid the recursive 1/Mp factors, we intro-
duce the following notation for the relevant VEVs (see
Table X): b, = v, /Mp, Py = vy/Mp, and §y = sy /Mp.
The M ;-scale mass matrices for the matter fields sharing
the same unbroken SU(3). ® U(1), quantum numbers can
be extracted readily by inspecting the SM decomposition
of the relevant 1 + 10 + 16 matter multiplets in the flipped
SO(10) setting:

Mu = YUULl’ (63)
_ Ypiuvy YpSpvg
Ma ( Yysu Yyvy ) (9
_ (YePyvy Yysy
M. (YE§HUd Yyvy ) (65)
0 0 YUSH 0 YUUu
0 O YUDH YUUM O
MV: YUSH YUVH YDi)dvd 2YDﬁdVH 2YDﬁdSH
0 YUUM ZYDi)HUd YDi)HVH ZYDI,)HSH
YUvM 0 2YD§HU£I 2YD§HVH YD§HSH
(66)

TABLE X. SM decomposition of SO(10) representations relevant for the Yukawa sector in the
standard and flipped hypercharge embedding. In the SO(10) ¢ case B — L is assigned according
to Eq. (13). A self-explanatory SM notation is used, with the outer subscripts labeling the SU(5)
origin. The SU(2), doublets decompose as Q = (U, D), L = (N, E), A = (A°, A7), and A€ =
(Act, A0). Accordingly, (H,) = (0, v,) and (H,;) = (v,, 0). The D-flatness constraint on the
SM-singlet VEVs, sy and vy, is taken into account.

50(10);

S0(10)
165 (D°®L);:®(U°® Q®E))® (N
105 (Ao A)se (A® A);
1p (S)
(1647) Oe(H)s;0 (0008 0)e (vy)
(16p) OeH,))se (000 0)y;e (vy),

(D°®A)s @ (A°@ Q@ S))®(N),
(AeL)s;e(U°®A):
(E9),
OeH);0 (0008 sy)))® (vy),
Oe(H,))s ® (080 sy)7 ® (vy),
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TABLE XI. Decomposition of the invariants in Eq. (62) according to flipped SU (5)_and the SM. The number in the round brackets
stands for the multiplicity of the invariant. The contractions 5, 11, (10 )(104) and 5;6,16,{105)10y) yield no SM invariant.

16¢10,(16,) 105116, )16,,) 16, 16,(16,)(16,,)
(1) 1055(3,,) D (QU* + SA)(H,) @) 361 :(5u )T D AESH vy (D) 1T )T D NeNvY
(1) 165:(54) D N°L(H,) @) 5¢1 10, X5,) D LES(H )sy (1) 1051010, XT0,,) D SSs3,

(1) 5551 D (DA + AL)vy
(1) 5F§F<10H> D) ACASH

4) 10p1(105X1) D SN syvy

(1) 355, (5,)(5) D A“ACH,)H,)

C)] 10F5F<10H><§H> D (A°S + OD)XH)sy
(2) £0F10F<51-1_><11-1> D QAXH vy

@) Splp(SuXly) D ANHy)vy

where, for convenience, we redefined Y, — Y,/2 and
Yy — Yg/2. The basis (U)(U°) is used for M,, (D, A) X
(A¢, D¢) for M,, and (A, E)ES, A°t) for M,. The
Majorana mass matrix M, is written in the basis
(A% N, AO N©, S).

2. Effective mass matrices

Below the M, ~ sy ~ vy scale, the exotic (vector) part
of the matter spectrum decouples, and one is left with the
three standard MSSM families. In what follows, we shall
use the calligraphic symbol M for the 3 X 3 effective
MSSM fermion mass matrices in order to distinguish
them from the mass matrices in Egs. (63)—(66).

(1) Up-type quarks: The effective up-quark mass matrix

coincides with the mass matrix in Eq. (63),

M u = YUvu' (67)

(i) Down-type quarks and charged leptons: The 6 X 6
mass matrices in Egs. (64) and (65) can be brought
into a convenient form by means of the transforma-
tions

M,— MUY =M,  M,— UM, = M,
(68)

where U, , are 6 X 6 unitary matrices such that M/,
and M/, are block-triangular,

v v v O
Mj1=(9(0 Mf), M;=(o<v Mf). (69)

Here v denotes weak scale entries. This corresponds

to the change of basis
e\ _ A¢ e\ _ A~
(8)=vln)  (5)=vl)
(70)

in the RH down-quark and left-handed charged
lepton sectors, respectively. The upper components
of the rotated vectors (d° and e) correspond to the
light MSSM degrees of freedom. Since the residual
rotations acting on the left-handed down-quark and
RH charged lepton components, which transform
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the M);, matrices into fully block-diagonal forms,
are extremely tiny [of O(v/M/)], the 3 X 3 upper-
left blocks (ULB) in Eq. (69) can be identified with
the effective light down-type quark and charged
lepton mass matrices, i.e., M, = (M/)yp and
M, = (M)yg.

It is instructive to work out the explicit form of the
unitary matrices U, and U,. For the sake of sim-
plicity, in what follows we shall stick to the single
family case and assume the reality of all the relevant
parameters. Dropping same order Yukawa factors as
well, one writes Egs. (64) and (65) as

Md=<U” ”) Me=<U” SH), (71)
SH VH Us VH

and the matrices U, and U, are explicitly given by

__fcosa —sina
Uae = ( sina  cosa ) (72)

By applying Eq. (68) we get that M/, and M| have
the form in Eq. (69) provided that tana = sy /vy.
In particular, with a specific choice of the global
phase, we can write

VH SH
‘/s%pL v \sh+ v
so that the mass eigenstates [up to O(v/M) effects]
are finally given by [see Eq. (70)]

cosa = sina = (73)

(46 ) _ (yHAC ~ sHDC> a4
A€ m SHAC + vyD°
and
<~€ ): 1 (VHAi _SHE) (75)
A~ m SHA_ + vyE ’

where the upper (SM) components have mass of
O(v,,,) and the lower (exotic) ones have mass of

O(M,).
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(ii1) Neutrinos: Working again in the same approxima-
tion, the lightest eigenvalue of M, in Eq. (66) is
given by

(v + s3)> + 25303,

352, v (s3 + v3)

v MPU%,. (76)
For sy ~ vy ~ M; ~ 10" GeV, Mp ~ 10'8 GeV,
and v, ~ 10?> GeV, one obtains

va

m, M% M, 0.1 eV, a7
which is within the ballpark of the current lower
bounds on the light neutrino masses set by the
oscillation experiments.

It is also useful to examine the composition of the
lightest neutrino eigenstate v. At the leading order,
the light neutrino eigenvector obeys the equation
M,v =0 which, in the components v =
(x1, X9, X3, X4, X5), reads

spxz =0, (78)

vpx; =0, (79)

syx; + vygx, =0, (80)
Dyvpxy + 20yspxs = 0, (81)
28yvpxs + Sgsyxs = 0. (82)

By inspection, Egs. (81) and (82) are compatible
only if x4, = x5 = 0, while Eqgs. (78) and (79) imply
x3 = 0. Thus, the nonvanishing components of the
neutrino eigenvector are just x; and x,. From
Eq. (80), up to a phase factor, we obtain

Yy 0 SH
Y= A0 + N, (83)
\vh sk N TR

Notice that the lightest neutrino eigenstate v and
the lightest charged lepton show the same admix-
tures of the corresponding electroweak doublet
components. Actually, this can be easily under-
stood by taking the limit v, = v; = 0 in which
the preserved SU(2); gauge symmetry imposes the
same U, transformation on the (A° N) compo-
nents. Explicitly, given the form of U, in Eq. (72),
one obtains in the rotated basis

0O 0 0 0 0
0 0 M, 0 0
o M, 0 0 0
M, = ! e @
0 0 0 3 237
2 2
0 0 o0 24 M

R
5|
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where we have taken s;; ~ vy ~ M. M), is defined
on the basis (v, A°, A%, N¢, S), where

v 1 (A°—N
(0)=5(oiy) o
In conclusion, we see that the “light” eigenstate v
decouples from the heavy spectrum,

1
=M}y, vy, =5 (NC=S)(86)

m,,Ml

1

\/E(Nc +5), (87)

mVM2~3'M%/MP, VMZ

Lo e
Mo, ~ =My, v, ~ (AT = A, 88

~M ~ LA+ A0y, (89)
mVPDZ Vil Vpp, \/5 s

where vy, and v, are two Majorana neutrinos of
intermediate mass, O(10'%) GeV, while the states
vpp, and vpp, form a pseudo-Dirac neutrino of mass
0(10'°) GeV.

Notice finally that the charged current W, 7, e; coupling
is unaffected [cf. Eq. (83) with Eq. (75)], contrary to the
claim in Refs. [31,32] that are based on the unjustified
assumption that the physical electron e is predominantly
made of E.

VI. CONCLUSIONS

In this paper we attempted to pin down the minimal
Higgs setting within the framework of the supersymmetric
SO(10) and Eg4 unifications, consistent with a breaking of
the unified gauge symmetry down to the SU(3),. ®
SU(2); ® U(1)y of the standard model driven by renorma-
lizable interactions.

The breaking of the GUT symmetries down to the SM at
the renormalizable level is a very interesting option which,
simplicity apart, is supported by the success of the single-
step gauge unification inherent to the TeV-scale minimal
SUSY extension of the SM. Indeed, if any part of the
GUT — SM symmetry breakdown were due to nonrenor-
malizable (Planck-induced) operators, one has to face a
plethora of thresholds spread below the GUT scale, which
may dramatically affect the gauge running and also the
proton lifetime.

On top of that, the B — L breaking scale in the vicinity
of Mg ~ 10'® GeV is particularly favored by the experi-
mental lower limit on the light neutrino mass scale

( Ami ~ 0.05 eV) in models in which the RH neutrinos,
driving the singlet (type-I) variant of the seesaw
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mechanism, receive their masses from Planck-suppressed
operators, as in the scenarios discussed in this work.

We argued that the simplest SUSY SO(10) Higgs
model that can support a full breaking of the unified
symmetry down to the SM at the renormalizable level
corresponds to the flipped SO(10) ® U(1) scenario with a
2 X (16 ® 16,) ® 45, Higgs sector. The enhanced break-
ing power of the spinorial pairs 16, ® 16, and the adjoint
45y in the flipped case, each with twice as many SM
singlets as the same multiplet in the standard SO(10)
context, does make room for the desired single-step break-
ing of the rank = 6 SO(10) ® U(1) gauge symmetry down
to the rank = 4 SM. These results follow from a detailed
analysis of the relevant F- and D-flatness constraints on the
gauge boson spectrum.

We also considered the natural embedding of the flipped
SO(10) ® U(1) model into the exceptional group Eg. With
an extra copy of the fundamental conjugated pair of 27, &
27y of Eg [comprising 165 & 16, of its SO(10) subgroup]
on top of the simplest nontrivial renormalizable SUSY E¢
Higgs sector spanned over 27, ® 27, ® 78, the original
symmetry is reduced to rank = 4. However, due to the rich
structure of Eg as compared to its SO(10) ® U(1) sub-
group, the breaking chain stops at the SU(5) level and
nonrenormalizable operators are still needed for a full
E¢ — SM breaking.

We made the case for a two-step breaking of an Eg
GUT realized in the vicinity of the Planck scale via an
intermediate flipped SO(10) ® U(1) stage. Remarkably
enough, even in the simplest picture, the few percent
mismatch observed within the two-loop MSSM gauge
coupling evolution at the scale of the “‘one-step” grand
unification is naturally accommodated in this scheme,
and it is understood as an artefact of a delayed Ejg
unification superseding the flipped SO(10) ® U(1) partial
unification. A study of GUT threshold effects and a
detailed discussion of the matter spectrum will be part
of future work.
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APPENDIX A: FLIPPED SO(10) VACUUM

1. Flipped SO(10) notation

We work in the basis of Ref. [35], where the adjoint is
projected along the positive-chirality spinorial generators

45 = 45,37, (A1)
with i, j = 1,...,10. Here
P 1
(5)=3t==rs (A2)

where I3, is the 32-dimensional identity matrix and I, is
the ten-dimensional analogue of the Dirac s matrix de-
fined as

r =- iF1F2F3F4F5F6F7F8F9F10.

X (A3)

The I'; factors are given by the following tensor products
of ordinary Pauli matrices o; and the two-dimensional
identity /,:

N=o,080,0L81® 0,
In=0®0,®8, 8038 05,
=090, 80,803,
In=0,®0,91,® 0,091,
I's=0,®0,®1,® 0,0,

(A4)
FG = 0'1@0'2@12@0'1@0’2,
F7 = 0'1@0'3@0'1@12@12,
Fg = 0'1@0'3@0'2@[2@12,
Fg = 0'1@0'3@0'3@[2@12,
Fl() = 0'2®12®]2®12®12,
which satisfy the Clifford algebra
{1} =26;. (AS)
The spinorial generators 3,; ; are then defined as
i

On the flipped SO(10) vacuum the adjoint representation
reads

@$=C§” (A7)

(45)k )
where
(45);, = diag(A}, Ay, A3, Ay, As, Ag, A7, Ag), (A8)

and
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()19 . . . ot . . \
. Ao . . . ot . .
All : (1)Jr
_ . . )‘12 . o’
= S
W~ . . )\14
w . )l15
\ S
(A9)

In the convention defined in Sec. III B (cf. also the caption
of Table V), the diagonal entries are given by

= o= Ay =

A=A =A3= A5 m

3(()y
A=A =——
4 8 2\/5
Wy @R 3(UY (OF
A=Ajg=Ayy=———L——R ), =—"L_"FR
R W R} NN )
Wy | Wg 3wy wR
A= A== ——L 4 2R )
13 14 15 2\/-2' \/-2' 16 — 2\/— \/—
(A10)

where wy and wp are real, while 0™ = %,

Analogously, the spinor and the antispinor SM-obedient
vacuum directions are given by

<16>T=( ........... e (All)

<E>T=("‘17

where the dots stand for zeros, and the nonvanishing VEVs
are generally complex.

It is worth reminding the reader that the shorthand
notation 1616 and 164516 in Eq. (14) stands for 16”C16
and 167457C16, where C is the ‘“‘charge conjugation”
matrix obeying (27)7C +CX~ = 0. In the current con-
vention, C is given by

(A12)

- =1
. I 4 .

o - (A13)
— 14 .
where 1, is the four-dimensional identity matrix.

2. Supersymmetric vacuum manifold

In order for SUSY to survive the spontaneous GUT
symmetry breakdown at Mg, the vacuum manifold must
be D and F flat at the GUT scale. The relevant super-
potential Wy given in Eq. (14), with the SU(3), ®
SU(2); ® U(1)y-preserving vacuum parametrized by
Egs. (A7), (All), and (Al12), yields the following
F-flatness equations:
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T _ _ ) _ _
F, =—4uwp+—=(eje,—vv)) +—=(e8, — v, v
r MWR \/5(11 11) \/5(22 22)

=0,
%Fw =4uwy+ (€1€1+V1V1)7L (€22, + 1,7,) =0,
3ner \/' V2
For=4po™ —7mvie; — 108, =0,
F,-=4pw™ —1ie;0) —1ye,0, =0,
F, =7-1<—a)_171 —%JFS?—\/QLY)JFPUQ tp12e; =0,

+pre tppe; =0,

)"‘ 171t piv, =0,

31/(1)
+72 )+P21V1+P22V2—0

+pietpre=0,

+pie t+ppe; =0,

)+ p1ivi+pura=0,

E)+ p1avi + poavy =0.

(A14)

One can use the first four equations above to replace wyp,
wy, ", and o~ in the remaining eight (complex) rela-
tions, which can be rewritten in the form
16uF? = 16u(pyie; + p12&y) — 511 (v 7y + €,¢))e,
- 7'17'2(1/2772@1 + (47/2171 + 562@1)52) = 0,
16uFe = 16u(piiey + parer) — 571(p1v) + €1e))e;
- 7'17'2(7721/281 + (47721/1 + 5@261)82) = 0,
16uFe = 16u(py 7y + p1apy) — 57i(eje) + vy oy)7y
- 7172(€2é2171 + (46251 + 51/2171)172) = 0
16uFe = 16u(py vy + pyva) — 571(e e + vy,
- Tsz(Ezele + (45261 + 51721/1)1/2) = 0,

(A15)

where the other four equations are obtained from these by
exchanging 1 < 2.

There are two classes of D-flatness conditions corre-
sponding, respectively, to the VEVs of the U(1)y and the
SO(10) generators. For the X charge one finds
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Dy = (45)TX(45) + (16,)TX(16,) + (16,)T X(16,)
+ (16)TX(16,) + (16,)T X(16,)

=le)|? + [ |> = le,|> = |7,1> + les* + |w,)?

—lesl ~ 17, =0, (A16)
while for the SO(10) generators one has
D;; = D¥ + D516 =, (A17)
where
Dj-‘js = Tr<45>f[2,~§, (45)] (A18)
and
(A
. A .
. A .
. . A
D =
R \/EB . .
. \/EB .
. \/EB .
. V2B
and

A=lo*P —lo P, B=(0")'wg—(0p)0.
(A23)

Since wg isreal and ™ = (w™)*, D;‘js = (0 as it should be.

Notice that F,- flatness implies
Tieiv) T ey vy = 7(118)" + 1(1,8))",  (A24)

where the reality of 7, , has been taken into account.
For the spinorial contribution in (A17) we find

D}jwE = EHlel® + leal?) + ()66
X (11?4 [22?) + (Z)44(l71 17 + 19,17)
+ (25)8,8(|51|2 +1e,1%) — OIIERT:
X (e1vy + e5vy) — (3)1612(vier + viey)

+ (2))as(F1e) + 738y) + (254817, + &30).

(A25)
Given X~ = —C (2%)”C and the explicit form of C in
Eq. (A13), one can verify readily that

(25)4,4 = —(23)16,16,

(Ess = ~EHin

(Zi)as = +EHe (A26)

Thus, D}f"’E can be simplified to
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DI®T6 = (16,)T31(16,) + (16,)T 3,:(T6,)

+(16)135(16,) + (16,)T3:(16,).  (A19)
Given that
Tr@s)I[S], (45)] = TrS[45), (45)1], (A20)
we obtain
g
s, @s= (1 ) (A21)
where
V2B* -
. 2B* .
. 2B* .
- (A22)

(2;;)12,12(|€1|2 +leol* =l 1> —le,l?)
+CHiers(vi P +1wol> =172 = 17,1%)
- [(23)12,16(671/1 + esz - IjTél - l_};éZ) + C.C.] == 0,

(A27)
or, with Eq. (A16) at hand, to

(616 — (2;;)12,12](|V1|2 +wml? = 11> = |2,]?)
—[EHnieleiv) + esvy — vie, — pe;) +cc.] = 0.

(A28)

Taking into account the basic features of the spinorial
generators 3 {e.g., the bracket [(2)1616 — (£7)12,12]
and (2})12,16 can never act against each other because at
least one of them always vanishes, or the fact that (%) 5,16
is complex}, Eq. (A28) can be satisfied for all ij if and
only if

leg|> + lea]* — eI — |&;]> =0,

12 + s = |2 = [3,]> =0, (A29)
ejv, + e;v, — viey — vye, = 0.

Combining this with Eq. (A24), the required D and F

flatness can be, in general, maintained only if e}, = &,
and v}, = 7;,. Hence, we can write
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en = |€1,2|€i¢""2, €1 = |€1,2|€_i¢“"2,
(A30)

i¢,,]’2 7’.‘1”’1,2
, .

vy = |vysle p1p = |vpple

With this at hand, one can further simplify the F-flatness
conditions, Eq. (A15). To this end, it is convenient to define
the following linear combinations,

Ly = CY cos¢py — CY singy, (A31)
Ly = CY singy + CY cosey, (A32)
where
V — 1 w w V — 1 w w
Cl =2_Z(F\7_Fv)’ CZZE(FV—FFV)’

with V running over the spinorial VEVs e, e,, v, and v,.
For u, 7, and 7, real by definition, the requirement of
Ly = 0 for all V is equivalent to

|

— l6u Rele
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4uReL, = |ey|(r 7ol ||v,]sin(o,, — b, — ¢,
+ d)vz) - 2M(|p21| Sin(d)el - ¢ez - ¢p21)
+ |p12| Sin(d)el - ¢€2 + ¢p]2)))
= 0’

4uReL, =|v;|(1\7lelles]sin(d,, — ¢, — ¢, + &,,)
- zlu“(lpZI | Sin(¢vl - ¢v2 - ¢p2])

+ |p12| Sin(¢vl - ¢V2 + ()bplz))) =0, (A33)

_2ImL; = |6’2|(|P21|COS(¢B, - d)ez - d)pz])
- |p12| COS((,bel - d’ez + d)plz)) =0,

—2ImL, = |v,|(|pylcos(e,, — ¢,, — ¢,,)

- |p12|COS(¢V1 - d)l/z + d)plz)) = 0» (A34)
and

_16M|€1“P11|C05(¢p”) - 8M|€2|(|p2]|005(¢e| - ¢ez - ¢p2]) + |p12| COS(¢e| - ¢€2 + ¢p]2))

+571(ley | + |v1 Pley| + 7i72((5lea]® + [5])les| + 4lvllvslles] cos(db,, — b, — o, + ¢,)

=0,

—16uReL,; = —16ulvllpyilcos(d,, ) — 8ulwal(lpailcos(d,, — ¢, — ¢,,) + lppalcos(d, — b, + ¢,,))
+ 571l I + leg )N wy | + 7172 (Glws > + el | + dlegllesllvyl cos(b,, — @y, — b, + &e,)) =0,

(A35)

2ImL:1 = 2|elllp11| Sin(¢pll) + |62|(|P12| Sin((;bel - ¢ez + ¢p12) - |P21| Sin((bq - ¢ez - ¢p21)) = 0,

2ImL:1 =2|vllpnl Sin(<75p“) + [l p12l Sin(¢’ul — ¢, ¢p12) = |pail Sin(d)ul — ¢, — ¢p21)) =0,

where, as before, the remaining eight real equations for
V = e,, v, are obtained by swapping 1 < 2.

Focusing first on L™, one finds that [e|L,, + |e,|L,, =
0 and |»|L,, + |»,|L,, = 0. Thus, we can consider just
L, and L, as independent equations. For instance, from
ImL, = 0 one readily gets

|p21| _ COS(¢€1 B ¢e2 + ¢p]2)
|P12| COS(¢€1 - ¢ez - d’pﬂ)'

(A37)

On top of that, the remaining ReL;, = ImL,, = 0 equa-
tions can be solved only for ¢, , = — ¢, , which, plugged
into Eq. (A37), gives |p 2| = |p2;]. Thus, we end up with
the following condition for the off-diagonal entries of the p
matrix:

P21 = Pla (A38)

(A36)

Inserting this into the ReL, = 0 and ReL,, = 0equations,
they simplify to

—dulppl = rimalv vyl sin(®, — ®,) csed,, (A39)

dulppl = mimolelles] sin(®, — @,)csed,,  (A40)

where we have denoted

(I)V = ¢V1 - d)uz + d)p]zr (I)e = d)el - ¢ez + ¢p12'

(A41)
These, taken together, yield
leilles] sin®, = —[v|[v,] sin®, (A42)
and
4ulpis| sin®, — sind,
il + leylley| = =222 (A43)

sin(®, — ®,)

TIT2
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Notice that in the zero phase limit the constraint (A42) is

trivially relaxed, while sind, —sind, _,

sin(®,—P,)
Returning to the L;, = 0 equations, the constraint (A38)
implies, e.g.,

Im L = |eillpy|sin(¢,, ) =0,
Iijz = lesllpal Si.n(d)pn) =0, (A4d)
ImL; = |villpyilsin(¢,,) =0,

ImLZ’Z = |V2||p22| Sin(¢p22) = 0.
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For generic VEVs, these relations require ¢, and ¢, to
vanish. In conclusion, a nontrivial vacuum requires p (and
hence 7 for consistency) to be Hermitian. This is a con-
sequence of the fact that D flatness for the flipped SO(10)
embedding implies (16;) = (16,)*, cf. Eq. (A30). Let us
also note that such a setting is preserved by supersymmet-
ric wave-function renormalization.

Taking p = p! in the remaining ReL;{, = 0 equations
and trading |p,,| for |v||v,| in ReL;rL2 = 0 by means of
Eq. (A39) and for |e||e,| in ReL; , = 0 via Eq. (A40),
one obtains

—16pReL; = le)|[=16upy; + 571> + leg[?) + 1i7a(|wal* + 5lea]?)] + 47y mol vl |vslles| sin®, csed, = 0,
—16pReL], = |esl[—16ppy + 573(lva|* + lea]?) + 7172(Iv1 12 + 5leg D] + 47 1ol vyl |wslley | sin®, cse®, = 0,
—lou ReL;rl = |n[—16ppy + 57’%(|€1|2 + w1 ?) + 7ima(leal* + 51malD)] + 47 7alwslle|les] cse®, sind, = 0,
—lou ReL;rz = |»l[—16pmpy + 5T%(|€2|2 + vl + 1imaller[* + 5lv[D)] + 47 1ol vsllesllen] ese®, sind, = 0.

Since only two out of these four equations are independent
constraints, it is convenient to consider the following linear
combinations,

C3 = |viP(le1|ReL{, — |es|ReL;,

— leg[*(Iv1ReL;, — [»|ReL;),  (A46)

Cys = |vy|%(le;|ReL} — |ey|ReL))
4 2 ) 1 ey 2 e (A47)
— lesl*(Iv1IReL, — [v,|ReL}),

which admit for a simple factorized form

16uCs = (IvaPlei 1> — v Plea)[573(|wa > + leal?)
+ 11y P+ leg|?) — 16mppn] =0, (A48)

16uCy = (IyPler > — v Plea 573w 1> + ley?)
+ 111l ? + ley]?) — 16mp 1= 0. (A49)

These relations can be generically satisfied only if the
square brackets are zero, providing

loupy = 57'%(|7/1|2 + le |?) + 7112 (|va]? + les]?),
16pyy = 573(1val* + lesl?) + 7ima(lvy 12 + ley 2).
(A50)

By introducing a pair of symbolic two-dimensional vectors
71 = (lv;l, le;]) and 7, = (|v,], le,]), one can write

2 [y 2 2 2 [y, |2 2

ri = v > + le %, rs = |y |* + les]?,
.. (AS1)
1.7y = [villw] + leilleal,

(A45)

[
which, in combination with Egs. (A43) and (A50), yields

2 _ 2u(po) — 5p1172)

ry = »

! 3737,
2= 2ulpimy — 5P227'1)’ (A52)
2 37,73

-~ - 4ulppsl sin®, — sin®,
Fi.hy = .
e sin(®, — d,)

TT2

With this at hand, the vacuum manifold can be conven-
iently parametrized by means of two angles «; and a5,

|V1|:7"1 Sina], |61|:V| cosay,

(A53)
|V2| =n Sina’z, |62| = rp COSy,
which are fixed in terms of the superpotential parameters.
By defining o™ = a; = a5, Egs. (A51)—(A53) give

cosa” = :11':22 = Sslinn(?(;),, _Slgz))e, (A54)
where
£ = 6lp 1l _ (A55)
J_S’E—rz_ Spé—jﬂ + 26p2p11
Analogously, Eq. (A42) can be rewritten as
cosa| cosa, sin®, = — sina; sina, sin®,, (A56)

which gives
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sin®, cosa® — cosa”

= , A57
sin®, cosa” + cosat (A57)
and thus, using Eq. (A54), we obtain
in®, + sin®
cosat = g v T e (A58)

sin(®, — ®,)

Notice also that in the real case (i.e., ®, = ®, = 0) o™ is
undetermined, while cosa™ = £.

This justifies the shape of the vacuum manifold given in
Eq. (16) of Sec. III B.

3. Gauge boson spectrum

In order to determine the residual symmetry correspond-
ing to a specific vacuum configuration, we compute ex-
plicitly the gauge spectrum. Given the SO(10) ® U(1)y
covariant derivatives for the scalar components of the
Higgs chiral superfields

D,16 = 9,16 — ig(A,) )3 ;16 + igxX, 16,
D45 = 9,45 — ig(A,) [ 2, 45]

(A59)

where the indices in brackets (ij) stand for ordered pairs,
and the properly normalized kinetic terms

16 16 1
p,16'D,16,  D,16'D,16,  1TrD,45TD 45,

(A60)

one can write the 46-dimensional gauge boson mass matrix
governing the mass bilinear of the form

5 (A6 X ) MP(A, X)(A#) i, XH)T (A61)
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as
2 2
M 2(A, X) _ ( M(;j)(kl) m(éj)x ) (A62)
xan  Mxx

The relevant matrix elements are given by
Miija = 8 (1M, 26 K16) + (TOTZ ), 2}
X (T6) + ATH[S. ), STIS,, (45)))
M2, = 2585 (16)TS ] (16) — (T6) 3, (T6)),
M%((kl) = 2ggx(<16>f2(7d)<16> - <E>TE&1)<E>),
M3y = 28%((16)1(16) + (16)T(16)). (A63)

a. Spinorial contribution

Considering first the contribution of the reducible rep-
resentation (16, ® 16, ® 16, ® 16,) to the gauge boson
mass matrix, we find

M3(1,3,0),, =0, (A64)

M2(8,1,0)5, =0, (A65)

M3, 1 =5, = g2ler | + v + lea]? + [w,]?
+le |2 + 19,7 + |e,)? + |5, 1%).
(A66)

In the (65, 6,5) basis (see Table V for the labeling of the
states) we obtain

1 2(|p |2 + w2 + 15,12 + |5,]2) —ig2(etv, + eivy + P, + Pie,)
:M2(3’2,+_)=<$ 1* 2* _1_* _2_* 171 ENON _22>' A67
16(>2T6) T Nig2er; + eavs + 5081 + 785 g2llerP + leal + 12,2 + 12,]) (A6
The five-dimensional SM-singlet mass matrix in the (1545, 1,5, 125, 15, 1) basis reads
%gzsl i\/§8253 —\/gngz _i\/5825§ _\/gggXSl
—i\/3g2S; &S, 0 0 2iggxSs
2 =
Mi11.00 = | fi, 0 225, 0 Seons, | (A68)
i3g%S; 0 0 g5, —2iggxS;
—BggxS1 —2iggxS; 2ggxS> 2iggxSy  28%S)
I
where S, =|e;|>+ |ey|? + v |? + v, |? + e, > + |2, + We verified that this result is maintained when imple-
7,12+ 12,12, S,=ley|* +1esl?> —|vi|> = |21 +12,]>+  menting the constraints of the flipped vacuum manifold in

les|* = 17,1* = |7,|%, and Sy =, v| + e,0; + &} 7y + &5,

For generic VEVs Rank .’M%G(l, 1,0) = 4, and we re-
cover 12 massless gauge bosons with the quantum numbers
of the standard model algebra.

Eq. (16). Since it is, by construction, the smallest algebra
that can be preserved by the whole vacuum manifold, it
must be maintained when adding the (45,) contribution.
We can therefore claim that the invariant algebra on the
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generic vacuum is the SM. On the other hand, the 45y
already plays an active role in this result since it allows for
a misalignment of the VEV directions in the two 165 &
164 spinors such that the spinor vacuum preserves SM and
not SU(5) ® U(1). More details shall be given in the next
section.

b. Adjoint contribution

Considering the contribution of (454) to the gauge
spectrum, we find
|

1 2(wp + wy)? + 20" w™)
2 32 +-)= 8 R Y
1M45< » 2, 6) ( N T

PHYSICAL REVIEW D 83, 035002 (2011)

The SM-singlet mass matrix in the (15,5, 1,5, 125, 1,5, 1,) basis reads

0 0

0 4g%(w2+ 0 ™)
:Mis(l, LO)=1]o0 i4g’wrw™

0 4g2(w+)2

0 0

For generic VEVs we find Rank 3\435(1, 1,0) = 2, leading
globally to the 14 massless gauge bosons of the SU(3), ®
SU(2), ® U(1)? algebra.

As a consistency check, by switching on just the wy and

wy VEVs, we recover the results of [2] for standard
SO(10).

¢. Vacuum little group

With the results of Appendixes A 3 a and A 3 b at hand,
the residual gauge symmetry can be readily identified from
the properties of the complete gauge boson mass matrix.
For the sake of simplicity, here we shall present the results
in the real VEV approximation.

Trading the VEVs for the superpotential parameters, one
can immediately identify the strong and weak gauge
bosons of the SM that, as expected, remain massless:

M8 1, 0)1545 =0, M2(1, 3, 0)145 =0. (A74)
Similarly, it is straightforward to obtain
1 4g°
.’]\42(3, 1,——) =—>-(3 57, —
3)1s.. 97_%7_%( w(pp7(57) — 72)
+ p1 7257, — 7))
+ 2(ppti + p1iT2)?). (AT75)

On the other hand, the complete matrices M?(3,2, + %)
and M?(1,1,0) turn out to be quite involved once the
vacuum constraints are imposed, and we do not show
them here explicitly. Nevertheless, it is sufficient to
consider

M2(1,3,0),, =0, (A69)
‘M 35(8,' 1) 0)1545 = 0> (A70)
M3G3, 1 )5, = 4g%w} (A71)
Analogously, in the (6,5, 6;5) basis, we have
i2\/§g2wyw_
. AT2
lwp — 0y + 207 w") A1
0 0 0
—i4g?wpw™ 4g%(w™)? 0
827w w™ —i4g’wrw™ 0 (A73)
i4g?wrot  4g*(wi+ 0 ©T) 0
0 0 0

1 2
TrM2(3 2, + 6> == [16p*(r{ + r3) + 717} + 7313

8
+ 71713 r3(1 + cos2a )] (A76)
and
det.’Mz(3, 2, + 1) 8 5100 + 222 + 73r)
6 128 u*
+ 727312131 — cos2a ™) Jsina”
(A77)

to see that for a generic nonzero value of sina™ one gets
Rank M2(3,2, + %) = 2. On the other hand, when &~ = 0
(e, (16))x(16,)) or r,=0 (e, (16,)=0),
Rank M2(3, 2, + %) = 1 and one is left with an additional
massless (3,2, + %) ®(3,2 — é) gauge boson, correspond-
ing to an enhanced residual symmetry.

In the case of the five-dimensional matrix M?(1, 1, 0) it
is sufficient to notice that for a generic nonzero sina ™,

Rank M2(1,1,0) = 4, (A78)

on the vacuum manifold, which leaves a massless
U(l)y gauge boson, thus completing the SM algebra.
As before, for a~ =0 or for r, =0, we find
Rank M?(1, 1, 0) = 3. Taking into account the massless
states in the (3,2, + %) ®(3,2 — %) sector, we recover, as
expected, the flipped SU(5) ® U(1) algebra.

APPENDIX B: E, VACUUM
1. The SU(3)? formalism

Following closely the notation of Ref. [12], we decom-
pose the adjoint and fundamental representations of Eg
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under its SU3)- ® SUQ3), ® SU(3); maximal sub-
algebra as
78=@ L1)e(1,81)e(1,1,8)®(3,3,3)e(3,3,3)

CTger;eT;iingj,eQZ, (B1)
27=0331De(,33)e(3 1,3) =v, ® vi, @ vl

(B2)
G3De(1,33) el 1.3)=u"eu eu,,

(B3)
where the Greek, Latin, and primed-Latin indices, corre-
sponding to SU(3)., SU(3);, and SU(3)g, respectively, run
from 1 to 3. As far as the SU(3) algebras in Eq. (B1) are
concerned, the generators follow the standard Gell-Mann
convention

1
7O = E(T21 +T?),

27

i
T® = 5(T21 - T?),

1 1
IO =31, 19 =3,

i 1
TO = E(T3‘ -T3), TO= z(Tg +T3),

1
23
(B4)

with (T¢)k = 8469, so they are all normalized so that
TrT@T® =159,

Taking into account Egs. (B1)—(B4), the E algebra can
be written as

i
T = E(T§ -73), T® =_——=(T] + 73 -2T3),

(T4, Ty] = 83T} — 84T8,
[Ti, TH] = 8iT% — 84T,

il ! il / ! il
(70, 781 = 8,18 — 881},

(T8 T =[Tg T)] = [T, Tj]=0,  (BS)
[0}, Tg1 = 8308,
[0, Tgl = -850},
[Q,?;/y le] = _856 ’l};‘!y
[07, 711 = 5j0Y,
[0}, T§ 1= ~8%0],
(0¥, T 1= 8] 0¥, (B6)
k'l — — sa skl _ sa sl Tk ksl
(0%, OF 1= —845iT!, — 558,TF + 68,15,
(05, 051 = PV ey €5my 05, (BT)

ij U ; Sl
[QZ ’ ng] = _eaB'yElkpej ra qu/-

The action of the algebra on the fundamental 27 represen-
tation reads
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T)l,;vm- = 651},},1',
k — Sk

Tiv, = 0ivy,
/

T;(, Vai = 0,

B — 8B k
qu/vai - 6a6pikvq/’

rq' — sP !
QB Voi = 5i Gﬁa.yqu, (B8)
Thvi, =0,
ki — _ ik
T; v = 81vj,,
! H ! ;
Tlli v;, = 5§,v;,,
B i — _si K
qu,v;., - lﬂeq’j’k’vﬁ )
! . ! .
o' v, = 8;1., erky g, (B9)
Byai' = —gayBi
TyvY = —=8JvF/,
H
T{‘v‘” =0,
! o i !
le, v = —5{, vk,
. P
qu’vaj - _5{1’6BMUW’
/ 5 /30
qu v = —5?36‘“" vf,, (B10)
and accordingly on 27,
T,Buai — _5auBi
Y Y ’
Thu® = —§iuk
K ai
T)u* = 0,
B i — _ si Bay
qu,u 0L€P U,
! . . /
ng u® = —S%Ep‘kuz, (B11)
B J _
T u; =0,
k0 — sk J'
Tiu; = 6fuy,
Y R
Tyu; = —oyu;,
B 0 sl k
qu/ui - 5q/617iku'8 ,
pd 7 sP gk
Qﬁ u; = 6; € ugp, (B12)
B — B
T)’uaj’ = 6auyj’r
lel/laj/ = O,
! !
le’ Ugj = Bf’ual/’
B — sB K
qu/uaj' = 50(Eq/j/k'up’
rq — 54
QB Ugj = 5j, €gayU”?’. (B13)

Given the SM hypercharge definition
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1 1

— (8) (3) (8)

Y T, + Ty + Ty,
N kB

the SM-preserving vacuum direction corresponds to [12]

(78) = a\T3 + ay T2 + “2(TY) + T2 — 2713)

J6

- %(T;,’ -T2) + j—%(Tll + T3 —2T3), (Bl15)

Q27) = evg, + VU%,, 27) = éug/ + ﬁug/, (B16)
where ay, a,, a3, a4, b3, e, &, v, and v are SM-singlet
VEVs. This can be checked by means of Egs. (B5)—(B13).
Notice that the adjoint VEVs a3, a4, and bs are real, while
a, = a;. The VEVs of 27 ® 27 are generally complex.

(B14)

2. E¢ vacuum manifold

Working out the D-flatness equations, one finds that the
nontrivial constraints are given by

D <3a3 a4) . (3a*3‘ a;

== - 22— g [ 28— 24

E, \/6 \/5 2 1\/6 \/E
+ e;Vz - éQﬁ; = O,

Dy = 3(larl* = lasl?) + 2(1&, 1> — ley]?)

)+ €TV1 - éIDT

+2(1e* = leal?) + 1wy 1> = |77
)
DT;:) = lay|? = la;* + 1512 = v > + |5, — [,
=0,

Dpw = lerl® + 121 P + lesl? + [ — e, 2

=7 ? = la)* = 1m1* =0, (B17)

where Dg_ is the ladder operator from the (1, 1, 8) sub-

multiplet of 78. Notice that the relations corresponding to

DT(g), DT<3>, and DT(S) are linearly dependent, since the
R R L

linear combination associated with the SM hypercharge
in Eq. (B14) vanishes.

The superpotential Wy in Eq. (36) evaluated on the
vacuum manifold (B15) and (B16) yields Eq. (47).
Accordingly, one finds the following F-flatness equations:

F, =pa,—t1iev) — 10,0, =0,

F,,=pa —mvie, —1v8,=0,
1 _ _ _ _
F,, = pas _%(7’1(”1”1 —2e181) + 12(v, 7, — 2e,8;))
=0,

1 _ _
F,, = pay +E(TIV1V1 + 7,v,0,) =0,

2
F), = ub; _‘/;(7'1(74171 +e1e)) + 1o(vy 0, +e387)) =0,
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3F, =3(pné) + p1néy) — 71(N6(bs — a3)e, +3a,7,) =0,
3F,,=3(pae, + pneé;y) — 7,(\6(b3 — a3)e; +3a, 7,) =0,
6F, =6(py 17y +p1aiy) — 7'1(\/5(\/5@ —3ay

+24/3b3)7, + 6a,2,) =0,
6F,, =6(py 7y + ppp;) — 7> (V2(\Baz —3a,
+2+/3b3) 7, + 6a,2,) =0,

3F; =3(prie; + pae) — 71(\6(bs — as)e, +3a,v,) =0,

3F;,=3(paer + pnesy) — 7,(V6(b3 — az)es + 3ayv,) =0,

6F; =6(p1 v+ pyva)— 11(V2(\3a; —3ay
+23b3)v, +6a,¢,) =0,

6F;, =6(p1avy + povy) — 7 (V2(\Baz —3a,

+2+/3b3) v, +6a,e,) =0. (B18)

Following the strategy of Appendix A 2 one can solve the
first five equations above for a,, a,, as, a4, and b3:
pmay = Tvie + 1058,
May = Tie vy + ey,
Vopay = 1(v,7) = 2e,8)) + 1, (1,7, — 2e,2,),
V2pa, = =107 — Ty,
VBuby = V2(1,(v, 7, + €,8)) + (127 + €28))).
(B19)

Since a; = a; and 7| and 7, can be taken real without loss
of generality (see Sec. IV B), the first two equations above

imply
(B20)

T\ V18 + Tavpéy = Ti(e1 7)) + Th(ey))".

Using (B19) the remaining F-flatness conditions in
Eq. (B18) can be rewritten in the form

3uFe =3ulpe, + ppey) — 4ri(v vy + ei€))e
— 1113w 018; + (vy7; + 4eye;)e,) =0,
3uFs =3u(prie; + parey) —4ri(oyvy + 21e))e
- 7172(31_/21/162 + (1727/2 + 4@262)61) = O,
3uFs =3ulpn 7y + piaiy) — 47i(ere, + v 7))o,
— 1172328, 7; + (e,8; + 4v,9,)71) = 0,
3uFe =3ulpy vy + pavy) — 471216 + yvy)y,
— 117,(38e v, + (eyey + 4Dyv,)v) = 0,

(B21)

and the additional four relations can again be obtained
by exchanging 1 < 2. Similarly, the triplet of linearly
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independent D-flatness conditions in Eq. (B17) can be
brought to the form

DEa = ETVI - élﬂT + EZVZ - é277; = O,

DT;:) =152 = 1> + |5,]> = [,]* =0,

DT(Ls) =le)|* + v I* + lex> + v, > — eI

— 71> = l&* = |m,|* = 0. (B22)

Combining these with Eq. (B20), the D-flatness condition
is ensured if and only if e, = &, , and v}, = P, ,. Hence,
in complete analogy with the flipped SO(10) case,
Eq. (A30), one can write

ibe, —ige,
> »

e1n = legale e1n = legale
. . (B23)
l‘ﬁl/]vz _1¢V1,2‘

vip = |viale 712 = |viale

T5(78) = 0,
by
J6

Ti(T8) = (84T = 8VTY) + ax(84T5 — 83T +

Ti(78) =

a3
V6

ay -r i —} i i ! il
+FOUTY = 8)T = BTT + 8T,

=
02(78) = —a,(6%0%) — ax(8% Q%)

_b
J6

as

V6
(6]0%, + 8705, — 28]0%,),

1 na 2/
(8]/ i’ + 81/

i o i3/ o i a ! i’ ! ! ] i3/
Qv (78) = ai(8,,07) + ax(8,0%7) + _36(6]1sz11 +8,08 —28,00) +

NG

b RY . o Ca
+E0ld +ol0d —28103),

7

on the adjoint vacuum. For (27, & 27,) one finds

Tg<271 @ 272> = 0,

i2/
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From now on, the discussion of the vacuum manifold
very closely follows that for the flipped SO(10) in
Sec. ITA, and we shall not repeat it here. In particular,
the existence of a nontrivial vacuum requires the
Hermiticity of the p and 7 couplings. This is related to
the fact that D- and F-flatness conditions require (27;) =
(27;)*. The detailed shape of the resulting vacuum mani-
fold so obtained is given in Eq. (48) of Sec. IV B.

3. Vacuum little group

In order to find the algebra left invariant by the vacuum
configurations in Eq. (48), we need to compute the action
of the E4 generators on the (78 & 27, ® 27, ® 27, & 27,)
VEV. From Egs. (B5) and (B6) one obtains

(8T} — 8iT} + 8517 — 85T — 285T7 + 283T%),

il 1/ _ 1! il il 2/ _ 2/ il _ il 3/ 3/ il
(89, TY — 84T, + 84,73 — 8%TY — 284, T3 + 2863T%)

a
—-2830%) — —=
J ) \/j

i3 (811// & — 83; s )

il i2'

Qg

7 85,02)

(87,01 -

(B24)

T (27, ® 27,) = —(e; + e)[87v4,] — (vy + 1)[6;05 ]
Ti(27, @ 27,) = (e) + e)[85v3 1+ (vy + )[84 7]

Q;);-/<271 & 272> = _(61 + 62)[3?6j13/k11}ak’] - (Vl + Vz)[B?Ej/z/k/vak/],

127, ©27,) = (e + e)[8 €3 v, ] + (v, + 1,)[8) €v,,],

and, accordingly, for (27, ® 27,),
Tg<ﬁ1 (7] ﬁ2> = 0,

(B25)

Ti(27, ®27,) = (&, + 52)[55@’/] + (7 + )85 ],
Ti(27, ® 27,) = — (&) + &)[83ui] — (7 + 7,)[8%uf]

Qf}/<ﬁ1 ®27,) = —(¢, + 52)[513-//61%““](] — (7 + 772)[5?/,61‘31{”“1‘],

427, @27,) = (¢, + EZ)[BéEj/yk/uak’] + (7; + 772)[6§€j/21k/uak’]-

(B26)
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On the vacuum manifold in Eq. (48) one finds that the
generators generally preserved by the VEVs of 78 @ 27, &
272 (52 ﬁl & ﬁz are

11O TITITOTITY: (8,1,0),
TVTPTY: (1,3,0),
Y: (1, 1,0),

«,08,00' 02" (3,2, +) @ (3,2 -, (B27)

which generate an SU(5) algebra. As an example showing
the nontrivial constraints enforced by the vacuum manifold
in Eq. (48), let us inspect the action of one of the lepto-
quark generators, say Qf:

1
—=(as + V3a, + b3)0f,,

1A78) = — N

11,<27l ® 272> =0,

i
It is easy to check that a; + \/§a4 + b3 vanishes on the
whole vacuum manifold in Eq. (48) and, thus, Qf, is
preserved. Let us also remark that the U(1)y charges above
correspond to the standard SO(10) embedding (see the
discussion in Sec. IV B). In the flipped SO(10) embedding,
the (3,2) €B (3,2) generators in Eq. (B27) carry hyper-
charges + ¢ L respectively.

Cons1der1ng instead the vacuum manifold invariant
with respect to the flipped SO(10) hypercharge [see
Egs. (41)-(43)], the preserved generators, in addition to
those of the SM, are Q% 0%, 0¥ 0%'. These, for the
standard hypercharge embedding of Eq. (32), transform

PHYSICAL REVIEW D 83, 035002 (2011)

as (3,2, — 5 @ (3,2, + ), whereas with the flipped hyper-
charge assignment in Eq. (33), the same transform as
(3,2, +%) ® (3,2 — %). Needless to say, one finds again
SU(5) as the vacuum little group.

It is interesting to consider the configuration a; =
a, = 0, which can be chosen without loss of generality
once a pair, let us say 27, ® 27,, is decoupled or when the
two copies of 27, ®27, are aligned. According to
Eq. (48) this implies that all VEVs are equal to zero but
as = —by and e, (e,). Then, from Egs. (B24)-(B26), one
verifies that the preserved generators are [see Eq. (B4) for
notation]

TOTOTITOTOTOTITS): (8,1,0),
T TPTY): (1,3,0),
TOTITY: (1,1, 1) @ (1,1,0) @ (1,1, +1),

T + 1. (1, 1,0), (B29)

1 O5 o' (3,2, + e (3,2 -2,
@,0%8,0202: (3,2 -He32 +)),
Q33’Q§y3/: (3! 1’ _%) & (3r 1, +%),

which support an SO(10) algebra. In particular, a; = —bs
preserves SO(10) ® U(1), where the extra U(1) generator,
which commutes with all SO(10) generators, is propor-
tional to T(g) (8) On the other hand, the VEV ¢,

breaks T(Lg) T;eg) (whlle preserving the sum). We there-
fore recover the result of Ref. [12] for the Ej4 setting with
78y ® 27, ®27y.
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