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Existence of diproton-like particles in 3 + 1 lattice QCD with two flavors and strong coupling
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Starting from quarks, gluons, and their dynamics, we consider the existence of two-baryon bound states
of total isospin / = 1 in an imaginary-time formulation of a strongly coupled 3 + 1-dimensional SU(3),
lattice QCD with two flavors and 4 X 4 spin matrices, defined using the Wilson action. For a small
hopping parameter x > 0 and a much smaller gauge coupling 0 < 8 <K k < 1 (heavy quarks and large
glueball mass), using a ladder approximation to a lattice Bethe-Salpeter equation, diproton-like bound
states are found in the / = 1 isospin sector, with asymptotic masses —6Ink and binding energies of
order 2. By isospin symmetry, for each diproton there is also a dineutron bound state with the same mass
and binding energy. The dominant two-baryon interaction is an energy-independent spatial range-one
potential with an O(x?) strength. There is also an attraction arising from gauge field correlations
associated with six overlapping bonds, but it is subdominant. The overall range-one potential results
from a quark-antiquark exchange with no meson exchange interpretation (wrong spin indices). The
repulsive or attractive nature of the interaction does depend on the isospin and spin of the two-baryon
states. A novel representation in term of permanents is obtained for the spin, isospin interaction between

the baryons, which is valid for any isospin sector.
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I. INTRODUCTION AND RESULTS

Our aim in this paper is to analyze the low-lying energy-
momentum (EM) spectrum of an SU(3), lattice quantum
chromodynamics (QCD) model. More precisely, we con-
sider the question of the existence of two-baryon bound
states in the total isospin / = 1 sector, where diprotons
may be found. The existence of diprotons and dineutrons
was hypothesized long ago, and has important consequen-
ces for the short time after the big bang nucleosynthesis
[1,2], the resulting hydrogen concentration in the Universe,
and the creation of matter and life [3-5]. Also, the exis-
tence of diprotons and dineutrons, and their stability or
instability, is at the heart of a deep understanding of nuclear
physics. Although some announcements have been made
for the indication of the experimental evidence of diprotons
and dineutrons, their existence was never confirmed [6].
To our knowledge, on the same footing is the status of their
theoretical confirmation. Although protons and neutrons
are part of the eightfold way particles theoretically corro-
borated by QCD, there is no reliable theoretical argument,
based on dynamics, that supports the existence of this kind
of two-baryon bound states or any other hypothesized
multibaryon bound states, such as the tetraneutron [7] or
more general protonium, neutronium, or other mixed
states.
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The lack of knowledge on this type of fundamental
question justifies making an appeal to lattice QCD in trying
to reach a satisfactory answer to the problem. Here, we
consider an imaginary-time version of the SU(3). Wilson
lattice QCD model in 3 + 1 dimensions, with 4 X 4 Dirac
spin matrices and with only two quark flavors (up and
down). In order to be able to attack the problem of the
existence of diprotons and dineutrons using reliable ana-
lytical methods, we work in the strong coupling regime.
In this regime, the quarks and glueballs are heavy. If, in the
Wilson action [8—11], we denote the hopping parameter by
k and the plaquette coupling parameter by (3, this means
we are assuming they verify the inequalities 0 < k <K 1,
0 = B < k. The condition 8 < k guarantees that the
lowest-lying EM spectrum is comprised of mesons and
baryons. On the other hand, for 8 > «k, the low-lying
EM spectrum consists only of glueballs and their excita-
tions. Besides the local SU(3), gauge symmetry, our model
has a global SU(2), flavor (isospin) symmetry.

Although any lattice and the strong coupling regime are
physical limitations, their use still corresponds to the only
procedure and domain of parameters where the QCD low-
lying particle spectrum can be reached using reliable ana-
lytical techniques and for which the particle spectrum can
be obtained from dynamical first principles, i.e. directly
from the QCD quark-gluon dynamics. Moreover, regarding
the EM particle spectrum of the model, we also point out
that, up to now, the main qualitative spectral features that
are supposed to hold for QCD in the Minkowski continuum
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spacetime were shown to be preserved in a type of lattice
model like the one we treat here. Thus, if diprotons,
dineutrons, and other more complex bound states are de-
tected in strongly coupled lattice QCD, the underlying
compound field structure describing these lattice bound
states may give an indication of how the existence of these
particles can be searched experimentally or theoretically,
employing numerical simulations or eventually using
other methods.

The search for diproton and dineutron-like particles in
the above lattice QCD model, with strong coupling, repre-
sents one additional natural step in our long-standing
program to unveil the low-lying lattice QCD EM spectrum
in the strong coupling regime. In Refs. [12,13], we have
rigorously validated the SU(2); part of the Gell-Mann and
Ne’eman eightfold way picture for this model [14], and
obtained the baryon and the meson mass splittings. The
existence of the baryon and meson particles is obtained by
showing the spectral properties of the lower mass gap and
the upper mass gap. Hence, the baryon and meson particles
are genuinely determined by making an identification
with isolated dispersion curves in the model EM spectrum.
The 56 baryon states, and their antiparticles, have masses
m = —3Ink — (3/4)k> + O(«®) and, for B = 0, there is a
mass splitting of order O(k®) between the usual eightfold
way octet and the decuplet (i.e. between the total spin
J = 1/2 and J = 3/2, respectively). The 32 mesons have
masses m = —2Ink + k*> + O(k*) and, for B = 0 there is
a pseudoscalar, vector meson mass splitting (between
J =0andJ = 1) given by 2k* + O(k®). Mesons and their
antiparticles coincide. The nonsingular part of the eight-
fold way particle masses is shown to be jointly analytic
in x and B, so that the above 8 = 0 mass splittings persist
for B # 0.

Concerning the model bound state spectrum, we were
able to extend the one-particle analysis to a lattice version
of the Bethe-Salpeter (B-S) equation to analyze the two-
particle spectrum. First, in [15], we analyzed the even
sector H ., of states with an even number of fermions, of
the model quantum mechanical physical Hilbert space JH
and inspected it for the existence of two-baryon bound
states for the total isospin / = 0 and I = 3 sectors, below
the free two-baryon threshold, which is given by twice the
smallest of the baryon masses. We showed that there are
diverse two-baryon bound states. Their asymptotic masses
are —6 Ink and their binding energies are of order . In the
I = 0 sector, the most strongly bound, two-baryon bound
states correspond to a superposition of p —n and A — A
total spin S = 1 states, like the deuteron. The more weakly
bound, bound states are associated with a superposition of
p —nand A — A total spin § = 0 states and, in addition,
A — A, S = 2 states. There are also A — A, S = 3 states.
In contrast to the / = 0 states, we find that for the maxi-
mum isospin I = 3 sector, there are also strongly bound
and weakly bound, bound states in the lowest spin sectors
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S =0, 1 and no bound states if § = 2, 3. Second, in [16],
we analyzed the odd sector FH , of the Hilbert space H to
probe the existence of pentaquarks as meson-baryon bound
states. Although our methods are suitable to treat the
complete model, in the above cases we solved the Bethe-
Salpeter equation in the lowest nonvanishing order, which
we call the ladder approximation. Under this approxima-
tion, no pentaquark was found. Here, we further the analy-
sis of [15] and inspect for the existence of diprotons in H ,.

Here, we extend the analysis of two-baryon bound states
in [15] to the isospin I = 1, I; = 1 sector, restricting our
treatment to states generated by the product of one-particle
states. In this sector, we have p — p, A — A as well as
p — A and n — A states. By isospin symmetry, the I = 1,

I; =0, and I3 = —1 sectors have the same spectrum.
In particular, the I3 = 0 sector has p — n states and the
I; = —1 sector has n — n states.

As in [15,17], we use a lattice version of the B-S
equation and, in lattice relative coordinates, we establish
a correspondence between the partially Fourier trans-
formed B-S equation and the resolvent equation of a one-
particle lattice Schrodinger Hamiltonian. The Hamiltonian
is a sum of a kinetic energy term of order x> and a potential
energy operator. It is found that the potential energy domi-
nates. It is of space-range one and order «2, and arises from
a g — g exchange. Moreover, the potential has a represen-
tation in terms of a permanent of a matrix (the permanent
of a square matrix has the same terms as a determinant, but
with only plus signs). This permanent describes the inter-
action between the quark spins of two-baryon states. The
attractive or repulsive nature of the potential depends on
the total spin of the two-baryon particles. A long-range
bound on the B-S kernel, obtained as in Refs. [15,17],
guarantees that the short-range contributions we keep are
indeed the dominant ones describing the interaction be-
tween the two baryons. We find various bound states with
binding energies of order «2. In particular, there isa J = 0
diproton-like bound state with approximate binding energy
k?/4. It is described as a superposition of p — p and
A — A states. By isospin symmetry, corresponding to this
bound state, there is also an /=1, I =—1, J=0
dineutron-like bound state and an I =1, I3 =0, J =0
p — n-like bound state, with the same binding energy.
We list some of the other bound states. We give the binding
energy, the spin state, and the field that best describes it:
(1) € = k*/4,J = 2 (superposition of A — A, A — p, and
A — n states), (2) € = k*/12, J =3 (superposition of
A — A states), and (3) € = x*>/12, J = 2 (superposition
of A — nand A — p states). We note that the bound states
in (2) and (3) above are more weakly bound than the
diproton-like bound state. Also, we emphasize that we
take into account the entire two-baryon subspace in our
determination of the bound state spectrum. This is natural
from the point of view of degenerate perturbation theory,
as the masses of the one-baryon states are the same, up to
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order «°. If, by chance, we erroneously consider only the
p — p subspace rather than the entire / = 1, I3 = 1 two-
baryon subspace, we find a J = 0 bound state, but the
binding energy is only «?/36, which is greatly reduced
(by a factor of 1/9). Thus, the matrix elements between
p — p and A — A states are important in determining the
binding energy.

Although this type of effect is expected as a general rule
in the spectral analysis, we note that, by trying to make an a
priori approximation by guessing a leading subspace of
states, many analyses in the literature cannot be justified.
It is also noteworthy to mention that, if we consider the
I = 0 sector and only take into account the p — n sub-
space, then there are J =1, J, =1, 0, —1 deuteron-like
bound states with binding energies «?/36, which is the
same as for the J = 0 diproton, dineutron, and the / = 1,
I; = 0 p — n bound states.

In our method, a basic and fundamental ingredient is
given by obtaining spectral representations for the two- and
four-baryon correlations. These representations are essen-
tial to relate analyticity properties of these correlations to
the low-lying one and two-baryon spectra.

The paper is organized as follows. In Sec. II, we present
a brief description of the model. In Sec. III, we give the
one-particle states and their spectral properties. The two-
baryon states are given in Sec. [V. Section V deals with the
four-baryon functions, their spectral representations, and
the associated Bethe-Salpeter equation. Section VI is de-
voted to the approximation to the B-S kernel we use to
search for bound states. In Sec. VII, we solve the B-S
equation and obtain the bound states. Concluding remarks
are presented in Sec. VIII. As the essence of our methods
we already presented in previous articles, and in order to
avoid obscuring the flow of the text, in the body of this
paper we show our results in a very direct way and relegate
several technical ingredients to five appendices.

II. THE MODEL, PHYSICAL HILBERT SPACE,
AND EM OPERATORS

Here, we use the two-flavor version of the model
of Refs. [12,13]. It is an SU(2); lattice QCD model,
with gauge group SU(3), and a partition function given
formally by

Z= [e_s(‘”"z”g)dwdfpdu(g).

For a function F(, i, g), the normalized statistical corre-
lations are

1 - _ -
(P =5 [Fw b ge S0 apdian(e)

The model action S(, i, g) is Wilson’s improved action
of Refs. [8-10],
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K - o
S = E Z lpa,a,f(”)rgfg U(gu,v)ab l/jb,B,f(u + O-ep)

_ 1
+ Z l//a,a,f(u)Maﬁlpa,B,f(u) _?ZX(gp): (1)
0 p

uE€Z?

where the first sumis over u € 74, o0 = *1,p =0,1,2,3
and over repeated indices. Calling O the temporal direc-
tion, the lattice is given by Z%, where u = (u°, ii) =
W, ul, >, ud), Z4 € Z,/, X Z*, where Z is the set of
integers and Z,, = *1/2, #+3/2,.... We use Z,), for
technical reasons (see [12,18,19]). For each site u € 72,
there are fermionic fields, represented by Grassmann
variables ¥, , ((u) and . ;(u), which carry color a =
1,2, 3, spin =1, 2,3, 4, and flavor f =u, d=1, 2
indices. For e” being the unit vector for the p lattice
direction, I'**" = —1 * y”, where the y” are the
Euclidean anticommuting Dirac matrices

0 0
o_ (Db
Y (0 _”2)

Y —ig/ 0 )

o/, j =1, 2, 3, denotes the Hermitian traceless anticom-
muting Pauli matrices. For each oriented lattice bond,
we associate a gauge group element U(g,s.r,) =
U(gyuu+er)” !, and the last term in S is the usual plaquette
action. du(g) is a product of normalized SU(3), Haar
measures, and the Grassmann integrals are Berezin inte-
grals (see [18]). Associated with the model is a physical
quantum mechanical Hilbert /{ and self-adjoint energy
and momentum operators H = 0 and —7 < PI=123 < 7,

A Feynman-Kac (F-K) formula relates inner products in
H to correlations, and points in the EM spectrum are
detected as complex momentum singularities in the
Fourier transform of correlations. For the usual spacetime
and charge conjugation symmetries of this model, see
[12,13,19]. (A new time reflection symmetry is also pre-
sented.) At strong coupling, polymer expansion methods
(see Ref. [18]) ensure the thermodynamic limit of correla-
tions exists and truncated correlations have exponential
tree decay. The limiting correlations are translational in-
variant and extend to analytic functions both in « and S.

and

III. ONE-BARYON SPECTRUM

The gauge-invariant, local composite, one-particle,
baryon-creating fields are expressed as linear combinations
of the unnormalized composite fields,

. - - -
B Bri €abe waﬁfgl l’bhﬁggz ¢Cﬁ§g3’ 2

where  €,,. denotes the Levi-Civita symbol,

§=10(81.828), with g h;=12=ud and B, =
(B, B, BY). Only lower spin indices (B¢ = 3, 4) enter in
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the baryon fields. The normalized baryon fields of total
isospin / and third component I3 are Clebsch-Gordan
linear combinations of the B"’s, and we denote them

by x; 1,3 Where ,é specifies the spin state which will
|
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be explained below. The normalization is such that, at
k= 0= B, (y(x)x(x)) is the identity.

We now list the baryon fields. The ¥, 1,3 are taken
among the fields below,

P+ = ;jji(l;ba-%—u 'Lb—d - l_pa-kdlz/b—u)lz/ctw

n+ = ;i;i(‘ﬂ(ﬁ—u 'Z’b—d - lzla-kd'z’b—u)lzlctd’

2
€.p - - - - - -
Ai(l/Z) = a6€(d/aiu¢/biu Veza T zwaiu wbiud/cid)’
€abc 5 - - €abe = - -
A;G/z) = Zi/g ¢atu l//biulr//cid; +(3/2) = 066 'ﬁuidl;bhidl/fcid’ (3)
€ube - - - -
A(?_F(]/z) == (2¢aiu¢bid¢/cid + waiu wbidlr//c‘*d);
€ - - - € - - -
A(—)¢— = abe atu + ctd A: = abe a+ + cFd>
+(3/2) 2\/§¢’ +uWpratlexa (1/2) 2\/51/’ qWpraleza
€abc 5 - - €ube = - -
Ai(t/Z) = 2% waiul//biull/ciu’ ;(J;/Z) = a66 Lﬁaiul//biu c*u-

Spin operators are defined in the Grassmann field algebra
as in Ref. [12], and here, the subindexes =+ denote
the z component of total spin J, = * % n and p have total
isospin (spin) I = 1/2 (J =1/2) and I = 3/2 (J = 3/2)
for A=, A%, A* and A*". In y,, 5> e make the follow-
ing correspondence between 8 arici'J;: I1=1/2,8=(+—
), =*1/2; 1=3/2, B=(xxF)eJ =
+3/2, B(+ = —) < J, = *=1/2. The associated physical
Hilbert space states are shown to have the usual isospin and
hypercharge quantum numbers. Note also that, for p, n, the
first two isospins are coupled to give isospin zero. By the
action of charge conjugation C, baryons are mapped to
the corresponding antibaryons, and the symmetry of the
action of Eq. (1) under this transformation implies that
baryons and antibaryons have identical spectral properties.

In Refs. [12,13], the lattice translational invariant and
baryon two-point correlations G(u, v) are defined and
shown to have spectral representations for x° # 0,
x = u — v. The baryonic two-point function for the basic
excitation field By = ¥;;,; is defined by, writing

Goo(u,v) = Goplx =u—v €7,
G€]€2 (I/l, U) = <B€] (M)B€2 (U)>/\/MUSUO
= (B¢, ()Be,(0)) X040, “4)

where the subscripts £ = (&, f) and ¢/ = (,é, i) are collec-
tive spin-isospin indices and yg is the characteristic func-
tion or indicator of the set S. Since a baryon field is made
of three quarks and the average of an odd number of fields
is zero, this correlation is already truncated. An important
property concerning the baryon correlations which adjusts
the calculated normalization factors in Eq. (4) is that, for
coincident points,

(B! fBuB ;>(0) = —6per(8, 367, (5)

where here (0) means xk = 0 = 8 and, employing the
ordinary Cayley notation for determinants, the 3 X 3 ma-
trix 8 30 7i has elements 84,p,0,n,» and where per(A) is
the permanent of the square matrix A. This result shows
that the determinant and the Levi-Civita symbol € conspire
to give the permanent.

We briefly describe how the one-hadron spectrum is
obtained in Refs. [12,13]. Concerning the two-point func-
tion (4), using the spectral representations for the operators
VOO and 7%, we obtain the spectral representation, for

x0 # 0, with B, = B,(1/2,0) and x = v — u,

Gyo,(x) = =By, T®'T*By) 4¢

_ /1 [ (A0)|x0|71€—55.2d(§€], E(AY, X)Eez)ﬂ-[’
—1JT13
(6)

forx € 7%, x" # 0,and G, (x) is an even function of X by
parity symmetry.

Points in the EM spectrum are detected as singularities
of G(p) = G(p°, p), the Fourier transform of G(x), on the
p? imaginary axis. I'(x), the convolution inverse of G(x),
has a faster temporal decay than G(x) so that I'(p°, p),
the inverse of G(p), I'(p)G(p) = 1, has a larger strip of p°
analyticity than G, namely, |[Im p°| < —(5 — €)Ink, as
compared to —(3 — €)Ink, € > 0. Thus,

T ~1(p) = [cofT(p)]/ detl(p)

provides a meromorphic extension of G(p). The singular-
ities of G(p) are given by
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detl'(p° = iw(p), p) = 0,

and the EM spectrum is comprised of particles with dis-
persion curves w(p), isolated from the rest of the spectrum,
where w(p) = =3Ink — (3/4)k* + pix3/8 + O(k®),
p;=2%,_123(1 —cosp/). The baryon masses m =
w(p = 0) are determined exactly and the nonsingular part
m — (=3 1Ink) is jointly analytic in « and B. Also, there is
an O(k®) mass splitting showing that the I = 3/2 delta
baryons (decuplet) are heavier than the I =1/2 p,
n (octet) baryons. Separating out the p°-independent
contribution,

G(p) = z e G0 =0, %),
ez’
and the one-particle contributions, G(p) admits the

representation; suppressing I, I3, J,, and with f(x,y) =
(eix _ y)*l + (efix _ y)*l’

G(p) = G(p) + Z(P)f(P°, e D) + G(p), (D)

where Z(p)~! = —(2m)*e" P &L (p° = ix, p)l =5 and,

for [' = J|0|<exp—(5—e)1nx] » W€ have
Ge,o,(p) = 2w [ £(p°, \)djod s, (A),  (8)

for
datse, (00 = [ 85~ DBy, €0 DB ©)

with p=(p", p2, p) €T and T" = (-7, 7", n € N.
It follows that Z*(p) = (27) 3 exp[—w.(p)], and G(p) is
analytic in p° in the strip [Im p°| < —(5 — €) Ink. The last
term G(p) in the right-hand side above includes only
contributions to G(p) in J{ with two or more particles.

IV. TWO-BARYON STATES

Since we are considering a QCD model, and no electro-
magnetic interaction is present, we treat the total isospin
I =1 =13 sector, where the proton-proton states lie,
rather than the / =1, I3 = —1 sector, where neutron-
neutron states lie. We search for p — p bound states by
restricting our analysis to the subspace of J{ generated
by two-baryon states. Specifically, denoting here the nor-
malized baryon-creating fields by y;,, we consider the
Clebsch-Gordan linear combination of fields A 3 4(x, y)
with total isospin / = 1, I3 = 1 given by, suppressing spin
indices,

Ay (xy) = V3/10%5/2),6/2 @ X6/, -1/2(0)
= V2/5x6/2.0/2X) X3/2,0/2 ()
+ V3/10)%G/2),-(1/2 () X3/2,6/20),  (10)
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Ao y) = V3/4X6/2.6/2 0 X0 2,-1/20)
—V1/4x60.02@ xa2,0/20),  (11)

A5 y) = Xasa2@Xa2,.0/20) (12)

Ayxy) = V3/4x0,/2,-1/2®) X5/2,.6/2)
—V1/4xa.02@x62,0/20),  (13)

associated with the couplings of A — A, A —p, A —n,
and p — p, and incorporating 16, 8, 4, and 8 spin states,
respectively. Similarly, auxiliary fields A;,;4, with all
fields unbarred, are defined. We now give the ordering of
the spin basis. The A = (A}, A,, A5, A,) are linear combi-
nations of products of the basic unnormalized composite
quark fields of Eq. (2), where the individual spin indices «;
take the values 3(+) or 4(—) and the individual isospin
indices take the values u (+ or 1) and d (— or 2).

The spin state of the first (second) baryon is specified by
&(B) for which we have the following orderings:

e For the first 16 states: (+ + +)(+ + +), (+ + +)

++-),..,(+F+H)(=——), (++ )+ ++),
..ii(~|— + —))(— - =), (+—=——)+++), ..., (——
e For the Iiext eight states: (+ + +)(+ — +),
++H)F ). (=) —+), (=—-)

(+ — —) [here, the first (second) triple is the spin
for isospin 3/2 (1/2)];

e For the next four states: (+ — +)(+ — +),
(F === =)=+, (=)
(+—-)

e For the last eight states: (+ — +)(+ + +), (+ —
)+ + H), (£ = )+ o), (D) ),
(+ = H)F = =) (+ = D)+ = =), (+ = +)(= =
=), (+ = =)(—= — —) [here, the first (second) triple
is the spin for isospin 1/2 (3/2)].

It is convenient to take out the normalization constants
and the Clebsch-Gordan coefficients and express the A
fields in terms of the B" fields and similarly for A.
Displaying the spin indices explicitly we write, for
i=12...,36,

Ao = TFEBY 0B 0 (4
g

for FY% = FokBi&  and where /_\(}_B(x, y) means
Ajpsasp ), for 1=i=16,17=i=2425=i=

28, 29=i=236. The F‘®s are given in detail in
Appendix A.

Because of the simplicity of the block structure of the
four-point correlation, instead of the /_\, the fields that are
most convenient to use are
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Q lt,tz(xr y) = Altltz(x’ ),

_ 1 - _

921152 (x’ y) = E(AZtlsz ()C, y) - A21152 (y’ x));
Qg,S]SZ()C, )’) = AS‘v]sz(X’ y) = Ps,(x)Psz()’),

_ 1 - -
Q4tls2 ()C, y) = \/_E(AZIISZ (x’ y) + A211s2 (y: .X))

In terms of spin components, the 91,2,3 are ordered as
before, for A, 3, and )y is ordered as €),. The (}; have

the symmetry properties ), e, (6 Y) = -0, 1o, (9 X),
QZ’lsg(x’ )’) = _921152 (y: -x)’ 933152 (x) )’) = _935‘251 (y) x)a
and Q4t|s2 (.X, y) = Q4tlsz(y’ )C).

The above two-baryon states are used to define the four-
point correlations that we analyze in the next section.

V. FOUR-POINT CORRELATION
AND THE B-S EQUATION

In this section, we follow the treatment of Ref. [20] for
the four-point correlation. A temporal half-integer shift
is made so that the components of the site coordinates
are integers. We also assume the equal-time conditions
X9 = x§ and x§ = xY throughout the section.

Letting x = (x}, x5, X3, x4), the four-point function
Dy, ¢,¢,¢,(x) is defined so that the ij block, i, j = 1, 2, 3,

4, is given by, for x¥ = x9,

<Ai(xlxz)/_\ ~(x3x4)> or <Qi(X1X2)Qj(x3x4)>,
or, for x¥ > x9, by
<Ai(x1x2)Aj(x3x4)>* or <Qi(x1x2)ﬂj(x3x4)>*‘

Through the F’s, Dy, ¢,¢,¢, 1s expressed in terms of linear
combinations of the unnormalized four-point function

10(2(2(4( X) = <Bf;l(xl)B;fz(xz)B}f}(x3)1§z4(x4)>, (15)

for x = x9, and
(Bf (x)B (x2)Bf (x3)BY (x4))",
for x9 > x9, where €, 534 are collective indices €; = p l;,

=a f €3 =Gk,and €, = ,é g, respectively. Hence,
the i, j= ., 36 matrix element of D is given by

D Fhf D €2€3€4(X)ng = F,D"(x)F,,

and we write F VD%,F ¥’ for the matrix. The Wickified four-

point function (unnormalized) D¢, defined by erroneously
applying Wick’s theorem to composite baryon fields, is
given by

—(BY (x1) B (x3)XBL. (x2)BY ()
+ (B (v))BY, (xy)XBY (x2)BY, (x3)), (16)

Dog ,04¢, (x) =
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for x9 = x9, or by

- <Bfo,‘l (x1)BE, (x3)>*<BZZ(XZ)BZ4(X4)>* + <1§21 (x1) B, (x4))"
X <B§f2 ()Cz)B?3 (x3))",

for x{ > xJ. By taking linear combinations of these func-
tions, we obtain D,.

As shown in Ref. [20], via the Feynman-Kac formula,
the Fourier transform D(k), k= (K k) € T4, of
D(x) = D(xy, x5, X3 + x9 + X, x4 + xo + X) in x = (x, X)
€ 7%, admits the spectral representation

B0 =5~ @m® [ [ 760,208 ~ Dapao,
a7

where D(k) = Sicpe * D% =0,%) is the x°=0
contribution to D(k) and du(Ay A) = d)d ( (G, Xy),
(&, %), E(AL, X)[_\((E,i3), (5, X4))4r. Here, the contribu-
tion D(/E) is separated out, as D does not have a spectral
representation for temporal coincident points. Setting
k=0 corresponds to putting the system’s spatial momen-
tum to zero. We extend k° to complex values, and singu-
larities of D(k), for k = (K = iy, k= 0) and e*X < 1, are
seen to be points in the mass spectrum. To detect two-
baryon bound states below the lowest two-baryon thresh-
old, given by twice the lightest baryon mass, we write
k° = i(2m — €), where m is the smallest baryon mass,
and we determine the value of € > 0 that gives the singu-
larity of D(k® = iy, k = 0), which we interpret as the
bound state binding energy.

We write an equal-time representation B-S equation
for D (see Refs. [15,17]) as, in matrix operator form,

D == DO + D()KD, (18)

where the B-S kernel is formally given by K = Dj! —
D™, Here, the inverses are formal, as D and D, have null
spaces. After restricting D and D, to a proper space, the
inverses will be shown to be well defined as matrix opera-
tors. The inverses are defined by the Neumann series
as a perturbation about the k = 0 = $ values of D and
Dy. We denote these values by D©, DY Furthermore, K is
expanded, using the Neumann series, as

K= Z( D"[((DF) "' 8Dy (DY) !

n=0
=[O~ '6D1" (D)7 1], (19)

where 8D = D — D and D, = D, — D
We now write D(0) = FCF, with the argument 0
denoting coincident points, and determine a formula

for C"lk f ’;’ = DZ((XM (0). Using the Laplace expansion,

we get
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glz‘e
Cgﬁg;‘; = ez€pez€;(—1)
' abed
x detf 03¢%7%i %% 5%z ) (50
85:0a507; 05305307,
Here, the determinant is over a 6 X 6 matrix and
05¢0550; 1 - denote 3 X 3 matrices with ij elements

given by 8a,-c‘,- 5,7,.0,5;,,-/;,: e
explained before, it turns out that the €’s and det conspire
to give a permanent representation. The representation is
derived in Appendix B and is given by

However, as already

RBE _ coiBE _ chiok | okBE _ oBEdk
Coiai = Cisia;~ Cipiar T Cpiar~ Cpiap @D
where

GkBE _ _

Cipiar 36 perm(8; 5.8 ) perm(d; 567 ),

iai = 12[perm(8 ;,;, ,\7) Perm(8, 1, 7,)2)
+perm(d ;. , , r) perm(S s 4, 1,)z)
+perm(8 ;. , p) perm(S s, £,n,)z)
+ perm(5(hlf]h3),;) perm(du, 7, )z)
+ perm(é(hlfzhz),;) Perm(‘s(flhzfz)z?)
+ perm(6(h1f3h3),:) Perm(‘s(flfzhz)g)
+perm(8;, ;, - p) Perm(Sn, 1, 7,)2)
+perm(8;, ;. o) perm(s, 1y 1))
+ perm(8;, ;- 7) perm(8(s, 7,n,)3) )

The first two terms are the Wickified four-point corre-
lation, and the last two are the deviation from Wick’s

CK6|x‘3J =0+ 20%) + % — X3 — X +20% — % | +2]% — %3]

-
[K(x1, %0, x5, x4)| = {CK6K8(|xg—x?|—1)+2|;, Ry Ry — Ryl 205 — 7 | +205s— 7]

In order to analyze the B-S equation for D in (18),
we use the translational invariance and pass to the lattice
relative coordinates

E=x—x, N = X4 — X3
These coordinates are the lattice substitute for the contin-
uum center of mass and relative coordinates. In terms of
relative coordinates the bound of Eq. (23) reads

T = X3 — Xp.

R 77| = e, OIT I+ 2127+ E+ q |+ 21 €217 |79 =1
(& n 7= ek kSIPI=D #2027+ Ea+2AE 217 (0] >
(24)

To obtain the relative coordinate B-S equation of D of
Eq. (18), we take the Fourier transform in the 7 variable
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theorem applied to the composite fields. The matrix
D©(0) = FCF is given explicitly in Appendix B, and its
eigenvalues (multiplicities) are —4 (6), 0 (30). The deter-
mination of the null space of D®(0) is considerably sim-
plified (obtained by inspection) in the case of only two
distinct eigenvalues which we encounter here. For this, we
recall the general formula for the orthogonal projection E;
on the eigenspace of the eigenvalue u; of a self-adjoint
n X n matrix A. Letting {x;} denote the distinct eigenval-
ues, E; is given by

A— w
E;=]—£L
ij T

Thus, in our case, the orthogonal projection P on the null
space and Q = 1 — P are given by

P = (DO(0)/4 + 1), 0 = —DY(0)/4. (22)

The null space (its complement) is given by R(P) [R(Q)],
and thus the null space (its complement) eigenvectors are
simply the columns of P(Q). For the determination of the
space in which D, D, and the B-S equation act as matrix
operators, see Appendix C.

VI. LADDER APPROXIMATION TO THE B-S
KERNEL K

Here, we derive the leading « order of R, at B =0,
which we call the ladder approximation to K. From a
systematic analysis of the short-distance behavior of K
coupled with the long-range bound on its decay, we single
out the leading contributions to K described below. At
B = 0, the long-distance behavior of K is controlled using
the decoupling of the hyperplane method (see [15,17,21]),
yielding the explicit bounds

for [x3 — X9l =1

23
for [x9 — x5 > 1. 23)

[

only, with the conjugate variable k = (k°, k). We set the

system spatial momentum to zero by putting k = 0. The
resulting B-S equation is

DUE 7.9 = Do(E 0 k) + [ Dolé €. KOR(E 7. 8)
X D(#, 7, k)€ d7y. (25)

Bound states are detected as singularities in k; of

D(£,%,k° on the imaginary axis below 2m, i =

—31nk — (3/4)k> + O(k®), twice the smallest baryon

mass; Do(&, 7, k°) is analytic up to this threshold.
Equation (25) is analogous to an operator resolvent
equation,
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(H—27'=Hy—2' = (Hy—2) '"VH -2,

H = H,+V, for a one-particle lattice Schrodinger
Hamiltonian. With our sign conventions, K can be inter-
preted as a generalized potential that can be nonlocal and
energy dependent. k plays the role of a spectral parameter.
D, is like minus the free resolvent. This correspondence
will be made more precise below.

The B = 0 dominant contributions to K are described as
follows.

(1) A space-range-one local potential of order x> due to
qq exchange. The spin interaction is independent of
the direction, and there are spin states where the
potential is attractive and repulsive.

(2) A space-range zero contact potential of order x°
arising from the coincident-point four-point func-
tion; it is spin independent.

3 A space-range-zero, energy-dependent
(k°-dependent) potential of order «° arising from
contributions to K of space-range zero and
temporal-distance one. This originates from the
gauge field correlation effects involving six over-
lapping gauge bonds with the same orientation.
The contribution is also spin independent.

As already explained above, the order «° part of the
potential of (3) cancels the contact potential of (2) and the
resulting zero-range potential is of order «2, the same order
as the exchange potential of (1). In solving the B-S equa-
tion, it turns out that the ¢g exchange dominates and gives
rise to bound states for some spin states.

The above contributions are now obtained in the
following:

(I) From the n = 0 term of K,

KO — (DBO))—I _ (D(O))—l_

The spectrum of D©(0) is —4 (6), 0 (30). On R(Q),

D©(0) acts as —4 times the identity and Df)o) as —2

times the identity so that
KO0) = =(1/2) = (—=1/4) = —=1/4,

which is an attractive spin-independent potential.
The contribution to K(&, %, k%) is

—(Q/H8(H(€ — 7). (26)

(II) We have the temporal-one contribution to K given
by

K© = _(D(()O))leE)G)(DE)O))fl
+ (D=1 pO(pO)-1
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which comes from the n = 1 term of K. Hence,
K©(0,0, €%, ¢%) = —(DJ") 10D (0,0, €, °)

X (DF)~1(e%) + (D©)~(0)
X D©)(0,0, €°, e2)(D@)~1(e0).

On the other hand, from Egs. (D1) and (D4) of
Appendix D of Ref. [15] for the sixth hyperplane
derivative, we have

D©® = —%D(O) o DO — %D(O) o DO,
6) _ 0) (0)
Dy’ = =Dy’ ° Dy,

so that K© = —(—1/2) + (—1/4) = 1/4. Writing
k® = i(2im(k) — €), where € = 0 is the two-baryon
binding energy, the contribution to K(&, 7, k°) is

(Q/4) k8K~ 5(£)8(€ — 7).

Since (k) = —31Ink — (3/4)k> + O(k®) the
above is

(Q/4)e D€ e5(E)8(€ — 7). (Q2T)
The sum of contributions (26) and (27) is
— (/41 — e D e)5(E)5(E — 7)), (28)

an attractive, space-range-zero, spin-independent,
energy-dependent potential.

(ITI) The space-range-one ¢g exchange potential comes

from the n = 1 term of K. We fix a nonoriented
link or bond with end points x = 0 and x = e'. We

have the contributions to K;%)eze3e4(xl’x2’ X3, X4)
given as follows:

_ 2
(D(O))gligz(/lg/z (0, el, 0, el)D(g/])g%QQ (O, el, 0, el)

X (D<0>);él%€4(o, e, 0,eh), (29)

0)\—1 1 1\ 2 1,1
(D" ))€1€2€/1€/2(0, e, 0, e )Dg,]eém(o, e',e',0)

>< (D(O))(z;g€3€4(el’ O» el,- 0)) (30)

and, similarly, for — D, replacing D.

We refer to Egs. (29) and (30), respectively, as the
first (second) term. However, since D is of order
«3 for the points occurring above, it is subdominant
and will be dropped. Recalling that D = FD"F,
we obtain D@(0, ¢',0, ¢') by expanding the nu-
merator of D*(0, ', 0, e') in . After performing a
gauge integration over oppositely oriented gauge
bonds in the interval (0, e'), which gives a factor of
1/3, we get
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1 ] L o
DM(Z) = E<B?1 (O)B;Z(el)lr//aalrl (O)wbﬁlrl (el)rzlﬁlrazeﬁ2 'wzlbozzrz(el)waBZrZ(O)Bz3(O)B%4(el)>§0)

1 _ _ — _
= 55 W aprs OB OV, OB O, (€)BY (), () BE ()T, 5 T,

1 _ _ _ _
= 15 Vs OB O, OB Oy, (VB () B par, (e)BY, ().

Us]mg Ithe ‘come and go” property TZ’EFYCE,’ =0=
re, Iy, the Y contractions in the two factors give

zero. For this reason, we have introduced the 7 index,
meaning that we do not take into account contraction
with external fields due to the come and go property.
Furthermore, since the B only have fermion fields with
lower spin indices, the same holds for . This implies that

3D

|
only the identity term of T'*¢' = —1 = y! contributes. The
above can be evaluated using the determinant formula for
the averages, but it is shown in Appendix E, as for
the case of coincident points, that again the €’s and det

conspire to give a permanent representation. Denoting the
site argument (0, e', 0, e') ofD“ (0,e',0,e") by 1,

GFGEBse
we obtain hajokps

u2) —
D" =35 [ perm( 855, 0.0 Dje ) POt 0t ) + PEM(B 582720 Dt P B, 51 )

+ perm(5/-?'(53(72”%)6}:(83/{2163))perm(aé(ﬁlﬁz(rl)a];(glgzk )) + pem<6ﬁ(”‘B'”3)6ﬁ(klglk3))perm(a&(UZﬁZBS)5f<k282g3))

+ perm p((Tlﬁle}) fi(ky g2ks) ) PETI Ot(,Blelgz) F(g1krgs) +perm( ploiB3os) h(kgk'&))perm(aa(lglﬁ20—2)5.}?<g1g2k2))

(2
+ perm(5
(2

+ perm (010253) ik kygs) ) PETIY a(ﬁ]ﬁzfﬁ) F(g182k3) ]

The first (second) permanent describes the interaction
between p h(a f) and  k, B g spins and isospins. Thus,

for i, j=1,2,3,...,36, we write the matrix elements of
Eq. (29) in the following way. First, we set
(2 — 1 p.ha f &‘,/ZB.,g okB.d — 1
Dij (0e'0e!) = = FPMW Ll FORPe = = (uy)y;
(33)
Next, similar to Eq. (30), we obtain
@1 ,1 1 pil §§Ff'lg kB — 1
Dij (0e'e'0) = EF’J af( i i})FU’ B’g—ﬁ(uz)zj,
(34)

where we note the interchange &jlz — B.,-g and minus sign
in going from (I) to (II). The above holds for the four-point
function correlation for the A field.

We now consider the ) fields. It turns out that in the
solution to the B-S equation the sum u, = u; + u, and
difference u_ = u, — u, appear in the bound state equa-
tions [see Eqs. (43) and (44)]. The sum and difference will
be seen to generate a decomposition of solutions into even
and odd parity solutions [see Eq. (47)], respectively. For
this reason, we will develop formulas for u., and we refer
to uy and u_ as the sum and difference potentials.

To this end, we find the Q field correlations that enter
in Egs. (33) and (34) in terms of A field correlations.
The symmetries of time reversal and parity show that

)perm(3
(1710251) Tk, kqu))perm( 01(03,32!3%) flksg223)
perm(®

(0'1‘72,87) ik, kzgz))perm(é\&(ﬁllf}ﬁﬂ6‘f(g|k3g3))
/12. (32)

QT
~ Om

'Q¢ Qv

)
)+ pem(s
=i

Dy(0e'0e'), Dy(0e'e'0), and thus DE)Z)(Oeloel),
Dgz)(OelelO), are self-adjoint. Let A;.(0,e') =
A0, e") = Aj(e!',0). For j =1, 2, 3, 4 and the first term
[see Eq. (33)],

(0,0, ) 05(0, e N = (0,00, €)=

50!
ﬁ[Az(O, )

— Ay(e!, 0. (35)
For the second term [see Eq. (34)],
1 - _
Q(0, ") —=[As(e', 0) — A,(0, e PP, 36
(Q( )\/5[2() 2(0,e")]) (36)
so that the sum is zero.
For j=1, 3, the first term gives

(2,00, )40, ) = (A;(0, ¢) 5 Ay, (0, ), and
the second term gives the same as the first term so that
the sum is

V2(A0, A5 (0, ).
For the first term,
(0400, )40, € = K[A5(0, €") + Ay (e, 0)]

X [AZ(O’ el) + AZ(el’ 0)]>(2),
(37)

and the second term is the same. Write the above as
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5(A5(0,€")As1 (0, ") + KAz(e!, 0)A,4. (0, €))?,

and in the second ()®) translate by —e' and use parity to get
equality with the first ()2, Altogether, for the sum, we get

2(A,(0, M)A, (0, )@,
For = 1, 3, i=], thel first  term is
(Q;(0, ¢HQ;(0, )P = (A;0,e")A;(0,€")?, and the
second term is (A ;(0, e')A (¢!, 0))® so that the sum is
<Aj(0, 6’1)/_\j+(0, el)>(2)-
In this way, we obtain the following block structure for

(QQ)? for the sum of the first and second terms
Vii 0 Vi3 Vi

0O 0 O 0
, 38
Vi 0 Vi Vi o9
Var 0 Vg3 Vi
where V11:<A1/_\1+>(2), V13:<A1]\3+>(2), Vig =

V2A AP, Vs = (A3A3)@, Vi = V2(AA5)?
(by the identity used previously), and V4 = 2(A, A, )?.
Note that Vi, Vi3, V3; = V33 have the same values as for
the A fields. Collapsing down to a 3 X 3 block matrix gives

(AjA )P <A1/:\3+>(2) V2(A Ay )P
* (AsA5 )@ 0 (39
* * 2(Ay Ay )P

where we recall that the block is symmetric and we use the
sign * to avoid having to write the lower diagonal elements.
In the second line, the zero element is v2{A, A5, )@ and is
found to be zero by numerical calculations.

For the sum potential reduced matrix, the spin ordering
is that of A 1s /~\3, /~\2 for the first, second, and third blocks,
respectively (such as 1,2,...,16, 25,...,28, and
17, ..., 24, respectively.

Similarly, for the difference potential and for Q fields,
we have

Vit Vi Viz 0
Vor Vo Va3 0

: 40
Vii Vi Vi 0 40)

0 0 0 0

In terms of A fields, collapsing to a 3 X 3 block gives

(M ALY V2N AP (A A )@
* 2A3A ) V2(A A )P | (4D
g * (A3A; )@

For the difference potential reduced matrix, the spin order-
ing for the first, second, and third blocks is that of [\1, f\z,
and /~\3, respectively.

The sum u, and difference u_ potential matrices are
given in Appendix D for the A fields. Using these quanti-
ties, the sum and difference potential matrices for the Q
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fields are obtained as above. We also see from the above
that, for the sum and difference potentials in the Q
fields, we only need the first three sub-blocks of the sum
and difference potentials in the A fields. The spectral
properties of these matrices will be determined in
Secs. VIID and VIIE.

VIL. BOUND STATE ANALYSIS

This section is devoted to the analysis of two-baryon
bound states. In the first subsection, making use of the
previously obtained ladder approximation to the partially
Fourier transformed B-S kernel, after employing the lattice
relative coordinates, we obtain the bound state equations
to be analyzed. These equations turn out to be a pair of
decoupled equations, one involving only the sum and
another for the difference potentials described in the pre-
vious section. An approximation for DAO(E, 7, k%) is suit-
able to analyze the bound state equations (see Ref. [20]). In
the next subsection, by restricting our analysis to the p — p
subspace, we show that bound states occur. The spectral
analysis for the sum and difference potentials is carried out
separately in the next two subsections. Then, by using the
spectral results for the sum and difference potentials
obtained above, we determine the solutions of the bound
states equations. Finally, we establish a correspondence
between the relative coordinate, the partially Fourier
transformed B-S equation, and a one-particle lattice
Schrodinger operator resolvent equation. In this correspon-
dence, two-baryon bound states correspond to negative
energy states of a one-particle lattice Schrodinger
Hamiltonian.

A. Bound state solution of the B-S equation

We will see that, in our approximation to the solution of
the B-S equation, there is a decoupling over directions and
the zero site. From Egs. (33) and (34), we write the
exchange contribution for K as

A ->

1
> 1.0} — 2 §
Lex(érx ﬂ,k ) _48K

o==*,j=123

+ U 8(€ — ae)8(€ + 7)) (42)

[1,6(€ — del)8(€ — 7)

where 1/12 times u, (u,) is the contribution from the first
(second term). Here, k° = i(2m,;, — €), € > 0, and we solve

for D(Z, 1), considering only j = 1 in Eq. (42). Doing so,
we obtain

D(E, 7)) = Dy(é, 1) + Do(€ ELey (€, 7D, 7).

Letting & = e!, —e!, we get for (D(e!, ), D(—e', #))7,

1-A B -1 po(el,ﬁ)
B 1—-A Dy(=e', ) )
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where A = Dy(e!, eMu, + Dyle', —e)u,, B=
—Dy(e!, eMuy — Dyle!, —e)u;, and we suppress the
k2 /48 factor from u; and u,.

The structure of the above matrix is (recall the zeros
of det are the bound state solutions)

A" B
B A')
For computing the det, perform the block row operation

ry — ry — ry, then the block column operation ¢, — ¢, +
c to get

det A" B = det A'—B 0
B A B A"+ B

= det(A’ — B) det(A’ + B).
Here,
Al—B=1-Dy_u_, (43)
A'+B=1-Dy,u,, (44)

PHYSICAL REVIEW D 83, 034506 (2011)

where we have defined Dy. = Dy(e!, e!) = Dy(e!, —e').
The condition

det(1 = Dy=us) =0

gives the bound state equations, and we see here the
appearance of the sum (difference) potentials u; (u_).
To proceed, we approximate Dy(&, 7)), essentially by ne-
glecting the contributions to the two-point function involv-
ing more than a single particle. In our approach, we only
need to take into account the exchange potential in each
direction separately. Considering all directions gives rise to
Do(oel, o’el), i # j, which is zero in our approximation.
Also, Dy(oé’, 0) is zero.

B. Approximate Dy(, 7, k°)

From [12], for ) fields and the 1-1 block, suppressing
the k9 dependence in DO, we have

(Do), s355, (€, 73, K0) = (277) f [G(P)PL—85,4,845,5, B+ (P) + 85,4,8,,5, B (P)1dP
‘[r3

1 1
wm 7 [L [ 000840800 B () 81,0810 E- (DA (XN s ()d,

where Z.(p) = cosp. & cos D.7 = sinp.7 sinp. 7). Making the same approximation as in Ref. [12], we obtain for the 22 44

block,

N 1
Dy a4 = f e (—

P& —

I

6s1336s234)[5+(13r Ey 77]) - +(

Il

+(I3, _'f: ’77) + E+(1_5, _f, _77), E+(]_5, fy ﬁ)

] > 2 - ] - Z > o - 2 - 2 s 2 e s > 2 > >
+E D E-NTHEL(D—ENTHELD —E-7)]= [ ;(—5s1535s254)[81np-§ sinp. 1, cosp.£ cosp. 7],

where [ is the normalized integral (27) 3 [ dp. Also,

D =
024 f e

-2+

sls3 s2s4)[~+(17: f 77) + ~+(p, r ﬁ)

=& 1) = Ei(p—& —n]=0.

Here, we neglect the k°-independent term, as it is finite,
and the k°-dependent term blows up as € — 0. Similarly,
using the isospin orthogonality relations for the two-point
function, we have (Do)1z 14133423 = 0 so that Dy is block
diagonal. Also, (Dg),, 3 is the same as for the A fields.
Thus, we have our final approximation

1 e >
- [[_5s1s3 6s2s4:+(p)

+ 3sls48s2v3E—(ﬁ)]r (DAO)ZZ',\ZM_ %(331?36s2v4)

(Do)11,33 ~

X [[sinf).é sinp. 7, cosp. & cosp. ).

From the solution of the B-S equation, we need
(Do)o(e!, e!) and Do(—e', e'), which are related to Dy,
as they appear in Eqgs. (43) and (44). We have

( [ 5s1s15s2s4 s1s4 s2s3]\

l’jo_ ~ | 7[ 25sm; 532s4] , (45)
E[ 6&,33 652s4 6s154 65253]
\ 0 /

/é[_551‘935s2‘96+ 6sls4652s3]\

Por =1 i-6,,0,, + 0,,0,0 | 49

5254 5184

\ é[_zaslsg 5s254]

We will see that the bound state equation associated with
Eq. (44) leads to bound state solutions, even restricting to
the 33 or p — p block. However, the binding energy is
enhanced appreciably, taking into account the full space of
degenerate two-particle states, according to what degener-
ate perturbation theory tells us to do. We also see that
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Do(oeé, o'el), i # j, is zero as well as Do(oe’, 0). Thus,
the bound state det equation factorizes over the 1, 2, and 3
directions, each factor as in Egs. (43) and (44).

C. Exchange potential restricted to the p — p subspace
and bound states

Here, we restrict to the p — p subspace (sub-block 33)
and consider the two factors of the bound state equations
(43) and (44). We will see that, even with this restriction, a
p — p bound state always occurs. We have

2 0 0 O
A 01 1 0
Po-==Clo 11 0f
0 0 0 2
0 O 0 O
R Ifo 1 -1 0
Po-==Clo =1 1 0
0 O 0 0
For u_ and u., we have, suppressing the factor 1/12,
2 0 0 O
{0 1 10
“Tlo 11 0of
00 0 2
0 O 0 O
z_l 0 1 -1 0
7730 -1 1 0
0 O 0 O
For the factor given in Eq. (43),
1+4?“ 0 0 0
A _| 0 1+ -2 0
mDocu==1 g _2f 4% o |
0 0 0 1+4?“

and setting the determinant to zero gives 1 + 2a/e = 0,
with no solution. For the other factor in Eq. (44), we obtain

1 0 0 0

A 0 1-%2 2 0
I_DOM = 3e 3e

Tl 20 1=-2 0

0 0 0 1

)

47101326272021:

* K K K X ¥ ¥ O
¥ ¥ ¥ ¥ ¥ ¥ O
* Ok X X X OO =
¥ ¥ ¥ ¥ O

—
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Setting the determinant to zero gives 1 —4/3e = Qor € =
4/3. So, we have a bound state solution with J = J, = 0.
Reinstating the factor x?/48, we have € = «?/36.

In the correspondence with the lattice Schrodinger
Hamiltonian operator (see Sec. VII G below), we can con-
sider the above as a result of a variational calculation to
give an upper bound for the bound state energy.

D. Exchange sum potential u

Here, we consider the sum potential in the entire two-
baryon subspace and determine the spectrum. It will be
seen that negative eigenvalues lead to bound states [see
Eq. (44)]. For the sum potential reduced matrix of Eq. (39),
we have the invariant sub-blocks 2 517,39 18 19,4 7 10
1326 27 20 21. We give these sub-blocks and their spectra
(the multiplicities of eigenvalues are shown in the paren-
theses).

-3 1 3Y10
2517 = -1 —410 |,

44 W

1 _2 2
391819: | * 3 slz/m 34*/%,
o 3 -3V3

* * * 2

with o: 0 (1), 6 (2), —6(1). The —6 eigenvalue eigenvec-
tors are

_Jio
_ 10 6
4 V10
Jio |, o
4 1
1 i
e

withJ =2 =J,and J =2, J, = 1, respectively.

210 2410 2J10 2410
-2J10 2410  2J10 2410
210 —2J10 —24/10 —2410
-2J10 210 —2410 —2410

-1 1 0 0

% -1 0 0

* * 10 —8

* * * 10 /
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o: —6(2),0(3), 6 (3). The —6 eigenvalue eigenvectors are
(- (

_ V10

=Gl
(=) (=)

>
I
|
(@)
— — o oxgly
|
- lm@“\am

0

\ \ 0/
andhave J =2,J, =0and J = 0, J, = 0, respectively. In
addition, we have the invariant sub-block 12 15 24 which
has J, = —2 and is the spin flip of 2 5 17; we also have 8 14
22 23 which has J, = —1 and is the spin flip of 39 18 19.
The blocks 1, 6, 11, 16, 25, 28 are zero. We single out the
—6 eigenvalue eigenvectors, as they will be seen to be
associated with bound states.

The second eigenvector only has components in p — p
and A — A and is the same as the restriction to the A — A
and p — p two-baryon subspace.

In summary, the only negative eigenvalue is —6 (6).
Also, there are eigenvalues 0 (13), 6 (9).

E. Exchange difference potential u

For the difference reduced matrix of Eq. (41), the in-
variant blocks are 1, 16, 25, 12 15,8 11 142223 28,369
18 19 25, and 4 7 10 13 20 21 26 27, 17, 24. We now
determine the spectrum for each of these blocks.

1: o= —2(1) has J, =3; 16: o = —2(1), spin flip
related to 1, has J, = =3,

*
I
Oloo WI—

(0

*
*
(.
000 000 W=

47101320212627:

* K K X *
* K K ¥ ¥
* K K X *

and has J, = 0, with the spectrum o —2(4), 0 (3), 18.
The eigenvectors are, for A = —2,

( () ()

V10 2410

0
m\
I

[
oo»—tooglklo
—_] —_
olo

SO OO = W

0
0
0
0

—_——_- 0 O O
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-1 -1
s (7 1)

o= —2(1),0(1)has J, = 2.

12 15: same as the 25 spin flip related to J, = —2.

17: 0 = —2(1); 24: ¢ = —2(1), spin flip related to 17,
has J, = —2.

8 11 14 22 23 28: spin flip related to 3 6 9 18 19 25,
which has J, =1,

1 4B | A0 _2/30 _4J30

3 9 3 9 9
" 10 _4/3 _ 480 410 _ 8/10

9 9 9 9 9

1 2J10 2430 4430

* * — = —

369181925: 3 3 9 9
" " 14 203 403

3 9 9%

* * ES * j

The spectrum is —2(4), 0 (1), 18 (1). The —2 eigen-
value eigenvectors for the 369 18 19 25 sub-blocks are, for
A= =2,

0 1 0 0
0 0 1 0
0 1 0 0
or (U 0r 1
1 0 0 0

The other invariant sub-block is

0 Y40 _ 40 VA0 40
3 3 3 3
1 _ 430 Va0 _J% _ J®
3 9 9 9 9
1 _ 40 VA0 _ V% _J%0
3 9 9 9 9
0 Y& _Jo Jio o JW0
3 3 3 f
« 2 _do 40 40
9 9 9 9
« % 2 _40  _40
J %19 319
ES ES 21 21
i )

In summary, the only negative eigenvalue is —2, which
has multiplicity (18). Also, there are eigenvalues 0 (7) and
18 (3).

F. Exchange potentials and bound states

We determine the bound states by determining the zeros
of the determinant of the matrices given in Egs. (43) and
(44). First, consider Eq. (44). We already have the matrices
Do and u, and we need their product. From Eq. (46), we
see that the first matrix acts as —2/€ times the identity on
the first three sub-blocks if they are antisymmetric under
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row spin interchange, it acts as —2/ € times the identity on
the fourth sub-block. The row spin interchange is 1 < 1,
2-53-9,4-13,6-06,7<10,8< 14,11 < 11,
12 & 15, 16 < 16 for the 1-1 sub-block, and for the 3 sub-
block, it is 25 < 25, 26 < 27, 28 < 28. By inspection of
the sum potential matrices presented in Sec. VIID, it is
verified that the first three sub-block rows do indeed
satisfy this property. So, the matrix of Eq. (44) becomes
1 — (—2/€)u . The determinant factorizes over the eigen-
values of u, and, for each negative eigenvalue A, we have a
bound state with binding energy € = 2|A| upon reinstating
the factor x?/48, € = 2|A|k?/48. From the spectral results
for u,, we give the negative eigenvalue A, z component
of total spin J,, total spin J and multiplicity. We
have (—6,*2,2,1), (—=6,%1,2,1), (=6,0,2,1), and
(=6,0,0,1).

Similarly, considering the matrix D,_ of Eq. (45), it acts
as —2/ e times the identity on the first and third sub-blocks
if they are symmetric under row spin interchange; it acts
as the identity on the second and fourth sub-blocks.
Taking into account the symmetry of u_, the matrix of
Eq. (43) becomes 1 — (—2/€)(u_). For each negative ei-
genvalue A of u_, we have a bound state with binding
energy € = 2|A|. From the spectrum of u_, we have
bound states (—2, £3,3,1), (=2, £2,3,1), (=2, 2,2, 1),
(=2, *1,,4),and (=2,0,,4).

Next, we explain our restriction to the 1 direction only,
in obtaining bound states. In solving the B-S equation,
taking into account all directions for the exchange potential
and the zero site contact potential, the resulting determi-
nant has off-diagonal blocks in the directions which in-
volve Dy(cel, o’el), i # j, as well as Dy (0, e’). In our
approximation, these D,’s are zero, as the numerators
integrate to zero. Thus the determinant factorizes over
the zero site and the 1, 2, 3 directions. The determinant
for directions 2 and 3 is the same as that of the 1 direction
and results in additional bound states, as given above
for the 1 direction. The zero site contribution to the deter-
minant gives the approximate factor det[1 — (Q/4)
(1 — 3«%/2)(1 — €)], and the zeros do not give rise to order
«? binding energies.

G. One-particle lattice Schrodinger operator
and bound states

Here, we make a correspondence between the relative
coordinate, the partially Fourier transformed B-S equation
in our ladder approximation, and the D, approximation with
a one-particle lattice Schrodinger Hamiltonian resolvent
equation. Letting D= —(H—-271, ﬁo = —(Hy — )71,
V=L, with z=—¢€/2, Hy=(3/8)pl pi=
237 (1 = cosp;), the B-S equation becomes

(H-—2)'=MH,—2 ' = (Hy—2)'"VH -2,

PHYSICAL REVIEW D 83, 034506 (2011)

like the operator resolvent equation for the one-particle
lattice Hamiltonian H, where

H=Hy+V=(&K/8)p}+ L.,

KZ

I (&7 k0) ="
(& 7, K0) 3

o=*1j=1,

+ uy8(€ — oed)8(€ + 7))

[1,6(€ — gel)8(€ — 7)
2,3

The negative eigenvalues A of H are related to the two-
baryon bound state binding energies € by |A| = €/2.

We determine the negative energy bound states of H.
We drop the kinetic energy, as it is of order x> and the
exchange potential Ly is of order «2. Thus, we look for
eigenfunctions ¢ of L., or of V, = 48L,, /. If we take

Yo (€)= vo(8(—e) £ 8(€+e)),

which are functions of = parity, then a calculation gives

Voo (€) = urv(8(€ — e") = 6(¢ + e")).

Hence, if v+ is an eigenvector of u. with eigenvalue A.,
then . is an eigenfunction of V, with eigenvalue A..
Alternatively, the parity decomposition of L., can be seen
by the identity (suppressing k°)

LaEm="10 Y

o==1;=12,3

8(E — vel)b_(E. 77)]. 47)

[u+§6<5 — oo (E )

N 1
u_

2
We note that ¢ (&, %) = [8(€ — 7) = 8(& + 7)]/2 is the
kernel of the = parity operator. For A+ <0, which are

negative eigenvalues, there are two-baryon bound states
with binding energies €. = 2|\ |x?/48.

VIII. CONCLUDING REMARKS

We determine the two-baryon bound states of a two-
flavor strongly coupled lattice QCD model with the im-
proved Wilson action, in the total isospin I =1, I3 =1
sector and in the subspace of the Hilbert space generated
by the product of one-particle states. For zero plaquette
coupling B and at the leading order in the hopping parame-
ter k, we use a lattice version of the B-S equation and find,
in lattice relative coordinates, a correspondence between
two-baryon bound states with the bound states of a one-
particle lattice Schrodinger operator, where the spin states
are those of the two-baryon particles. It is found that a
space-range-one, spin-dependent and energy-independent
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potential of order «” is the dominant interaction. The
potential arises from a ¢ — g nearest neighbor exchange
in the contribution to the kernel K of the B-S equation.
Other contributions to K coming from chains of g — g give
rise to a Yukawa potential, but the nearest neighbor con-
tributions we consider are dominant (the contribution of a
g — g chain of length ¢ is of order x2¢). Other subdominant
contributions are multiple ¢ — g exchange and chains of
plaquettes and mixed plaquette-quark chains. The attrac-
tive or repulsive nature of the interaction depends on the
individual quark spins of the baryons. Also, a representa-
tion in terms of a permanent is obtained for this potential.
Similar permanent representations also hold for the 7 = 0
and / = 3 isospin sectors treated in a previous paper, as
well as for the I = 2 sector. It is found that there are diverse
bound states with binding energy of order «2. In particular,
there is a J = 0 diproton-like bound state with approxi-
mate binding energy € = /4. It is described by a super-
position of p — p and A — A states. By isospin symmetry,
corresponding to this bound state, there is also an [ = 1,
I;=0,J=0p—nbound state and an I = 1, I; = —1,
J = 0 dineutron-like bound state with the same binding
energy. If we erroneously consider only the subspace of
states generated by product states of protons, a bound state

A [l 5 ! 1
Al - 10{6B(+++)(uuu) 2\/_ (++_)(Wu)}{ﬁ§3

+=++)(udd) 6

PHYSICAL REVIEW D 83, 034506 (2011)

is found but with the binding energy reduced by a factor of
1/9. Thus, the nondiagonal p — p, A — A matrix elements
are important for determining the correct bound state bind-
ing energy and wave function. It is certainly interesting to
determine the bound state spectrum for the three or more
flavor model to see, for example, the effect of the strange
quark. Also, and more importantly, we would like to know
what happens to these bound states as we leave the strong
coupling regime and approach the scaling limit (physical
region in the «, 8 plane).

ACKNOWLEDGMENTS
This work was partially supported by CNPq.

APPENDIX A: COEFFICIENTS FOR THE A,
FIELDS

Taking into account the definition of the y;;, fields, we

give the F ¢ coefficients for the A 234 fields of Egs. (10)-
(13). We use the totally symmetric property of the BZ? f.’s

namely, that the field B’; 7 is invariant under the simulta-

neous permutation of the components of & and f . We write

(2B B

(£=F)(udd) + (+++)(udd))}

21 1 1 -
_ J{2f3?+++)(ltud) 6(B(+++)(uud) + ZB(+++)(ulld))}{2\/_B(+++)(Mud) 6(ZB(+++)(uud) + ZB(+++)(uud))}

’ 311 1 1 -
X {2\/—B(+++)(udd) 6 (2B(+++)(udd) + B(+ii)(udd))}{ (+ii)(uuu) 2\/5 B?+i7)(uuu)}

3T71
-2 { E[E it 40 Ba(r+4) + 85— +
GkBg

1

1
ﬁg 5E(+++)(5&(++*) + 5&(+))][2\/-3— 5§(+77)(5,§(+++)

1 1
05—y T 520508 sy T s+ B ) + £ (Ba—n)Op syt 5§<+——>5B<+~>)]

2N 1 1 1
- \/7[2\/— k(+++)(877(+++) + 85(———)) + 8(612(++—)8FT(++—) + 6E(—++)577(+——)) + 62(8E(+—+)877(++—)

1

+ 5k(++ )50(+——))][ﬁ§ 5§(++—)(55(+++) + 55(

1
) +g(5§(++—)55(++ )+ 8a—+0)0504-—)

1 311 1
+ e 20— 0500 F 5§<++—>5g<+))\/%[ﬁ§ Oir—yBatrs) T 85(-——) + 22087,y 85(++-)

1 1
+ 05— 85(+-—) + 5(51&”“5&(“—) + 5;:<+J>5&<+——>)|:g 8g(++0)(Opay T 85

1
\/— g(+++)(5,3(++ )

o= 185 =

Similar expressions hold for A2 3,4. From the above, suppressing the superscript kg g, for the F

"g’s of Eq. (14), we get
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31 1 21 1 301 1
Fy= \/1:0551€<+++>ﬁ§5§(+) - \/;Z—ﬁ51€(++)ﬁ§5§(++) + \/%ﬁg51€<+>g5§(+++) =Fy=Fu (AD

31 2 31 1 2 1 1 2 1 2
= \/1_706313(+++)68§(+) + \/%651€(+++)63§(+) - ‘/;mglé(++)85§(++) - J;?/é—ai(++)68§(++)

3 1 1
+ \/170%5’2(+__)ﬁ§6§(+++) = Fu4 (A2)
31 2 31 1 2 1 1 2 1 2
Fy= \’mg5a+++>g5g<—+—> + "E665(+++) ¢ %~ \[gm512<++—>g5§<—++> - \[gﬁg‘slé<++—> g dit++)
3 1 1
T 10255 Yk 1575 %t = Fis (A3)
[3 1 2 21 1 ,3 2 1 ,3 1 1
Fs = Em3z<+++>\/—§5§<+——) - \/;55;(++—)m5§(++—) 106 %f+— g %+++ T 106 Pk g Gat+)
22 1
- \/;g 5/:<+_+>ﬁ§5§<++7> = Iy, (Ad)

[31 2 [3 1 1 21 1 21 2
Fo =025 %%+ 1% * Em5zz<+++>g5§<——+)+\/;g%m>g5§<++—>—\/;g512<++>g5§<+—+>
22 1 22 [32 1 ,31 1
_\[gg‘SEH+>g5§(++)_\[§g5é(++)5§<++)+ 10628+ -1 508+ T 1060k n g s+ (AS)

301 2 31 1 2 1 21 2
Fr :\/%m512<+++>g5§<+> +\/1:0m5;;<+++)55§<+> —\[g5zz<++>g5§(++> —\[gg5é(++>g5§<++>

22 1 22 2 32 1 31 1
_\/;651§(+-+>g5§<—++) - \/;6512(+—+)65§(++—) + \/%66’;(+")ﬁ§5§(+++) + ‘/%3512(-—+)ﬁ§5§<+++)’ (A6)

31 2 21 1 22 1
B = 10273 20 5080 T 56 00 g5 250 T 5 Ok 5 5 )
32 1 31 1
+ \’EESE(““E%HH) + \jﬁgai(+——)55§(+++) = Fp, (A7)

301 2 301 1 21 1 21 2
Fio = \/%ﬁg Ofern g Oae—o + J%m5g(+++)gﬁg<——+> - \[gg Of—++) g Oatr+-) \[gg Of—++) g Oat+—+)

22 1 22 2 32 1 31 1
- \[gg5z(++-)g3§<++—> - \[555;:(++-)g5§(+—+> + \/%8612(——+)ﬁ§6§(+++) + \/1_706812(+——)m5§(+++)’
(A8)
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131 5 25 215 1
Fy= E?ﬁ E(+++)ﬁ g+—-) 56 *(++— )2\/— g(++ ) T

PHYSICAL REVIEW D 83, 034506 (2011)

32 1 31 1
\/%g5zz<+>g5§(+++) + \/%6512(+)65§(+++)

22 1
\/;65k(+ +)2\/- 1,(++ » (A9)
31 2 2 1 3 1 1
F16=\/;_(;65?<+++>7§5§<+— T \/;Zf Of(t+- >2f Og(++-) T \/%Wg%u@%ww
31 1 11 31
Fiy = \/:165"(”“3\/' Sg(+--) — \/;ﬁg5i(++—)ﬁ5§(++)+\/;6 k(+++)( 3\/—)6g( +-)
I 1 1
B \/;m X 6E(++—)(_ﬁ§)5§(—++) =Fig = Fy = Fy, (A10)
3 1 3.1 I \s 11y 1
Fig= 42\/' k(+++)3\/‘ g(+ ) Zm H+++) _ﬁi) g(—+—-) 46 H++— )3\/— g(+ +)
11 1 12 1 12 1
\/765k(++ )( 3\/5)6§(—++)_\/765k(+ D3/ Og(+—+) — ‘/%63,;(+_+)<—ﬁ§)5§(_++), (A11)
31 11
Far = 42\/_6"(***)[3\/_(85'“__) 5§(_+‘))]_ 465"( ++)|:3\/—(5g(+ +) 7 §(—++))]
12
\/:165k<++ >[3J—(5g<+ ke 5§<7++>)]=F22, (A12)
1 1 1 1 1 1
Fos =35 0%k -0 35 %80 -0 T 35 %0\ T 3508+ T\ T35+ 3 5 0%
1 1
" (_ﬁg) x 51€<—++><—ﬁ5)5§<++) = Fa = Fy = Fag, (A13)

and for i = 29,30,...,36, Fi® = F{* ., where we note
the k g g— 8 k 1e] fplacement on the right-hand side. For row
values of F #13f 5ne can make the replacement & & 8 § —
p ha f in the above

APPENDIX B: PERMANENT REPRESENTATION
FOR THE COINCIDENT FOUR-POINT FUNCTION

In this appendix, we derive the permanent representation
of Eq. (21), for the coincident-point correlation of
four unnormalized baryon fields. We also give the A
field coincident-point matrix D©(0) = FCF of Sec. V
explicitly.

As seen, the coincident-point correlation is given by

;?—(6 ¢,3 b"/[S €¢l3 dlf/ls >
where we order the (¢) fields as 123456123456, and
for now we set all spins equal. The above is given by
a sum over all the 6! pairings connecting (1,2, ...,6) and

(1,2, ...,6). Considering the two triples of fields, 123 and
45 6 we classify the possible pairings according to the
number of crossovers or contractions between fields in
these triples: zero, one, two, and three. Representations
of these four classes are depicted below.

6 6 6 3
5 5 5 2
4 41 4 1
3 3 3 6
2 2 2 5
1 1 1 4
Class 1 Class 2
6 6 6 3
5 5 5 2
4 1 4 1
3 3 3 6
2 2 2 5
1 4 1 1
Class 3 Class 4
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We now obtain a representation in terms of permanents
for each class.
Class 1: We get

(123456123456) = —(123123)45645 6).

Summing over all contractions gives
ko= _ 3 3 73
lﬁf <€l// 61,[1 >< '»Z“‘ ‘//J>

= —36perm3(5 i) perms(5; )
where perm,, here is of an n X n matrix.
Class 2: Here, we obtain

(123456123456) = (12345 6)(45612 3).
Summing over all contractions gives

L = (ea Wl peghd Nes e )

_ N N\ — _Ek
= 36 perm3(8h§) perm3(5ﬁk) Clix

Class 3: Computing (12345612345 6), with the 14, 41
pairings, we have
12
’%

= (14)(41)(23562356) =

g €~
i aebECGdSaldl 8}1181617101

f
2
X 6f1k1<¢a2a3h2h3 0203k2k3><¢b2b1f2f3 ¢dzdzgzgz>

€i€;€:€;04,4, 00,4 0p,c, 07k detr05 670

X det25b d/5f/e,,

where the superscript i = 1 means we omit the ith compo-
nent. Carrying out the sums on a,, as, b,, by using
€4,aya,€byaray = 204,p,» €tC., and the sum over a;b, of
284,5,26,,p,, gives 12. Thus we get, for the graph depicted
above,

125}'181 6f1k1 [3h2k2 3h3k3 5f282 5f383 + 5h2k2 5113k3 5f283 5f382
+ 6h2k3 6h3k2 6f2§2 6f3£’3 + 5h2k3 5h3k2 afzg} 6.7"382 ]

=12 permz(éﬁlly)permz(ﬁflgl)éh]gl 8 f k-

Instead of the above crossover, more generally, we have the
crossover for Class 3, given by the contractions A; (f;) with
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gm (ko) and i, j, €, m =1, 2, 3. Thus, summing over all
possibilities, we get

Z 126,405k, PErmy(8 i) perm2(5fﬁ,-§m).

ij€m

Now, fix i, j and sum on €, m. Also, make use of the
Laplace expansion for the three-dimensional permanent
in terms of the perm,’s. Consider the first perm, factor.
We have, for € =1, &, permy(8;i(kyk3)); for € =2,
8 r,permy (8 (ki k3)); =3,

(8i(kiky)). Summing over € gives, for i = 1,

and for 81 1, permy

Oty Orh Opiky
perm 5h2k1 5h2k2 8h2k3 5
Oty Omky,  Ohnsky
fori =2, perm(ﬁ(hlf/_hB)E); and, for i = 3, perm(ﬁ(hlhzfl_)lz).

For the second perm, factor we have, for m =1,
Opg, PETM,(0;i(8283));  for m =2, &, permy(d;;
(g183)); and for m = 3, 8, .. perm,(8;;(g;g>)). Summing
over m, the second factor becomes, for j =1, 5hig1
perm(é(hifzfs)g); for J = 2’ 5higz perm(S(flhif3)§); and for
J =3, 8., Perm(8(;, r,kni)z)- Summing the product of the
factors over i, j gives the third term of Eq. (21), which is
the final formula for Class 3.

— gk
Class 4: C4hf C%Ej which is the interchange k and

g in Class 3 with the addition of a minus sign.
Altogether, we get the representation
kg _ ~kg _ gk kg _ gk
Cﬁf Clﬁf Clhf + C%hf C%hf
Recall that the above calculation was done for a fixed

spin. To include spin (lower indices only), we denote the

coincident-point function by C7 7Epg

- -~ 2, where the composite
phaf’

fields are now
3 o3 73 73
€a¥isi i¥5ap Visr €a¥ag;
and the formula above holds upon including an extra 6 spin
function with the & isospin function, i.e. o (Fihah)i
O (1 nany)i O ;236

Using the Laplace expansion, C 7 can be written as

611 512 ce 616
]gg —————— 621
C.% =¢; (123456123456) = (—1)det]| . . ,
hy : Ag
861 J65
making the proper identifications of ns in §,,,. For the prefactors of det,,A,, in (12...m12...m) = s,,det,A,,, we find

Sy, =—"1l,m=4n—-2,4n—1,n=1,2,...;

and s, = 1,

m=4n,4n+1,n=20,1,....
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We now give the coincident-point matrix for the A
fields. It has the same structure as for the exchange poten-
tials of Appendix D. Each 36 X 36 symmetric matrix has
the upper triangular block structure [V, V2, Vi3, Vial,
[sz, V23, V24], [V33, V34], [V44], and each Vij sub-block
has the 16 part structure [A, C,N,R], [M, B, D, P],
[S,T,H,J],[U, X, L, K]. We have the following:

V(16 X16): A=K/, B=H/, C=J/, N= P/, D,
R, A = diag(0, —10/9, —10/9, —1), B = diag(—10/9, 0,
- 1’ _10/9)’ C= [04]’ [10/9’ 03]’ [04]9 [02) _1/9: O]’ N =
[04], [04], [10/9, 051, [0, 1/9, 0,], D = [0,4], [04], [0, 1, 0,],
[04], R = [04], [04], [04], [1, O5].

Vy(8X8): A=K/, B=H/,C=J=J/,N=P=
O=R, D, A=diag(—8/9,—-2/9), B = diag(—2/3,
_4/9)’ C= [02]’ [2\/3/9> 0]’ D = [02]5 [_4/9, 0]

V33(4><4): AZKZO, B=H, D, b=_10/9,
D =10/9.

Vi,(16 X8): A= —K/, B=—H/, C, J, D, N=P,
S=-K,L=-C/,N=-X' M=—-J/, T=-D,
A= [02]’ [4\/5/9) 0]3 [O» 2\/-5—/9]9 [02]’ B = [02]9 [02]a
[0,2V5/9], [0,], € = [0,], [0,], [2v/15/9, 0], [0, 2/5/9],
N = [02]’ [02]9 [02]’ [2\/5/9: O], D = [02]’ [02]a
[23/5/9, 01, [0, 2/15/9].

Vi3(16 X4):A=K=0,B=H/,C,D,N=—C,T =
D/, X =N/, L=/, B=10], [0], [-2/10/9,0], [0]
C = [0], [0], [0], [2v/10/9], D = [0], [0], [2+/10/9], [O].

V23(8 X 4-) 0.

PHYSICAL REVIEW D 83, 034506 (2011)

Vig(16 X 8) = =Vy5, Vi = —Vy, Vi = —Vy,
Vig = V.

The zero rows and columns are 1, 6, 11, 16, 25, 28. The
invariant blocks are 251729,3918193031,47 101320
212627 32 33,8 14 22 23 34 35, 12 15 24 36.

The spectrum (multiplicity) is —4 (6), 0 (30).

APPENDIX C: C, D, AND D, CORRELATIONS
FOR THE Q FIELD

We now determine the coincident-point null space and
the space in which D and D, act. For the () fields, and
coincident points, we have

<QIQ4> = \/§<A1/_\2>,
(Q,Q4) = 2(A,A,),

<Qsﬂ4> = \/§<A3/_\2>,

and (Qzﬂj) =0, since Q, = 0. The (Q,-Qj> matrix has
the block structure

0 0 0 0
* 0 (A3A3) \/§<A3_A2> '
* 0 * 2(AsA,)

(CDH

From the calculation of the matrix <A,-/_\j>(°) in

Appendix B, we have the invariant block matrix for
(QQ)O:

(-1 =5 5 1 W0 _2/0 210 @\
9 9 9 9 ) 9
« —1 1 1 _2/M0 2/10 2J/10 210
9 9 9 9 9
1 1 2/10 _2/10 _2/10 _2J10
* % 1 ! L / / /
47101326273233: | * = & —1 -0 210 _2/00 _20 |
* * * * _§ 19_0 0 0
* * * * * _§ 0 0
5 # # # 5 —% —%
\* * * * * _% )

with the spectrum —4(2), 0 (6). Two orthogonal —4 ei-
genvalue eigenvectors are, with J, = 0,

v = (V10, V10, =10, =10, 0,0, —4, —4),
v?, = (=+/10,4/10, =10, /10, 5, —5,0, 0).

Of course, any nonzero vector with zero components ex-
cept for 17 through 24 is an eigenvalue zero eigenvector.
Another invariant block is

—1o 10 4J10
9 9 9

2529: [ . —w0 _43m |
*9 -1

with the spectrum 0 (2), —4 (1) and —4 eigenvalue eigen-
vector, with J, = 2,

Voy = (\/E, _\/E, —4).

Yet, another invariant block is

30
o 310 29 QT
393031 | * % ~§V10 =530
S T N
k k % —

with the spectrum 0 (3), —4 (1) and —4 eigenvalue eigen-
vector, with J, =1,
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V_y4 = (\/ﬁ, _\/%, _2\/5, _6)

There are two more invariant sub-blocks related by spin
flip to the last two above, namely, 12 15 36, with J, = —2
and 8 14 34 35, with J, = —1. They are, respectively,

and

The last sub-block is related to the 3 9 30 31 invariant block
by a unitary transformation generated by

(L, O
=5 o)
so it has the same spectrum.

Summarizing, D®(0) has the spectrum —4 (6), 0 (30),
and we denote the orthogonal projection on the null space
(its complement) by P(Q).
|

Dopar 5,05, (1 X0732) O = [ =8, 8, 8(x; — x3)8(x, — x4) + (=1)8,,,. 5,

PHYSICAL REVIEW D 83, 034506 (2011)

Next, we briefly discuss the origin of the null space. By
Pauli exclusion in the composite fields, the rows and
columns 1, 6, 11, 16, 25, 28 are zero. In these cases,

G=B=(++4), (++-), (+ —-), (———) in the
A — A fields and 5'=B=(+—+), (+ — —) in the
p — p fields. However, there are other nontrivial pointwise
linear relations between the A or A fields which give
additional contributions to the null space. These relations

are suggested by the null space eigenvector equation
0
Dglt)2t3l4(0)wl3[4 =0,

where w,,,, are the components of the null space eigenvec-
tor w. The suggested pointwise relations in the Grassmann
algebra are A w;, = 0, and indeed these relations are
verified.

We now consider noncoincident points. At k = 8 = 0,
D and D, coincide for noncoincident points. We find, for
all X1XpX3Xy,

13ty

Dot s,,s, (X1 %0x354) = H( Aoy, (x1x2) Agy g, (x3x)),,
X (A5, (0122) Agy s, (4X3)),,
- <A2t|s2 (xlx2)A213S4(x3x4)>w
- <A2t|s2 (x2xl)A213x4 (x4x3)>w]r

where the subscript w means Wickified. At k = 8 =0,
and for the 24 sub-block,

O(x; — x4)0(xy — x3)

5254

- (_1)6t1t3632s46(x2 —x3)8(x; —x4) — (_1)8t1t36s2546(x2 — x4)8(x; — x3)] = 0.

Similarly, we get

D022t|s2t3s4(xlx2x3x4)(0) = _511r3 6S2x45(-xl —x3)8(xy — x4) + 5:,13 5s2s45(x1 — x4)8(xy — x3),
D0335132s3s4(x1x2x3x4)(0) = _6s133 532345(?61 —x3)8(xy — xy) + 5sls4 652536(x1 — x4)8(x; — x3),
D044t1s2t3s4(x1x2x3x4)(0) = _8t1t3 632s48(x1 —x3)8(xy — xy4) — 5!1!3 6s2546(x1 — x4)8(xy — x3),

and the same for D%}. The other sub-blocks, not related by

the symmetry of Dg to the sub-blocks above, are zero.

From the above considerations, we take D and D, to be

defined on the space €} = €5+ €%, where €5 is the
coincident (noncoincident) point space. For coincident
points, we take €5(A.), where

A, ={(xxp)) EZ* X 7% X (1,2,...6)Ix) = x3, % = %y},

and j labels the six-dimensional basis of R(Q). For non-
coincident points, we decompose ¢} as

€3 = £5(A7) + €5(AY) + €5(A5) + £5(A).
Let N, denote the set of integers 1,2,..., p. The A7 are
defined as follows:

[
A ={(x;ry, x3r3) € (Z* X Ny) X (Z* X Ny)|x9
= Xg, 551 i 552},

and we identify r;, 34 with the spin triples (+ + +),
(++ =), (+ = =), (= — —), respectively, of the delta
fields. Similarly,

AL ={(x),xy, ) EZ* X Z* X (17,...24)|x) = x3, % # X,},

with (17, ...,24) corresponding to the ordered spin basis
for A,:

Ag = {(xlrl,xer) & (Z4 X NQ) X (24 X NZ)lx(l)

_ 0= >
= Xy, X1 7&)52},
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and we identify r;, with the spin triples (+ — +),
(+ — —), respectively, of the proton fields. Last, we have
Al ={(x), x5, j) € Z* X 7* X (29,30, ...36)|x"
= x3, X # %o,
with (29, ...,
of Az.

The superscript a (s) above means the restriction to the
antisymmetric (symmetric) subspace. On ¢/, D and D, are
well defined using their decay bounds. Also, (D@)~! and
(Déo))_l, as well as D™! and Dj!, are well defined.
Decomposing f € €5 as f = f| + f, + f3 + f4, we see
that Dg)o)fj = —2f;for j = 1,2, 3,4, such that it acts as a
multiple of the identity.

36) corresponding to the ordered spin basis

APPENDIX D: SUM AND DIFFERENCE
EXCHANGE POTENTIALS FOR A FIELDS

In this appendix, we give the sum F*/ ngff]‘? FokBs +

L(=WETH
ﬁelds. They are used to calculate the sum and difference
exchange potentials for the Q fields of Eqgs. (38)—(41)
which are conveniently used in the B-S bound state,
Egs. (43) and (44). They are related to the sum and differ-
ence potentials which correspond to the + and — parity
sectors in the lattice Schrodinger operators, as seen in
Eq. (47). Each 36 X 36 symmetric matrix has the upper
triangular block structure [V, V1o, Vi3, Visl, [Vas, Va3,
V24], [V33, V34], [V44], and each VU sub-block has the 16
part structure [A, C,N,R], [M,B,D,P], [S T, H,J],
[U, X, L, K]. We use the shorthand notation FVWQ/’/FV' +
(F 7(—W§,"/)F 7')..., and omitted sub-blocks are zero. The
exact values are given below.

and difference potential matrices for A

Sum—V,;,(16 X 16): A=K/' =K, B=H/ =H,C=
J',J=—-C, N=P =P, A=diag(0,—1/3,—1/3,0);
B = diag(—1/3,0,0, —1/3); C=[04], [1/3,05], [04],
[0, —1/3,0]; N =[04], [04], [1/3,05], [0,1/3,0,];
V,»(8X%X8): A=K/, B=H/, C=J'=1J, D, A=

diag(1/3,7/3); B = diag(1,5/3); C =[0,], [~ 2\/-/3, 0];
=1[0,],[—4/3,0]; V354 X 4): A=K =0,B=H/ =
H,D,B=—-1/3,D=1/3;V;,(16 X8): A= —K/, B =
—-H, C=-L', N=-X'=P, D=-T/, M= —J/,
= [0,], [4v/5/3,01, [0,24/5/3), [0,]; B = [0,], [0,],
[0,2+/5/3], [0,]; € = [0,], [0,], [2v/15/3,0], [0, 2/5/3];
= [02]’ [02]’ [02]5 [2\/5/3’ O]a D = [02]’ [02]a
[24/3/3, 0], [0, 2/15/3]; J = [0,], [0,], [0,], [0, 4/5/3];
Vi3(16 X8): A=K=0, B=H/, C=L/, N=-X/,
D=T/,N=—-C, D= —B, B=[0], [0], [-24/10/3],
[0; C=1[0], [0]. [0], [2v/10/3]; V»3(8 X 4): O and
Via(16 X 8) = — V5, Vu(8 X 8) = —Vp, Viy(4 X 8) =
— V3, Vas(8 X 8) = = V.
The zero rows and columns are 1, 6, 11, 16, 25, 28. The
other invariant blocks are

PHYSICAL REVIEW D 83, 034506 (2011)

251729 J, =2
3918193031 J, =1
4710 13 20 21 26 27 J,=0
81422233435 J,=—1
12 15 24 36 J, = -2

The spectrum (multiplicity) is —6 (6), 0 (21), 6 (9).
Difference—V,,(16 X 16): A=K/, B=H/, C = J/,
N =P, D, A = diag(—2, —1, —1/3,0), B =
diag(—1, —10/9, —=8/9, —1/3), C=1[04], [—1,05],
[O: _4\/5/9r 02:]’ [02’ - 1/3’ O]’ N = [04]’ [04]’
[_ 1/3, 03]9 [0, _1/3’ 02]5 D= [04]9 [_4\/5/9’ 03]9
[0, —8/9,0,], [05, —4+/3/9]; V(8 X 8): A=K/, B=
H', C=1J, D, A= diag(—1,7/3), B = diag(1/9, 11/9),
= [0,]. [~10+/3/9,0], D = [0,], [—20/9]; V35(4 X 4):
A=K =268/9, B=D =34/9; V|,(16 X 8): A= —K7,
B=-H/,C=-L',DDN=PM=J/,S=X,T,A=

[02]’ [02]9 [0’ 2\/5/3]’ [02]’ B = [02]9 [4\/5/9’ 0],
[O: _2\/5/9]’ [02]; Cc= [02]’ [02]9 [_2\/6/9’ O]a

[0,2+/5/3]; D = [0,], [0,], [24/5/9, 0], [0, 24/15/9]; N =
(0,1, [0,], [0,], [—2+/5/3,0]; J = [0,], [0,], [4+/15/9, 0],
[0,]; S =[0,2+/5/3], [0,], [0,], [0,]; T = [—2+/15/9,0],
[0, —2+/5/9], [0,], [0,]; V;5(16 X 8): A = K/, B = H/ =
DC L', D,C=N,P, S, X=L M=J/, T=H,
= [0], [0], [4+/30/9] [0], B = [0], [0], [~2+/10/9] [0],
= [0], [0], [0], [2+/10/3], P = [0], [0], [0], [4+/30/9],
= [0], [0], [-8+/10/9], [0], S = [4+/30/9], [01, [0], [0];
Vi34 X4): A=—-K/',B=—-H/,D=—-T/, J=—-M/,
A=[0], [20v6/9], B=[0], [20v2/9], D =[0],
[20v2/9], J=1[0], [20v2/9]; V,4(16 X 8) = =V,
Vas(8 X 8) = —Vy, V344X 8) = — V3, Vyy(8X8) = V.
The zero rows and columns are absent. The invariant
blocks are

1 J.=3
16 J,=-3
251729 I, =2
36918192530 31 I, =1
471013 202126273233 J.,=0
8 11 14 22 23 28 34 35 J.=—1
12 15 24 36 J.= -2

I8

The spectrum (multiplicity) is —2 (18), 0 (15), 18 (3).

For the Q fields, we use the reduced sub-block versions
of Egs. (39) and (41) for the sum and difference potential
matrices. For the sum and difference potentials, the upper
triangular parts of the symmetric matrices are given in
Egs. (39) and (41), respectively.

For the sum potential, the spin ordering is that of ]\1, ]\3,
A, for the first, second, and third blocks, respectively (such
as 1...16,25...28, and 17...24, respectively. Their in-
variant blocks and spectral properties are given in the text.

For the difference potential, the spin ordering for the
first, second, and third blocks is that of A;, A,, Aj,
respectively.
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APPENDIX E: PERMANENT REPRESENTATION FOR THE EXCHANGE POTENTIAL

We now obtain a permanent representation for D*?/(1/12) of Eq. (31), namely, the formula for W;’:fjf of

Eq. (32). From Eq. (31), we evaluate the factors @, = (¢(e!)B(e!) i (e))B(e))” = (Do, eglp;&ffpbame&(pgég>§°)
and @, = (i (OBO)FOBON = Wapyr, €03, iaain iy, 1
By direct calculation, we obtain
D1 = —68p, 58,5, PEIM(B (0, 1) O r,0,6,)) ~ 095, 5t Oy PEIM(Bii(gtart) B, )
= 68,505, PEM(85(51 ptar) 874, 4,r,)
= F\(Biayrinaf B ),
P, = _65/320f5r2k1 perm(6ﬁ<a]Ugﬁg)éﬁ(mkm)) — 68132056,2,(2 perm(éﬁ((rfmﬁg)éﬁ(klrlh))
— 65'32(,§c3,2,€3 perm(Sﬁ(Ungal)5,;(k]k2rl))
= Fo(Bra ryr1p 55'];)
In the above, we have used Eq. (5).

For the Fy() F,() product, noting that &, = 3, and a, = S5, since only the identity term of T'=¢' contributes, and these
indices are lower, we obtain

FO(,Ba'rzrlﬁ h &h)Fl(aﬁrer&fﬁg) = 36[5'30?5,2,(]perm(Sﬁ(aaggg)5ﬁ(rlk2k3)) + 5ﬁa§8r2k2 perm((sﬁ(gfaug)Bﬁ(klrlkz))
8

+ 60‘:328”& perm(sd(ﬁfﬁﬁg)aﬂglV283)) + 80‘B§ 8r1g3 perm(ad(ﬁ‘fﬁgﬁ) af(glgzrz))]’

+ 845181yt PO 5(5¢ it ) Oty ) IO O, PETM(S (31 1) B 1

with sums over the lower indices «, B8 and ry, r,. Carrying out these sums gives Wf': g of Eq. (32).

p
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