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We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random

matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes

all taste breaking terms at their leading order. This is an extension of previous work which only included

some of the taste breaking terms. We will also present some results for the taste breaking contributions to

the partition function and the Dirac eigenvalues.

DOI: 10.1103/PhysRevD.83.034505 PACS numbers: 11.15.Ha, 12.39.Fe

I. INTRODUCTION

Staggered fermions are one of the commonly used ways
to simulate quarks on a lattice due to their relatively low
computational expense. However, they are considerably
more difficult to deal with theoretically due to the presence
of extra modes. A single staggered Dirac matrix yields four
flavors of quarks in the continuum limit due to the fermion
doubling problem. These flavors are mixed at finite lattice
spacing and are conventionally referred to as ‘‘tastes’’ to
distinguish them from regular quark flavors. The breaking
of the SU(4) taste symmetry can be reduced by using
improved actions, but the taste breaking (TB) is still ob-
served in current simulations and must be accounted for
when extracting results.

The form of the taste breaking has been worked out as
corrections to the chiral Lagrangian by Lee and Sharpe [1],
with an extension to multiple flavors by Aubin and Bernard
[2]. The staggered chiral Lagrangian includes all terms of
Oða2Þ (a is the lattice spacing) that are consistent with the
symmetries of staggered fermions.

Here we will construct a complete random matrix theory
for the staggered Dirac matrix that incorporates all terms of
Oða2Þ. This is an extension of the work in [3], where only
the case of zero topological charge was considered, and not
all of the terms found in the chiral Lagrangian could be
reproduced in the randommatrix theory (RMT). This RMT
can be directly related to the staggered chiral Lagrangian in
the zero-momentum limit. We then expect to be able to use
this model to study the effects of TB on low energy
quantities such as the partition function, the chiral conden-
sate, and Dirac eigenvalues. Additionally, since the stan-
dard method to deal with the extra quark modes is taking
the fourth root (or square root) of the fermion determinant,
we expect to be able to study the interactions of the TB
with the ‘‘rooting’’ procedure. In this work we will study
the properties of the RMT itself and save the comparisons
to direct simulations of lattice QCD for later.

II. STAGGERED FERMIONS

On a 4d lattice the unimproved staggered fermion ac-
tion, �c ½Ds þ am�c , with quark mass m is given by

am �c xc x þ 1

2

X4
�¼1

�x�½ �c xU
�
x c xþ�̂ � �c xþ�̂U

�y
x c x�;

(1)

where U�
x is a set of SUðNcÞ matrices representing the

gauge field and �x� ¼ ð�1Þ
P

�<�
x� . Here, for convenience,

we will only consider the case of Nc ¼ 3. The RMT given
below will also apply for Nc � 3; however, for Nc ¼ 2 the
low eigenmodes are known to be in a different universality
class, described by the Gaussian symplectic ensemble [4].
One should be able to extend this model to include Nc ¼ 2
in a similar fashion, but we will not pursue that here.
The massless staggered fermion matrix is anti-

Hermitian and thus has purely imaginary eigenvalues. It
also possesses a particular form of chiral symmetry,

f�5; Dsg ¼ 0; �5 ¼ ð�1Þ
P

4
k¼1

xk ; (2)

which causes the eigenvalues to come in positive and
negative pairs: �i�. It is well known that the above action
contains doubler modes so that a single staggered fermion
matrix actually describes four flavors of fermions in the
continuum limit. An explicit identification of the contin-
uum fermions was given by Kluberg-Stern et al. [5]. This
was done by transforming the 3 color degrees of freedom
on the 16 sites of each 24 hypercube into a basis of four
Dirac fermions (12 components each) on a lattice of half
the size in each direction. This transformation is not
unique. In their basis the expansion of the staggered fer-
mion operator starts as

ð2aÞ4fð�� � I4ÞD� þmðI4 � I4Þ � að�5 � ��5ÞD2
� þ . . .g:

(3)

The notation ðS � TÞ is used to denote the outer product of
a 4� 4 spin matrix S and a 4� 4 taste matrix T with �� ¼
��
�, ��5 ¼ ���5, and I4 is a 4� 4 identity matrix. The first

part is just the standard Dirac operator for four identical
flavors with massm. The remaining term is suppressed by a
factor of the lattice spacing and breaks the SU(4) taste
symmetry. There is also a term ofOðagÞ, and the remaining
corrections are at least Oða2Þ.

PHYSICAL REVIEW D 83, 034505 (2011)

1550-7998=2011=83(3)=034505(12) 034505-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.034505


In the full theory one usually describes the low energy
behavior in terms of an effective chiral Lagrangian. For
staggered fermions this has been worked out to order a2

and is given by [1,2]

L ¼ F2

8
h@�U@�U

yi � 1

2
�0mhUþUyi þ a2V ; (4)

where F and �0 are the low energy constants related to the
pion decay constant (with the convention that the physical
value for F � 131 MeV) and the (absolute value of the)
chiral condensate, respectively. Here and everywhere be-
low, hXi will stand for the trace of X. There is also a mass
term for the taste singlet pion (analogue of the �0) that we
have dropped.

The taste breaking terms can be divided into two parts,
V ¼ V 1t þV 2t. The first part contains the single-trace
terms

�V 1t ¼ C1h�5U�5U
yi þ C3

1

2

X
�

½h��U��Ui þ H:c:�

þ C4

1

2

X
�

½h��5U�5�Ui þ H:c:�

þ C6

X
�<�

h���U���U
yi (5)

and the second part has the two-trace terms

�V 2t ¼ C2V

1

4

X
�

½h��Uih��Ui þ H:c:�

þ C2A

1

4

X
�

½h��5Uih�5�Ui þ H:c:�

þ C5V

1

2

X
�

½h��Uih��U
yi� þ C5A

1

2

X
�

½h��5Ui

� h�5�U
yi�: (6)

Note that in the original Lee-Sharpe Lagrangian, the two-
trace terms were Fierz transformed into one-trace terms of
the form

�V 25 ¼ C2

1

2
½hU2i � h�5U�5Ui þ H:c:�

þ C5

1

2

X
�

½h��U��U
yi � h��5U�5�U

yi�: (7)

This is valid in the one flavor case, but not when extending
to multiple flavors [2]. Wewill see below that the staggered
RMT naturally leads to the two-trace form.

III. CHIRAL RANDOM MATRIX THEORY

The standard partially quenched chiral random matrix
theory can be written as

Z RMT
Nf;Nb

¼
Z

dWpðWÞ
QNf

f¼1 detðD0 þmfÞQNb

b¼1 detðD0 þmbÞ
; (8)

where W is a ðN þ �Þ � N complex matrix, with � the
absolute value of the topological charge, and the Dirac
operator is represented by [6]

D 0 ¼ 0 iW
iWy 0

� �
: (9)

It has been shown that the partition function is universal for
a large class of weights [7,8], but for convenience, here we
take the simplest form of a Gaussian,

pðWÞ ¼ expð��NhWyWiÞ; (10)

with
ffiffiffiffi
�

p ¼ �0V=2N (V is the four-volume). This model is
the chiral extension of the Gaussian unitary ensemble
(GUE). For a review of chiral random matrix models, see
[9] and its references.
By now it is well established that the chiral RMT

(including all spectral properties) is equivalent to the
zero-momentum sector of the chiral effective theory
[10–12]. The equivalence is established through the par-
tially quenched partition functions

Ẑ RMT
Nf;Nb

ðfm̂fg; fm̂bgÞ ¼ Zeffð0Þ
Nf;Nb

ðfm̂fg; fm̂bgÞ: (11)

Here ẐRMT
is the RMT partition function in the micro-

scopic limit, defined by taking the limit N, V ! 1 while
keeping m̂ ¼ mV�0 fixed. The chiral effective theory at
zero momentum (also called the � regime [13]) contains
just a mass term,

Z effð0Þ
Nf;Nb

ðfm̂fg;fm̂bgÞ¼
Z
dUdetðUÞ�eð1=2ÞhM̂ðUþUyÞi; (12)

with M̂ ¼ diagðfm̂fg; fm̂bgÞ. The above expression is a

supersymmetric generalization of the usual fermionic
chiral Lagrangian so the determinant and trace must be
taken to their supersymmetric equivalents, and the integra-
tion is now over a supersymmetric manifold that is com-
pact in the fermionic sector but noncompact in the bosonic
sector [11].
Since the TB terms contain no derivatives, they will

also contribute to the zero-momentum partition function
by multiplying the integrand by the extra factor
expð�a2VV Þ. Below we will establish the equivalence
between the partition functions including TB only for the
simpler fermionic case. In principle, it is necessary to show
this for the partially quenched partition functions as well,
in order to establish an equivalence of valence quantities
including the Dirac eigenvalues. For now we will assume
that this equivalence holds and that it could be obtained
from an extension of the proof for the partition functions
without TB.
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IV. STAGGERED CHIRAL RANDOM
MATRIX THEORY

To extend the RMT to include taste breaking, we add a
term proportional to a to a taste diagonal Dirac matrix

D ¼ D0 � I4 þ aT ; (13)

where T incorporates the taste breaking terms considered
below.

In [3] we considered only the case of � ¼ 0; further-
more, the additional terms could only reproduce the single-
trace terms. Here we will consider the extension to � � 0
and will also include the two-trace terms. Similar work has
been done for the Wilson Dirac operator [14,15].

We start with the dominant term which is typically found
to be the C4 term [1]. For arbitrary � we can write it as

T ¼ X
�

A� 0
0 B�

� �
� ��5; (14)

where A� and B� are Hermitian matrices of size

ðN þ �Þ � ðN þ �Þ and N � N, respectively. Note that
this also has a chiral and taste structure similar to the
leading taste breaking term in the expansion in (3). If we
choose a Gaussian weight function for these matrices of the
form

exp

�
�	N

X
�

½hA2
�i þ hB2

�i�
�
; (15)

then one can show that the chiral Lagrangian will get a
correction term (see Appendix A for details),

� �Na2

4	

X
�

h��5U��5Uþ ��5U
y��5U

yi: (16)

Upon equating this to the C4 term in the effective
Lagrangian [and noting that there is a �5� in (5)], we get

	 ¼ �N=2VC4. Note that we require that 	> 0 for con-
vergence of the integrals. We could have obtained the
opposite sign in (16) if we multiplied (14) by i; however,
this would make that term Hermitian. Thus the sign ofC4 is

determined by the need to have an anti-Hermitian Dirac
operator in (14). We will discuss this issue more in the
context of the two-trace terms.
The C3 term can be handled in a manner similar to C4.

The C1 and C6 terms can be obtained from matrices of the
form

T ¼ 0 iX
iXy 0

� �
� �; (17)

where X is a ðN þ �Þ � N complex matrix. The correction
to the chiral Lagrangian for this term is given in Table I.
It was pointed out in [3] that the terms in (7) could be

obtained from a RMT using terms similar to the ones
above, but the corresponding RMT would contain
Hermitian pieces, instead of being strictly anti-Hermitian
as is the case of the staggered Dirac matrix. By writing
those terms in the two-trace form (6), one can now find a
way to add them to the RMT while preserving the anti-
Hermiticity.
To do this we need to make linear combinations of the

terms. For example, we can write the C2V and C5V terms as

Cþ
V

4

X
�

h��ðUþUyÞi2 þ C�
V

4

X
�

h��ðU�UyÞi2 (18)

with

C�
V ¼ ðC2V � C5VÞ=2: (19)

We can then linearize each of these terms using a Hubbard-
Stratonovich transformation, such as

eðCþ
V =4Þh��ðUþUyÞi2 ¼

Z
d
e�ðjCþ

V j=4Þ½
2�2
sh��ðUþUyÞi�; (20)

where 
 is a single real variable and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ
V =jCþ

V j
q

. This

term now takes the form of a mass term that mixes the
tastes (with a mass matrix ��jCþ

V j
s=�0). The C�
V term

likewise gives a �5 mass term. The mappings for these
terms from the RMT to the chiral Lagrangian are given in
the last two rows of Table I.

TABLE I. Mappings from corrections to the chiral RMT [T in Eq. (13)] to corrections to the
chiral Lagrangian [V in Eq. (4)]. The Gaussian weight is given by expð�ST Þ. The first two
types of taste breaking terms are similar to the ones appearing in [3]. The last terms are new and
will generate the two-trace terms.

T ST �VV

0 iX
iXy 0

� �
� � 	NhXyXi �N

	 h�U�Uyi
iA 0
0 iB

� �
� � 	N½hA2i þ hB2i� �N

4	 h�U�Uþ �Uy�Uyi
ib � INþ� 0

0 ib � IN

� �
� � 	Nb2 �N

4	 h�Uþ �Uyi2
ic � INþ� 0

0 �ic � IN

� �
� � 	Nc2 �N

4	 h�U� �Uyi2
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Note again that we now must have C�
V < 0 in order for

this term to be anti-Hermitian. The same condition holds
for C�

A . The coefficients C
�
A;V are proportional to the ‘‘hair-

pin’’ coefficients �0
A;V which appear in one-loop results of

chiral perturbation theory [2]. The other combinationsCþ
A;V

do not appear in one-loop expressions and therefore have
not yet been determined from lattice simulations. However,
the negative sign for C�

A;V is consistent with lattice mea-

surements [16], as are the positive signs of all the single-
trace coefficients.

The inclusion of the two-trace terms in their current
form may seem a bit ad hoc since they are not full matrices
like the other terms, but we can rewrite them in a way that
seems more natural. As an example, we consider a RMT
with taste breaking terms of the form

Aþ ðbþ cÞ � INþ� 0
0 Bþ ðb� cÞ � IN

� �
� � (21)

(A, B are Hermitian matrices and b, c are real scalars) with
weight

expð�	N½hA2i þ hB2i� � �Nb2 � �Nc2Þ: (22)

If we make the substitution A0 ¼ Aþ bþ c, B0 ¼
Bþ b� c, then b and c no longer appear as part of the
matrix, but appear only in the weight. We can then inte-
grate them out to obtain a new weight function,

exp

�
�	Nfh½A0 � �A0�2i þ h½B0 � �B0�2ig � N

4
½�ð �A0 þ �B0Þ2

þ �ð �A0 � �B0Þ2�½1þOð1=NÞ�
�
; (23)

with �A0 ¼ hA0i=ðN þ �Þ and �B0 ¼ hB0i=N. In this way, we
see that the two-trace terms in the chiral Lagrangian are
generated by two-trace terms in the RMT potential. One
could then consider adding other terms such as higher
powers of the matrices in the potential to reproduce higher
order terms in the chiral Lagrangian, though we will not
pursue that here.

All the terms of the full staggered RMT (SRMT) are
written out in Appendix B. Now that we have the full form
of the SRMT, we can examine its structure more closely.
For this, it is convenient to switch to a basis where the
remnant of chiral symmetry for staggered fermions (2) is
transformed according to

INþ� 0
0 �IN

� �
� �5 ! I4Nþ2� 0

0 �I4Nþ2�

� �
: (24)

There are several possible choices of basis, all of which
give a staggered RMT Dirac operator (at m ¼ 0) of the
form

0 R
�Ry 0

� �
; (25)

where R is a ð4N þ 2�Þ � ð4N þ 2�Þ matrix. Arbitrarily
picking one basis gives an R of the form (using the terms
from Appendix B)

½iA3� � A4� þ dþ�
� iW þ iX1 þ iX6��
�

y
�

iWy � iXy
1 � iXy

6��

y
�
� ½iB3� þ B4� þ d��
y

�

 !

(26)

with 
�¼ð1;�i ~
�Þ and d�¼ ibV��cA��ðicV��bA�Þ.
Note that since R is a square matrix, for nonzero lattice

spacing, in general, there are no exact zero eigenvalues of
the RMT. This agrees with the well-known properties of
the lattice theory. Also, one can imagine that if the taste
breaking terms are large enough, then the detailed structure
of Rmay not matter, and the low eigenvalues are described
well by a standard chiral RMTat � ¼ 0, in agreement with
numerical studies [17–20]. Below we will take the limit of
large taste breaking and show that this is indeed the case.

V. SCALES

For standard staggered chiral perturbation theory (in the
p regime) the size of the taste breaking can be measured by
the parameter [16]

�ðpÞ
a2

¼ a2 ��

8
2F2
; (27)

where a2 �� is a ‘‘typical’’ taste breaking term. Taking this
to be the average pion splitting gives

�� ¼ 1

16
ð�P þ 4�V þ 6�T þ 4�A þ�SÞ; (28)

where the�X parametrize the mass shift of the pions above
the Goldstone pion (the taste pseudoscalar)

m2

X ¼ m2


P þ a2�X: (29)

This scale determines the convergence of the taste breaking
parts in the perturbative expansion.
For the zero-momentum chiral Lagrangian (� regime)

considered here, the relevant parameter is

�ð�Þ
a2

¼ a2V �C; (30)

where �C is another measure of the strength of the taste
breaking, which we will take to be

�C ¼ C1 þ 4C3 þ 4C4 þ 6C6 ¼ F2

8
��: (31)

We have ignored the contributions from two-trace terms in
this definition for simplicity, though one could include
them if needed. If the scale in (30) is small, then one can
calculate quantities from a perturbative expansion of the
zero-momentum effective theory (starting from either the
SRMT or the chiral Lagrangian) in the taste breaking.
In this case we expect the low eigenvalues to be nearly
fourfold degenerate and form clear ‘‘quartets.’’ This
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has been seen in lattice simulations with improved actions
[21–23].

In the opposite limit, �ð�Þ
a2

	 1, the approximate fourfold

degeneracy is strongly broken, and the low eigenvalue
spectrum will resemble that of a single flavor due to the
remaining unbroken Uð1Þ Goldstone symmetry of stag-
gered fermions. We will refer to this limit as strong taste
breaking, and the opposite limit as weak taste breaking,

independent of the value of �ðpÞ
a2
.

In typical lattice simulations, the volume is chosen such
that the lightest dynamical mass stays in the p regime,
given by the condition m
L 	 1 (m
L � 4 is the usual
rule of thumb). In such simulations the smallest eigenval-
ues are still typically described by �-regime calculations
since they can be related to observables with valence quark
masses equal to the eigenvalues. The scale below which
eigenvalues can be described by the zero-momentum
Lagrangian (known as the Thouless energy) in QCD is
given by [24,25]

Ec ¼ F2

�0L
2

(32)

[up to a constant factor of Oð1Þ]. It is possible for eigen-
values below this scale to be in the strong TB regime

(�ð�Þ
a2

	 1), while observables at higher scales, e.g. around

the dynamical quark mass, exhibit weak TB (�ðpÞ
a2


 1).

The taste breaking scales are related by

�ð�Þ
a2

¼ 
2VF4�ðpÞ
a2

� 2V fm�4�ðpÞ
a2
; (33)

using the physical value for F in the last part. For lattice
simulations with large volumes (V > 0:5 fm4) the
�-regime observables will exhibit stronger taste breaking
than the p-regime observables. This is the typical case for
simulations where the dynamical quark masses are kept in
the p regime. For small volumes (V < 0:5 fm4) the rela-
tionship is reversed. However, in this case one might find
that the dynamical mass is also in the � regime so that the
parametrization of Eq. (27) does not apply. Below we will
examine the properties of the SRMT in both the weak and
strong TB limits and explore the transition region between
the two.

VI. WEAK TASTE BREAKING

A. Partition function

Since one copy of the staggered Dirac matrix actually
produces four tastes, it is common in simulations to take a
fractional power of the quark determinant to produce the
desired number of flavors in the continuum limit. We now
consider the SRMT partition function with optional rooting
given by

Z SRMT
Nq

ðfmg;fngÞ¼
Z
d½D�YNq

k¼1

det½Dþmk�nk=4; (34)

where the integration measure is over all the Gaussian
weights and the powers nk can be either positive or nega-
tive to produce a partially quenched theory.
If we expand a determinant to order a2, we get

det½ðD0 þmkÞ � I4 þ aT �nk=4
� det½D0 þmk�nk½1� a2ðnk=8ÞhS2

ki� (35)

with

Sk ¼ ½ðD0 þmkÞ�1 � I4�T ; (36)

and we have used the fact that hSki ¼ 0. The Oða2Þ parti-
tion function is then

Z
d½D�

�YNq

k¼1

det½D0 þmk�nk
��
1� XNq

k¼1

a2nk
8

hS2
ki
�
: (37)

The last term in braces is the correction term for the
partition function due to the TB. One can easily perform
the Gaussian integrations over the taste breaking terms in
the RMT to obtain the correction factor

1þ 1

�2
0V

2

XNq

k¼1

nk½t1hðD0 þmkÞ�1i2

þ t2h�5ðD0 þmkÞ�1i2 þ t3hðD0 þmkÞ�2i
þ t4h½�5ðD0 þmkÞ��2i� (38)

with the dimensionless coefficients

t1 ¼ a2Vð4C3 þ 4C4 þ C1 þ 6C6Þ;
t2 ¼ a2Vð4C3 þ 4C4 � C1 � 6C6Þ;
t3 ¼ a2VðCþ

V þ Cþ
A Þ; t4 ¼ a2VðC�

V þ C�
A Þ:

(39)

Note that this expression can diverge as mk ! 0 if
�nk ¼ 1. In general, this expression is not valid at very
small masses since Sk can grow large, though for large
enough masses it should be a good approximation. One
could produce an alternate expression that is valid even at
mk ¼ 0 using eigenvalue perturbation theory. Its construc-
tion will be outlined below.
The correction factor can be further simplified using the

identities

h�5ðD0 þmkÞ�1i ¼ �=mk;

h½�5ðD0 þmkÞ��2i ¼ hðD0 þmkÞ�1=mki:
(40)

One still needs to integrate over the random matrix in D0;
however, all quantities can be calculated from known
results for the partially quenched partition functions.
If we write the partition function without taste breaking

in (37) as ZNq
ðfmg; fngÞ, then the terms with a single trace
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can be readily evaluated as derivatives of the partition
function without taste breaking using the substitutions

@mk
ZNq

ðfmg;fngÞ¼
Z
d½D0�jDjnkhðD0þmkÞ�1i; (41)

@2mk
ZNq

ðfmg; fngÞ ¼
Z

d½D0�jDj½n2khðD0 þmkÞ�1i2

� nkhðD0 þmkÞ�2i�; (42)

where jDj is short for the product of determinants in (37).
This leaves only the two-trace term to be evaluated. This
requires adding an extra quenched pair of quark species to
evaluate the extra trace,

@mk
@mf

ZNqþ2ðffmg; mf;mbg; ffng; 1;�1gÞjmf¼mb¼mk

¼
Z

d½D0�jDjnkhðD0 þmkÞ�1i2: (43)

It is straightforward, though somewhat tedious, to evalu-
ate these expressions in the microscopic limit. As an
example, the one flavor partition function in the micro-
scopic limit is given by

Ẑ 1ðm̂Þ ¼ I�ðm̂Þ; (44)

while the partially quenched Nf ¼ 2; Nb ¼ 1 partition

function can easily be written as a determinant of Bessel
functions [26,27],

Ẑ21¼

�������������
I�ðm̂Þ m̂I�þ1ðm̂Þ m̂2I�þ2ðm̂Þ
I�ðm̂fÞ m̂fI�þ1ðm̂fÞ m̂2

fI�þ2ðm̂fÞ
K�ðm̂bÞ �m̂bK�þ1ðm̂bÞ m̂2

bK�þ2ðm̂bÞ

�������������
ðm̂2

f� m̂2Þ : (45)

From these expressions we get that

ẐSRMT
1 � I�ðm̂Þ

�
1þ t2

�2

m̂2

�
þ t4

I��1ðm̂ÞþI�þ1ðm̂Þ
2m̂

þðt1þ t3Þs1� t3
I��2ðm̂Þþ2I�ðm̂ÞþI�þ2ðm̂Þ

4
;

(46)

where s1 is the complicated expression

�2

m̂2
I�ðm̂Þ þ 2�

m̂
I�þ1ðm̂Þ þ m̂K�þ1ðm̂ÞI2�þ1ðm̂Þ þ K�ðm̂Þ

�
�
�I2�ðm̂Þ � ð3�þ 1ÞI2�þ1ðm̂Þ

þ
�
m̂� 2�ð�þ 1Þ

m̂

�
I�ðm̂ÞI�þ1ðm̂Þ

�
(47)

due to the two-trace term.
From this, an expression for the quark mass dependence

of the chiral condensate in the microscopic limit can be
obtained by

�̂ 1ðm̂Þ=�0 ¼ @m̂ lnẐSRMT
1 ðm̂Þ: (48)

One can obtain expressions for any number of flavors
through a similar procedure. These formulas would apply
to lattice simulations performed in the � regime, where
m
L 
 1. For lattice simulations where this does not
apply, one can instead consider observables as a function
of a valence quark mass that is in the � regime. This will be
explored next with the quenched condensate.

B. Quenched condensate

One of the simplest valence observables one can look at
is the quenched condensate. This can still be useful for
comparisons with simulations of full QCD in the case that
the valence quark mass is much smaller than the dynamical
masses, so that the heavier masses will simply appear
quenched compared to the light valence quark.
The calculation simplifies considerably if we do not try

to calculate the corrections to the quenched partition func-
tion first, but instead directly calculate the corrections to
the quenched condensate from the definition

�̂qðxÞ
�0

¼ @x lnẐ
SRMT
2 ðfx; yg; f1;�1gÞjy¼x: (49)

Applying this to (37) gives

Z x � t1ðZxxy þZxyyÞ � t3ðZxxx þ 2Zxxy þZxyyÞ

� 2t2
�2

x3
þ t4

�Zxx þZxy

x
�Zx

x2

�
; (50)

where Zx ¼ @xẐ11ðx; yÞjy¼x and similarly for higher de-

rivatives. Using the expression for the microscopic contin-
uum partition function with Nf ¼ Nb ¼ 1,

Ẑ 11 ¼
�������� I�ðxÞ xI�þ1ðxÞ�K�ðyÞ yK�þ1ðyÞ

��������; (51)

we can now evaluate the derivatives. The result without
taste breaking (Zx) is [28]

x½I�ðxÞK�ðxÞ þ I�þ1ðxÞK��1ðxÞ� þ �=x: (52)

If we write the final expression with TB as Zx þ
P

ktkzk,
then we have

z1 ¼ z2 ¼ �2�2=x3; (53)

z3 ¼ z4 þ 2=x� 2K�ðxÞ½I�þ1ðxÞ þ I��1ðxÞ�; (54)

z4 ¼ �2K��1ðxÞI�þ1ðxÞ=x� 2�=x3: (55)

Note that the single-trace TB terms enter only through the
combination t1 þ t2 / C3 þ C4, so that C1 and C6 do not
contribute while C3 and C4 only contribute for � � 0. We
will see in numerical simulations below that the quenched
condensate is indeed fairly insensitive to small values ofC4

for � ¼ 0.
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The (partially) quenched condensate can also be used to
calculate the eigenvalue density by inverting the Banks-
Casher relation [29]

�ðmÞ ¼ 1

V

Z 1

�1
�ð�Þ

mþ i�
d�: (56)

The eigenvalue density is obtained from [10]

�ð�Þ ¼ lim
�!0

�ð�i�þ �Þ � �ð�i�� �Þ
2


: (57)

Care must be taken when evaluating�ð�i�� �Þ to use the
correct formula for arguments with negative real parts. We
can avoid this by making use of the fact that the condensate
is an odd function of m (since � is even) to get

�ð�Þ ¼ �ði�Þ þ �ð�i�Þ
2


: (58)

Applying this to the quenched condensate in the micro-
scopic limit gives the microscopic quenched eigenvalue
density. The density without taste breaking is [30]

�

2
½J�ð�Þ2 � J�þ1ð�ÞJ��1ð�Þ�; (59)

and the correction term due to taste breaking is

t3J�ð�Þ½J��1ð�Þ � J�þ1ð�Þ� � ðt3 þ t4Þ J��1ð�ÞJ�þ1ð�Þ
�

:

(60)

Note that the t1 and t2 terms do not contribute at this level.
This expansion will also break down close to zero, similar
to the condensate. Expressions that are valid near zero can
be obtained from eigenvalue perturbation theory as dis-
cussed in the next section.

C. Eigenvalues

The full staggered RMT is fairly complicated to work
with; however, we can obtain relatively simple expressions
for the effects of taste breaking on the splitting of the
eigenvalues from eigenvalue perturbation theory. Since
the spectrum without taste breaking contains degeneracies,
we must take these into account. If�k is a set of degenerate
eigenvectors for the eigenvalue i�k,

ðD0 � I4Þ�k ¼ �ki�k; (61)

then the eigenvalues including the leading order perturba-
tion are given by the eigenvalues of the matrix

Ek ¼ i�k þ a�y
kT�k: (62)

For simplicity, we first perform a unitary similarity trans-
formation on D0 to put it in the form

UyD0U ¼
0 0 0
0 0 i�
0 i� 0

0
@

1
A; (63)

with � a positive diagonal matrix of the nonzero singular
values ofW. The upper left block of zeros is of size �� �,
representing the zero modes, while the other two blocks
along the diagonal are of size N � N. The above trans-
formation can be absorbed into the taste breaking terms
without changing their form, and we will not explicitly
write it anymore. The nonzero eigenvalues of D0 written
as �k above are simply plus or minus the diagonal elements
of �. In this basis the eigenvectors take the form

� ¼ 1ffiffiffi
2

p
ffiffiffi
2

p
I� 0 0
0 IN IN
0 IN �IN

0
B@

1
CA � I4: (64)

We first examine the sector of the 4� zero modes for
which we define k ¼ 0. The matrix E0 is just a projection
onto the upper left �� � block for all tastes of the taste
breaking term. This gives the form

iðA3� þ bV� þ cV�Þ � �� þ ðA4� þ bA� þ cA�Þ � ��5

(65)

with implied summation over �. The A’s are �� �
Hermitian matrices and the b’s and c’s are real scalars
(as given in Appendix B). The terms are labeled according
to their origin in the full SRMT and have the same
Gaussian weights as the corresponding terms in the full
SRMT. Here we see that only the pseudoscalar and tensor
terms do not affect the splittings of the zero modes. Also, if
we ignore the scalars and were to set C3 ¼ C4, then the
would-be zero modes are described by a chiral RMT, for
which the eigenvalues are readily found. However, typi-
cally we have that C4 	 C3 so that, to a good approxima-
tion, we can set C3 ¼ 0, which will give a different
distribution for the eigenvalues.
We now examine the splitting within a degenerate quar-

tet of eigenvalues. Here the 4� 4 splitting matrix,

�y
kT�k, has the form

id1 � �5 þ d6�� � ��� þ ixV� � �� þ xA� � ��5 (66)

with xV� ¼ d3� þ bV� and xA� ¼ d4� þ bA�. All the d’s

are real scalars; again they are labeled according to their
origin, and their weight is expð��N2d2X=VCXÞ. Since the
d1;3;4;6 terms came from matrices in the original SRMT,

they are different for each quartet. However, the bA;V terms

came from scalars in the SRMT, so these variables are in
fact the same in all quartets, and also in the zero mode
sector. It is these terms that produce the leading order
eigenvalue correlations between the different quartets and
also allow the splittings within each quartet to be sensitive
to the topological charge in the weak TB regime.
Interestingly, these are the terms in staggered chiral per-
turbation theory which do not contribute at one loop.
In Sec. VIA we gave an expression for the partition

function that could become singular as m ! 0. Using the
eigenvalues from perturbation theory we can derive a
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similar expression that treats the zero modes exactly. Since
the OðaÞ correction to the quark determinant vanishes, we
need to go to second order in eigenvalue perturbation
theory. The expression for the eigenvalues in second order
degenerate eigenvalue perturbation theory is

Ek¼ i�kþa�y
kT�k� ia2

X
‘�k

�y
kT�‘�

y
‘T�k

�k��‘

: (67)

We can obtain an expression for the quark determinant
(and hence the partition function) which is accurate to
order a2 by multiplying the determinants of the Ek. If the
determinants for each quartet were expanded in a, we
would obtain an expression for the partition function iden-
tical to (37). However, to produce an expression that is
valid at m ¼ 0, the determinants must be handled exactly.
We will not deal with that here.

VII. STRONG TASTE BREAKING

Earlier we showed how the fermionic SRMT partition
function maps onto the staggered chiral Lagrangian for
weak taste breaking. There we took the large N limit of
the SRMT while scaling the terms a2�=	� 1=N. This
means that the a2VCX terms are kept fixed as N, V ! 1.
Now we consider a different limit where the CX are kept
fixed so that a2�=	 stays constant in the large N limit.
Here the taste breaking must be included in the saddle
point equations when going from the sigma model to the
chiral Lagrangian, as mentioned in Appendix A. The in-
clusion of TB breaks the Goldstone manifold from SU(4)
down to U(1). Note that if only C1 � 0, then the symmetry
is not fully broken down to U(1), but since that is not a
likely scenario for common staggered actions, we will not
consider it further.

The result for the effective chiral Lagrangian in the
strong TB regime is

L ¼ �1
2�

0
0mðUþUyÞ; (68)

where U 2 Uð1Þ. This has the form of a single fermionic
flavor with a modified condensate given by

�0
0 ¼

4�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 �D

p (69)

with a2 �D ¼ a2V �C=N. The factor of 4 is due to the four
tastes, and the TB terms serve to decrease the effective
condensate.
Note that this result differs from what we would obtain

from the large TB limit of the weak TB Lagrangian. That
is, if we start with the Lagrangian (4) and take the saddle
point in the non-Goldstone modes as a2 ! 1 (or equiv-
alently keeping the C’s fixed as V ! 1), we would get the
same form for the effective Lagrangian as in (68) but with a
condensate that is simply �0

0 ¼ 4�0. This is because in the

weak TB limit �D would be scaled to zero, while it remains
finite in the strong TB limit. Thus, in general, the two limits
should be considered distinct even though some observ-
ables may exhibit a smooth transition between them. We
will explore this transition from weak to strong TB through
numerical simulations of the SRMT.

VIII. NUMERICAL RESULTS

Here we present some numerical results obtained from
averaging over 10 000 random matrix configurations ob-
tained withN ¼ 400 (and setting� ¼ 1) at both � ¼ 0 and
� ¼ 1. We varied the value of c ¼ a2VC4 from 0 to 100,
and all other TB coefficients were set to zero.
In Fig. 1 we plot the quenched condensate from the

SRMT. In the left panel, the taste breaking parameter c is
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FIG. 1 (color online). Quenched chiral condensate for SRMTwith N ¼ 400 and � ¼ 0 for a range of values of C4 in the weak (left
panel) and strong (right panel) taste breaking regimes. The condensate is fairly insensitive to C4 in the weak TB regime. In the strong
TB regime it agrees well with the chiral GUE result (until finite N effects set in at large x) with a scaled low energy constant �0

0 given

in (69).
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varied between 0 and 0.2. For c ¼ 0 we find the expected
agreement with the plotted result from the chiral GUE
(chGUE), Eq. (52), for small x. For larger x we see a
discrepancy due to the finite N of the SRMT. As N is
increased, the SRMT results will rise to match the
chGUE curve. As c is increased, we see some small
changes in the quenched condensate for small x, but not
for larger x. This is in agreement with our expectations
from the expansion (53) since we do not expect it to be
valid near x ¼ 0. At c � 0:2 we start to see changes in the
condensate at larger x, signaling the end of the weak TB
approximation.

On the right panel of Fig. 1, we show the quenched
condensate as it leaves the weak TB regime and goes to
the strong one. The scaled chGUE results shown are given
by (normalized to a single flavor)

�̂
strong
q ðxÞ ¼ s

4
�̂

chGUE
q ðsxÞ (70)

with s ¼ �0
0=�0 and using Eq. (69). For c > 1 we see very

good agreement between the SRMT results and the above
formula, until the finite N effects set in at large x.
In Fig. 2 we plot the quenched condensate at � ¼ 1 in

the weak TB regime. The chiral GUE result has an explicit
�=x divergence which is matched by the C4 ¼ 0 data. As
C4 is increased, the expansion of the condensate gives a TB
correction proportional to ��2=x3 [Eq. (53)]. This cor-
rected GUE result agrees with the data at c ¼ 0:003 for
x > 0:5, while at c ¼ 0:01 the agreement is found only for
approximately x > 2. For larger c the expansion breaks
down. At large c > 1 the � ¼ 1 quenched condensate
enters the strong TB regime and will match the strong
TB result of the � ¼ 0 sector.
As previously mentioned, the chiral condensate is re-

lated to the eigenvalue density. Next we will look at the
number variance which is related to the two-point eigen-
value correlation function. It is defined as

Vnð �nÞ ¼ hh½nð �nÞ � �n�2ii; (71)

where hh�ii denotes the ensemble average. The function
nð �nÞ is the number of eigenvalues between 0 and ‘ in a
particular configuration, with ‘ chosen such that the inter-
val has, on average, �n eigenvalues.
In Fig. 3 we plot the number variance for a range of

values of C4, with all other coefficients set to zero at both
� ¼ 0 and � ¼ 1 topological charges. At C4 ¼ 0 the num-
ber variance matches that of the chiral GUE (VchGUE

n ) [31],
after the appropriate scaling

VC4¼0
n ð �nÞ ¼ 16VchGUE

n ð½ �n� 2��=4Þ (72)

due to the fourfold degeneracy of the spectrum and the zero
modes. Note that at C4 ¼ 0 there are really 4� exact zero
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FIG. 2 (color online). Quenched chiral condensate for SRMT
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modes; however, we are considering this to be the limit of
C4 ! 0þ, where for small C4 > 0 the zero modes are split
into 2� positive and negative near-zero modes. This gives a
shift of the number variance by 2�.

As C4 moves away from zero, we see the number
variance drop while retaining the same pattern of oscilla-
tions until a2VC4 � 0:3. Here the large oscillations have
essentially vanished. Upon increasing C4 the number vari-
ance continues to decrease and a set of smaller oscillations
appear that coincide with the result from the one flavor
chiral GUE without any scaling.

In Fig. 4 we can see the transition to the strong TB regime
from the same data. As C4 is increased a larger range of the
data falls on top of the chiral GUE curve. The point where
the data starts to deviate from the chGUE curve is roughly
equivalent to the value of a2VC4. For example, for
a2VC4 ¼ 10, the number variance agrees with the chGUE
result up to around �n ¼ 10, above which it begins to grow
larger than the chGUE curve. This is similar to what one
sees around the Thouless energy [24,25]; however, in this
case it does not signal the breakdown of the RMT, but is
instead the signal of the restoration of an explicitly broken
symmetry (taste). The behavior is independent of the value
of N. If one observed a similar behavior of the number
variance in lattice simulations, this could provide an inde-
pendent estimate of the size of taste breaking.

IX. SUMMARYAND FUTURE WORK

We have presented a completed chiral random matrix
theory for staggered fermions that includes all the taste
breaking effects at order a2. The SRMT has been shown to
be equivalent to the zero-momentum staggered chiral
Lagrangian in the appropriate limit. We have also identi-
fied a strong taste breaking limit where the SRMT maps
onto a one flavor effective Lagrangian.

The quenched condensate and number variance eval-
uated in the SRMT clearly show the transition from the

weak to the strong taste breaking regime. The number
variance is particularly interesting since for strong TB,
the TB scale a2V �C seems to be directly related to the range
of agreement to the one flavor chiral GUE result. We now
need to test the results of the SRMT against lattice simu-
lations with staggered fermions.
One could also extend the SRMT to include an imagi-

nary quark chemical potential. This can then be used to
obtain a measurement of the low energy constant F
[32–36] and could potentially provide more information
on the taste breaking. Similarly, one could add a real
chemical potential and study the effects of taste breaking
on the complex eigenvalues [37,38]. Additionally, one
could explore the problems associated with rooting when
the quark determinant is complex [39,40].

APPENDIX A: MAPPING THE SRMT TO THE
STAGGERED CHIRAL LAGRANGIAN

The procedure for mapping the chiral RMT onto the
zero-momentum chiral Lagrangian is by now standard
[6,12]. Here we will consider the case of only fermions,
and will leave the addition of bosonic quarks (ghosts) for
later.
We introduce a set of Grassmann variables c ts

i and �c ts
i ,

with t the taste index, s ¼ � the chiral index, and i the
randommatrix index. The determinant can then bewritten as

detðD0 þmþ aT Þ ¼
Z

d �c dc e
�c ðD0þmþaT Þc

¼
Z

d �c dc em
�c c�hðD0þaT Þc �c i:

(A1)

In this form the Gaussian integrals over the randommatrices
can be readily performed. This leads to a set of four fermion
terms in the exponential. For the termswith scalars instead of
matrices, we do not need to perform the Gaussian integrals
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now, and can wait until after expanding around the saddle
point below. We will consider the different types of taste
breaking terms separately, and in each case the Gaussian
measure is taken to be

expð�	NhT yT i=4Þ: (A2)

The four fermion terms generated by the two types of terms
with random matrices considered can be summarized as
follows:

0 iX
iXy 0

� �
��! a2

	N
h �c iþc jþ�kj

�c k�c ‘��i‘i; (A3)

iA 0
0 iB

� �
��! a2

	N

X
s¼�

h �c isc js�kj
�c ksc ‘s�i‘i: (A4)

These can be transformed into fermion bilinears by the
Hubbard-Stratonovich transformation, yielding

expð�	Nh�y�iþa �cþ��cþþa �c��y�c�Þ; (A5)

expð�	Nh�2þ þ �2�i þ a �cþ�þ�cþ þ a �c����c�Þ;
(A6)

respectively, where � is a 4� 4 complex matrix and �� are
4� 4 Hermitian. The Grassmann integrals can now be per-
formed yielding a determinant.

In the absence of taste breaking, the RMT at this point
would beZ

d
 detð
þmÞNþ� detð
y þmÞNe��Nh
y
i (A7)

with 
 a 4� 4 complex matrix. In the large N limit,
keeping

ffiffiffiffi
�

p
mN fixed (the microscopic limit) one finds

the saddle point solution of 
 ¼ U=
ffiffiffiffi
�

p
, where U is a

unitary matrix. The partition function expanded around
this solution then becomes

Z
dU detðUÞ� expð ffiffiffiffi

�
p

mNhUþUyiÞ: (A8)

Matching to the chiral Lagrangian we get
ffiffiffiffi
�

p ¼ �0V=2N.
To include the TB terms we must first choose how to

scale those terms with N. If we had scaled the matrix � to
have the same Gaussian weight as
, then we would get for
(A5)

expð��Nh�y�i þ a
ffiffiffiffiffiffiffiffiffiffi
�=	

q
½ �cþ��cþ þ �c��y�c��Þ:

(A9)

The scaling of the term a
ffiffiffiffiffiffiffiffiffiffi
�=	

p
determines whether we are

in the weak or strong TB regime. If it is held constant then

the term with � in the determinant will have a similar
magnitude as the term with 
 and we must include it in
the saddle point equations.
For this strong TB regime, at the saddle point we find,

for the term given in (A5),

� ¼ ða=	Þ�
y�1; (A10)

and in (A6),

�þ ¼ ða=2	Þ�
�1; (A11)

�� ¼ ða=2	Þ�
y�1: (A12)

The two-trace TB terms do not contribute to the saddle
point. The saddle point solution for 
 has the form


 ¼ c expði�5�Þ (A13)

for some c. The resulting effective Lagrangian for the
strong TB limit of the SRMT is given in (68) with U ¼
expði�Þ.
For weak taste breaking we can take a

ffiffiffiffiffiffiffiffiffiffi
�=	

p � 1=
ffiffiffiffi
N

p
.

Then the saddle point solution is unchanged by taste break-
ing and the TB terms can be expanded around the saddle
point solution. Then the remaining Gaussian integrals can
easily be performed, yielding the set of terms given in
Table I.

APPENDIX B: SRMT

For completeness, we will explicitly write down all the
taste breaking terms from the full staggered RMT.
The SRMT Dirac matrix is given by the form in Eq. (13).
The taste breaking terms T are given by the sum of the
following terms:

T 1 ¼
0 iX1

iXy
1 0

 !
� �5; (B1)

T 3 ¼
X
�

iA3� 0

0 iB3�

 !
� ��; (B2)

T 4 ¼
X
�

A4� 0

0 B4�

 !
� ��5; (B3)

T 6 ¼
X
�<�

0 X6��

Xy
6�� 0

0
@

1
A � ���; (B4)

T þ
V ¼ X

�

ibV� 0

0 ibV�

 !
� ��; (B5)
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T �
V ¼ X

�

icV� 0

0 �icV�

 !
� ��; (B6)

T þ
A ¼ X

�

bA� 0

0 bA�

 !
� ��5; (B7)

T �
A ¼ X

�

cA� 0
0 �cA�

� �
� ��5: (B8)

The Gaussian weights for the individual terms are

exp

�
�N2

8V

�	
T 2

1

C1

þT 2
3

C3

þT 2
4

C4

þT 2
6

C6


�

� �N2

V

X
�

�b2V�
Cþ
V

þ c2V�

C�
V

þ b2A�

Cþ
A

þ c2A�

C�
A

��
: (B9)
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