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We propose a model to describe diffractive events in hadron-hadron collisions where a rapidity gap is

surrounded by two jets. The hard color-singlet object exchanged in the t-channel and responsible for the

rapidity gap is described by the perturbative QCD Balitsky-Fadin-Kuraev-Lipatov Pomeron, including

corrections due to next-to-leading logarithms. We allow the rapidity gap to be smaller than the interjet

rapidity interval, and the corresponding soft radiation is modeled using the HERWIG Monte Carlo. Our model

is able to reproduce all Tevatron data, and allows one to estimate the jet-gap-jet cross section at the LHC.

DOI: 10.1103/PhysRevD.83.034036 PACS numbers: 13.87.�a, 12.38.Bx

I. INTRODUCTION

A large effort has been devoted to understanding the
QCD dynamics of rapidity gaps in jet events since such
processes were observed inpþ �p collisions at the Tevatron
more than 10 years ago [1,2]. While describing diffractive
processes in QCD has been a challenge for many years, the
presence of a hard scale in so-called jet-gap-jet events, for
instance, brings hope that one could be able to understand
these with perturbative methods. However, after many
theoretical investigations, there is still no consensus on
what the relevant QCD mechanism really is.

In a hadron-hadron collision, a jet-gap-jet event features
a large rapidity gap with a high-pT jet on each side (pT �
�QCD). Across the gap, the object exchanged in the

t-channel is color singlet and carries a large momentum
transfer, and when the rapidity gap is sufficiently large the
natural candidate in perturbative QCD is the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) Pomeron [3]. Of course,
the collision energy

ffiffiffi
s

p
should be big (

ffiffiffi
s

p � ET) in order
for jets to be produced along with a large rapidity gap. Such
events are expected to be produced copiously in pþ p
collisions at the LHC.

To compute the jet-gap-jet process in the BFKL frame-
work, one has first to address the problem of coupling the
BFKL Pomeron to partons, as opposed to colorless parti-
cles. Indeed, BFKL calculations usually use the fact that
impact factors, which describe the coupling of incoming
and outgoing particles to the BFKL Pomeron, vanish when
attached to gluons with no transverse momentum. This is a
property of colorless impact factors. For instance, this is
what allows one to turn the Feynman-diagram calculation
of the BFKL Pomeron into a conformal-invariant Green
function [4]. Consequently, this BFKL Green function

cannot be hooked to colored particles, and should be
modified accordingly first. The Mueller-Tang prescription
[5] is widely used in the literature to couple the BFKL
Pomeron to quarks and gluons.
On the phenomenological side, the original parton-level

Mueller-Tang calculation was not sufficient to describe the
Tevatron data. A first attempt to improve it was proposed in
[6], where parton showering and hadronization were taken
into account using the HERWIG Monte Carlo program [7].
An agreement with data could only be obtained if the
leading-logarithmic (LL) BFKL calculation was done
with a fixed value of the coupling constant �S, which is
not satisfactory, as next-to-leading-logarithmic (NLL)
BFKL corrections are known to be important. In addition,
only the leading conformal spin (p ¼ 0) was taken into
account. In [8], it was shown that a good description of the
data could be obtained when some NLL corrections were
numerically taken into account in an effective way [9], but
the full NLL-BFKL kernel [10] could still not be imple-
mented. As a result, these tests on the relevance of the
BFKL dynamics were not conclusive.
In the most recent phenomenological work on the subject

[11], the full NLL-BFKL kernel was implemented including
all conformal spins, along with the collinear improvements
necessary to remove spurious singularities and obtain mean-
ingful results [12,13]. However, the results of [11] remained
at parton level; therefore, the fact that the rapidity interval
between the jets can be larger than the rapidity gap could not
be implemented. The D0 measurement could nevertheless
be reasonably well described, while the CDF data was not
considered. The purpose of this paper is to improve the
model by taking into account parton showering, hadroniza-
tion effects and jet reconstruction, which is necessary to
make more precise comparisons with data. Wewill interface
the collinearly improved NLL-BFKL parton-level results of
[11] with the HERWIG Monte Carlo, as was done in [6] with
the LL-BFKL calculation. We shall compare our results to
both D0 and CDF data.
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The plan of the paper is as follows. In Sec. II, we recall
the phenomenological NLL-BFKL formulation of the jet-
gap-jet cross section, and in Sec. III, we explain how it is
embedded into the HERWIG Monte Carlo program. In
Sec. IV, we present successful comparisons with all
Tevatron data, which allow us to fix the absolute normal-
ization in our model. Predictions for the jet-gap-jet cross
section at the LHC are presented in Sec. V. Sec. VI is
devoted to conclusions and outlook.

II. THE JET-GAP-JET CROSS SECTION
IN THE BFKL FRAMEWORK

The production of a rapidity gap between two outgoing
jets in a hadron-hadron collision is pictured in Fig. 1, with
the different kinematic variables. We denote

ffiffiffi
s

p
as the

collision energy, pT1
and pT2

as the transverse momenta

of the two jets and x1 and x2 as their longitudinal fraction
of momentum with respect to the incident hadrons. The
rapidity interval between the two jets is ��J ¼
lnðx1x2s=pT1

pT2
Þ. At the parton level (see Fig. 1 in [11]),

pT1
¼ �pT2

¼ pT , and the rapidity gap coincides with the

rapidity interval�� ¼ lnðx1x2s=p2
TÞ between the outgoing

partons that will initiate the jets. The hadronization of the
partons into jets reduces the size of the rapidity gap to��g.

In this section, we deal with the parton-level cross
section

d�pp!XJJY

dx1dx2dp
2
T

¼ Sfeffðx1; p2
TÞfeffðx2; p2

TÞ
d�gg!gg

dp2
T

; (1)

where the functions feffðx; p2
TÞ are effective parton distri-

butions that resum the leading logarithms logðp2
T=�

2
QCDÞ.

They have the form

feffðx;�2Þ ¼ gðx;�2Þ þ C2
F

N2
c

ðqðx;�2Þ þ �qðx;�2ÞÞ; (2)

where g (respectively, q, �q) is the gluon (respectively,
quark, antiquark) distribution function in the incoming
hadrons, and evolves according to Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi evolution [14]. Even though the
process we consider involves moderate values of x1 and
x2 and the perturbative scale p2

T � �2
QCD, which we have

chosen as the factorization scale, the cross section (1) does
not obey collinear factorization. This is due to possible
secondary soft interactions between the colliding hadrons
which can fill the rapidity gap. Therefore, in (1), the col-
linear factorization of the parton distributions feff is cor-
rected with the so-called gap-survival probability S, which
we assume depends only on

ffiffiffi
s

p
as in standard diffractive

calculations. Since the soft interactions happen on much
longer time scales, the factor S is factorized from the hard
part d�gg!gg=dp2

T . This hard cross section is given by

d�gg!gg

dp2
T

¼ 1

16�
jAð��;p2

TÞj2 (3)

in terms of the gg ! gg scattering amplitude Að��;p2
TÞ.

The two measured jets are initiated by the final-state gluons
(or quarks); parton showering and hadronization effectswill
be discussed in the next section.
In the following, we consider the high-energy limit in

which the rapidity gap�� is assumed to be very large. The
BFKL framework allows one to compute the gg ! gg
amplitude in this regime, and the result is known up to
NLL accuracy. We note that there exist other QCD-based
approaches to compute the jet-gap-jet cross section [15].
Let us first point out that, in general, collinear and
kT-factorization are two distinct schemes to factorize a
hard process from a soft process (as is the case for the
proton structure function F2), and should not be mixed. But
the process we are investigating is different: collinear
factorization is used to separate the hard part from the
soft part, and kT-factorization is only used within the
hard part itself. It allows one to factorize the amplitude
Að��;p2

TÞ into three hard pieces: two impact factors de-
fined order-by-order with respect to �S, and the BFKL
Green function where a resummation of leading (and
next-to-leading) logarithms is performed.
Since in our calculation the BFKL Pomeron is coupled

to quarks or gluons, the BFKL Green function cannot be
used as it is and should be modified. The transformation
proposed in [5] is based on the fact that one should recover
the analyticity of the Feynman diagrams. It was later
argued that this prescription corresponds to a deformed
representation of the BFKL kernel that indeed could be
coupled to colored particles and for which the bootstrap
relation is fulfilled [16]. Applying the Mueller-Tang
prescription at NLL leads to

FIG. 1. Production of two jets surrounding a large rapidity gap
in a hadron-hadron collision.

ffiffiffi
s

p
denotes the collision energy,

pT1
(�1) and pT2

(�2) the transverse momenta (rapidities) of the

jets, and x1 and x2 are their longitudinal momentum fraction with
respect to the incident hadrons. The rapidity interval between the
jets ��J is bigger than the rapidity gap ��g.
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Að��;p2
TÞ ¼

16Nc��
2
Sðp2

TÞ
CFp

2
T

X1
p¼�1

Z d�

2i�

½p2 � ð�� 1=2Þ2� expf ��ðp2
TÞ�eff½2p; �; ��ðp2

TÞ���g
½ð�� 1=2Þ2 � ðp� 1=2Þ2�½ð�� 1=2Þ2 � ðpþ 1=2Þ2� ; (4)

with the complex integral running along the imaginary axis
from 1=2� i1 to 1=2þ i1, and with only even conformal
spins contributing to the sum [17]. The running coupling is
given by

��ðp2
TÞ ¼

�Sðp2
TÞNc

�
¼ ½b logðp2

T=�
2
QCDÞ��1;

b ¼ 11Nc � 2Nf

12Nc

:

(5)

It is important to note that in formula (4), we used the
leading-order nonforward quark and gluon impact factors.
We point out that the next-to-leading-order impact factors
are known [18], and that, in principle, a full NLL analysis
is feasible, but this goes beyond the scope of our study.

The NLL-BFKL effects are phenomenologically taken
into account by the effective kernels �effðp; �; ��Þ. For
p ¼ 0, the scheme-dependent NLL-BFKL kernels pro-
vided by the regularization procedure �NLLð�;!Þ depend
on !, the Mellin variable conjugate to expð��Þ. In each
case, the NLL kernels obey a consistency condition [12]
which allows one to reformulate the problem in terms of
�effð�; ��Þ (see also [13,19] for different approaches). The
effective kernel �effð�; ��Þ is obtained from the NLL kernel
�NLLð�;!Þ by solving the implicit equation �eff ¼
�NLLð�; ���effÞ. In [20,21], the regularization procedure
has been extended to nonzero conformal spins, and the
kernel �NLLðp; �;!Þ was obtained from the results of [22].
The formulae needed to compute it can be found in the
Appendix of [20]. (In the present study, we shall use the S4
scheme in which �NLL is supplemented by an explicit ��
dependence; the results in the case of the S3 scheme are
similar.) Then the effective kernels �effðp; �; ��Þ are
obtained from the NLL kernel by solving the implicit
equation:

�eff ¼ �NLLðp; �; ���effÞ: (6)

Similar NLL-BFKL phenomenological studies have
been carried out with Mueller-Navelet jets in hadron-
hadron collisions [20,21], forward jet production in deep
inelastic scattering [23,24], and the proton structure func-
tion [25]. While in the F2 analysis the NLL corrections did
not really improve the BFKL description, it was defini-
tively the case in the forward-jet study. In the Mueller-
Navelet jet case, NLL corrections dramatically change the
predictions, even more so in the full calculation when NLO
impact factors are also implemented [26]. In fact, these
results cast strong doubts on the fact that Mueller-Navelet
jets are a good observable to unambiguously observe

BFKL effects, leaving the jet-gap-jet measurement as per-
haps the new candidate.
In the LL-BFKL case that we consider for comparisons,

the formula for the jet-gap-jet cross section is formally the
same as the NLL one, with the following substitutions
in (4):

�effðp; �; ��Þ ! �LLðp; �Þ

¼ 2c ð1Þ � c

�
1� �þ jpj

2

�
� c

�
�þ jpj

2

�
;

��ðk2Þ ! �� ¼ const parameter; (7)

where c ð�Þ ¼ d log�ð�Þ=d� is the logarithmic derivative
of the Gamma function. In this case, the coupling �� is a
priori a parameter. We choose to fix it to the value 0.16
obtained in [23] by fitting the forward jet data from the
electron-proton collider HERA. This unphysically small
value of the coupling is indicative of the slower Bjorken-x
dependence of the forward-jet data compared to the
LL-BFKL cross section, when used with a reasonable ��
value. And in fact, the value �� ¼ 0:16 mimics the slower
energy dependence of NLL-BFKL cross section (in this
case, the average value of �� is about 0.25), which in the
forward-jet case is consistent with data. Therefore in both
the LL- and NLL-BFKL cases, one deals with one-
parameter formulae: the absolute normalization which is
not under control. In the NLL case, this is due to the fact
the we do not use NLO impact factors.
Finally, to compute the cross section (1), we use CTEQ

parton distribution functions [27], and we take S ¼ 0:1 for
the gap-survival probability at the Tevatron and S ¼ 0:03
at the LHC. More details on the parton-level computations
can be found in [11], such as the importance of the different
conformal spins in (4), or the uncertainty due to the choice
of the renormalization scale. In this work, the goal is to
obtain hadron-level results by interfacing (1) with the
HERWIG event generator.

III. IMPLEMENTATION OF THE
NLL-BFKL FORMULA IN HERWIG

The parton-level calculation presented in the previous
section leads by definition to a gap size �� equal to the
interval in rapidity between the partons that initiate the jets.
At particle level, it is no longer true. Because of QCD
radiation and hadronization, the jets have a finite size, and
the gap size ��g is smaller than the difference in rapidity

between the two jets ��J (see Fig. 1). This has an impor-
tant consequence: to be able to compare the NLL-BFKL
jet-gap-jet cross sections with CDF and D0 measurements
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at the Tevatron, it is necessary to embed our formulae in a
Monte Carlo code. For instance, the D0 collaboration
selects events with a gap devoid of any activity in the
½�1; 1� region in rapidity while they require the jets to be
separated by at least 4 units in rapidity. To take these
effects into account, we implemented the NLL-BFKL
cross section in the HERWIG Monte Carlo, and made our
analysis at the particle level, after hadronization. Since this
procedure of going from parton-level to hadron-level is
quite sensitive to the way jets are reconstructed, we use the
same jet algorithm as experimentally used.

Practically, in order to implement our formalism in
HERWIG, we modified the HWHSNM function which

implements the matrix element squared for color-singlet
parton-parton scattering [7]. Formula (3), which gives the
BFKL d�=dp2

T cross section, is too complicated to be
implemented directly in HERWIG since it involves an inte-
gration in the complex plane over �, and it would take too
much computing time to generate many events. To avoid
this issue, we parametrized d�=dp2

T as a function of
the parton pT and �� between both partons at generator
level. Denoting zðp2

TÞ ¼ ��ðp2
TÞ��=2, the parametrization

used is

d�

dp2
T

¼�4
Sðp2

TÞ
4�p4

T

½aþbpTþc
ffiffiffiffiffiffi
pT

p þðdþepTþf
ffiffiffiffiffiffi
pT

p Þ�z

þðgþhpTÞ�z2þðiþj
ffiffiffiffiffiffi
pT

p Þ�z3þexpðkþ lzÞ�:
(8)

This formula is purely phenomenological, not motivated
by theory, and was just introduced to obtain a very good �2

while fitting (8) to the full expression of d�=dp2
T . To

perform the fit, 2330 points were used for parton pT rang-
ing from 10 to 120 GeV, and�� up to 10. The values of the
different parameters were implemented in the HERWIG

Monte Carlo. To summarize, we input into HERWIG the
NLL-BFKL parton-level cross section which depends on
pT and ��, and the output depends on ��g, ��J, and the

jets’ transverse momenta pT1
and pT2

. Further integrations

of these kinematic variables are performed to obtain the
different observables discussed in the next section, taking
into account experimental cuts.

IV. COMPARISON WITH TEVATRON DATA

The D0 Collaboration has performed a measurement of
the jet-gap-jet event ratio, defined as the ratio of the jet-
gap-jet cross section to the inclusive di-jet cross section,
as a function of the transverse energy of the second-
leading jet, that we denote ET , and also as a function of
the rapidity difference ��J between the two leading jets
[1]. At least two jets are reconstructed in the D0
calorimeter with ET > 15 GeV for the second leading
jet. In addition, the two jets are required to be in the

forward regions and in opposite hemispheres, by request-
ing 1:9< j�1;2j< 4:1 and �1�2 < 0. The difference in

rapidity between both jets ��J was imposed to be larger
than 4, and a rapidity gap between at least � ¼ �1 and
� ¼ 1 is required. The data are presented as a function of
the second-leading-jet ET , or as a function of ��J in
which case a low-ET and a high-ET jet samples were
used. (Low ET means 15<ET < 25 GeV and high ET

means ET > 30 GeV, those cuts applying to both jets.)
To compare the D0 measurement directly with the NLL-

BFKL calculation implemented in HERWIG, we compute
the following ratio:

R ¼ NLLBFKLherwig

Di-Jet herwig
� LOQCD

NLOQCD
; (9)

where ‘‘NLL BFKL HERWIG’’ and ‘‘Di-Jet HERWIG’’ are
the jet-gap-jet and the inclusive di-jet cross sections ob-
tained with HERWIG, respectively. To take into account
NLO QCD effects, we also correct the ratio R by the
LO/NLO QCD di-jet cross section ratio obtained with
the NLOJET++ program [28]. The same method applies for
the LL-BFKL cross section calculation. The comparison
between our calculations and the D0 data is given in the
three leftmost plots of Fig. 2, after the overall normaliza-
tion was adjusted in the two cases (LL and NLL). We find
that there is a good agreement between the NLL-BFKL
calculation and the data whereas the LL-BFKL calculation
leads to an ET dependence which is too flat. Moreover, in
the LL case it is difficult to accommodate all the data with a
single overall normalization factor, while in the NLL case
this is not a problem.
The comparison with CDF data is given in the three

rightmost plots of Fig. 2; in this case, the normalization of
the different data sets is arbitrary. The CDF Collaboration
also measured the jet-gap-jet cross section requesting a gap
between �1 and 1 in rapidity, but used a higher jet ET

threshold of 20 GeVand a lower acceptance in jet rapidity
between 1.8 to 3.5, compared to the D0 measurement. The
CDF requirement on the minimum rapidity interval be-
tween the two jets is then ��J > 3:6, compared to 4 in the
case of D0. CDF measured the jet-gap-jet event ratio as a
function of the average jet transverse momentum (which is
what ET denotes in the case of CDF), the average trans-

verse momentum of the third jet Eð3Þ
T when there is one in

the event, and also as a function of ��J. The conclusion
remains the same as in the case of D0 data, namely, that the
NLL-BFKL formalism leads to a better description than
the LL one. However, it is worth noticing that we are not
able to describe the full ��J dependence and especially
the decrease at high ��J, which is somehow in disagree-
ment with the D0 measurement. Further measurements in
progress in the CDF Collaboration will be very useful to
understand these differences. Parton showering and
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hadronization effects are crucial in order to obtain this
level of agreement with data.

V. PREDICTIONS FOR THE LHC

Using the normalizations obtained from the fits to the D0
data, we are able to predict the jet-gap-jet event ratio at the

LHC. In doing so, we also take into account the fact that
the gap-survival probability is smaller by a factor 10=3.
(This is estimated for a collision energy of

ffiffiffi
s

p ¼ 14 TeV.)
Requesting both jets to have ET > 20 GeV, and the jet
rapidities to obey 2< j�1;2j< 5 and �1�2 < 0, the values
of jet-gap-jet event ratios are shown in Fig. 3, as a function
ofET for different��J ranges (left plots), and as a function
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FIG. 2 (color online). Comparisons between the D0 (left) and CDF (right) measurements of the jet-gap-jet event ratio with the NLL
and LL-BFKL calculations. The NLL calculation is in fair agreement with the data while the LL one leads to a worse description.
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FIG. 3 (color online). Predictions of our model for the ratio of the jet-gap-jet to the inclusive-jet cross section at the LHC, as a
function of the second-leading-jet transverse energy ET (left), and of the rapidity difference between the two leading jets ��J (right).
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of ��J for different ET ranges (right plots). The main
feature of the predictions of our model is that jet-gap-jet
event ratio is about 0.002 and does not vary a lot with ET or
��J, except for the LL-BFKL predictions, which increase
a bit with ��J. By contrast, the parton-level predictions
obtained in [11] featured an increase of the ratio with both
ET or ��J.

Let us add a word of caution about these predictions.
We have assumed a specific value for the gap survival
probability at the LHC (namely 0.03); however, this value
shows large theoretical uncertainties [29]. It will be mea-
sured by the LHC experiments and our cross section
predictions will have to be modified once such measure-
ments are performed. For instance, our cross section
should be reduced by a factor 10 if the survival probabil-
ity is found to be 10 times smaller than 0.03 for a center-
of-mass energy of 14 TeV. In addition, our prediction
assumes that the inclusive jet cross section at the LHC
can be correctly described by the HERWIG Monte Carlo, as
is the case at the Tevatron [30]. This can betested again at
the LHC using the first data. One first indication for a
center-of-mass energy of 7 TeV was given by the mea-
surement of the difference in azimuthal angle in di-jet
events [31] which seems to be well described by the
HERWIG Monte Carlo. However, the same measurement

as well as cross section comparison between data and
Monte Carlo need to be done at a higher center-of-mass
energy at 14 TeV to make sure that the HERWIG

Monte Carlo can describe the inclusive jet measurement.
If some discrepancy needs to be accounted for, this has to
be taken into account as well in our prediction of the
jet-gap-jet cross section ratio.

VI. CONCLUSIONS

We have embedded the parton-level NLL-BFKL calcu-
lation of [11] into the HERWIG Monte Carlo program, in
order to obtain hadron-level results for the jet-gap-jet cross
section in hadron-hadron collisions, corresponding to the
production of two high-pT jets around a large rapidity gap.
The NLL-BFKL effects are implemented through a
renormalization-group improved kernel in the S4 scheme,
while the Mueller-Tang prescription is used to couple the
BFKL Pomeron to colored partons, described with only
LO impact factors.
After adjusting one parameter, the overall normaliza-

tion, the NLL-BFKL calculation is able to describe all
Tevatron data, except the higher end of the ��J depen-
dence measured by CDF. This still provides an improve-
ment compared to the LL-BFKL calculation (obtained with
the fixed value of the coupling �� ¼ 0:16), which, in addi-
tion, features an ET dependence that is too flat compared to
the D0 data. We presented predictions which could be
tested at the LHC for the same jet-gap-jet event ratio
measured at the Tevatron, but for larger rapidity gaps.
We noticed that going from parton-level to hadron-level

is necessary in order to obtain a global description of the
Tevatron data; hence our results supersede those of [11].
Considering LHC predictions, hadron-level calculations
show almost no dependence of the jet-gap-jet event ratio
(which is about 0.002 in the kinematic range we consid-
ered, and for the experimental cuts we used), while parton-
level calculations showed an increase of this ratio with both
ET and��J. This should provide a strong test of the BFKL
regime.
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