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We analyze the B ! K�
2ð! K�Þlþl� (with l ¼ e, �, �) decay in the standard model and two new

physics scenarios: the vectorlike quark model and family nonuniversal Z0 models. We derive the

differential angular distributions using the recently calculated form factors in the perturbative QCD

approach. Branching ratios, polarizations, forward-backward asymmetries, and transversity amplitudes

are predicted, from which we find a promising prospective to observe this channel in future experiments.

We update the constraints on effective Wilson coefficients and/or free parameters in these two new physics

scenarios by making use of the B ! K�lþl� and b ! slþl� experimental data. Their impact on

B ! K�
2l

þl� is subsequently explored and, in particular, the zero-crossing point for the forward-backward

asymmetry in these new physics scenarios can sizably deviate from the standard model. In addition we

also generalize the analysis to a similar mode, Bs ! f02ð1525Þð! KþK�Þlþl�.
DOI: 10.1103/PhysRevD.83.034034 PACS numbers: 13.20.He, 12.39.St, 14.40.Be

I. INTRODUCTION

Discoveries of new degrees of freedom at the TeVenergy
scale, with contributions to our understanding of the origin
of the electroweak symmetry breaking, can proceed in two
different ways. One is a direct search of theHiggs boson, the
last piece needed to complete the standardmodel (SM), and
particles beyond the SM, to establish new physics (NP)
theories. The other effort, which is ongoing, is to investigate
processes in which the SM is tested with higher experimen-
tal and theoretical precision. In the latter category, rare B
decays are among the ideal probes. Besides constraints on
the Cabibbo-Kobayashi-Maskawa (CKM) matrix, includ-
ing apexes and angles of the unitary triangle, which have
been contributed by semileptonic b ! u=c and nonleptonic
B decays, respectively, the electroweak interaction structure
can also be probed by, for instance, the b ! s� and b !
slþl� modes which are induced by loop effects in the SM
and therefore sensitive to the NP interactions.

Unlike b ! s� and B ! K�� which have only limited
physical observables, b ! slþl�, and especially B !
K�lþl�, with a number of observables accessible, provides
a wealth of information of weak interactions, ranging from
the forward-backward asymmetries (FBAs), isospin sym-
metries, and polarizations to a full angular analysis. The
last barrier to accessing this mode, the low statistics with a
branching fraction of the order 10�6, is being cleared by B
factories and the hadron collider at Tevatron [1–3]. The
ongoing LHCb experiment can accumulate 6200 events per
nominal running year of 2 fb�1 with

ffiffiffi
s

p ¼ 14 TeV [4],
which allows one to probe the short-distance physics at an
unprecedented level. For instance, the sensitivity to the

zero-crossing point of FBAs can be reduced to 0:5 GeV2

and might be further improved as 0:1 GeV2 after the
upgrade [5]. This provides a good sensitivity to discrimi-
nate between the SM and different models of new physics.
There are also a lot of opportunities at the Super B factory
[6]. Because of these virtues, theoretical research interests
in this mode have exploded and the precision is highly
improved; see Refs. [7–22] for an incomplete list.
Toward the direction to elucidate the electroweak

interaction, B ! K�lþl� and its SUð3Þ-related mode
Bs ! �lþl� are not unique. In this work, we shall point
out that B ! K�

2ð1430Þlþl� and the Bs counterpart
Bs ! f02ð1525Þlþl�,1 which so far have not been investi-
gated in detail [23–26], are also useful in several aspects.
Because of the similarities between K� and K�

2 , all experi-
mental techniques for B ! K�lþl� are adjustable to
B ! K�

2l
þl�. The main decay product of K�

2 is a pair
consisting of a charged kaon and a pion which are easily
detected on the LHCb. Moreover, as we will show in the
following, based on either a direct computation in the
perturbative QCD approach [27] or the implication of
experimental data on the B ! K�

2� process, the branching
ratio (BR) of B ! K�

2l
þl� is found to be sizable.

Therefore, thousands of signal events can be accumulated
on the LHCb per nominal running year.
As a consequence of the unitarity of the quark mixing

matrix, the tree-level flavor-changing neutral current
(FCNC) is forbidden in the SM. When higher order cor-
rections are taken into account, b ! slþl� arises from the
photonic penguin, the Z penguin, and the W-box diagram.
The large mass scale of virtual states leads to tiny Wilson
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1Hereafter, we will use K�
2 and f02 to abbreviate K�

2ð1430Þ and
f02ð1525Þ.
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coefficients in b quark decays and thus b ! slþl� would
be sensitive to the potential NP effects. In certain NP
scenarios, new effective operators out of the SM scope
can emerge, but in other scenarios, only Wilson coeffi-
cients for effective operators are modified. In the latter
category, the vectorlike quark model (VQM) [28–36] and
family nonuniversal Z0 models [37–42] are simplest and
therefore of theoretical interest. In this work we shall also
elaborate on the impact of these models on B ! K�

2l
þl�.

The rest of the paper is organized as follows. In Sec. II,
we collect the necessary hadronic inputs, namely, form
factors. Section II contains the analytic formulas for dif-
ferential decay distributions and integrated quantities. In
Sec. IV, we give a brief overview of two NP models whose
effects we will study. Section V contains our phenomeno-
logical analysis: the predictions in the SM, an update of
the constraints on the VQM and Z0 model parameters, and
the NP effect on the physical quantities. We conclude in the
last section. In the appendices, we give the effective
Hamiltonian in the SM and the helicity amplitude method.

II. B ! K2 FORM FACTORS

B ! K�
2l

þl� decay amplitudes contain two separate
parts. Short-distance physics, in which contributions at
the weak scale �W are calculated by perturbation theory
and the evolution between mW and the b quark mass scale
mb is organized by the renormalization group. These de-
grees of freedom are incorporated into Wilson coefficients
and the obtained effective Hamiltonian responsible for
b ! slþl� in Appendix A. The low-energy effect charac-
terizes the long-distance physics and will be parametrized
by hadronic matrix elements of effective operators, which

are usually reduced to heavy-to-light form factors in semi-
leptonic B decays.
The spin-2 polarization tensor, which satisfies

���P
�
2 ¼ 0, with P2 being the momentum, is symmetric

and traceless. It can be constructed via the spin-1 polar-
ization vector �:

���ð�2Þ ¼ ��ð�Þ��ð�Þ;
���ð�1Þ ¼ 1ffiffiffi

2
p ½��ð�Þ��ð0Þ þ ��ð�Þ��ð0Þ�;

���ð0Þ ¼ 1ffiffiffi
6

p ½��ðþÞ��ð�Þ þ ��ðþÞ��ð�Þ�

þ
ffiffiffi
2

3

s
��ð0Þ��ð0Þ:

(1)

In the case of the tensor meson moving on the z axis, the
explicit structures of � in the ordinary coordinate frame are
chosen as

��ð0Þ ¼ 1

mK�
2

ðj ~pK�
2
j; 0; 0; EK�

2
Þ;

��ð�Þ ¼ 1ffiffiffi
2

p ð0;�1;�i; 0Þ;
(2)

where EK�
2
and ~pK�

2
are the energy and the momentum

magnitude of K�
2 in the B meson rest frame, respectively.

In the following calculation, it is convenient to introduce a
new polarization vector �T ,

�T�ðhÞ ¼ 1

mB

���ðhÞP�
B; (3)

which satisfies

�T�ð�2Þ ¼ 0; �T�ð�1Þ ¼ 1

mB

1ffiffiffi
2

p �ð0Þ � PB��ð�Þ; �T�ð0Þ ¼ 1

mB

ffiffiffi
2

3

s
�ð0Þ � PB��ð0Þ: (4)

The contraction is evaluated as �ð0Þ � PB=mB ¼ j ~pK�
2
j=mK�

2
, and thus we can see that the new vector �T plays a similar role

to the ordinary polarization vector �, regardless of the dimensionless constants 1ffiffi
2

p j ~pK�
2
j=mK�

2
or

ffiffi
2
3

q
j ~pK�

2
j=mK�

2
.

The parametrization of B ! K�
2 form factors is analogous to the B ! K� ones [25–27,43],

hK�
2ðP2; �Þj�s��bj �BðPBÞi ¼ � 2Vðq2Þ

mB þmK�
2

����	��T�PB�P2	;

hK�
2ðP2; �Þj�s���5bj �BðPBÞi ¼ 2imK�

2
A0ðq2Þ �

�
T � q
q2

q� þ iðmB þmK�
2
ÞA1ðq2Þ

�
��T� � ��T � q

q2
q�

�

� iA2ðq2Þ ��T � q
mB þmK�

2

�
P� �

m2
B �m2

K�
2

q2
q�

�
;

hK�
2ðP2; �Þj�s	��q�bj �BðPBÞi ¼ �2iT1ðq2Þ����	��T�PB�P2	;

hK�
2ðP2; �Þj�s	���5q�bj �BðPBÞi ¼ T2ðq2Þ½ðm2

B �m2
K�

2
Þ��T� � ��T � qP�� þ T3ðq2Þ��T � q

�
q� � q2

m2
B �m2

K�
2

P�

�
; (5)
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where q ¼ PB � P2, P ¼ PB þ P2. We also have the re-
lation 2mK�

2
A0ð0Þ¼ ðmBþmK�

2
ÞA1ð0Þ�ðmB�mK�

2
ÞA2ð0Þ

in order to smear the pole at q2 ¼ 0.
Using the newly studied light-cone distribution ampli-

tudes [44], we have computed B ! K�
2 form factors [27] in

the perturbative QCD approach (PQCD) [45]. At the lead-
ing power, our predictions are found to obey the nontrivial
relations derived from the large energy symmetry. This
consistency may imply that the PQCD results for the
form factors are reliable and therefore suitable for the study
of the semileptonic B decays. The recent computation in
light-cone QCD sum rules [43] is also consistent with ours.
Results in the light-cone sum rules (LCSR) in conjunction
with B-meson wave functions [46], however, are too large
and thus not favored by the B ! K�

2� data. In our work the
B ! K�

2 form factors are q2 distributed as [27]

Fðq2Þ ¼ Fð0Þ
ð1� q2=m2

BÞð1� aðq2=m2
BÞ þ bðq2=m2

BÞ2Þ
; (6)

where F denotes a generic form factor among A0, A1, V,
T1–3. Neglecting higher power corrections, A2 is related to
A0 and A1 by

A2ðq2Þ ¼
mB þmK�

2

m2
B � q2

½ðmB þmK�
2
ÞA1ðq2Þ � 2mK�

2
A0ðq2Þ�:

(7)

Numerical results for the B ! K�
2 and Bs ! f02ð1525Þ form

factors at the maximal recoil point and the two fitted
parameters a, b are collected in Table I. The two kinds
of errors are from (1) decay constants of the B meson and
shape parameter !b and (2) �QCD, the scales ts, and the

threshold resummation parameter c [27].

III. DIFFERENTIAL DECAY DISTRIBUTIONS
AND SPIN AMPLITUDES

In this section, we will discuss the kinematics of the
quasi four-body decay B ! K�

2ð! K�Þlþl�, define angu-
lar observables, and collect the explicit formulas of helicity
amplitudes and/or transversity amplitudes.

A. Differential decay distribution

At the quark level, the decay amplitude for b ! slþl� is
expressed as

Mðb ! slþl�Þ ¼ GFffiffiffi
2

p 
em

�
VtbV

�
ts �

�
C9 þ C10

4
½ �sb�V�A½�ll�VþA þ C9 � C10

4
½ �sb�V�A½�ll�V�A

þ C7Lmb½�si	��ð1þ �5Þb�q
�

q2
� ½�l��l� þ C7Rmb½�si	��ð1� �5Þb�q

�

q2
� ½�l��l�

�
; (8)

where C7L ¼ C7 and C7R ¼ ms

mb
C7L in the SM.

Sandwiching Eq. (8) between the initial and final states
and replacing the spinor product ½ �sb� by hadronic matrix
elements, one obtains the decay amplitude for the hadronic
B process. For the process under scrutiny in this work, the
decay observed in the experiment is actually B ! K�

2ð!
K�Þlþl�, which is a quasi four-body decay. The conven-
tion on the kinematics is illustrated in Fig. 1. The moving
direction of K�

2 in the Bmeson rest frame is chosen as the z
axis. The polar angle �K (�l) is defined as the angle
between the flight direction of K� (��) and the z axis in

the K�
2 (lepton pair) rest frame. � is the angle defined by

decay planes of K�
2 and the lepton pair.

Using the technique of helicity amplitudes described in
Appendix B, we obtain the partial decay width

d4�

dq2d cos�Kd cos�ld�
¼ 3

8
jMBj2; (9)

with the mass correction factor �l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

l =q
2

q
. The

function jMBj2 is decomposed into 11 terms,

TABLE I. B ! K�
2 and Bs ! f02ð1525Þ form factors in the

PQCD approach. Fð0Þ denotes results at the point q2 ¼ 0, while
a, b are the parameters in the parametrization shown in Eq. (6).
The two kinds of errors are from (1) decay constants of the B
meson and the shape parameter !b and (2) �QCD, factorization

scales ts, and the threshold resummation parameter c.

F Fð0Þ a b

VBK�
2 0:21þ0:04þ0:05

�0:04�0:03 1:73þ0:02þ0:05
�0:02�0:03 0:66þ0:04þ0:07

�0:05�0:01

A
BK�

2

0 0:18þ0:04þ0:04
�0:03�0:03 1:70þ0:00þ0:05

�0:02�0:07 0:64þ0:00þ0:04
�0:06�0:10

A
BK�

2

1 0:13þ0:03þ0:03
�0:02�0:02 0:78þ0:01þ0:05

�0:01�0:04 �0:11þ0:02þ0:04
�0:03�0:02

A
BK�

2

2 0:08þ0:02þ0:02
�0:02�0:01 � � � � � �

T
BK�

2

1 0:17þ0:04þ0:04
�0:03�0:03 1:73þ0:00þ0:05

�0:03�0:07 0:69þ0:00þ0:05
�0:08�0:11

T
BK�

2

2 0:17þ0:03þ0:04
�0:03�0:03 0:79þ0:00þ0:02

�0:04�0:09 �0:06þ0:00þ0:00
�0:10�0:16

T
BK�

2

3 0:14þ0:03þ0:03
�0:03�0:02 1:61þ0:01þ0:09

�0:00�0:04 0:52þ0:05þ0:15
�0:01�0:01

VBsf
0
2 0:20þ0:04þ0:05

�0:03�0:03 1:75þ0:02þ0:05
�0:00�0:03 0:69þ0:05þ0:08

�0:01�0:01

A
Bsf

0
2

0 0:16þ0:03þ0:03
�0:02�0:02 1:69þ0:00þ0:04

�0:01�0:03 0:64þ0:00þ0:01
�0:04�0:02

A
Bsf

0
2

1 0:12þ0:02þ0:03
�0:02�0:02 0:80þ0:02þ0:07

�0:00�0:03 �0:11þ0:05þ0:09
�0:00�0:00

A
Bsf

0
2

2 0:09þ0:02þ0:02
�0:01�0:01 � � � � � �

T
Bsf

0
2

1 0:16þ0:03þ0:04
�0:03�0:02 1:75þ0:01þ0:05

�0:00�0:05 0:71þ0:03þ0:06
�0:01�0:08

T
Bsf

0
2

2 0:16þ0:03þ0:04
�0:03�0:02 0:82þ0:00þ0:04

�0:04�0:06 �0:08þ0:00þ0:03
�0:09�0:08

T
Bsf

0
2

3 0:13þ0:03þ0:03
�0:02�0:02 1:64þ0:02þ0:06

�0:00�0:06 0:57þ0:04þ0:05
�0:01�0:09
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jMBj2 ¼ ½Ic1C2þ 2Is1S
2þðIc2C2þ 2Is2S

2Þcosð2�lÞþ 2I3S
2sin2�l cosð2�Þþ 2

ffiffiffi
2

p
I4CS sinð2�lÞcos�

þ 2
ffiffiffi
2

p
I5CS sinð�lÞcos�þ 2I6S

2 cos�lþ 2
ffiffiffi
2

p
I7CS sinð�lÞ sin�þ 2

ffiffiffi
2

p
I8CS sinð2�lÞ sin�þ 2I9S

2sin2�l sinð2�Þ�;
(10)

with the angular coefficients

Ic1 ¼ ðjAL0j2 þ jAR0j2Þ þ 8
m2

l

q2
Re½AL0A

�
R0� þ 4

m2
l

q2
jAtj2;

Is1 ¼
3

4
½jAL?j2 þ jALkj2 þ jAR?j2 þ jARkj2�

�
1� 4m2

l

3q2

�
þ 4m2

l

q2
Re½AL?A�

R? þ ALkA�
Rk�;

Ic2 ¼ ��2
l ðjAL0j2 þ jAR0j2Þ;

Is2 ¼
1

4
�2

l ðjAL?j2 þ jALkj2 þ jAR?j2 þ jARkj2Þ;

I3 ¼ 1

2
�2

l ðjAL?j2 � jALkj2 þ jAR?j2 � jARkj2Þ;

I4 ¼ 1ffiffiffi
2

p �2
l ½ReðAL0A

�
LkÞ þ ReðAR0A

�
Rk�; I5 ¼

ffiffiffi
2

p
�l½ReðAL0A

�
L?Þ � ReðAR0A

�
R?Þ�;

I6 ¼ 2�l½ReðALkA�
L?Þ � ReðARkA�

R?Þ�; I7 ¼
ffiffiffi
2

p
�l½ImðAL0A

�
LkÞ � ImðAR0A

�
RkÞ�;

I8 ¼ 1ffiffiffi
2

p �2
l ½ImðAL0A

�
L?Þ þ ImðAR0A

�
R?Þ�; I9 ¼ �2

l ½ImðALkA�
L?Þ þ ImðARkA�

R?Þ�: (11)

C ¼ CðK�
2Þ and S ¼ SðK�

2Þ for B ! K�
2l

þl�. Without
higher order QCD corrections, I7 is zero and I8, I9 are
tiny in the SM; this is because only C9 has an imaginary
part. In this sense, these coefficients can be chosen as an
ideal window to probe new physics signals.

The amplitudes Ai are generated from the

hadronic B ! K�
2V amplitudes H i through Ai ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


p

q2�l

3�32m3
B�

3 BðK�
2 ! K�Þ

r
H i,

AL0 ¼ NK�
2

ffiffiffiffi


p
ffiffiffi
6

p
mBmK�

2

1

2mK�
2

ffiffiffiffiffi
q2

p �
ðC9 � C10Þ

�
ðm2

B �m2
K�
2
� q2ÞðmB þmK�

2
ÞA1 � 

mB þmK�
2

A2

�

þ 2mbðC7L � C7RÞ
�
ðm2

B þ 3m2
K�

2
� q2ÞT2 � 

m2
B �m2

K�
2

T3

��
;

AL� ¼ NK�
2

ffiffiffiffi


p
ffiffiffi
8

p
mBmK�

2

�
ðC9 � C10Þ½ðmB þmK�

2
ÞA1 �

ffiffiffiffi


p
mB þmK�

2

V

�
� 2mbðC7L þ C7RÞ

q2
ð� ffiffiffiffi


p

T1Þ

þ 2mbðC7L � C7RÞ
q2

ðm2
B �m2

K�
2
ÞT2

�
;

ALt ¼ NK�
2

ffiffiffiffi


p
ffiffiffi
6

p
mBmK�

2

ðC9 � C10Þ
ffiffiffiffi


p
ffiffiffiffiffi
q2

p A0; (12)

with NK�
2
¼ ½ G2

F

2
em

3�210�5m3
B

jVtbV
�
tsj2q21=2ð1� 4m2

l

q2
Þ1=2BðK�

2 ! K�Þ�1=2. For convenience, we have introduced transversity
amplitudes as

AL?=k ¼ 1ffiffiffi
2

p ðALþ � AL�Þ;

AL? ¼ � ffiffiffi
2

p ffiffiffiffi


p
ffiffiffi
8

p
mBmK�

2

NK�
2

�
ðC9 � C10Þ

ffiffiffiffi


p
V

mB þmK�
2

þ 2mbðC7L þ C7RÞ
q2

ffiffiffiffi


p
T1

�
;

ALk ¼
ffiffiffi
2

p ffiffiffiffi


p
ffiffiffi
8

p
mBmK�

2

NK�
2

�
ðC9 � C10ÞðmB þmK�

2
ÞA1 þ 2mbðC7L � C7RÞ

q2
ðm2

B �m2
K�
2
ÞT2

�
; (13)
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and the right-handed decay amplitudes are similar,

ARi ¼ ALijC10!�C10
: (14)

The combination of the timelike decay amplitudes is used
in the differential distribution

At ¼ ARt � ALt ¼ 2NK�
2

ffiffiffiffi


p
ffiffiffi
6

p
mBmK�

2

C10

ffiffiffiffi


p
ffiffiffiffiffi
q2

p A0: (15)

B. Dilepton spectrum distribution

Integrating out the angles �l, �K, and �, we obtain the
dilepton mass spectrum

d�

dq2
¼ 1

4
ð3Ic1 þ 6Is1 � Ic2 � 2Is2Þ; (16)

and its expression in the massless limit,

d�i

dq2
¼ ðjALij2 þ jARij2Þ; (17)

with i ¼ 0,�1 or i ¼ 0, ? , k . After some manipulations
in Appendix B, the correspondence of the above equations
and Eq. (20) with results in Ref. [25] can be shown.

C. Polarization distribution

The longitudinal polarization distribution for �B !
�K�
2l

þl� is defined as

dfL
dq2

� d�0

dq2

�
d�

dq2
¼ 3Ic1 � Ic2

3Ic1 þ 6Is1 � Ic2 � 2Is2
; (18)

in which d�0

dq2
can be reduced into Ic1 in the case of ml ¼ 0

since Ic1 ¼ �Ic2. The integrated polarization fraction is
given as

fL � �0

�
¼

R
dq2 d�0

dq2R
dq2 d�

dq2

: (19)

D. Forward-backward asymmetry

The differential forward-backward asymmetry of �B !
�K�
2l

þl� is defined by

dAFB

dq2
¼

�Z 1

0
�
Z 0

�1

�
d cos�l

d2�

dq2d cos�l
¼ 3

4
I6; (20)

while the normalized differential FBA is given by

dAFB

dq2
¼

dAFB

dq2

d�
dq2

¼ 3I6
3Ic1 þ 6Is1 � Ic2 � 2Is2

: (21)

In the massless limit, we have

dAFB

dq2
¼ 

8m2
Bm

2
K�
2

q2G2
F


2
em

512�5m3
B

jVtbV
�
tsj2 Re

�
C9C10A1V

þ C10ðC7L þ C7RÞ
mbðmB þmK�

2
Þ

q2
A1T1

þ C10ðC7L � C7RÞ
mbðmB �mK�

2
Þ

q2
T2V

�
: (22)

In the SM, whereC7R is small, the zero-crossing point s0 of
the FBAs is determined by the equation

C9A1ðs0ÞVðs0Þ þ C7L

mbðmB þmK�
2
Þ

s0
A1ðs0ÞT1ðs0Þ

þ C7L

mbðmB �mK�
2
Þ

s0
T2ðs0ÞVðs0Þ ¼ 0: (23)

E. Spin amplitudes and transverse asymmetries

Using the above helicity/spin amplitudes, it is also pos-
sible to construct several useful quantities which are ratios
of different amplitudes. The following ones, widely studied
in the B ! K� case, are stable against the uncertainties
from hadronic form factors,

Að1Þ
T ¼ �� � �þ

�� þ �þ
¼ �2ReðAkA�

?Þ
jA?j2 þ jAkj2

;

Að2Þ
T ¼ jA?j2 � jAkj2

jA?j2 þ jAkj2
;

Að3Þ
T ¼ jAL0A

�
Lk þ AR0A

�
RkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijA0j2jA?j2

p ;

Að4Þ
T ¼ jAL0A

�
L? � AR0A

�
R?j

jAL0A
�
Lk þ AR0A

�
Rkj

; (24)

with the notation

AiA
�
j ¼ ALiA

�
Lj þ ARiA

�
Rj: (25)

FIG. 1 (color online). Kinematics variables in the �B ! �K�
2ð!

K��þÞlþl� process. The moving direction of K�
2 in the B rest

frame is chosen as the z axis. The polar angle �K (�l) is defined
as the angle between the flight direction of K� (��) and the
z axis in the K�

2 (lepton pair) rest frame. The convention also

applies to the Bs ! f02ð! KþK�Þlþl� transition.
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Because of the hierarchy in the SM, �� 	 �þ, A
ð1Þ
T is close

to 1, and therefore its deviation from 1 is more useful to
reflect the size of the NP effects.

IV. TWO NP MODELS

The b ! slþl� has a small branching fraction since the
SM has a lack of tree-level FCNCs. It is not necessarily the
same in the extensions. In this section we will briefly give
an overview of two NP models which allow tree-level
FCNCs. Neither of these models, the vectorlike quark
model and the family nonuniversal Z0 model, introduces
a new type of operator, but instead they both modify the
Wilson coefficients C9, C10. To achieve this goal, they
introduce an SUð2Þ singlet down-type quark or a new
gauge boson Z0.

A. Vectorlike quark model: Z-mediated FCNCs

In the vectorlike quark model, the new SUð2ÞL singlet
down quarks DL and DR modify the Yukawa interaction
sector

LY ¼ �QLYDHdR þ hD �QLHDR þmD
�DLDR þH:c:; (26)

where the flavor indices have been suppressed. QL (H) is
the SUð2Þ quark (Higgs) doublet, YD and hD are the
Yukawa couplings, and mD is the mass of the exotic quark
before electroweak symmetry breaking. When the Higgs
field acquires the vacuum expectation value (VEV), the
mass matrix of the down-type quark becomes

md ¼
Yij
D j hiD
� � �
0 j mD

0
B@

1
CA; (27)

which can be diagonalized by two unitary matrices,

mdia
d ¼ VL

DmdV
Ry
D : (28)

The SM coupling of the Z boson to fermions is flavor
blind, and the flavor in the process with the exchange of the
Z boson is conserved at tree level. Unlikely although
the right-handed sector in the VQM is the same as the
SM, the new left-handed quark is an SUð2ÞL singlet, which
carries the same hypercharge as right-handed particles.
Therefore, the gauge interactions of left-handed down-
type quarks with the Z boson are given by

LZ ¼ �QL

g

cos�W
ðI3 � sin2�WQÞZQL

þ �DL

g

cos�W
ð�sin2�WQÞZDL; (29)

where g is the coupling constant of SUð2ÞL, �W is the
Weinberg angle, and PRðLÞ ¼ ð1� �5Þ=2. I3 and Q are

operators for the third component of the weak isospin
and the electric charge, respectively.

Since the ratio �D of the coupling constants deviates
from unity, �D ¼ �sin2�WQD=ðIF3 � sin2�WQFÞ, tree-

level FCNCs can be induced after the diagonalization of
the down-type quarks. For instance, the interaction for
b-s-Z in the VQM is given by

L b!s ¼ gcsLsb

cos�W
�s��PLbZ� þ H:c:; (30)

where sb is introduced as the new free parameter:

sb ¼ ð�D � 1ÞðVL
DÞsDðVL

DÞ�bD � jsbj expði�sÞ:
Using Eq. (30), the effective Hamiltonian for b ! slþl�

mediated by the Z boson is found by

H Z
b!slþl� ¼ 2GFffiffiffi

2
p sbc

s
Lð�sbÞV�A½c‘Lð �‘‘ÞV�A

þ c‘Rð �‘‘ÞVþA�: (31)

The Wilson coefficients C9;10 are modified accordingly,

CVLQ
9 ¼ CSM

9 � 4�


em

sbc
s
Lðc‘L þ c‘RÞ
V�
tsVtb

;

CVLQ
10 ¼ CSM

10 þ 4�


em

sbc
s
Lðc‘L � c‘RÞ
V�
tsVtb

:

(32)

Making use of the experimental data of b ! slþl�, our
previous work [47] has placed a constraint on the new
coupling constant

jsbj< 1� 10�3; (33)

but its phase �s is less constrained. In the following, we
shall see that the constraint can be improved by taking into
account the experimental data of the exclusive process
B ! K�lþl�.

B. Family nonuniversal Z0 model

The SM can be extended by including an additional
Uð1Þ0 symmetry, and the currents can be given in a proper
gauge basis as follows:

J
�
Z0 ¼ g0

X
i

�c i�
�½�c L

i PL þ �c R

i PR�c i; (34)

where i is the family index and c labels the fermions (up-
or down-type quarks, or charged or neutral leptons).
According to some string construction or grand unified
theory models such as E6, it is possible to have family

nonuniversal Z0 couplings, namely, even though �L;Ri are
diagonal, the gauge couplings are not family universal.
After rotating to the physical basis, FCNCs generally
appear at tree level in both the left-handed and right-
handed sectors. Explicitly,

Bc L ¼ Vc L
�c LVy

c L
; Bc R ¼ Vc R

�c RVy
c R
: (35)

Moreover, these couplings may contain CP-violating
phases beyond that of the SM.
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The Lagrangian of Z0 �bs couplings is given as

LZ0
FCNC ¼�g0ðBL

sb �sL��bL þBR
sb �sR��bRÞZ0� þH:c: (36)

It contributes to the b ! s‘þ‘� decay at tree level with the
effective Hamiltonian

H Z0
eff ¼

8GFffiffiffi
2

p ð�L
sb �sL��bL þ �R

sb �sR��bRÞ

� ð�L
ll
�‘L�

�‘L þ �R
ll
�‘R�

�‘RÞ; (37)

where

�L;R
ff0 �

g0MZ

gMZ0
BL;R
ff0 (38)

with the coupling g associated with the SUð2ÞL group in
the SM. In this paper we shall not take the renormalization
group running effects due to these new contributions into
consideration because they are expected to be small. Since
the couplings are all unknown, one can see from Eq. (37)
that there are many free parameters here. For the purpose
of illustration and to avoid too many free parameters, we
put the constraint that the FCNC couplings of the Z0 and
quarks only occur in the left-handed sector. Therefore,
�R
sb ¼ 0, and the effects of the Z0 FCNCs simply modify

the Wilson coefficients C9 and C10 in Eq. (A1). We denote

these two modified Wilson coefficients by CZ0
9 and CZ0

10,

respectively. More explicitly,

CZ0
9 ¼ C9 � 4�


em

�L
sbð�L

ll þ �R
llÞ

VtbV
�
ts

;

CZ0
10 ¼ C10 þ 4�


em

�L
sbð�L

ll � �R
llÞ

VtbV
�
ts

:

(39)

Compared with the Wilson coefficients in the vectorlike
quark model in Eq. (32), we can see that the Z0 contribu-
tions in Eq. (39) have similar forms, and the correspon-
dence lies in the coupling constants

sbc
s
L ! �L

sb; clL;R ! �L;R
ll : (40)

However, the number of free parameters is increased from
2 to 4 since clL;R in the VQM is the same as in the SM.

V. PHENOMENOLOGICAL ANALYSIS

In this section, we will present our theoretical results in
the SM, give an update of the constraints in the above two
NP models, and investigate their effects on B ! K�

2�
þ��

and Bs ! f02�
þ��. For convenience, branching ratios of

K�
2 and f02 decays into K� and K �K will not be taken into

account in the numerical analysis.

A. SM predictions

With the B ! K�
2 form factors computed in the PQCD

approach [27], the BR, zero-crossing point of FBAs and
polarization fractions are predicted as

BðB ! K�
2�

þ��Þ ¼ ð2:5þ1:6
�1:1Þ � 10�7;

fLðB ! K�
2�

þ��Þ ¼ ð66:6� 0:4Þ%;

s0ðB ! K�
2�

þ��Þ ¼ ð3:49� 0:04Þ GeV2;

BðB ! K�
2�

þ��Þ ¼ ð9:6þ6:2
�4:5Þ � 10�10;

fLðB ! K�
2�

þ��Þ ¼ ð57:2� 0:7Þ%:

(41)

The errors are from the form factors, namely, from the B
meson wave functions and the PQCD systematic parame-
ters. Most of the uncertainties from form factors will
cancel in the polarization fractions and the zero-crossing
point s0. Similarly, results for Bs ! f2l

þl� are given as

BðBs ! f02�þ��Þ ¼ ð1:8þ1:1�0:7Þ � 10�7;

fLðBs ! f02�
þ��Þ ¼ ð63:2� 0:7Þ%;

s0ðBs ! f02�
þ��Þ ¼ ð3:53� 0:03Þ GeV2;

BðBs ! f02�
þ��Þ ¼ ð5:8þ3:7

�2:1Þ � 10�10;

fLðBs ! f02�
þ��Þ ¼ ð53:9� 0:4Þ%:

(42)

We also show the q2 dependence of their differential
branching ratios (in units of 10�7) in Fig. 2.
Charm-loop effects, due to the large Wilson coefficient

and the large CKM matrix element, might introduce im-
portant results. In a very recent work [20], the authors have
adopted QCD sum rules to investigate both factorizable
diagrams and nonfactorizable diagrams. Their results up to
the region q2 ¼ m2

J=c are parametrized in the following

form,

�CðiÞB!K�
9 ðq2Þ ¼

rðiÞ1 ð1� �q2

q2
Þ þ�CðiÞ

9 ð �q2Þ �q2

q2

1þ rðiÞ2
�q2�q2

m2
J=c

; (43)

where the three results correspond to different Lorentz
structures: i ¼ 1, 2, 3 for terms containing V, A1, and A2,
respectively. The numerical results are quoted as follows

�Cð1Þ
9 ð �q2Þ ¼ 0:72þ0:57

�0:37; rð1Þ1 ¼ 0:10; rð1Þ2 ¼ 1:13;

�Cð2Þ
9 ð �q2Þ ¼ 0:76þ0:70

�0:41; rð2Þ1 ¼ 0:09; rð2Þ2 ¼ 1:12;

�Cð3Þ
9 ð �q2Þ ¼ 1:11þ1:14

�0:70; rð3Þ1 ¼ 0:06; rð3Þ2 ¼ 1:05:

(44)

It should be pointed out that not all charm-loop effects in
B ! K�

2l
þl� are the same as the ones in B ! K�lþl�.

Among various diagrams, the factorizable contributions,
which can be simply incorporated into C9 given in
Eq. (A3), are the same. The nonfactorizable ones are
more subtle. In particular, the LCSR with B-meson distri-
bution amplitudes are adopted in Ref. [20], in which inter-
mediate states like K� are picked up as the ground state.
The generalization is not straightforward to the case of K�

2

since in this approach states below K�
2 may contribute in a

substantial manner. However, in another viewpoint, i.e. the
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conventional LCSR, they may be related. In our previous
work we have shown that the light-cone distribution am-
plitude of K�

2 is similar to K� in the dominant region of the
PQCD approach. If it were also the same in the conven-
tional LCSR, one may expect that the charm-loop effects in
the processes under scrutiny have similar behaviors as the
ones in B ! K�lþl�. Therefore, as the first step to pro-
ceed, we will use their results to estimate the sensitivity in
the following analysis, and to be conservative, we use

�C
ðiÞB!K�

2

9 ð �q2Þ ¼ ð1� 1Þ�CðiÞB!K�
9 ðq2Þ (45)

in the region of 1 GeV2 < q2 < 6 GeV2. The central val-
ues for q2-dependent parameters will be used for simplic-
ity, and in this procedure, the factorizable corrections to C9

given in Eq. (A3) should be set to 0 to avoid double
counting.

With the above strategy, our theoretical predictions are
changed to

fLðB ! K�
2�

þ��Þ ¼ ð66:6þ1:4
�0:7Þ%;

s0ðB ! K�
2�

þ��Þ ¼ ð3:49þ0:19
�0:39Þ GeV2;

fLðBs ! f02�
þ��Þ ¼ ð63:2þ1:5

�0:9Þ%;

s0ðBs ! f02�
þ��Þ ¼ ð3:53þ0:19

�0:39Þ GeV2:

(46)

The uncertainties in the zero-crossing point of the FBAs
are enlarged to 0:4 GeV2. We also show the q2 dependence

of the differential polarization in Fig. 3 and the normalized
forward-backward asymmetries in Fig. 4.
In a parallel way, the BR of B ! K�

2l
þl� can also be

estimated by making use of the data of radiative B !
K�ðK�

2Þ� decays [48],

B ð �B0 ! K�
2�Þ ¼ ð12:4� 2:4Þ � 10�6;

Bð �B0 ! K��Þ ¼ ð43:3� 1:5Þ � 10�6:
(47)

The ratio of the above BRs, R � BðK�
2
Þ

BðK�Þ ¼ 0:29� 0:06, and

the measured data of B ! K�lþl� shown in Table II give
the implication

B expðB0 ! K�0
2 lþl�Þ ¼ ð3:1� 0:7Þ � 10�7; (48)

which is remarkably consistent with our theoretical pre-
dictions within uncertainties.
When the large energy symmetry is exploited, the seven

B ! K�
2 form factors can be reduced into two independent

ones, �? and �k. Based on these nontrivial relations,

Ref. [25] has used the experimental data of B ! K�
2� to

extract �?. With the assumption of a similar size for �k, the
authors also estimated the branching ratio and forward-
backward asymmetries of B ! K�

2l
þl�. Explicitly, they

have employed

�? ¼ 0:27� 0:03þ0:00
�0:01; 0:8�? < �k < 1:2�?; (49)
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FIG. 2 (color online). Differential branching ratios of B ! K�
2l

þl� (upper panels) and Bs ! f02lþl� (lower panels) (in units of
10�7). The left panel is for l ¼ � and the right panel is for l ¼ �.
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which are comparable with our results [27],

�? ¼ ð0:29� 0:09Þ; �k ¼ ð0:26� 0:10Þ: (50)

As a consequence, the predicted results of the BR, forward-
backward asymmetries, and polarizations are compatible
with each other.

Our results for the angular coefficients, �Ii ¼ Ii=
d�
dq2

, are

depicted in Fig. 5 for B ! K�
2�

þ�� and in Fig. 6 for Bs !
f02�þ��. Since the predictions for �I7, �I8, �I9 in the SM are

typically smaller than 0.03, we shall not show them. The
corresponding transversity asymmetries are shown in
Figs. 7 and 8, respectively. One particular feature is that
most of these results are stable against the large uncertain-
ties from the form factors.
For experimental purposes, it is valuable to estimate the

minimum size of the averaged value of an angular distri-
bution coefficient so that it can be measured in experiment.
To establish any generic asymmetry with the averaged
value hAi of a particular decay at the n	 level, events of
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FIG. 3 (color online). Differential polarization fractions dfL
dq2

of B ! K�
2l

þl� (left panel) and Bs ! f2l
þl� (right panel).
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FIG. 4 (color online). Similar to Fig. 3 but for forward-backward asymmetries dAFB

dq2
.

TABLE II. Experimental data used in the least-�2 fitting method.

b ! cl �� [49]

ð10:58� 0:15Þ � 10�2

b ! slþl� [48]

ð3:66þ0:76
�0:77Þ � 10�6

�B0 ! K�lþl� [48]

ð1:09þ0:12
�0:11Þ � 10�6

q2ðGeV2Þ Bð10�7Þ FL �AFB
a

[0, 2] 1:46� 0:41 0:29� 0:21 0:47� 0:32
[2, 4.3] 0:86� 0:32 0:71� 0:25 0:11� 0:37

[4.3, 8.68] 1:37� 0:61 0:64� 0:25 0:45� 0:26
[10.09, 12.86] 2:24� 0:48 0:17� 0:17 0:43� 0:20
[14.18, 16] 1:05� 0:30 �0:15� 0:28 0:70� 0:24

>16 2:04� 0:31 0:12� 0:15 0:66� 0:16
[1, 6] 1:49� 0:47 0:67� 0:24 0:26� 0:31

aThe different convention on �l introduces a minus sign to the forward-backward asymmetry.
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FIG. 8 (color online). Similar to Fig. 7 but for Bs ! f2�
þ��.
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the number N ¼ n2=ðhAiÞ2 should be accumulated.
For instance, on the LHCb there are 6200 events for the
B ! K�lþl� process per nominal running year [4].
Incorporating all differences between K�

2 and K�, we
may expect roughly 1000 events of B ! K�

2ð! K�Þlþl�.
Therefore, if one wants to observe an asymmetry at the n	

level, its averaged value should be larger than hAimin ¼ffiffiffiffiffiffiffiffi
n2

1000

q
’ 0:03n.

Before closing this subsection, it is necessary to point
out that the above estimation might be too optimistic. In the
first few running years of LHCb, the central energy in the
pp collision may not reach 14 TeV and its luminosity will

be below 2 fb�1. Thus, in the first stage, not enough data
are available for a precise determination of some angular
coefficients. Nevertheless, this will not affect our analysis
of branching fractions and many angular coefficients.

B. Constraints on NP parameters and the NP effects
on B ! K�

2�
þ��

In this subsection we will first update the constraints of
the free parameters in the two NP models above, and
particularly, we use the experimental data of b ! slþl�
and B ! K�lþl�. The decay width of the inclusive process
b ! slþl� is given as [50]

d�ðb ! s‘þ‘�Þ
dŝ

¼ �ðb ! ce ��eÞ jV
�
tsj2

jVcbj2

2
em

4�2

ð1� ŝÞ2
fðm̂cÞkðm̂cÞ

�
ð1þ 2ŝÞðjC9j2 þ jC10j2Þ þ 4

�
1þ 2

ŝ

�
jC7j2 þ 12C7 ReC9

�
;

fðzÞ ¼ 1� 8z2 þ 8z6 � z8 � 24z4 lnz;

kðzÞ ¼ 1� 2
s

3�

��
�2 � 31

4

�
ð1� zÞ2 þ 3

2

�
; (51)

where ŝ ¼ q2=m2
b, and �ðb ! ce ��eÞ is used to cancel the

uncertainties from the CKMmatrix elements and the factor
m5

b. For B ! K�lþl�, the FBAs, polarizations, and BR
have been measured in different kinematic bins [2]. The
other relevant experimental data collected in Table II are
from Refs. [48,49].

We will adopt a least-�2 fitting method to constrain the
free parameters, in which the �2 is defined by

�2
i ¼

ðBthe
i � B

exp
i Þ2

ðBerr
i Þ2 ; (52)

where Bi denotes one generic quantity among the physical
observables. The Bthe

i , B
exp
i , and Berr

i denote the theoretical
prediction, the central value, and the 1-	 error of the
experimental data, respectively. The total �2 is obtained
by adding the individual ones. It is necessary to point out
that although the errors in the experiment may correlate,
for instance the measurement ofB, fL, and AFB proceed at
the same time in the fitting of angular distributions [2], we
have not taken into account their correlation in our theo-
retical results.

As shown in the previous section, these two NP models
have the similarity that only C9;10 are modified. One differ-

ence lies in the coupling with the leptons; the newly intro-
duced down-type quark in the VQM will not modify the
lepton sector and the coupling with leptons is SM-like. On
the contrary, one new gauge boson is added in the Z0 model
and its coupling with leptons is completely unknown.

Embedded in the VQM, the two parameters, the real and
imaginary parts of sb, are found as

Resb ¼ ð0:07� 0:04Þ � 10�3;

Imsb ¼ ð0:09� 0:23Þ � 10�3;
(53)

from which we obtain jsbj< 0:3� 10�3, but the phase is
less constrained again. The corresponding constraints on
the Wilson coefficients are

j�C9j¼ jC9�CSM
9 j<0:2; j�C10j¼ jC10�CSM

10 j<2:8:

(54)

Our result for �2=d:o:f: in the fitting method is
49:3=ð23� 2Þ.
Turning to the family nonuniversal Z0 model in which

the coupling between Z0 and a lepton pair is unknown, the
two Wilson coefficients C9 and C10 can be chosen as
independent parameters. Assuming �C9 and �C10 as
real, we find

�C9 ¼ 0:88� 0:75; �C10 ¼ 0:01� 0:69; (55)

with �2=d:o:f: ¼ 48:4=ð23� 2Þ. Removal of the above
assumption leads to

�C9 ¼ �0:81� 1:22þ ð3:05� 0:92Þi;
�C10 ¼ 1:00� 1:28þ ð�3:16� 0:94Þi (56)

with �2=d:o:f: ¼ 45:6=ð23� 4Þ. If the �-lepton mass is
neglected, the imaginary part of C10 will not appear in the
expressions for the differential decay widths and the polar-
izations. Moreover, for the forward-backward asymmetry
as shown in Eq. (22), the imaginary part of C10 contributes
in the combination Re½C9C10�; thus, the inclusion of
Im½C10� will have little effect on the �2.
Combing the above results, we can see that the NP

contributions in both cases satisfy

j�C9j< 3; j�C10j< 3: (57)
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To illustrate, we choose �C9 ¼ 3ei�=4;i3�=4 and �C10 ¼
3ei�=4;i3�=4 as the reference points and give the plots for the
branching ratios, FBAs, and the polarizations in Fig. 9. The
solid (black) line denotes the SM result, while the dashed
(blue) and thick (red) lines correspond to the modification
of C9. The dot-dashed (green) and dotted lines are obtained
by modifying C10. From the figure for AFB, we can see that
the zero-crossing point s0 can be sizably changed, which
can be tested at the LHC or can be further constrained.

One last process to explore is Bs ! �þ��, of which the
branching fraction is

BðBs ! �þ��Þ ¼ �Bs

G2
F


2
em

16�3
jV�

tsVtbj2mBs
f2Bs

m2
�jC10j2

�
�
1� 4m2

�

m2
Bs

�
1=2

: (58)

Using the same inputs as those in our computation of
B ! K�

2l
þl�, we have

B ðBs ! �þ��Þ ¼ 3:50� 10�9

�
fBs

230 MeV

�
2
�jC10j
4:67

�
2
:

(59)

Even if C10 is enhanced by a factor of 2, the above result is
still consistent with the recent measurement [51]

B ðBs ! �þ��Þ< 5:1� 10�8: (60)

VI. SUMMARY

In this work we have explored B ! K�
2ð! K�Þlþl�

(with l ¼ e, �, �) decays and a similar mode Bs !
f02ð1525Þð! KþK�Þlþl� in the standard model and two
new physics scenarios: the vectorlike quark model and the
family nonuniversal Z0 model. Besides branching ratios,
forward-backward asymmetries, and transversity ampli-
tudes, we have also derived the differential angular distri-
butions of this decay chain. The sizable production rates
lead to a promising prospective to observe this channel in
future experiments.
Using the experimental data of the inclusive b ! slþl�

and B ! K�lþl�, we have updated the constraints on the
effective Wilson coefficients and/or free parameters in
these two new physics scenarios. In the VQM, we find
that the constraint on the coupling constant is improved by
a factor of 3 compared with our previous work. Their
impact on B ! K�

2l
þl� is elaborated and, in particular,

the zero-crossing point for the forward-backward
asymmetry in these NP scenarios can sizably deviate
from the SM. These results will be tested at the LHC.
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FIG. 9 (color online). The impact of the NP contributions on differential branching ratios (in units of 10�7), polarization fractions,
and normalized forward-backward asymmetry of B ! K�

2l
þl�.
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APPENDIX A: EFFECTIVE HAMILTONIAN

The effective Hamiltonian governing b ! slþl� is
given by

H eff ¼ �GFffiffiffi
2

p VtbV
�
ts

X10
i¼1

Cið�ÞOið�Þ; (A1)

where Vtb ¼ 0:999 176 and Vts ¼ �0:039 72 [49] are the
CKM matrix elements and Cið�Þ are Wilson coefficients
for the effective operators Oi. In this paper, we will adopt
the Wilson coefficients up to the leading logarithmic ac-
curacy [50], and their values in the SM are listed in
Table III. Since the NP scenarios considered in the present
paper would not introduce any new operator, the SM
operators will form a complete basis for our analysis,

O1 ¼ ð �s
c
ÞV�Að �c�b�ÞV�A;

O2 ¼ ð �s
c�ÞV�Að �c�b
ÞV�A;

O3 ¼ ð �s
b
ÞV�A

X
q

ð �q�q�ÞV�A;

O4 ¼ ð �s
b�ÞV�A

X
q

ð �q�q
ÞV�A;

O5 ¼ ð �s
b
ÞV�A

X
q

ð �q�q�ÞVþA;

O6 ¼ ð �s
b�ÞV�A

X
q

ð �q�q
ÞVþA;

O7 ¼ emb

8�2
�s	��ð1þ �5ÞbF�� þ ems

8�2
�s	��ð1� �5ÞbF��;

O9 ¼ 
em

2�
ð�l��lÞð�s��ð1� �5ÞbÞ;

O10 ¼ 
em

2�
ð�l���5lÞð�s��ð1� �5ÞbÞ: (A2)

The left-handed and right-handed operators are
ð �q1q2ÞV�Að �q3q4ÞV�A�ð �q1��ð1��5Þq2Þð �q3��ð1��5Þq4Þ.
mb ¼ 4:8 GeV and ms ¼ 0:095 GeV are b and s quark

masses in the MS scheme, and 
em ¼ 1=137 is the fine-
structure constant. The double Cabibbo suppressed terms,
proportional to VubV

�
us, have been neglected.

At one-loop level accuracy, the matrix element of the
b ! slþl� transition receives loop contributions from
O1–O6. Since the factorizable loop terms [52] can be
incorporated into the Wilson coefficients C7 and C9, it is
convenient to define the combinations Ceff

7 and Ceff
9 [52],

Ceff
7 ¼ C7 � C5=3� C6;

Ceff
9 ðq2Þ ¼ C9ð�Þ þ hðm̂c; ŝÞC0 � 1

2hð1; ŝÞð4C3 þ 4C4

þ 3C5 þ C6Þ � 1
2hð0; ŝÞðC3 þ 3C4Þ

þ 2
9ð3C3 þ C4 þ 3C5 þ C6Þ; (A3)

with ŝ ¼ q2=m2
b, C0 ¼ C1 þ 3C2 þ 3C3 þ C4 þ 3C5 þ

C6, and m̂c ¼ mc=mb. The auxiliary functions used
above are

hðz;ŝÞ¼�8

9
ln
mb

�
�8

9
lnzþ 8

27
þ4

9
x�2

9
ð2þxÞ

�j1�xj1=2
8<
:
ln

��������
ffiffiffiffiffiffiffi
1�x

p þ1ffiffiffiffiffiffiffi
1�x

p �1

���������i� for x� 4z2

ŝ <1

2arctan 1ffiffiffiffiffiffiffi
x�1

p for x� 4z2

ŝ >1;

hð0; ŝÞ¼�8

9
ln
mb

�
�4

9
lnŝþ 8

27
þ4

9
i�: (A4)

In the following, we shall also drop the superscripts forCeff
9

and Ceff
7 for convenience.

On the hadron level, resonant states, such as vector
charmonia generated from the b ! c �cs, may annihilate
into a lepton pair. Therefore, they will also contribute in
a long-distance manner [53–55]. But these contributions
can be subtracted with a kinematic cutoff in experiment.
Moreover, our following analysis of differential distribu-
tions will be mainly dedicated to the region of 1 GeV2 <
q2 < 6 GeV2, also excluding contributions from the
charmonia.

APPENDIX B: HELICITYAMPLITUDES

Within a graphic picture, B ! K�
2ð! K�Þlþl� proceeds

in three steps: the B meson first decays into an on-shell
strange meson plus a pair of leptons, the K�

2 meson prop-
agates, and then it strongly decays intoK�. To evaluate the

TABLE III. The values of the Wilson coefficients CiðmbÞ in the leading logarithmic approximation, with mW ¼ 80:4 GeV,
� ¼ mb;pole [50].

C1 C2 C3 C4 C5 C6 Ceff
7 C9 C10

1.107 �0:248 �0:011 �0:026 �0:007 �0:031 �0:313 4.344 �4:669
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decay width of multibody decays, we shall adopt the
helicity amplitude, which mainly uses

g�� ¼ �X


��ðÞ���ðÞ þ
q�q�

q2
: (B1)

� is the polarization vector with the momentum q, and 
denotes the three kinds of polarizations. The last term can

be formally identified as a timelike polarization ��ðtÞ ¼
q�ffiffiffiffi
q2

p , and thus the metric tensor g�� can then be understood

as summations of the four polarizations. For the purpose of
illustration, we will first evaluate the decay amplitude of
B ! K�

2l
þl�. In the SM, the lepton pair in the final state is

produced via an off-shell photon, a Z boson, or some
hadronic vector mesons. These states may have different
couplings but they share many commonalities: the Lorentz
structure for the vertex of the lepton pair is either V � A or
V þ A or some combination of them. Therefore, the decay
amplitudes of �B ! �K�

2l
þl� can be rewritten as

A ð �B ! �K�
2l

þl�Þ ¼ L�ðLÞH �ðLÞ þL�ðRÞH �ðRÞ;
(B2)

in which L�ðLÞ, L�ðRÞ are the lepton pair spinor

products:

L �ðLÞ ¼ �l��ð1� �5Þl; L�ðRÞ ¼ �l��ð1þ �5Þl;
(B3)

while H incorporates the remaining B ! K�
2 part. In the

case of massless leptons, left-handed and right-handed
sectors decouple, which will greatly simplify the analysis.
The identity in Eq. (B1) results in a factorization of decay
amplitudes,

Að �B! �K�
2l

þl�Þ¼L�ðLÞH �ðLÞg��þL�ðRÞH �ðRÞg��

¼�X


LLH L�
X


LRH R; (B4)

where q� is the momentum of the lepton pair and LL ¼
L�ðLÞ��ðÞ and LR ¼ L�ðRÞ��ðÞ denote Lorentz in-

variant amplitudes for the lepton part. It is also similar for
the Lorentz invariant hadronic amplitudes: H L ¼
H �ðLÞ���ðÞ and H R ¼ H �ðRÞ���ðÞ. The timelike

polarization gives vanishing contributions in the case of
ml ¼ 0 for l ¼ e, �; using the equation of motion, this
term is proportional to the lepton mass.
An advantage of the helicity amplitudes is that both

hadronic amplitudes and leptonic amplitudes are Lorentz
invariant. Such a good property allows one to choose
different frames in the evaluation. For instance, leptonic
amplitudes are evaluated in the lepton pair central mass
frame, while hadronic B decay amplitudes are directly
obtained in the B rest frame. Since K�

2 and K
� have several

important similarities, B ! K�
2l

þl� differential decay
widths can be simply obtained from the ones of B !
K�lþl� in a comparative manner.
(i) Longitudinal and transverse B decay amplitudes are

obtained by multiplying the factors
ffiffiffi


pffiffi
8

p
mBmK�

2

andffiffiffi


pffiffi
6

p
mBmK�

2

, respectively. The function  is the magni-

tude of theK�
2 momentum in the Bmeson rest frame:

�ðm2
B;m

2
K�

2
;q2Þ¼2mBj ~pK�

2
j and ða2; b2; c2Þ ¼

ða2 � b2 � c2Þ2 � 4b2c2. This replacement is a re-
sult of the fact that the polarization vector � is
replaced by �T in the form factor definitions.
Explicitly, these hadronic amplitudes are

HL0 ¼ N

ffiffiffiffi


p
ffiffiffi
8

p
mBmK�

2

1

2mK�
2

ffiffiffiffiffi
q2

p �
ðC9 � C10Þ

�
ðm2

B �m2
K�
2
� q2ÞðmB þmK�

2
ÞA1 � 

mB þmK�
2

A2

�

þ 2mbðC7L � C7RÞ
�
ðm2

B þ 3m2
K�

2
� q2ÞT2 � 

m2
B �m2

K�
2

T3

��
;

HL� ¼ N

ffiffiffiffi


p
ffiffiffi
6

p
mBmK�

2

�
ðC9 � C10Þ

�
ðmB þmK�

2
ÞA1 �

ffiffiffiffi


p
mB þmK�

2

V

�
� 2mbðC7L þ C7RÞ

q2
ð� ffiffiffiffi


p

T1Þ

þ 2mbðC7L � C7RÞ
q2

ðm2
B �m2

K�
2
ÞT2

�
;

HLt ¼ N

ffiffiffiffi


p
ffiffiffi
8

p
mBmT

ðC9 � C10Þ
ffiffiffiffi


p
ffiffiffiffiffi
q2

p A0;

HRi ¼ HLijC10!�C10
(B5)

with N ¼ �i GF

4
ffiffi
2

p 
em

� VtbV
�
ts.

(ii) In the propagation of the intermediate strange me-
son, the width effect of K�

2 could be more important
since �K�

2

 100 MeV> �K� 
 50 MeV [49].

Nevertheless, since the K�
2 width is only larger

than that of K� by a factor of 2, the narrow-width
approximation, which has been well used in the case
of K�, might also work for K�

2 . In this sense, there is

RUN-HUI LI, CAI-DIAN LÜ, AND WEI WANG PHYSICAL REVIEW D 83, 034034 (2011)

034034-16



no difference except that the BðK� ! K�Þ is re-
placed by BðK�

2 ! K�Þ.
(iii) Incorporation of the K�

2 ! K� decay gives the
complete results for the differential decay distribu-
tion of B ! K�

2ð! K�Þlþl�. Angular distributions
of K�

2 and K� strong decays are described by
spherical harmonic functions: Yi

1ð�;�Þ for K� and
Yi
2ð�;�Þ for K�

2 . In particular, we find the relationsffiffiffiffiffiffiffi
3

4�

s
cosð�KÞ � CðK�Þ !

ffiffiffiffiffiffiffiffiffi
5

16�

s
ð3cos2�K � 1Þ

� CðK�
2Þ;ffiffiffiffiffiffiffi

3

8�

s
sinð�KÞ � SðK�Þ !

ffiffiffiffiffiffiffiffiffi
15

32�

s
sinð2�KÞ � SðK�

2Þ:
(B6)

Our formulas for the branching fractions and forward-
backward asymmetries are shown to be compatible with
the ones in Ref. [25] through the following relations:

AL0 ¼ NK�
2

Lm

3
B

1

2mK�
2

ffiffiffiffiffi
q2

p ð�ð1� m̂2
K�

2
� q̂2ÞF

þ ̂G þ ð1� m̂2
K�

2
� q̂2ÞB� ̂CÞ; (B7)

AL? ¼ �
ffiffiffiffiffiffi
2

p
NK�

2
�T

2mB

ðA� EÞ; (B8)

ALk ¼
ffiffiffiffiffiffi
2

p
NK�

2
�T

2mB

ðB�F Þ; (B9)

At ¼
NK�

2

L

m̂K�
2

ffiffiffiffi


p
ffiffiffiffiffi
q2

p ½F � ð1� m̂2
K�
2
G � q̂2H �; (B10)

where the coefficients A, B, E, F , G, H are defined in
Eqs. (49, 50, 53, 54) in Ref. [25], but the coefficient C in
Eq. (51) contains a typo and should be

C ¼ 1

1� m̂2
K�
2

�
ð1� m̂K�

2
Þceff9 ðŝÞAK�

2

2 ðsÞ

þ 2m̂bc
eff
7

�
T
K�

2

3 ðsÞ þ
1� m̂2

K�
2

ŝ
T
K�

2

2 ðsÞ
��

: (B11)

The dimensionless constants are given as ̂ ¼ =m4
B,

m̂K�
2
¼ mK�

2
=mB, m̂b ¼ mb=mB, and q̂2 ¼ q2=m2

B, as well

as 
L ¼ ffiffiffiffiffiffiffiffi
2=3

p
and �T ¼ 1=

ffiffiffi
2

p
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