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The hadronic parameters of pseudoscalar (�c) and scalar (�c) charmonium are determined at finite

temperature from Hilbert moment QCD sum rules. These parameters are the hadron mass, leptonic decay

constant, total width, and continuum threshold (s0). Results for s0ðTÞ in both channels indicate that s0ðTÞ
starts approximately constant, and then it decreases monotonically with increasing T until it reaches the

QCD threshold, sth ¼ 4m2
Q, at a critical temperature T ¼ Tc ’ 180 MeV interpreted as the deconfinement

temperature. The other hadronic parameters behave qualitatively similarly to those of the J=c , as

determined in this same framework. The hadron mass is essentially constant, the total width is initially

independent of T, and after T=Tc ’ 0:80 it begins to increase with increasing T up to T=Tc ’ 0:90ð0:95Þ
for �c (�c), and subsequently it decreases sharply up to T ’ 0:94ð0:99ÞTc, for �c (�c), beyond which the

sum rules are no longer valid. The decay constant of �c at first remains basically flat up to T ’ 0:80Tc,

then it starts to decrease up to T ’ 0:90Tc, and finally it increases sharply with increasing T. In the case of

�c the decay constant does not change up to T ’ 0:80Tc where it begins a gentle increase up to T ’ 0:95Tc

beyond which it increases dramatically with increasing T. This behavior contrasts with that of light-light

and heavy-light quark systems, and it suggests the survival of the �c and the �c states beyond the critical

temperature, as already found for the J=c from similar QCD sum rules. These conclusions are very stable

against changes in the critical temperature in the wide range Tc ¼ 180–260 MeV.

DOI: 10.1103/PhysRevD.83.034033 PACS numbers: 12.38.Mh, 11.10.Wx, 25.75.Nq

I. INTRODUCTION

The extension of the QCD sum rule method [1] to finite
temperature was first discussed in [2], and subsequently
developed successfully to obtain the T dependence of
hadronic parameters, and study the phase transitions of
chiral-symmetry restoration and quark-gluon deconfine-
ment [3–7]. Further evidence for the validity of this ex-
tension to finite temperature was given in [4]. It has been
established in this framework that hadronic spectral func-
tions experience substantial modifications with increasing
T. In particular, in the case of light-light and heavy-light
quark systems, their leptonic decay constants, weak and
strong couplings, hadronic widths, and form factors de-
velop a prominent T dependence consistent with decon-
finement at some critical temperature Tc. The advocacy of
a substantial temperature dependence of hadronic masses
has been refuted by results from these applications. In fact,
these masses hardly change with T. If s0 is the squared
energy beyond which the hadronic spectral function
merges into a continuum, well represented by perturbative
QCD (PQCD), it has been found that s0ðTÞ=s0ð0Þ ’
h0j �qqj0ijT=h0j �qqj0ijT¼0 [3]. The vanishing of the quark
condensate signals chiral-symmetry restoration, while the
vanishing of the continuum threshold s0ðTÞ is an indication
of quark-gluon deconfinement, as resonances disappear
and the smooth spectral function is determined purely by
PQCD. The gluon condensate plays essentially no role here
due to its peculiar behavior; i.e., it hardly changes until T

becomes very close to Tc. However, this will not be the
case for heavy-heavy quark systems due to the absence of
the light quark condensate. Hence, a qualitatively different
temperature behavior of charmonium is to be expected. In
fact, we have shown recently [7] that the J=c total width
initially increases with increasing T up to some tempera-
ture T� < Tc after which it begins to decrease beyond Tc,
while the leptonic coupling remains approximately con-
stant up to T�, and subsequently it increases with tempera-
ture also beyond Tc. This behavior provides strong
evidence for the survival of charmonium in the vector
channel beyond the critical temperature Tc, in agreement
with lattice QCD results [8]. The T dependence of s0ðTÞ in
the J=c channel is qualitatively similar to that for light-
light and heavy-light quark systems; i.e. s0ðTÞ, decreases
monotonically with increasing T until it reaches the QCD
threshold sth ¼ 4m2

Q, with mQ being the quark mass.

Beyond this point there is no longer a solution to the finite
energy QCD sum rules (FESR) as the integration range
vanishes. The dynamical origin of this behavior lies with
the gluon condensate as well as with the T dependence of
the PQCD vector correlator in the spacelike region, the so-
called current-quark scattering term. In fact, there is a
distinct interplay between these two terms with increasing
temperature.
At this stage it must be pointed out that in the framework

of QCD sum rules the critical temperature for deconfine-
ment, referred to above, is just a phenomenological
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parameter. It is the temperature at which the resonance
couplings and the continuum threshold approach zero, and
the widths increase sharply, for light-light and heavy-light
quark correlators. Hence, it need not coincide numerically
with, e.g., the critical temperature obtained in lattice QCD,
which is defined differently. In fact, results from QCD sum
rules lead to values of Tc somewhat different from those
from lattice QCD. Hence, comparisons between different
frameworks should be made in terms of the dependence of
parameters on the ratio T=Tc.

In this paper we extend the analysis of [7] to charmo-
nium in the scalar (�c) and the pseudoscalar (�c) channels.
We find a temperature behavior qualitatively similar to that
of J=c , i.e. a monotonically decreasing s0ðTÞ, suggesting
deconfinement at a critical temperature, a total width
which initially is independent of T, and then it increases
with T up to T=Tc ’ 0:90–0:95, beyond which it begins to
decrease dramatically, and a leptonic coupling which starts
constant, then begins to decrease for �c (or already starts to
increase for the �c), and finally shoots up sharply in both
cases. The hadronic masses remain essentially constant. In
these two channels there is no contribution to the correlator
in the spacelike region (scattering term), so that the gluon
condensate is responsible for all of the thermal behavior of
these hadronic states. Because of this circumstance, the
critical temperature for deconfinement, Tc, corresponds to
that at which the gluon condensate vanishes. Given the
uncertainty in the value of Tc we consider the wide range
Tc ’ 180–260 MeV. Qualitatively, the results remain very
stable in this range. Slight quantitative variations, however,
do not affect the conclusions. Since s0ðTÞ approaches the
QCD threshold sth ¼ 4m2

Q as T approaches Tc, the inte-

gration range in the FESR approaches zero, and the method
is no longer valid. Nevertheless, the dramatic decrease of
the width, and the increase of the decay constant near Tc,
suggests the survival of the �c and �c beyond the critical
temperature for deconfinement, in agreement with lattice
QCD results [8].

II. QCD SUM RULES

We consider the correlator of the heavy-heavy quark
(pseudo)scalar current at finite temperature

�ð5Þðq2;TÞ¼ i
Z
d4xeiqx�ðx0Þ�j½Jð5ÞðxÞ;Jyð5Þð0Þ�j�; (1)

where Jð5ÞðxÞ ¼: �QðxÞ�QðxÞ: � ¼ �5 or � ¼ 1 for the

(pseudo)scalar case, and QðxÞ is the heavy quark field.
The vacuum to vacuum matrix element above is the
Gibbs average

� A � B �
¼ X

n

expð�En=TÞ< njA � Bjn > =Trðexpð�H=TÞÞ; (2)

where jn> is any complete set of eigenstates of the (QCD)
Hamiltonian. We shall adopt the quark-gluon basis, as this

allows for the standard QCD sum rule program at T ¼ 0 to
be seamlessly extended to T � 0 [4]. The QCD sum rules
to be used are the Hilbert moments

’NðQ2
0; TÞ �

1

ðN þ 1Þ!
�
� d

dQ2

�ðNþ1Þ
�ð5ÞðQ2; TÞjQ2¼Q2

0

¼ 1

�

Z 1

0

ds

ðsþQ2
0ÞðNþ2Þ Im�ðs; TÞ; (3)

where N ¼ 1; 2; . . . , and Q2
0 � 0 is an external four-

momentum squared to be considered as a free parameter
[9]. Using Cauchy’s theorem in the complex s plane, which
is equivalent to invoking quark-hadron duality, the Hilbert
moments become FESR, i.e.,

’NðQ2
0; TÞjHAD ¼ ’NðQ2

0; TÞjQCD; (4)

where

’NðQ2
0; TÞjHAD � 1

�

Z s0ðTÞ

0

ds

ðsþQ2
0ÞðNþ2Þ Im�ðs; TÞjHAD;

(5)

’NðQ2
0; TÞjQCD � 1

�

Z s0ðTÞ

4m2
Q

ds

ðsþQ2
0ÞðNþ2Þ Im�PQCDðs; TÞ

þ ’NðQ2
0; TÞjNP: (6)

The imaginary part of the (pseudo)scalar correlator in
perturbative QCD (PQCD) at finite temperature,
Im�ð5Þðq2; TÞ, involves two pieces, one in the timelike

region (q2 � 4m2
Q), Im�ðaÞ

ð5Þ ðq2; TÞ, which survives at

T ¼ 0, and one in the spacelike region (q2 	 0),

Im�ðsÞ
ð5Þðq2; TÞ, which vanishes at T ¼ 0. A straightforward

calculation of the pseudoscalar correlator in the timelike
region, at T � 0, and to leading order in PQCD, gives

1

�
Im�ðaÞ

5 ð!; TÞ

¼ 3

8�2
!2vð!2Þ

�
1� 2nF

�
!

2T

��
�ð!2 � 4m2

QÞ; (7)

where ½vð!2Þ�2 ¼ 1� 4m2
Q=!

2, mQ is the heavy quark

mass, q2 ¼ !2 � q2 ¼ !2 in the rest frame of the thermal
bath, and nFðzÞ ¼ ð1þ ezÞ�1 is the Fermi thermal function.
The quark mass is assumed independent of T, which is a
good approximation for temperatures below 200–250MeV
[10]. The equivalent expression for the scalar correlator is

1

�
Im�ðaÞð!; TÞ

¼ 3

8�2
!2½vð!2Þ�3

�
1� 2nF

�
!

2T

��
�ð!2 � 4m2

QÞ: (8)

Both spectral functions are strongly exponentially sup-
pressed. In the so-called scattering region (q2 < 0) the
scalar QCD spectral function is given by
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1

�
Im�ðsÞðq2; TÞ

¼ 9

16�2
q2

Z 1

v
x2
�
nF

�jqjxþ!

2T

�
� nF

�jqjx�!

2T

��
dx

¼ 9

2�2
T2

�
!

jqj3
�
q2

Z 1

jqjv=2T
z2

d

dz
nFðzÞdz: (9)

Integrating by parts, the above equation becomes

1

�
Im�ðsÞðq2; TÞ ¼ � 9

2�2
q2T2

�
!

jqj3
��m2

Q

T2
nF

�
mQ

T

�

þ 2
Z 1

mQ
T

znFðzÞdz
�
; (10)

where limjqj!0!!0jqjv ¼ 2mQ has been used above.

Invoking the limit

lim
jqj!0!!0

!

jqj3 ¼
2

3
�ð!2Þ; (11)

the QCD spectral function, Eq. (10), vanishes since
limjqj!0!!0

!
jqj3 q

2 ¼ limjqj!0!!0
2
3 ð!2 � jqj2Þ�ð!2Þ ¼

2
3 !

2�ð!2Þ ¼ 0. For the pseudoscalar correlator the QCD

spectral function in the scattering region is

1

�
Im�ðsÞ

5 ðq2; TÞ ¼ 3

8�2
q2

Z 1

v

�
nF

�jqjxþ!

2T

�

� nF

�jqjx�!

2T

��
dx: (12)

In the rest frame of the thermal bath this contribution
vanishes, i.e.,

lim
jqj!0!!0

1

�
Im�ðsÞ

5 ðq2; TÞ ¼ � 3

4�2
q2
�
!

jqj
�
nF

�
!

T

�
! 0:

(13)

This leaves the gluon condensate as the leading temperature
dependent term in the operator product expansion (OPE).
The moments for this term have been calculated at T ¼ 0 in
[9]. After taking into account that our definition, Eq. (3),
differs from that in [9] by one additional derivative, the
results for the scalar correlator are

’NðQ2;TÞjNP¼� 27

8�2

2ðNþ1ÞN!

ð4m2
QÞðNþ1Þ

1

ð1þ�ÞNþ2


ðNþ1ÞðNþ2ÞðNþ3ÞðNþ4Þ
ð2Nþ5Þ!!ð2Nþ7Þ



�
F

�
Nþ2;�1

2
;Nþ9

2
;�

�

� 2

3ðNþ4ÞF
�
Nþ2;

1

2
;Nþ9

2
;�

��
�; (14)

where Fða; b; c; zÞ is the hypergeometric function, � �
Q2

0

4m2
Q

, � � �
1þ� , and

� � 4�2

9

1

ð4m2
QÞ2

��
	s

�
G2

��
; (15)

where hh	s

� G2ii stands for the temperature dependent gluon

condensate. The result for the pseudoscalar is

’5NðQ2;TÞjNP¼� 3

8�2

2ðNþ1ÞN!

ð4m2
QÞðNþ1Þ

1

ð1þ�ÞNþ2


ðNþ1ÞðNþ2ÞðNþ3ÞðNþ4Þ
ð2Nþ3Þ!!ð2Nþ4Þ



�
F

�
Nþ2;�3

2
;Nþ7

2
;�

�
� 6

ðNþ4Þ

F

�
Nþ2;�1

2
;Nþ7

2
;�

��
�: (16)

The thermal behavior of the gluon condensate was obtained
in [11]; to a good approximation this result can bewritten as

��
	s

�
G2

��
¼

�
	s

�
G2

��
�ðT� � TÞ þ 1� T

TC

1� T�
TC

�ðT � T�Þ
�
;

(17)

whereT� � 150 MeV is the break-point temperaturewhere
the condensate begins to decrease appreciably, and TC �
180 MeV is the temperature at which hh	s

� G2iiTC
¼ 0. It

should be mentioned that this lattice QCD determination
has rather large errors, so that this value ofTc is affected by a
large uncertainty. We have changed the value of Tc in the
wide range Tc ’ 180–260 MeV, and found no qualitative
change in the results, as discussed in the next section. This
simple parametrization of the lattice data can be improved
using a smooth function without changing the conclusions
to be reached with Eq. (17). At T ¼ 0 the gluon condensate
has been extracted from data on eþe� annihilation, and

-lepton hadronic decays [12]: h	s

� G2i ¼ ð0:05�
0:02Þ GeV4. We do not consider a gluonic twist-two term
in the OPE [13] as it is negligible, as in the case of vector
(J=c ) charmonium [7]. In fact, after calculating theWilson
coefficients corresponding to the (pseudo)scalar correlator,
the contribution from this term is roughly 1 order of mag-
nitude smaller than the scalar gluon condensate at T ¼ Tc.
Turning to the hadronic representation of the (pseudo)

scalar correlator, we follow the standard procedure and
parametrize it in terms of the ground state resonance, i.e.,
the �c (�c), followed by a continuum given by PQCD after
a threshold s0 >M2, where M is the hadron mass. This
ansatz is an even better approximation at finite tempera-
ture, as s0ðTÞ decreases monotonically with increasing T in
all systems analyzed so far. Considering first the zero-
width approximation, the hadronic spectral function is
given by

(PSEUDO)SCALAR CHARMONIUM IN FINITE . . . PHYSICAL REVIEW D 83, 034033 (2011)

034033-3



1

�
Im�ðs;TÞjHAD

¼ 1

�
Im�ðs;TÞjRES�ðs0�sÞþ 1

�
Im�ðs;TÞjPQCD�ðs�s0Þ

¼f2ðTÞM2ðTÞ�ðs�M2ðTÞÞþ 1

�
Im�ðs;TÞa�ðs�s0Þ; (18)

where s � q2 ¼ !2 � jqj2, and the leptonic decay con-
stant is defined as

< 0jJð5Þð0ÞjHðkÞ> ¼ fM2; (19)

where HðkÞ stands for �c (�c). Next, considering a finite
(total) width, the following replacement will be under-
stood:

�ðs�M2ðTÞÞ ���! const
1

ðs�M2ðTÞÞ2þM2ðTÞ�2ðTÞ ; (20)

where the constant is fixed by requiring equality of areas;
e.g., if the integration is in the interval ð0�1Þ then
const ¼ MðTÞ�ðTÞ=�. To complete the hadronic parame-
trization one needs to consider the hadronic scattering term
due to the current scattering off heavy-light quark pseudo-
scalar mesons (D mesons) in the thermal bath. In the case
of the �c, the pseudoscalar current couples to an odd
number of pseudoscalars, so that the scattering term is
effectively a negligible higher order (one-loop) effect [3].
For the scalar case it is easy to show that the hadronic
scattering spectral function vanishes in the rest frame of the
thermal bath, as this term is not singular as jqj ! 0, and
! ! 0.

III. RESULTS

We start the analysis at T ¼ 0, and use the moments,
Eq. (3), to reproduce the experimental values of the mass
for an input width of the �c and �c [14]. The leptonic
decay constants are not known experimentally, so that they
will be predicted from the sum rules, having in mind that
they are expected to be a few hundred MeV. Ultimately,
their precise value is not important, as what matters is the
behavior of their ratio fðTÞ=fð0Þ. Beginning with the zero-
width approximation it follows from Eq. (5) that

’1ðQ2ÞjHAD
’2ðQ2ÞjHAD

¼ ’2ðQ2ÞjHAD
’3ðQ2ÞjHAD

; (21)

which turns out to hold with extremely good accuracy
given the small widths of the �c and the �c. Using
Eq. (4) this leads to

’1ðQ2
0ÞjQCD

’2ðQ2
0ÞjQCD

¼ ’2ðQ2
0ÞjQCD

’3ðQ2
0ÞjQCD

; (22)

which depends only on the QCD information, involves the
two unknowns s0 andQ

2
0, and provides the first equation to

determine this pair of parameters. It is very important
to stress at this point that for consistency s0 must be
determined from the sum rules themselves, rather than

importing it from some other analysis. The second equa-
tion can be Eq. (4) with, e.g., N ¼ 1. Following this
procedure, and starting at T ¼ 0, we find for �c that
s0ð0Þ ¼ 9:1 GeV2, Q2

0 ¼ 0, and �ð0Þ ¼ �jEXP ¼
27� 3 MeV give Mð0Þ ¼ 2:9 GeV, to be compared with
the experimental value Mð0ÞjEXP ¼ 2:98 GeV. For the �c

we find that s0ð0Þ ¼ 11:6 GeV2, � ¼ �jEXP ¼ 10:2�
0:7 MeV, and Q2

0 ¼ 0 yield Mð0Þ ¼ 3:2 GeV, to be com-

pared with the experimental value Mð0ÞjEXP ¼ 3:41 GeV.
The leptonic decay constants are predicted to be f ¼
183 MeV for �c, and f ¼ 190 MeV for �c, in agreement
with expectations. The above results are fairly insensitive
to changes inQ2

0 and N in the rangeQ2
0 ¼ 0–10 GeV2, and

N ¼ 1–6 [for larger values of N there is no solution for
s0ð0Þ]. A posteriori, and at finite temperature, varying Q2

0

and N in that wide range lead to no appreciable changes in
the results and conclusions.
Next, at finite T Eq. (21) continues to hold with extreme

accuracy even if the width were to grow substantially. In
fact, for a tenfold increase in the width, Eq. (21) remains
valid within a fraction of 1%. Solving for s0ðTÞ the results
are shown in Fig. 1 for Tc ¼ 180 MeV, where curve (a) is
for the pseudoscalar channel, and curve (b) for the scalar
channel. The end point of each curve corresponds to
s0ðTcÞ ¼ 4m2

Q ’ 6:8 GeV2, i.e., the QCD threshold value

which then makes the FESR integrals vanish. The break
point at which s0ðTÞ starts to decrease occurs at T=Tc ’
0:80, for Tc ¼ 180 MeV (T=Tc ’ 0:55 for Tc ¼
260 MeV). Since in the present case there is only one
T-dependent driving term, it is not possible to extend the
analysis beyond the critical temperature. For the J=c there
are two driving terms, the PQCD scattering term propor-
tional to T2, and the gluon condensate defining a critical
temperature [7]. This feature allowed the analysis to extend
beyond T ¼ Tc. Once again, s0ðTÞ must be obtained from
the QCD moments themselves, rather than using some

FIG. 1. The ratio s0ðTÞ=s0ð0Þ as a function of T=Tc, for �c

[curve (a)], and �c [curve (b)] corresponding to Tc ¼ 180 MeV.
For Tc ¼ 260 MeV the break point is at T=Tc ’ 0:55, instead of
T=Tc ’ 0:80.
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temperature parametrization from some other application.
Otherwise, results could be seriously inconsistent. The
result for the mass of the �c is shown in Fig. 2; a similar
behavior is found for the�c. This result confirms once again
the view that the hadronic mass is not a meaningful order
parameter, as it hardly changes with temperature—in some
cases decreasing slightly, and in other cases increasing
slightly with increasing T. Conceptually, there is no par-
ticular reason for themass, being the position of the spectral
function pole on the real axis, to be a signal for deconfine-
ment. In contrast, the total width and the coupling do
provide such a deconfinement signal, if the width increases
and the coupling decreases with increasing temperature. In
view of this result for the hadronic masses, we keep them
constant in the sequel to simplify the analysis, and discuss
later the consequences of allowing a slight T dependence.
Results for the widths are shown in Fig. 3 for �c, and in

Fig. 4 for �c. Qualitatively, they resemble the result for
J=c . Quantitatively, the �c width is essentially indepen-
dent of the temperature up to T=Tc ’ 0:80 (T=Tc ’ 0:55 for
Tc ¼ 260 MeV), after which it increases substantially by a
factor 9 until T=Tc ’ 0:95 (T=Tc ’ 0:87 for Tc ¼
260 MeV) where it decreases dramatically by more than a
factor 2 at T=Tc ’ 0:99 (T=Tc ’ 0:97 for Tc ¼ 260 MeV).
Beyond this temperature there is no longer a solution to the
FESR. The behavior of the �c width is qualitatively similar
to that of the �c. Quantitatively, though, the �c width
increases by almost a factor 18 until a slightly lowerT=Tc ’
0:90 (T=Tc ’ 0:75 for Tc ¼ 260 MeV), and then it de-
creases by a factor 2 at the end point T=Tc ’ 0:94 (T=Tc ’
0:85 for Tc ¼ 260 MeV). The behavior of the leptonic
decay constants is shown in Fig. 5 for �c [curve (a)], and
for �c [curve (b)]. For the �c, the temperature at which
the coupling starts to increase dramatically is close to the

FIG. 2. The ratio of the �c mass MðTÞ=Mð0Þ as a function of
T=Tc for Tc ¼ 180 MeV. A similar result is found for the �c, as
well as for Tc ¼ 260 MeV.

FIG. 3. The ratio of the �c width �ðTÞ=�ð0Þ as a function of
T=Tc corresponding to Tc ¼ 180 MeV. For Tc ¼ 260 MeV the
break point is at T=Tc ’ 0:55, instead of T=Tc ’ 0:80, so that
the curve becomes roughly twice as broad.

FIG. 4. The ratio of the �c width �ðTÞ=�ð0Þ as a function of
T=Tc corresponding to Tc ¼ 180 MeV. For Tc ¼ 260 MeV the
break point is at T=Tc ’ 0:55, instead of T=Tc ’ 0:80, so that the
curve becomes roughly twice as broad.

FIG. 5. The ratio of the leptonic decay constant f as a function
of T=Tc for the �c [curve (a)], and the �c [curve (b)] corre-
sponding to Tc ¼ 180 MeV. For Tc ¼ 260 MeV the break point
is at T=Tc ’ 0:55, instead of T=Tc ’ 0:80.
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temperature at which the width begins to decrease substan-
tially, i.e., T=Tc ’ 0:95 (T=Tc ’ 0:97 for Tc ¼ 260 MeV).
The end point is the same as for the width, i.e., T=Tc ’ 0:99
(T=Tc ’ 0:97 for Tc ¼ 260 MeV). A similar correlation is
found for the �c; i.e., the coupling reverses behavior at
T=Tc ’ 0:90 (T=Tc ’ 0:75 for Tc ¼ 260 MeV), and the
end point occurs at a similar temperature as for the width,
i.e., T=Tc ’ 0:94 (T=Tc ’ 0:85 for Tc ¼ 260 MeV). The
origin of this correlation between the width and the cou-
pling, and the fact that there is no longer a solution for the
width and coupling (end point) below Tc, is easy to under-
stand from Eqs. (4)–(6). For instance, in the zero-width
approximation the square of the coupling is proportional
to the right hand side of Eq. (6), i.e., to the sum of the PQCD
integral and the nonperturbative (gluon condensate) mo-
ment, the latter being negative [see Eqs. (14)–(16)]. At some
T < Tc the monotonically decreasing PQCD integral be-
comes equal to the nonperturbative moment so that beyond
this temperature f2 < 0, and there is no longer a real solu-
tion. In the case of the widths the end point corresponds to
the temperature beyond which they become negative. We
comment in closing on the validity of the simplifying ap-
proximationMðTÞ ’ Mð0Þ. Allowing for the hadronic mass
to change (decrease) near Tc produces a slight reduction,
together with a shift to the right, of the peak in Figs. 3 and 4,
but preserves the overall qualitative behavior of the widths.
Something similar happens with the couplings; i.e., the
temperature at which they start to increase substantially
shifts slightly toward Tc.

IV. CONCLUSIONS

We have determined the temperature dependence of the
hadronic parameters of charmonium in the (pseudo)scalar
channels,�c and�c, usingHilbert moment QCD sum rules.

The results confirm the expectation that heavy-heavy quark
systems behave differently from light-light and heavy-light
quark hadrons, due to the absence of the light quark con-
densate in the OPE. Since in the spacelike region there is no
contribution to the PQCD nor to the hadronic (pseudo)
scalar correlator, this leaves the gluon condensate as the
leading term in the OPE, and thus solely responsible for the
temperature behavior of �c and �c. The continuum thresh-
old s0ðTÞ was found to follow closely the T dependence of
the gluon condensate. The leptonic decay constant and the
width behave initially as in light and heavy-light hadrons;
i.e., they both are initially constant, and after certain tem-
perature the former decreases and the latter increases with
increasing T. However, beyond a certain temperature this
behavior reverses, with the decay constant increasing and
the width decreasing with T up to some temperature just
below Tc beyondwhich the sum rules are no longer valid. In
the (pseudo)scalar channel it is not possible to carry on the
analysis beyond Tc, as in the case of J=c , because the
gluon condensate is the sole driver of the T dependence
(there are no scattering terms as in the vector channel).
Nevertheless, the behavior of the decay constant and the
width of �c and �c near Tc suggests their survival beyond
Tc, as found for the J=c in this same framework [7],
and in agreement with lattice QCD results [8].
Experimentally, a possible way of confirming the survival
of charmonium states beyond Tc would be to observe them
in heavy ion collisions at highpT beyond a certain threshold
value.
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