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The shear viscosity to entropy density ratio, �=s, characterizes how perfect a fluid is. We calculate the

leading order �=s of a gluon plasma in perturbation using the kinetic theory. The leading order

contribution only involves the elastic gg $ gg (22) process and the inelastic gg $ ggg (23) process.

The hard-thermal-loop (HTL) treatment is used for the 22 matrix element, while the exact matrix element

in vacuum is supplemented by the gluon Debye mass insertion for the 23 process. Also, the asymptotic

mass is used for the external gluons in the kinetic theory. The errors from not implementing HTL and the

Landau-Pomeranchuk-Migdal effect in the 23 process, and from the uncalculated higher order corrections,

are estimated. Our result smoothly connects the two different approximations used by Arnold, Moore, and

Yaffe (AMY) and Xu and Greiner (XG). At small �s (�s � 1), our result is closer to AMY’s collinear

result while at larger �s the finite angle noncollinear configurations become more important and our result

is closer to XG’s soft bremsstrahlung result. In the region where perturbation is reliable (�s & 0:1), we

find no indication that the proposed perfect fluid limit �=s ’ 1=ð4�Þ can be achieved by perturbative QCD
alone. Whether this can be achieve for �s * 0:1 is still an open question.

DOI: 10.1103/PhysRevD.83.034031 PACS numbers: 12.38.Mh

I. INTRODUCTION

A perfect fluid is a system with zero shear and bulk
viscosities, � and � , and no dissipation. These conditions
can be satisfied for a superfluid at zero temperature where
only the superfluid component exists, but a sharper de-
scription is with the dimensionless ratios �=s and �=s,
where s, the entropy density, vanishes for the superfluid
component as well. While �=s can still be zero for scaling
invariant systems, the situation for �=s is more subtle.

In general, stronger interactions implies a smaller �.
Thus, a perfect fluid with the smallest �=s is likely to be
strongly interacting, which requires nonperturbative tools
to compute it. The anti-de Sitter space/conformal field
theory correspondence (AdS/CFT) [1–3] allows the �=s
of strongly interacting CFT’s to be computed in weakly
interacting gravitational theories. A universal number
�=s ¼ 1=ð4�Þ is found for every CFT with a gravity dual
in the large N, with N the size of the gauge group, and
infinite ’t Hooft coupling limit [4–6]. With this result,
together with the connection to the uncertainty principle
through the relation �=s� �E�t, with �E and �t the
mean energy and lifetime of quasiparticles, Kovtun, Son,
and Starinets (KSS) [5] conjectured that the strongly inter-
acting CFT value 1=ð4�Þ is the minimum bound for �=s
for all physical systems.

Theoretically, there are several attempts to evade this
bound. It is found that �=s can be as small as possible (but
still non-negative) in a carefully engineered meson system
[7,8], although the system is metstable. Also, in strongly
interacting CFTs, 1=N corrections can be negative [9,10]
and can modify the �=s bound slightly [11,12].

Experimentally, there are intensive interests to find the
most perfect fluid (see [13,14] for recent reviews). The
smallest�=s known so far is realized in a system of hot and
dense matter thought to be quark-gluon plasma (QGP) just
above the phase transition temperature produced
at the Relativistic Heavy Ion Collider (RHIC) [15–17]
with �=s ¼ 0:1� 0:1ðtheoryÞ � 0:08ðexperimentÞ [18].
A robust upper limit �=s < 5� 1=ð4�Þ was extracted by
another group [19] and a lattice computation of gluon
plasma yields �=s ¼ 0:134ð33Þ [20]. Progress has been
made in cold unitary fermi gases as well. An analysis of
the damping of collective oscillations gives �=s * 0:5
[21,22]. Even smaller values of �=s are indicated by recent
data on the expansion of rotating clouds [23,24], but more
careful analyses are needed [25,26].
Even if the 1=ð4�Þ bound for�=s turns out to be invalid, it

is still interesting to use it as a benchmark value for the
perfectness of fluids. It was found that based on the pertur-
bative QCD (PQCD) analysis of Arnold, Moore and Yaffe
(AMY) [27,28], the measured �=s at RHIC cannot be ex-
plained by PQCD (for a recent review, see, e.g., [29]). This
strongly interacting QGP picture is very different from the
conventional picture of weakly interacting QGP and is con-
sidered as one of themost surprising discoveries at theRHIC.
However, a recent perturbative QCD calculation of �=s

of a gluon plasma by Xu and Greiner (XG) [30] shows
that the dominant contribution comes from the inelastic
gg $ ggg (23) process instead of the elastic gg ! gg (22)
process. In particular, the 23 process is 7 times more
important than 22. Thus, �=s ’ 1=4� can be achieved
when the strong coupling constant �s ’ 0:6. Thus, the
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conventional weakly interacting QGP could still be valid.
This is in sharp contrast to AMY’s result, where the 23
process only gives �10% correction to the 22 process.

Both XG and AMY use kinetic theory for their calcu-
lations. The main differences are (i) XG uses a parton
cascade model [31] to solve the Boltzmann equation and,
for technical reasons, gluons are treated as a classical gas
instead of a bosonic gas. On the other hand, AMY solves
the Boltzmann equation for a bosonic gas. (ii) AMY ap-
proximates the Ng $ ðN þ 1Þg processes, N ¼ 2; 3; 4 . . . ,
by the g $ gg splitting in the collinear limit where the two
gluon splitting angle is higher order. XG uses the soft gluon
bremsstrahlung limit where one of the gluon momenta in
the final state of gg ! ggg is soft but it can have a large
splitting angle with its mother gluon.

In an earlier attempt to resolve the discrepancy between
XG’s and AMY’s results [32], a Boltzmann equation com-
putation of � is carried out without taking the classical
gluon approximation (like AMY’s approach), but the soft
gluon bremsstrahlung limit is applied to the 23 matrix
element (like XG’s approach, modulo a factor 2 in the
23 matrix element squared; see [32] for details). It was
found that the classical gas approximation does not cause a
significant error in�=s (although the individual errors on�
and s are larger). However, the result is sensitive to whether
the soft gluon bremsstrahlung limit is imposed on the phase
space or not. If this limit is imposed, the result is closer
to AMY’s; if not, the result is closer to XG’s. This raises
the concern whether this approximation is good for com-
puting �.

The goal of this paper is to settle this issue by removing
both the soft gluon bremsstrahlung approximation and the
collinear approximation to the 23 process. The leading
order [Oð��2

s Þ] contribution to � only involves the 22
and 23 processes [28] (the power counting for 22, 23,
and other processes are reproduced in [32]). In this paper,
the Hard-Thermal-Loop (HTL) treatment is used for the 22
matrix element, while the exact matrix element in vacuum
is supplemented by the gluon Debye mass insertion for the
23 process. Also, the Debye mass is used for the external
gluon mass in the kinetic theory as well. The errors from
not implementing HTL and the Landau-Pomeranchuk-
Migdal effect in the 23 process, and from the uncalculated
higher order corrections, are also estimated.

II. KINETIC THEORY BEYOND THE SOFT OR
COLLINEAR GLUON APPROXIMATIONS

Using the Kubo formula, � can be calculated through
the linearized response function of a thermal equilibrium
state

� ¼ � 1

5

Z 0

�1
dt0

Z t0

�1
dt

Z
dx3h½Tijð0Þ; Tijðx; tÞ�i; (1)

where Tij is the spatial part of the off-diagonal energy
momentum tensor. In a leading order (LO) expansion of

the coupling constant, there are an infinite number of
diagrams [33,34]. However, it is proven that the summation
of the LO diagrams in a weakly-coupled�4 theory [33–37]
or in hot QED [38] is equivalent to solving the linearized
Boltzmann equation with temperature-dependent particle
masses and scattering amplitudes. The conclusion is ex-
pected to hold in weakly-coupled systems and can as well
be used to compute the LO transport coefficients in QCD-
like theories [27,28], hadronic gases [39–44] and weakly-
coupled scalar field theories [33–36,45,46].
The Boltzmann equation of a hot gluon plasma describes

the evolution of the color and spin-averaged gluon distri-
bution function fpðxÞ, which is a function of space-time

x ¼ ðt;xÞ and momentum p ¼ ðEp;pÞ. The infinitesimal

deviation of fpðxÞ from its equilibrium value feqp ¼
ðev�p=T � 1Þ�1 is denoted as

fp ¼ feqp ½1� �pð1þ feqp Þ�; (2)

where �p � �ðx; pÞ can be parametrized as

�p¼AðpÞ
T

r�vþBijðpÞ
T

1

2

�
@vi

@xj
þ@vj

@xi
�2

3
�ijr�v

�
; (3)

at the leading order of the derivative expansion of the fluid
velocity vðxÞ ¼ ðv0; vÞ. T ¼ TðxÞ is the local temperature,
p̂ is the unit vector in the p direction. BijðpÞ ¼ BðpÞ�
ðp̂ip̂j � 1

3�ijÞ. AðpÞ and BðpÞ are functions of p which will

be fixed by the Boltzmann equation corresponding to the
bulk and shear viscosities, respectively. In this work, we
will just focus on the shear viscosity calculation.
The Boltzmann equation [47–52] for the gluon plasma

reads

p�

Ep

@�fp ¼ 1

Ng

X
ðn;lÞ

1

Nðn; lÞ
Z
1���ðn�1Þ

d�1���l!ðlþ1Þ���ðn�1Þp

�
�
ð1þ fpÞ

Yl
r¼1

fr
Yn�1

s¼lþ1

ð1þ fsÞ

� fp
Yl
r¼1

ð1þ frÞ
Yn�1

s¼lþ1

fs

�
; (4)

where the collision rates are given by

d�1���l!ðlþ1Þ���ðn�1Þp

� Yn�1

j¼1

d3pj

ð2�Þ32Ej

1

2Ep

jM1���l!ðlþ1Þ���ðn�1Þpj2

� ð2�Þ4�4

�Xl
r¼1

pr �
Xn�1

s¼lþ1

ps � p

�
: (5)

Ng ¼ 16 is the color and spin degeneracy of a gluon. The

i-th gluon is labeled as i, while the n-th gluon is labeled as
p. For a process with l initial and ðn� lÞ final gluons, the
symmetry factor Nðn; lÞ ¼ l!ðn� l� 1Þ!. For example,
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processes 12 ! 3p, 12 ! 34p, 123 ! 4p yield ðn; lÞ ¼
ð4; 2Þ; ð5; 2Þ; ð5; 3Þ and Nðn; lÞ ¼ 2; 4; 6, respectively.

In vacuum, the matrix element squared for the 22
process is

jM12!34j2 ¼ 9

2
ð4�Þ2N2

g�
2
s

�
3� tu

s2
� su

t2
� st

u2

�
; (6)

where �s ¼ g2=ð4�Þ is the strong coupling constant, and
ðs; t; uÞ are the Mandelstam variables s ¼ ðp1 þ p2Þ2,
t ¼ ðp1 � p3Þ2 and u ¼ ðp1 � p4Þ2.

For the 23 process [53,54], under the conventionP5
i¼1 pi ¼ 0, we have

jM12345!0j2¼jM0!12345j2
¼54�3N2

g�
3
s½ð12Þ4þð13Þ4þð14Þ4þð15Þ4

þð23Þ4þð24Þ4þð25Þ4þð34Þ4þð35Þ4

þð45Þ4� X
permf1;2;3;4;5g

1

ð12Þð23Þð34Þð45Þð51Þ ;

(7)

where ðijÞ � pi � pj and the sum is over all permutations

of f1; 2; 3; 4; 5g. To convert to the convention p1 þ p2 ¼
p3 þ p4 þ p5, we just perform the replacement:

jM12!345j2 ¼ jM0!12345j2jp1!�p1;p2!�p2
;

jM345!12j2 ¼ jM12345!0j2jp1!�p1;p2!�p2
:

(8)

In the medium, the gluon thermal mass effect serves as
the infrared (IR) cutoff to regularize IR sensitive observ-
ables. The most singular part of Eq. (6) comes from the
collinear region (i.e., either t 	 0 or u 	 0), which can be
regularized by the HTL corrections to the gluon propaga-
tors [55,56] and yields [57]

jM12!34j2 	 1

4
ð12��sÞ2N2

gð4E1E2Þ2

�
��������

1

q2 þ�L

� ð1� �x2Þ cos�
q2ð1� �x2Þ þ�T

��������
2

; (9)

where q ¼ p1 � p3 ¼ ðq0;qÞ, �x ¼ q0=jqj, and � is the
angle between p̂1 � q̂ and p̂2 � q̂. The HTL self-energies
�L (longitudinal) and �T (transverse) are given by

�L ¼ m2
D

�
1� �x

2
ln
1þ �x

1� �x
þ i

�

2
�x

�
;

�T ¼ m2
D

�
�x2

2
þ �x

4
ð1� �x2Þ ln1þ �x

1� �x
� i

�

4
�xð1� �x2Þ

�
: (10)

The external gluon mass m1 (i.e., the asymptotic mass) is
the mass for an on-shell transverse gluon, and m21 ¼
�Tðj �xj ¼ 1Þ ¼ m2

D=2 both in the HTL approximation
and in the full one-loop result.

Previous investigations of the thermodynamics within
resummed perturbation theory showed that the most im-
portant plasma effects are the thermal masses �gT
acquired by the hard thermal particles [58–60]. So, a

simpler (though less accurate) treatment for the regulator

is to insert the Debye mass mD ¼ ð4��sÞ1=2T to the gluon
propagator such that in the center-of-mass (CM) frame,

jM12!34j2CM 	 ð12��sÞ2N2
g

s2

ðq2
T þm2

DÞ2
; (11)

where qT is the transverse component of q with respect to
p1. It can be shown easily that Eqs. (9) and (11) coincide in
the CM frame in vacuum. This treatment was used in
Refs. [30,32,49]. We will show both results using HTL
and mD for the mass of the internal gluon propagators for
comparison.
For the 23 process, because the matrix element is already

quite complicated, we will just takemD as the regulator for
internal gluons and estimate the errors. In the

P
5
i¼1 pi ¼ 0

convention, one can easily show that an internal gluon will
have a momentum of �ðpi þ pjÞ rather than �ðpi � pjÞ.
Therefore, the gluon propagator factors ðijÞ in the denomi-
nator of Eq. (7), should be modified to

ðijÞ¼1

2
½ðpiþpjÞ2�m2

D�¼pi �pjþ
2m2

g�m2
D

2
; (12)

where we use mg to denote the external gluon mass. Then

one applies Eq. (8) for the Boltzmann equation. In the
numerator, the ðijÞ4 combination is set by T and is
OðT8Þ. So, we can still apply the substitution of Eq. (12),
even if the ðijÞ factors might not have the inverse propa-
gator form. The error is �m2

DðijÞ3 ¼ Oð�sT
8Þ, which is

higher order in �s.
It is instructive to show that Eqs. (7), (8), and (12) give

the correct soft bremsstrahlung limit. Using the light-cone
variable

p ¼ ðpþ; p�;p?Þ � ðp0 þ p3; p0 � p3; p1; p2Þ; (13)

we can rewrite one momentum configuration in the CM
frame in terms of p, p0, q, and k: p1 ¼ p, p2 ¼ p0, p3 ¼
pþ q� k, p4 ¼ p0 � q, and p5 ¼ k, with

p ¼ ð ffiffiffi
s

p
; m2

g=
ffiffiffi
s

p
; 0; 0Þ; p0 ¼ ðm2

g=
ffiffiffi
s

p
;

ffiffiffi
s

p
; 0; 0Þ;

k ¼ ðy ffiffiffi
s

p
; ðk2? þm2

gÞ=y
ffiffiffi
s

p
; k?; 0Þ; q ¼ ðqþ; q�; q?Þ:

(14)

The on-shell condition p2
3 ¼ p2

4 ¼ m2
g yields

qþ ’ �q2?=
ffiffiffi
s

p
;

q� ’ k2? þ yq2? � 2yk? � q? þ ð1� yþ y2Þm2
g

yð1� yÞ ffiffiffi
s

p :
(15)

Taking the large s limit, then the y ! 0, we obtain

jM12!345j2CM ¼ X
permf3;4;5g

3456�3N2
g�

3
s

� s2

ðk2? þm2
gÞðq2? þm2

DÞ½ðk? � q?Þ2 þm2
D�

; (16)

where the permutation is over all final state gluon configu-
rations. We see that Eq. (16) reduces to the Gunion-Bertsch
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formula [61] after takingmD,mg ! 0. A similar derivation

can be found in Ref. [62,63].

III. BEYOND VARIATION—SOLVING
FOR � SYSTEMATICALLY

Following the standard procedure, the shear viscosity is
related to BðpÞ by

� ¼ Ng

10T

Z d3p

ð2�Þ3Ep

f
eq
p ð1þ f

eq
p Þ

�
pipj � 1

3
�ijp

2

�
BijðpÞ:

(17)

BijðpÞ satisfies the constraint derived from the linearized

Boltzmann equation,

pipj�1

3
�ijp

2¼ Ep

2Ng

Z
123

d�12!3pf
eq
1 feq2 ð1þfeq3 Þðfeqp Þ�1½BijðpÞþBijðp3Þ�Bijðp1Þ�Bijðp2Þ�

þ Ep

4Ng

Z
1234

d�12;34pð1þfeq1 Þð1þfeq2 Þfeq3 feq4 ð1þfeqp Þ�1½BijðpÞþBijðk4ÞþBijðk3Þ�Bijðk2Þ�Bijðk1Þ�

þ Ep

6Ng

Z
1234

d�123;4pð1þf
eq
1 Þð1þf

eq
2 Þð1þf

eq
3 Þfeq4 ð1þf

eq
p Þ�1½BijðpÞþBijðk4Þ�Bijðk3Þ�Bijðk2Þ�Bijðk1Þ�:

(18)

However, solving Bij using this equation is technically challenging. It is easier to perform a projection (or convolution) to
the above equation, then solve for the less restricted Bij. We will discuss the procedure below.

By plugging Eq. (18) into Eq. (17), we obtain � in a bilinear form of Bij,

� ¼ 1

80T

Z Y4
i¼1

d3ki
ð2�Þ32Ei

jM12!34j2ð2�Þ4�4ðk1 þ k2 � k3 � k4Þð1þ feq1 Þð1þ feq2 Þfeq3 feq4

� ½Bijðk4Þ þ Bijðk3Þ � Bijðk2Þ � Bijðk1Þ�2

þ 1

120T

Z Y5
i¼1

d3ki
ð2�Þ32Ei

jM12!345j2ð2�Þ4�4ðk1 þ k2 � k3 � k4 � k5Þ

� ð1þ feq1 Þð1þ feq2 Þfeq3 feq4 feq5 ½Bijðk5Þ þ Bijðk4Þ þ Bijðk3Þ � Bijðk2Þ � Bijðk1Þ�2: (19)

Then one can solve for Bij which equates the right hand
sides of Eqs. (17) and (19). This is nothing but a projection
of Eq. (18). The resulting solution is not unique because
only the projected equation, but not the equation itself, is
satisfied. However, it is proven [28,64] that the true solu-
tion of Bij, i.e. the solution satisfying Eq. (18), would give
the maximum value of �. Thus, solving for � becomes a
variational problem.

Recently, an algorithm is developed to find the true
solution of Bij systematically [65]. Thus, this approach is

no more variational but systematic. Here we outline the
procedure. First, expanding BðpÞ using a specific set of
orthogonal polynomials [41,42],

BðpÞ ¼ ðEp=TÞy
Xrmax

r¼0

brB
ðrÞðEp=TÞ; (20)

with y a constant chosen to be 1 in this case. The dimen-

sionless polynomial BðrÞ satisfying the orthonormal condi-
tion

Z d3p

ð2�Þ3Ep

f
eq
p ð1þ f

eq
p Þjpj2ðEp=TÞyBðrÞðEp=TÞ

� BðsÞðEp=TÞ ¼ T4�rs: (21)

Then Eq. (19) can be written in a compact form,

� ¼ hBjFjBi ¼ Xrmax

r;s¼0

brbshBðrÞjFjBðsÞi; (22)

while Eq. (17) gives

�¼Xrmax

r¼0

br
Ng

15T

Z d3p

ð2�Þ3Ep

feqp ð1þfeqp Þjpj2ðEp=TÞyBðrÞðEp=TÞ

¼Xrmax

r¼0

brL
ðrÞ�r0¼b0L

ð0Þ; (23)

with

Lð0Þ ¼ Ng

15T
Bð0Þ Z d3p

ð2�Þ3Ep

f
eq
p ð1þ f

eq
p Þjpj2ðEp=TÞy:

(24)

From Eqs. (22) and (23), we can find b0 by solving the
equation

LðrÞ�r0 ¼
Xrmax

s¼0

bshBðrÞjFjBðsÞi; (25)

and then determine � from Eq. (23). [Note that there could
be more than one solution satisfying Eqs. (22) and (23), but
they all give the same �.]
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In Ref. [65], it is proven that this procedure gives a
monotonically increasing value of � with increasing
rmax. Thus, one can systematically approach the true value
of� by adding more terms in the expansion of Eq. (20). We
find good convergence in this algorithm. From rmax ¼ 1 to
2, � changes by less than 2% for �s 
 0:3. Better con-
vergence is found for smaller �s.

IV. NUMERICAL RESULTS

A. Leading-Log result

The leading order [Oð��2
s Þ] contribution to � only in-

volves the 22 and 23 processes [28]. The 22 collision rate is
larger than 23 by a ðln�sÞ factor. In the leading-log (LL)
approximation, one just needs to focus on the small qT
contribution from the 22 process. Furthermore, it was
shown in [66,67] that using the HTL regulator (9) gives
the same LL viscosity to that using the mD regulator (11).
Thus, after performing the small qT expansion to Eq. (19),
we obtain

�LL ’ 27:1
T3

g4 lnð1=gÞ ; (26)

which coincides with that of [27] to significant digits
shown above. Using the entropy density for noninteracting

gluons, s ¼ Ng
2�2

45 T3 (for mg ¼ 0), we obtain

�LL

s
’ 3:9

g4 lnð1=gÞ : (27)

This will be used to check our numerical result later.

�22—Shear viscosity with the 22 process only

To study the effect of the HTL regulator,�22 (i.e.,�with
the 22 process only) with the HTL and mD for the internal
gluon masses, respectively, are shown in Fig. 1. The LL
result �LL and AMY’s �22 [denoted as �22ðAMYÞ] [27,28]

are also shown. The external gluon mass mg, used in

kinematics and in f
eq
p such that Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

g

q
, is a

higher order effect in �22. Changing mg from 0 to mD ¼ffiffiffi
2

p
m1 yields anOðm21=T2Þ ¼ Oð�sÞ variation to �22. This

is confirmed numerically in the left panel of Fig. 1. It is a
good check to our numerical calculation that �22ðHTLÞ and
�22ðMDÞ both converge to �LL in small �s, and �22ðHTLÞ
agrees well with �22ðAMYÞ whenmg ¼ 0 is used to conform

with the AMY result.
About the HTL effect, �22ðHTLÞ=�22ðMDÞ is quite close to

unity at �s ¼ 10�6, see the right panel of Fig. 1. This ratio
gets smaller at larger �s and reaches 0.65 at �s ¼ 0:1 with
little mg dependence (each �22ðHTLÞ=�22ðMDÞ is evaluated

with the same mg). This means the error is �30% in the

shear viscosity at �s ¼ 0:1 if we use mD as the regulator
for the gluon propagator instead of the HTL propagator.

C. �22þ23—Shear viscosity with the 22 and 23 processes

In our full calculation, we use the HTL propagator for
the 22 process. However, for technical reasons, we use the
internal gluon mass mD for the 23 process. More specifi-
cally, we use matrix elements of Eqs. (7)–(9) and (12),

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

g

q
in kinematics and feqp for external gluons,

and mg ¼ m1. If the external gluons are massless but the

internal gluons are massive, then the 1=½ðp1 þ p2Þ2 �m2
D�

factor could diverge. Usingmg ¼ m1, each term in Eq. (7)

is non-negative. In AMY and XG, external gluon masses
were not included (mg ¼ 0). This divergence was avoided

by keeping only the most singular matrix elements in the
small k?, q? limit, and taking the collinear approximation
(AMY) or regulating the gluon bremsstrahlung infrared
divergence by the Landau-Pomeranchuk-Migdal (LPM)
effect (XG) which will be discussed in Sec. IVD.
We show �22=s and �22þ23=s in the left panel of Fig. 2,

where the HTL propagator is used for 22 and the external
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FIG. 1 (color online). �22 over the entropy density (left panel) and �22 over �22ðMDÞ (right panel) in various treatments. ‘‘LL’’ is the
leading-log result of Eq. (26). ‘‘HTL’’ is the result using the full HTL matrix element of Eq. (9). ‘‘MD’’ is the result using mD as the
regulator as in Eq. (11). ‘‘AMY’’ is AMY’s result.
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gluon mass mg ¼ m1. We also show AMY’s result for

�22þ23=s for comparison. In the right panel of Fig. 2, we
see that the ratio of our result to AMY’s approaches unity
at very small �s and�0:5 at �s 	 0:001. The deviation in
moderate �s is partly due to the finite angle, noncollinear
3-body configurations in the 23 process described by the
full matrix element (7) and partly due to the gluon mass.
We have also included a theoretical error band for �22þ23

which will be discussed in Section IVD.
The effect of the 23 process can be seen more clearly in

the ratio �22þ23=�22 shown in Fig. 3. We have plotted
�22ðHTLÞþ23=�22ðHTLÞ together with AMY’s and XG’s result

for comparison. The 22 process dominates at small �s.
When �s increases, �22þ23=�22 decreases and the central
value reaches the minimum of�0:25 (which means the 23

collision rate is �3 times of 22!) at �s ’ 0:1 and then
increases again for �s * 0:1.
We see that AMY’s result which employs the collinear

approximation for the 1 $ 2 process (corresponding to our
23 process), gives �22þ23=�22 close to unity. This implies
their 23 collisions is just a small perturbation to the 22
collisions. XG’s result, which employs the soft gluon
bremsstrahlung approximation, however, gives
�22þ23=�22 ’ ½0:11; 0:16� around 1=8. This implies their
23 collision rate is about 7 times bigger than the 22
collision rate. Our result, which takes neither of the ap-
proximations, lies between AMY’s and XG’s results and
between two previous calculations with different approx-
imations to the phase space [32]. Furthermore, our result
smoothly connects the two different approximations used
by AMYand XG: at small �s (�s � 1), our result is closer
to AMY’s collinear result while at larger �s, the finite
angle noncollinear configuration becomes more important
and our result is qualitatively closer to XG’s soft brems-
strahlung result.

D. Error estimation

Our �22ðHTLÞþ23=s is tabulated in Table I. The error

assignment is based on the following error analyses for
�22þ23:

(a) HTL corrections for the 23 process. From our �22

error analysis, we assign a �30% error at �s ¼ 0:1
to the 23 contribution for not implementing the HTL
approach to the 23 collisions. The error will be
smaller at smaller �s if the scaling for �22 holds
also for the error. Since the HTL effect tends to
reduce the magnetic screening effect which lowers
the IR cut-off and enhances the 23 collision rate, the
HTL correction tends to reduce �22þ23.
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FIG. 2 (color online). Left panel: �22=s and �22þ23=s for various cases. Right panel: the ratio of our result to AMY’s.
‘22ðHTLÞ þ 23’ denotes �22þ23 where mg ¼ m1, the full HTL matrix element (9) is used for the 22 process, and the matrix elements

of Eqs. (7)–(9) and (12) are used for the 23 process. ‘22ðAMYÞ þ 23ðAMYÞ’ denotes AMY’s result for �22þ23 (mg ¼ 0). The range of

the ‘‘recommended value’’ of �22þ23 is bounded by ��(lower bound) and �þ(upper bound).
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(b) LPM effect. We will try to estimate the error from
neglecting the LPM effect. An intuitive explanation
of this effect is given in Ref. [68]: for the soft brems-
strahlung gluon with transverse momentum kT , the
mother gluon has a transverse momentum uncer-
tainty �kT and a size uncertainty �1=kT . It takes
the bremsstrahlung gluon the formation time
t� 1=ðkTvTÞ � Ek=k

2
T to fly far enough from the

mother gluon to be resolved as a radiation. But if
the formation time is longer than the mean free path
lmfp 	 Oð��1

s Þ, then the radiation is incomplete

and it would be resolved as gg ! gg instead of
gg ! ggg. Thus, the resolution scale is set by
t 
 lmfp. This yields an IR cutoff k2T � Ek=lmfp 	
Oð�sÞ on the phase space [69]. Thus, the LPM effect
reduces the 23 collision rate andwill increase�22þ23.
Our previous calculation using the Gunion-Bertsch
formula shows that implementing the mD regulator
gives a very close result to the LPM effect [32]. Thus,
we will estimate the size of the LPM effect by in-
creasing the external gluon massmg fromm1 tomD.

(c) Higher order effect. The higher order effect is para-
metrically suppressed by Oð�sÞ, but the size is un-
known. Computing this effect requires a treatment
beyond the Boltzmann equation [37] and the inclu-
sion of the 33 and 24 processes. We just estimate the

effect to be �s times the leading order, which is
�10% at �s ¼ 0:1.

Combining the above analyses, we consider errors from
(a) to (c). To compute a recommended range for �=s, we
will work with the R22 and R23 collision rates defined as

R�1
22 ��22ðHTLÞ; ðR22þR23Þ�1��22ðHTLÞþ23: (28)

Using HTL instead of mD in for the gluon propagator
enhances the 22 rate by a factor of

� � R22ðHTLÞ
R22ðMDÞ

¼ �22ðMDÞ
�22ðHTLÞ

: (29)

We will assume that the same enhancement factor appears
in the 23 rate as well, such that

� ’ R23ðHTLÞ
R23ðMDÞ

: (30)

On the other hand, the LPM effect is estimated to suppress
the 23 rate by a factor of

	 ¼ R23ðmg ¼ mDÞ
R23ðmg ¼ m1Þ : (31)

Combining the estimated HTL and LPM corrections to
the 23 rate, the 22þ 23 rate is likely to lie in the range
½R22 þ R23; R22 þ 	�R23�, while the higher order effect
gives ��sðR22 þ R23Þ corrections to the rate. Without

TABLE I. �=s values for our �22ðHTLÞþ23=s result and the range of our ‘‘recommended values’’ bounded by ��=s and �þ=s.

�s
�22ðHTLÞþ23

s
��
s

�þ
s �s

�22ðHTLÞþ23

s
��
s

�þ
s

0.100 E-5 0.316 E10 0.315 E10 0.318 E10 0.100 0.914 0.790 1.07

0.158 E-5 0.129 E10 0.128 E10 0.130 E10 0.125 0.666 0.567 0.801

0.251 E-5 0.524E9 0.520 E9 0.528E9 0.150 0.520 0.436 0.642

0.398 E-5 0.213E9 0.212 E9 0.215E9 0.175 0.426 0.352 0.540

0.631 E-5 0.870E8 0.860 E8 0.879E8 0.200 0.361 0.294 0.471

0.100 E-4 0.354E8 0.350 E8 0.359E8 0.225 0.313 0.252 0.423

0.158 E-4 0.144E8 0.142 E8 0.147E8 0.250 0.278 0.220 0.388

0.251 E-4 0.586E7 0.575 E7 0.597E7 0.275 0.250 0.194 0.362

0.398 E-4 0.238E7 0.233 E7 0.243E7 0.300 0.228 0.174 0.344

0.631 E-4 0.965E6 0.941 E6 0.989E6 0.325 0.210 0.158 0.331

0.100 E-3 0.390E6 0.380 E6 0.401E6 0.350 0.195 0.144 0.322

0.158 E-3 0.157E6 0.153 E6 0.162E6 0.375 0.183 0.133 0.316

0.251 E-3 0.634E5 0.613 E5 0.656E5 0.400 0.172 0.123 0.314

0.398 E-3 0.255E5 0.246 E5 0.265E5 0.425 0.163 0.114 0.314

0.631 E-3 0.102E5 0.985 E4 0.107E5 0.450 0.155 0.106 0.317

0.100 E-2 0.411E4 0.394 E4 0.430E4 0.475 0.148 0.995 E-1 0.322

0.158 E-2 0.165E4 0.158 E4 0.174E4 0.500 0.142 0.934 E-1 0.329

0.251 E-2 668. 635. 706. 0.525 0.137 0.879 E-1 0.338

0.398 E-2 272. 257. 289. 0.550 0.132 0.828 E-1 0.349

0.631 E-2 112. 105. 119. 0.575 0.128 0.781 E-1 0.363

0.100 E-1 46.5 43.4 50.2 0.600 0.124 0.738 E-1 0.379

0.158 E-1 19.8 18.3 21.5 0.625 0.121 0.698 E-1 0.397

0.251 E-1 8.64 7.90 9.51 0.650 0.118 0.660 E-1 0.418

0.398 E-1 3.90 3.52 4.36 0.675 0.115 0.624 E-1 0.441

0.631 E-1 1.84 1.63 2.10 0.700 0.112 0.590 E-1 0.467
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further information, the errors are assumed to be Gaussian
and uncorrelated, the total rate is
�
R22 þ 	�þ 1

2
R23

�
�

�
	�� 1

2
R23

�
� �sðR22 þ R23Þ;

(32)

and the recommended upper (�þ) and lower (��) ranges
for �22þ23 are

��¼ 1

ðR22þ	�þ1
2 R23Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	��1

2 R23Þ2þ�2
sðR22þR23Þ2

q :

(33)

The �� values are shown in the right panel of Fig. 2 and in
Fig. 3.

Our final �=s result is as presented in Table I. At �s ¼
0:1, �=s ’ ½0:79; 1:07�, which is between 2.5 of AMYand
0.5 of XG. At �s ¼ 0:3 and 0.6, we have �=s ’
½0:17; 0:34� and ½0:074; 0:38�, respectively, whose lower
bounds are close to 0.13 and 0.076 obtained by XG.

E. When does the �s perturbation break down?

We have only carried out the LO [Oð��2
s Þ] �=s in the �s

expansion. Without computing the higher order contribu-
tion, it is hard to tell at what value of �s the perturbation
starts to break down. In the above section, we have naively
assumed the higher order contribution to be the leading
order times �s, i.e. the expansion breaks down at �s ’ 1.
However, explicit computations of thermal dynamical
quantities and transport coefficients showed that the break-
down might happen at smaller �s [58–60] (the screening
mass computation breaks down at �s ’ 0:1 [59] and the
heavy quark diffusion constant computation breaks down
at �s ’ 0:01[60]).

Looking more closely to our LO �=s shown in the left
panel of Fig. 2, the �s dependence of �=s changes quali-
tatively at �s ’ 0:1. This could be a sign that higher order
�s dependence has become as important as the LO one.
Thus, the higher order corrections could be bigger than our
previous estimation, and our result might be only reliable
when �s & 0:1.

Having said that, it is interesting that our �=s bends
slightly upward at �s * 0:1 as if �=s is trying to avoid
going below the conjectured 1=4� bound. Also, our result
can smoothly connect to the lattice result in the nonpertur-
bative region. Several models have proposed to describe

the microscopic picture in the nonperturbative region
[70–73], and a similar result to ours is obtained in a recent
calculation [74] based on one kind of simplification of the
23 matrix element [62].
Can the proposed perfect fluid limit �=s ’ 1=ð4�Þ be

achieved by perturbative QCD alone? In the region where
perturbation is reliable (�s & 0:1), we do not find support
for this. Whether this can be achieved for �s * 0:1 (the
values of practical interests) is still an open question.

V. CONCLUSIONS

We have calculated the LO [Oð��2
s Þ] �=s of a gluon

plasma in perturbation using the kinetic theory. The LO
contribution only involves the 22 and 23 processes. The
HTL propagator has been used for the 22 matrix element,
while the exact matrix element in vacuum is supplemented
by the Debye mass mD for gluon propagators for the 23

process. The asymptotic mass m1 ¼ mD=
ffiffiffi
2

p
is used for

the external gluon mass in the kinetic theory, as well. The
errors from not implementing HTL and the LPM effect in
the 23 process, and from the uncalculated higher order
[Oð��1

s Þ] corrections, have been estimated.
Our result smoothly connects the two different approx-

imations used by AMYand XG. At small �s (�s � 1), our
result is closer to AMY’s collinear result, while at larger�s

the finite angle noncollinear configurations become more
important and our result is closer to XG’s soft bremsstrah-
lung result.
In the region where perturbation is reliable (�s & 0:1),

we find no indication that the proposed perfect fluid limit
�=s ’ 1=ð4�Þ can be achieved by perturbative QCD alone.
Whether this can be achieved for �s * 0:1 (the values of
practical interests) is still an open question.
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