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We show that there exist uncanceled soft divergences in the kT factorization for nonfactorizable

amplitudes of two-body nonleptonic B meson decays, similar to those identified in hadron hadroproduc-

tion. These divergences can be grouped into a soft factor using the eikonal approximation, which is then

treated as an additional nonperturbative input in the perturbative QCD formalism. Viewing the special role

of the pion as a q �q bound state and as a pseudo Nambu-Goldstone boson, we postulate that the soft effect

associated with it is significant. This soft factor enhances the nonfactorizable color-suppressed tree

amplitudes, such that the branching ratios Bð�0�0Þ and Bð�0�0Þ are increased under the constraint of the

Bð�0�0Þ data, the difference between the direct CP asymmetries ACPð��K�Þ and ACPð�0K�Þ is enlarged,
and the mixing-induced CP asymmetry S�0KS

is reduced. Namely, the known �� and �K puzzles can be

resolved simultaneously.
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I. INTRODUCTION

The more precise data of the B ! ��, �K decays have
sharpened the discrepancies with the theoretical predic-
tions from the factorization approaches, such as the per-
turbative QCD (PQCD) approach based on the kT
factorization theorem [1,2]. The observed B0 ! �0�0

branching ratio [3] remains several times larger than the
naive expectation. The direct CP asymmetry of the
B� ! �0K� decays differs dramatically from that of
the B0 ! ��K� decays. There is a deviation between
the extractions of the standard model parameter sinð2�1Þ
from the penguin-dominated B0 ! �0KS modes and from
the tree-dominated b ! c �cs modes. All these discrepan-
cies are closely related to the color-suppressed tree ampli-
tudes C [4]. The B0 ! �0�0 branching ratios from PQCD
and QCD factorization (QCDF), being sensitive to C, are
also much lower than the data [5,6]. However, the estimate
of C from PQCD is well consistent with the measured
B0 ! �0�0 branching ratio [7]. Proposals resorting to
new physics [8] mainly resolve the �K puzzle without
addressing the peculiar feature of C in the �0�0, �0�0,
and �0�0 modes, while those to QCD effects are usually
strongly constrained by the �� data [9]. It indicates
the difficulty of resolving the �� and �K puzzles
simultaneously.

The color-suppressed tree amplitude C seems to be an
important but the least understood quantity in B meson
decays. Viewing that all the puzzles appear in the
C-sensitive quantities, we shall carefully investigate
QCD effects on C, and their impact on the B ! ��, �K

decays. Once a mechanism identified for C respects the
conventional factorization theorem, it is unlikely to be a
resolution due to the B ! �� constraint mentioned above
[7]. That is the reason the higher-order corrections calcu-
lated in QCDF [10], which obey the collinear factorization,
cannot resolve the �� puzzle. It has been pointed out by
Collins and Qiu [11] that the kT factorization breaks down
in complicated QCD processes like high-pT hadron hadro-
production because of the existence of soft gluons in the
Glauber region. To factorize the collinear gluons associ-
ated with, say, one of the initial-state hadrons, one needs to
eikonalize the valence quark lines to which the collinear
gluons attach. Those eikonal lines, i.e., Wilson lines from
another initial-state hadron and the final-state hadrons,
should cancel in order to have the universality of the
considered parton distribution function. However, the re-
quired cancellation is not exact in the kT factorization,
though it is in the collinear factorization. The kT factoriza-
tion still holds for simple processes like deeply inelastic
scattering (DIS), which does not involve the Wilson lines
from the other hadrons. The Glauber gluons have been
included as a mode in the soft-collinear effective theory
(SCET) recently [12].
The above observation provides a clue for resolving the

�� and �K puzzles. It is easy to see that a factorizable
amplitude, involving only a Bmeson transition form factor,
mimics simple DIS, and a nonfactorizable [13] amplitude,
involving dynamics of three hadrons, mimics the compli-
cated hadron hadroproduction. The kT factorization for a
factorizable B meson decay amplitude has been proved
[14]. The kT factorization for a nonfactorizable amplitude
has not, though it has been widely employed in the PQCD
analysis. Below we shall identify the residual infrared
divergence in the kT factorization for a nonfactorizable
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amplitude at one loop. Contrary to high-pT hadron hadro-
production, this residual infrared divergence can be factor-
ized into a soft factor in two-body nonleptonic B meson
decays, following the procedure in [15], such that the
universality of a kT-dependent meson wave function is
restored. A nonfactorizable amplitude then remains calcu-
lable in the PQCD approach after parametrizing the soft
factor. The color-suppressed tree amplitude C receives a
small factorizable contribution, so the soft effect on a
nonfactorizable amplitude could be significant for C.

In Sec. II we show the existence of residual infrared
divergences caused by Glauber gluons in a nonfactorizable
emission diagram. It is explained by means of contour
deformation why Glauber gluons, which do not meet the
criteria of eikonalization in usual QCD processes, can be
factorized from two-body nonleptonic B meson decays. It
is emphasized that the Glauber divergences do not appear
in the collinear factorization, such as the QCDF approach.
In Sec. III we prove the factorization of the Glauber
divergences into a soft factor up to all orders, and derive
its definition in terms of nonlocal Wilson operators. We
then investigate the numerical impact of the soft factor on
two-body nonleptonic B meson decays in Sec. IV, and
demonstrate that the B ! �� and �K puzzles mentioned
above can be resolved. Section V contains the conclusion.

II. EIKONALIZATION OF GLAUBER GLUONS

Consider the BðPBÞ ! M1ðP1ÞM2ðP2Þ decay, where
PB;1;2 represent the momenta of the B,M1, andM2 mesons,

respectively. For convenience, we choose P1 (P2) in the
plus (minus) direction. Start with the leading-order (LO)
nonfactorizable emission diagram in Fig. 1(a) resulting
from the operator O2 [16], where the parton momenta k,
k1, and k2 have been labeled. We add a radiative gluon
of momentum l collinear to P2, which is emitted by the
valence quark inM2. The attachment of the radiative gluon
to the b quark line shown in Fig. 2(a) leads to a Wilson line
from infinity to the origin, i.e., the weak vertex. This piece
is factorized in color flow by itself with the color factor CF.
The attachment to the hard gluon in Fig. 2(b) generates two
Wilson lines, one of which runs from the position z2 of the
valence antiquark inM2 to infinity [17]. The attachments to
the virtual antiquark in Fig. 2(c) and to the valence quark in
the M1 meson in Fig. 2(d) also generate the Wilson line

running from z2 to infinity. The combination of these three
pieces with the sameWilson line is factorized in color flow.
As to the next-to-leading-order (NLO) two-particle reduc-
ible diagrams, such as the self-energy correction to the
valence quark in Fig. 3(a) and the gluon exchange between
the valence quark and the valence antiquark in Fig. 3(b),
their factorization into the M2 meson wave function is
straightforward [17].
The detail of the above treatment is similar to that

presented in [14,17] for the pion form factor and the B
meson transition form factor, which leads to the
kT-dependent M2 meson wave function,

�M2
ðx2; k2TÞ ¼

Z dzþ2 d2z2T
ð2�Þ3 expð�ix2P

�
2 z

þ
2 þ ik2T � z2TÞ

� h0j �qðz2Þ�5nþWþðzþ2 ; z2T ;1Þy
�Wþð0; 0T ;1Þqð0ÞjM2ðP2Þi; (1)

with the coordinate z2 ¼ ðzþ2 ; 0; z2TÞ of the valence anti-
quark and the dimensionless vector nþ ¼ ð1; 0; 0TÞ being
along the light cone. The path-ordered exponential Wþ
collects the Wilson lines mentioned above:

Wþðzþ; zT ;1Þ ¼ P exp

�
�ig

Z 1

0
d�nþ � Aðzþ �nþÞ

�
:

(2)

A vertical link to connect the two Wilson lines
Wþðzþ2 ; z2T ;1Þy and Wþð0; 0T ;1Þ at infinity is under-
stood [18,19].
The other attachments shown in Figs. 2(e) and 2(f) and

the second piece from Fig. 2(b) should cancel in order to
have the universality of the M2 meson wave function in
Eq. (1). We shall point out that it is not the case, and the
sum of the above three pieces gives a residual infrared
divergence. First, we justify the eikonalization of the soft
spectator in Fig. 2(e), which demands the inclusion of the
NLO diagram in Fig. 4(a). Figure 4(a) contains the four
denominators

½ðP2 � k2 þ lÞ2 þ i��½ðk� k1 þ lÞ2 þ i��
� ½ðkþ lÞ2 þ i��ðl2 þ i�Þ; (3)

with the loop momentum l, which define the following
poles in the l� plane:

l� ¼ �ðP�
2 � k�2 Þ þ

jlT � k2Tj2
2lþ

� i�ðþi�Þ; (4)

l� ¼ �k� þ jlT � k1T þ kTj2
2ðlþ � kþ1 þ kþÞ þ i�ðþi�Þ; (5)

l� ¼ �k� þ jlT þ kTj2
2ðlþ þ kþÞ � i�ð�i�Þ; (6)

(b)(a)

FIG. 1 (color online). LO diagrams for a nonfactorizable am-
plitude.
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l� ¼ l2T
2lþ

� i�ðþi�Þ; (7)

for the range of 0< lþ < kþ1 � kþ (� kþ < lþ < 0). Here
the inequality kþ1 > kþ has been assumed for convenience.
The first pole, being the furthest one, does not pinch the
contour of l� actually. The two poles in Eqs. (5) and (6)
demand that the contour goes through the region of
l� ��QCD for the soft spectator momentum k� ��QCD

and the small transverse loop momentum lT ��QCD,

�QCD being the QCD scale. This observation does not

depend on the order of magnitude of the fourth pole.
There is no pinched singularity for lþ > ðkþ1 � kþÞ and
for lþ <�kþ, because all the poles of l� are in the same
half plane.

Figure 2(e) contains the five denominators

½ðk2 þ lÞ2 þ i��½ðP2 � k2 � kþ k1 � lÞ2 þ i��
� ½ðk� k1 þ lÞ2 þ i��½ðkþ lÞ2 þ i��ðl2 þ i�Þ: (8)

Similarly, there is no pinched singularity for lþ > ðkþ1 �
kþÞ and for lþ <�kþ. We consider the poles

l� ¼ �k�2 þ jlT þ k2Tj2
2lþ

� i�ðþi�Þ; (9)

l� ¼ P�
2 � k�2 � k� þ jlT þk2T �k1T þkTj2

2ðlþ � kþ1 þ kþÞ þ i�ðþi�Þ;
(10)

l� ¼ �k� þ jlT � k1T þ kTj2
2ðlþ � kþ1 þ kþÞ þ i�ðþi�Þ; (11)

l� ¼ �k� þ jlT þ kTj2
2ðlþ þ kþÞ � i�ð�i�Þ; (12)

l� ¼ l2T
2lþ

� i�ðþi�Þ; (13)

for 0< lþ < kþ1 � kþ (� kþ < lþ < 0). The poles in
Eqs. (9) and (10) are far from the origin by l� �OðmBÞ
due to the large momenta k2 and P2 � k2, mB being the B
meson mass, so they do not pinch the contour of l�.
The other three poles in Eqs. (5)–(7) identical to those in
Eqs. (10), (11), and (13), respectively, for both ranges of
0< lþ < kþ1 � kþ and �kþ < lþ < 0, demand that the
contour goes through the region of l� ��QCD.

We focus on the soft divergence from lþ ! 0 and
lT ! 0, since the infrared finite piece contributes to the
NLO hard kernel. Picking up the poles of Oð�QCDÞ in

Eqs. (5) and (11) for 0< lþ < kþ1 � kþ, the l� depen-
dence in ðP2 � k2 þ lÞ2, ðk2 þ lÞ2, and ðP2 � k2 � kþ
k1 � lÞ2 is negligible. Picking up the poles of Oð�QCDÞ

(b)(a)

FIG. 4 (color online). NLO diagrams that do not contribute the
Glauber divergence.

(c)(b)(a)

(f)(e)(d)

FIG. 2 (color online). NLO diagrams for Fig. 1(a) that are relevant to the factorization of the M2 meson wave function.

(b)(a)

FIG. 3 (color online). Two-particle reduced NLO diagrams for
the M2 meson wave function.
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in Eqs. (6) and (12) for �kþ < lþ < 0, the l� dependence
is also negligible. Ignoring k22T �Oð�2

QCDÞ in ðP2 � k2 þ
lÞ2 and ðk2 þ lÞ2, Figs. 2(e) and 4(a) have the same ampli-
tudes except a sign difference, which is attributed to the
emissions of the radiative gluon by the valence quark and
by the valence antiquark in M2. Because of this soft
cancellation in the pinched configuration, only the OðmBÞ
poles in Eqs. (9) and (10) for the range 0< lþ < kþ1 � kþ
are relevant. It implies that the contour of l� in Fig. 2(e)
can be deformed across the Oð�QCDÞ poles, and always

remains at least of OðmBÞ. That is, for a gluon radiated
from the energetic M2 meson, we can consider only a
collinear divergence, instead of a soft divergence, if infra-
red divergences are concerned. We then have the hierarchy

kþl� �Oð�QCDmBÞ � jlT þ kTj2 �Oð�2
QCDÞ; (14)

for the denominator ðkþ lÞ2. Therefore, the eikonal ap-
proximation applies to the soft spectator on the B meson
side, giving the propagator 1=ðnþ � lþ i�Þ.

The loop integral associated with Fig. 2(e) is then writ-
ten as

IE ¼ CF

Z d4l

ð2�Þ4 tr

�
� � � �iðP2 � k2 � kþ k1 � lÞ

ðP2 � k2 � kþ k1 � lÞ2 þ i�

� ð�ig��Þ�5P2ð�ig�	Þ iðk2 þ lÞ
ðk2 þ lÞ2 þ i�

�

� �i

ðk� k1 þ lÞ2 þ i�

�gn	þ
nþ � lþ i�

�i

l2 þ i�
; (15)

where the . . . denotes the rest of the integrand, and �5P2

comes from the twist-2 structure of the M2 meson wave
function. Combining Figs. 2(f) and 4(b) with the cancella-
tion of the ordinary soft divergences between them, we
justify the eikonal approximation for the spectator propa-
gator 1=½ðk1 � lÞ2 þ i��, which gives 1=ð�nþ � lþ i�Þ.
The second piece from Fig. 2(b) contains the Wilson line
running from the position of the spectator in theM1 meson
to infinity, i.e., the eikonal propagator 1=ð�nþ � lþ i�Þ.
This piece with the color factor Nc=2, together with
Fig. 2(f) with the color factor �1=ð2NcÞ, leads to the
loop integral the same as Eq. (15) with the color
factor CF, but with 1=ðnþ � lþ i�Þ being replaced by
1=ð�nþ � lþ i�Þ. Employing the principal-value pre-
scription,

1

nþ � lþ i�
þ 1

�nþ � lþ i�
¼ �2�i
ðl�Þ; (16)

we identify a NLO residual soft divergence from the
Glauber region with l� ¼ 0, which seems to violate the
universality of the M2 meson wave function.

The spectator propagators in Fig. 4 can also be replaced
by the Wilson line in the direction of nþ for collecting the
Glauber divergences, if there are any. The eikonalization is
achieved by deforming the l� contour under the soft can-
cellation observed above. We then examine the lþ poles

from the denominators in Eq. (3) with l� ¼ 0 being de-
manded by Eq. (16):

lþ ¼ jlT � k2Tj2
2ðP�

2 � k�2 Þ
� i�; (17)

lþ ¼ kþ1 � kþ þ jlT � k1T þ kTj2
2k�

� i�: (18)

It is seen that both lþ poles are located in the lower half
plane, namely, Fig. 4 does not contribute to the Glauber
divergences. Figure 4 generates only the ordinary soft
divergences from the region of the loop momentum
l� 	 ðlþ; l�; lTÞ � ð�QCD;�QCD;�QCDÞ [20]. The effect

from these ordinary soft gluons has been analyzed and
found to be negligible in two-body nonleptonic B
meson decays, though it may be significant in D meson
decays [21].
The lþ poles from Fig. 2(e) in Eq. (8) with l� ¼ 0 are

given by

lþ ¼ jlT þ k2Tj2
2k�2

� i�; (19)

lþ ¼ kþ1 � kþ � jlT þ k2T � k1T þ kTj2
2ðP�

2 � k�2 � k�Þ þ i�; (20)

lþ ¼ kþ1 � kþ þ jlT � k1T þ kTj2
2k�

� i�; (21)

in which only the first pole is of Oð�2
QCD=mBÞ. As long as

kþ1 is of or greater than Oð�QCDÞ, we can deform the

contour of lþ, such that lþ remains Oð�QCDÞ, and the

hierarchy

k�2 lþ �OðmB�QCDÞ � jlT þ k2Tj2 �Oð�2
QCDÞ (22)

holds. The valence quark carrying the momentum k2 þ l in
Eq. (15) can then be eikonalized into n�	=ðn� � lþ i�Þ
with the vector n� ¼ ð0; 1; 0TÞ. The Glauber divergence
associated with Fig. 1(a) is collected by

Ið1Þa ¼ g2CF

Z d4l

ð2�Þ4 tr

�
� � � �iðP2 � k2 � kþ k1 � lÞ

ðP2 � k2 � kþ k1 � lÞ2 þ i�

� ð�ig��Þ�5P2

� �i

ðk� k1 þ lÞ2 þ i�

1

lþ þ i�

� �i

�l2T þ i�
2�i
ðl�Þ; (23)

where the gluon propagator proportional to 1=l2T explicitly
indicates that the infrared divergence we have identified
arises from the Glauber region.
It is stressed that Eq. (23), derived from Fig. 2(e), con-

tains the Glauber divergence associated with Fig. 1(b) as
well: the left (right) gluon in Fig. 2(e) may become hard
(soft) in some region of the loop momentum l. We started
with the eikonalization of the left gluon in Fig. 2(e),
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implying the attempt to isolate the Glauber divergence
associated with Fig. 1(a). For consistency and for avoiding
double counting, we close the contour in the lower half
plane of lþ, and pick up only the pole lþ ¼ 0� i� from
the eikonal propagator 1=lþ, which corresponds to the
Oð�2

QCD=mBÞ pole in Eq. (19). Another pole in Eq. (21),

corresponding to the on-shell right gluon, contributes to the
Glauber divergence associated with Fig. 1(b). Equation
(23) is then simplified into

Ið1Þa 
 i
	s

�
CF

Z d2lT
l2T

Mð0Þ
a ðlTÞ; (24)

where Mð0Þ
a denotes the LO amplitude from Fig. 1(a), and

the imaginary logarithmic divergence is explicit.
The Glauber divergence may not cause trouble, if the LO

amplitude Mð0Þ is real. Expanding the decay width up to
NLO, we have

jMj2 ¼ jMð0Þj2 þ 2Re½Mð0ÞMð1Þ��: (25)

According to Eq. (24), the Glauber divergence will be

purely imaginary, if Mð0Þ is real, so it does not survive in

the second term Re½Mð0ÞMð1Þ��. That is, the Glauber
divergence does not exist in the collinear factorization.
The absence of the Glauber divergence has been shown
up to two loops in the collinear factorization for hadron

hadroproduction [11]. On the contrary, Mð0Þ is complex
in the kT factorization, since partons carry transverse
momenta, and internal lines go on mass shell at finite
momentum fractions [22]. Thus, the Glauber divergence

contributes to Re½Mð0ÞMð1Þ�� in the PQCD approach to
two-body nonleptonic B meson decays. In the QCDF
calculation [10] based on SCET [23], the virtual antiquark
line in Fig. 2 has been shrunk to a point, because this line is
believed to be more off shell than the hard gluon. The pole
in Eq. (20) then disappears, and the other two in Eqs. (19)
and (21) are located in the lower half plane of lþ. As a
consequence, the Glauber divergence seems not to exist in
the QCDF approach even at the amplitude level.

Below we discuss the absence of the Glauber divergence
at the amplitude level in QCDF in more details. The spin
structure associated with the B meson wave function is
written as [24,25]

ðPB þmBÞ�5

�
nþffiffiffi
2

p �þ
B ðkÞ þ

n�ffiffiffi
2

p ��
B ðkÞ

�

¼ �ðPB þmBÞ�5

�
�BðkÞ � nþ � n�ffiffiffi

2
p ��BðkÞ

�
; (26)

with the functions

�B ¼ 1
2ð�þ

B þ��
B Þ; ��B ¼ 1

2ð�þ
B ���

B Þ: (27)

It has been known that only the structure ðPB þmBÞ�5n�
contributes to the B ! M1 transition form factor, if choos-
ing the M1 meson momentum P1 in the plus direction.
Assuming that the same structure contributes to the

nonfactorizable B ! M1M2 emission amplitude, the lower
gluon vertex in Fig. 1(a) contains the matrix �T , since it is
sandwiched by n� / �þ from the B meson and P1 / ��
from the M1 meson. The upper gluon vertex must contain
the matrix �T too. The Feynman rule involving the anti-
quark propagator in Fig. 1(a) then reduces to

�iðP2 � k2 � kþ k1Þ
ðP2 � k2 � kþ k1Þ2 þ i�

ð�ig�TÞ�5P2


 �ikþ1 �
�

2ðP�
2 � k�2 � k�Þkþ1 þ i�

ð�ig�TÞ�5P2; (28)

in the collinear factorization for P2 / �þ. Canceling kþ1 in
the numerator and in the denominator, this antiquark
propagator is of Oð1=mBÞ, and can be shrunk to a point
in SCET. A similar argument applies to the NLO diagram
Fig. 2(e), which leads to the Feynman rule

�iðP2 � k2 � kþ k1 � lÞ
ðP2 � k2 � kþ k1 � lÞ2 þ i�

ð�ig�TÞ�5P2


 �iðkþ1 � lþÞ��

2ðP�
2 � k�2 � k� � l�Þðkþ1 � lþÞ � l2T þ i�

� ð�ig�TÞ�5P2: (29)

The denominator becomes of Oð�2
QCDÞ as lþ ! kþ1 and

lT �Oð�QCDÞ. However, this infrared region is suppressed
by the numerator, so the antiquark propagator does not go
on mass shell, and can be shrunk to a point. This explains
why the Glauber divergence does not appear in the QCDF
calculation of the nonfactorizable B ! M1M2 emission
amplitudes.
If considering another spin structure ðPB þmBÞ�5nþ

of the B meson, the lower gluon vertex in Fig. 1(a)
contains the matrix �þ, and the upper one contains ��.
The Feynman rule involving the antiquark propagator in
Fig. 1(a) then becomes

�iðP2 � k2 � kþ k1Þ
ðP2 � k2 � kþ k1Þ2 þ i�

ð�ig��Þ�5P2


 �iðP�
2 � k�2 Þ�þ

2ðP�
2 � k�2 Þkþ1 þ i�

ð�ig��Þ�5P2; (30)

which may go on mass shell as kþ1 ! 0. However, the
virtual fermion propagators differ by a minus sign in
Figs. 1(a) and 1(b), since the hard gluon attaches to the
antiquark inM2 in the former and to the quark in the latter.
Because of the cancellation, we can neglect the spin struc-
ture ðPB þmBÞ�5nþ at LO. At NLO, the Feynman rule for
Fig. 2(e) with the structure ðPB þmBÞ�5nþ is given by

�iðP2 � k2 � kþ k1 � lÞ
ðP2 � k2 � kþ k1 � lÞ2 þ i�

ð�ig��Þ�5P2


 �iðP�
2 � k�2 � l�Þ�þ

2ðP�
2 � k�2 � l�Þðkþ1 � lþÞ� l2T þ i�

ð�ig��Þ�5P2:

(31)

It implies that the antiquark propagator diverges like
1=�2

QCD as lþ ! kþ1 , which corresponds to the pole in
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Eq. (20). The corresponding NLO correction to Fig. 1(b) is
also Fig. 2(e), but with the hard gluon being on the left.
In this case there is no cancellation between the NLO
correction to Fig. 1(a) and the NLO correction to
Fig. 1(b), and the region of lþ ! kþ1 contributes to the
Glauber divergence. We postulate that the spin structure
ðPB þmBÞ�5nþ should be kept, and the Glauber diver-
gence exists at the amplitude level in the QCDF calculation
of the nonfactorizable emission diagrams. Note that the
structure ðPB þmBÞ�5 on the right-hand side of Eq. (26)
was adopted in the PQCD approach (the contribution from
the second wave function ��B is power suppressed [25]),
and the virtual antiquark line is not shrunk to a point.

III. SOFT FACTOR FROM GLAUBER GLUONS

In this section we construct a soft factor SðbÞ, b being
the impact parameter conjugate to the transverse loop
momentum lT , which collects the Glauber gluons to all
orders. The factorization at LO in the b space is trivial:

Ið0Þa ¼
Z

d2bSð0ÞðbÞMð0Þ
a ðbÞ; (32)

where the function Ið0Þa consists of the diagrams in Fig. 1,

and the LO soft factor is simply the identity, Sð0ÞðbÞ ¼ 1.
The M2 meson wave function and other subprocesses are

contained in the nonfactorizable emission amplitudeMð0Þ
a .

The factorization of the soft factor at NLO has been
explicitly demonstrated in Sec. II, and presented in
Eq. (24), which is expressed in the b space as

Ið1Þa 

Z

d2bSð1ÞðbÞMð0Þ
a ðbÞ; (33)

with the NLO soft factor

Sð1ÞðbÞ ¼ i
	s

�
CF

Z d2lT
l2T

e�ilT �b: (34)

Adding the second radiative gluon emitted by the valence
quark in the M2 meson, we have

Ið2Þa 
 1

2

�
i
	s

�
CF

�
2 Z d2l1Td

2l2T
l21Tl

2
2T

Mð0Þ
a ðl1T þ l2TÞ; (35)

whose derivation is similar to the two-loop analysis in [11].
The above factorization implies the next-to-next-to-lead-
ing-order (NNLO) soft factor

Sð2ÞðbÞ ¼ 1

2

�
i
	s

�
CF

Z d2lT
l2T

e�ilT �b
�
2
: (36)

Motivated by the above analysis up to NNLO, we pos-
tulate the all-order definition of the soft factor,

SðbÞ ¼ h0jWþð0;b;�1ÞWþð0;b;1ÞyW�ð0; 0T ;1Þ
�W�ð0; 0T;�1Þyj0i; (37)

where b can be interpreted as the transverse separation
between the weak decay vertex and the spectator. The link
W� denotes another Wilson line operator

W�ðz�; zT ;1Þ ¼ P exp

�
�ig

Z 1

0
d�n� � Aðzþ �n�Þ

�
;

(38)

with the coordinate z ¼ ð0; z�; zTÞ. The net effect of the
two linksWþð0;b;�1ÞWþð0;b;1Þy demands the vanish-
ing of the component l� of the loop momentum, and the off
shellness of a Glauber gluon by l2T as indicated in Eq. (23).
We have included the additional linkW�ð0; 0;�1Þy in the
above definition to demand the vanishing of lþ, which
plays a role similar to the antiquark propagator in M2 for
pinching the lþ contour. It can be shown, by expanding the
Wilson line operators in the coupling constant, that
Eq. (37) reproduces the NLO and NNLO soft factors
presented above.
We then extend the derivation of the soft factor to all

orders by means of induction [14,17], and demonstrate that
it leads to the operator definition in Eq. (37). Assume that
the factorization holds up to Oð	N

s Þ,

GðjÞ ¼ Xj
i¼0

SðiÞ �Mðj�iÞ
a ; j ¼ 1; . . . ; N; (39)

where � represents the convolution in b,

SðiÞ �Mðj�iÞ
a 	

Z
d2bSðiÞðbÞMðj�iÞ

a ðbÞ: (40)

In the above expression SðiÞðbÞ is given by the Oð	i
sÞ terms

in the perturbative expansion of Eq. (37), and Mðj�iÞ
a ðbÞ

stands for theOð	j�i
s Þ nonfactorizable emission amplitude.

We shall show that the Oð	Nþ1
s Þ diagrams GðNþ1Þ can be

written as the convolution of theOð	N
s Þ diagramsGðNÞ with

the Oð	sÞ soft factor by employing the Ward identity,

l�G
�ðl; k; k1; k2; . . .Þ ¼ 0: (41)

In the above expression G� represents a physical ampli-
tude with an external gluon carrying the momentum l and
with n external quarks carrying the momenta k; k1; k2; . . . .
All these external particles are supposed to be on mass
shell in the leading-power analysis here. It is known that
factorization of a QCD process in momentum, spin, and
color spaces requires summation of many diagrams. With
the Ward identity in Eq. (41), the diagram summation can
be handled in an elegant way.

Consider a complete set of Oð	Nþ1
s Þ diagrams GðNþ1Þ

that are relevant to the factorization of theM2 meson wave
function. Look for the gluon, one of whose ends attaches
the outermost vertex on the valence quark line in the M2

meson. Let 	 denote this outermost vertex, and � denote
the attachments of the other end of the identified gluon. If
� is located on the valence quark line in M2, which
corresponds to a self-energy correction, and at the outer
end of the valence antiquark line inM2, which corresponds
to a two-particle reducible diagram, we have Fig. 3 as

the Oð	sÞ subdiagrams of GðNþ1Þ. In these two cases the
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identified gluon can be factorized simply by inserting the
Fierz transformation [17], and absorbed into theM2 meson
wave function. If � attaches to the outermost vertex of the
spectator line in the B meson, we eikonalize the antiquark

propagator adjacent to � into �n�þ=ðnþ � lþ i�Þ, which
has appeared in Eq. (15). Further eikonalizing the propa-
gator of the valence quark in M2, we factorize a piece of
contribution to the NLO soft function

g2CF

Z d4l

ð2�Þ4
n	�

n� � lþ i�

�ig	�

l2þ i�

�n�þ
nþ � lþ i�

GðNÞðlÞ: (42)

This piece can be obtained by contracting one gluon
field in the Wilson line W�ð0; 0T ;1Þ and another from
Wþð0;b;�1Þ.

For the other attachments of � to lines in GðNþ1Þ, we
approximate the tensor g	� in the propagator of the iden-

tified gluon as [17]

g	� 
 �nþ	l�
�nþ � lþ i�

: (43)

The above approximation extracts the collinear enhance-
ments associated with the energetic M2 meson, since the
lightlike vector nþ	 selects the minus component of �	,
and the dominant component l�¼þ in the collinear region

selects the plus component of ��. The components l�¼�;T

do not affect the collinear structure, because they are
negligible compared to the large momenta Pþ

1 and P�
2 of

OðmBÞ. Equation (43) is applicable to the attachment to the
b quark, which is free of collinear divergences. It is cer-
tainly appropriate to adopt Eq. (43) for the attachments to
the internal lines and to the outer ends of the valence quark
and antiquark lines in M1, since it maintains the l� pole
structure of the propagators adjacent to the attachments.
The above observation can be checked by contracting l� to

Figs. 2(b)–2(d) and 2(f), from which the conclusion in
Sec. II is drawn. The only attachment of �, to which
Eq. (43) does not apply, is the one to the outer end of the
spectator line in the B meson, because of the wrong loca-
tion of the l� pole. This attachment has been handled
separately in Eq. (42).

We have the Ward identity

l�

�
GðNþ1Þ�

partial þ
�
�uðk2Þ�� 1

k2 � l
� � �

�

þ
�
� � � 1

l� P2 þ k2
��vðP2 � k2Þ

�

þ
�
�vðk1Þ�� 1

�k1 � l
� � �

��
¼ 0; (44)

for it involves a full set of contractions of l� to all lines in

GðNþ1Þ. In the above expression the three diagrams with �
being located at the outer ends of the valence quark and
antiquark lines in M2, and at the outer end of the spectator
line in the B meson have been excluded from the set of

GðNþ1Þ
partial . u and v are the spinors of a quark and an antiquark,

respectively, and . . . represents the rest of Feynman rules

for GðNÞ. Inserting the identities

�uðk2Þl 1

k2 � l
� � � ¼ � �uðk2Þ � � � ;

� � � 1

l� P2 þ k2
lvðP2 � k2Þ ¼ � � �vðP2 � k2Þ;

�vðk1Þl 1

�k1 � l
� � � ¼ � �vðk1Þ � � � ;

(45)

into Eq. (44), we derive

�nþ	l�
�nþ � lþ i�

GðNþ1Þ�
partial

¼ �nþ	

�nþ � lþ i�
½ �uðk2Þ � � � � � � �vðP2 � k2Þ�

þ �nþ	

�nþ � lþ i�
�vðk1Þ � � � : (46)

The factor �nþ	=ð�nþ � lþ i�Þ in the first term on the
right-hand side of Eq. (46) contributes to the Wilson lines
in Eq. (1), which define the wave function for an outgoing
M2 meson.
The second term on the right-hand side of Eq. (46)

contributes to another piece of the NLO soft factor,

g2CF

Z d4l

ð2�Þ4
n	�

n� � lþ i�

�i

l2 þ i�

�nþ	

�nþ � lþ i�
GðNÞðlÞ:

(47)

Combining Eqs. (42) and (47), employing Eq. (16), work-
ing out the integrations over l� and lþ, and Fourier trans-
forming the NLO soft factor into the b space, we derive

GðNþ1Þ ¼ Sð1Þ �GðNÞ þMðNþ1Þ
a ; (48)

where MðNþ1Þ
a collects the Oð	Nþ1

s Þ contribution that is
free of the Glauber divergence. Applying the same proce-
dure to the operator definition in Eq. (37), we obtain the
similar relation for the soft factor,

Sðiþ1Þ ¼ Sð1Þ � SðiÞ; (49)

for i ¼ 0; 1; . . . . At last, Eqs. (39), (48), and (49) lead to

GðNþ1Þ ¼ XNþ1

i¼1

SðiÞ �MðNþ1�iÞ
a þMðNþ1Þ

a

¼ XNþ1

i¼0

SðiÞ �MðNþ1�iÞ
a ; (50)

with Sð0Þ ¼ 1. The above expression concludes the proof
for the factorization of the soft factor from the nonfactor-
izable emission amplitude.

IV. IMPACT ON B MESON DECAYS

In this section we investigate the numerical effect of the
soft factor SðbÞ. The soft factor has a dynamical origin
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similar to that of a meson wave function: the former (latter)
absorbs the Glauber (collinear) gluons. The b dependence
of SðbÞ can be obtained by nonperturbative methods or
from experimental data. For simplicity, we neglect this
dependence, and parametrize the soft factor associated

with Mð0Þ
a as expðiSeÞ,

Ia 
 expðiSeÞMð0Þ
a ; (51)

where Se is treated as a real free parameter. Glauber gluons
emitted by the valence antiquark of M2 in the LO diagram
Fig. 1(b) lead to

Ib 
 expð�iSeÞMð0Þ
b ; (52)

where the minus sign is attributed to the radiation from the
antiquark. In this case the right gluon in Fig. 2(e) is
identified as the Glauber gluon. The above modified kT
factorization formalism with the additional soft factor also
applies to the nonfactorizable emission amplitudes from
other tree and penguin operators. The soft factor for a
nonfactorizable annihilation amplitude is different, be-
cause Wilson lines in different directions are involved.
The study of this subject will be presented elsewhere.
The color-suppressed tree amplitude is small at LO
due to the small Wilson coefficient a2 for the factorizable
contribution and to the pair cancellation between
Figs. 1(a) and 1(b) for the nonfactorizable contribution.
The presence of the soft factor can convert the destructive
interference in Fig. 1 into a constructive one, resulting in
strong enhancement. The soft effect is expected to be
minor in amplitudes other than the color-suppressed tree,
such as the color-allowed tree and penguin (including
annihilation), since they receive dominant factorizable
contributions.

We seek experimental constraints on the soft parameter
Se by comparing the data [3] (in units of 10�6)

Bð�0�0Þ ¼ 1:55� 0:19; ½ð0:29þ0:50
�0:20Þ�

Bð�0�0Þ ¼ 2:0� 0:5; ½
 0:7�
Bð�0�0Þ ¼ 0:74þ0:30

�0:27; ½ð0:92þ1:10
�0:56Þ�;

(53)

with the NLO PQCD predictions in the square brackets,
which are quoted from [26], [27], and [7], respectively.
The results from QCDF [6,28] are similar. The above
comparison motivates us to postulate that the soft effect
is significant (negligible) in the decays with M2 being a
pseudoscalar (vector) meson. That is, we associate a soft
factor with M2 ¼ �;K, but not with M2 ¼ � (the soft
effect associated with the kaon is not crucial actually). A
global fit to the data of the B ! VP decays based on flavor
SUð3Þ symmetry also supported that the color-suppressed
tree amplitude is large (small), when M2 is a pseudoscalar
(vector) meson [29]. Because the B0 ! �0�0 decay in-
volves both types of amplitudes with the pion and the �
meson as M2, it is natural that the discrepancy is in

between as indicated by Eq. (53). The larger soft effect
from the multiparton states in the pion than in the � meson
can be understood by means of the simultaneous role of the
pion as a q �q bound state and as a Nambu-Goldstone (NG)
boson [30]: the valence quark and antiquark of the pion are
separated by a short distance, like those of the � meson, in
order to reduce the confinement potential energy. The
multiparton states of the pion spread over a huge space-
time in order to meet the role of a massless NG boson,
which result in a strong Glauber effect.
The factorization formulas for the B ! ��, ��, �K,

and �K decays can be found in [26,31]. According to
our derivation, we multiply the b quark nonfactorizable
emission amplitudes, both tree and penguin, by eiSe (e�iSe)
with the hard gluon being emitted by the valence antiquark
(quark) in M2. The dependence on Se of those C-sensitive
quantities is displayed in Fig. 5. The branching ratios
Bð�0�0Þ and Bð�0�0Þ grow quickly with decreasing Se
from the NLO PQCD values in Eq. (53), and become
close to the data when Se reaches ��=2. Note that the
Belle and BABAR data for Bð�0�0Þ have different central
values, ð1:1� 0:3� 0:1Þ � 10�6 and ð1:83� 0:21�
0:13Þ � 10�6, respectively, and that our prediction is con-
sistent with that of Belle. The direct CP asymmetry
ACPð�0K�Þ increases from the NLO PQCD result around
�0:01 [26] to above 0.05 for Se <��=4, whose agree-
ment with the data ACPð�0K�Þ ¼ 0:050� 0:025 [3] is
satisfactory. The deviation of the mixing-induced CP
asymmetry �S�0KS

	 S�0KS
� Sc �cs descends from the

NLO PQCD value þ0:07 to �0:04 for Se ¼ ��=2.
Compared to the data S�0KS

¼ 0:57� 0:17 and Sc �cs ¼
0:672� 0:024 [3], the consistency has been improved. A
measurement of sufficient accuracy with an error of better
than �0:04 will be able to verify the predicted shift in
S�0KS

at the 3� level. The ratio C=T ¼ 0:53e�2:2i with

Se 
 ��=2 for the B ! �� decays is close to the extrac-
tion in [4], T being the color-allowed tree amplitude. An
equivalent viewpoint is that the Bð�0�0Þ data constrain
Se ���=2, which then leads to the predictions for other
quantities in Fig. 5.
We have confirmed that Bð����Þ, Bð�0��Þ, and all

Bð�KÞ change slightly from those in [26], since they are
less sensitive to C. ACPð��K�Þ remains around �0:1 [1]
for arbitrary Se, and in agreement with the data
ACPð��K�Þ ¼ �0:098þ0:012

�0:011 [3]. The small variation of

the curve is attributed to the soft effect on the nonfactor-
izable color-allowed tree and penguin contributions. S�0KS

does not change much, because M2 ¼ � in this case,
and the involved C is not modified. The NLO PQCD
prediction �S�0KS


 �0:15 [31] is consistent with the

data S�0KS
¼ 0:63þ0:17

�0:21 [3]. For those penguin-dominated

two-body modes without involving C, like B ! �K, their
mixing-induced CP asymmetries are not affected either.
To see the uniqueness of the pion, we investigate

whether the B ! �0�0; �0�0 branching ratios exhibit a
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pattern similar to that of the B ! �0�0; �0�0 ones. The

�ð0Þ meson is unlikely to be a massless pseudo-NG boson
because of the axial anomaly. As to Bð��0Þ and Bð��Þ,
there are only upper bounds for their data so far. The value
Bð�0�0Þ ¼ ð1:2� 0:4Þ � 10�6 [3] has been measured,
but the B ! �0�0 mode with Bð�0�0Þ ¼ ½1:0þ0:8

�0:6 �
0:1ð<2:4Þ� � 10�6 [32] has not yet been seen. Both
Bð�0�0Þ and Bð�0�0Þ were predicted to be small in LO
PQCD, roughly 0:2� 10�6 and 0:1� 10�6 [33], respec-
tively. Namely, the PQCD prediction for the former is
lower than the data, but that for the latter might be reason-
able, a situation similar to the B ! �0�0; �0�0 case. We
also compare the patterns of the direct CP asymmetries in

the B ! �ð0ÞK decays and in the B ! �0K decays for the
same motivation. The data ACPð�0K�Þ ¼ 0:016� 0:019
and ACPð�K�Þ ¼ �0:27� 0:09 [3] are more or less in
agreement with the NLO PQCD results,�0:06� 0:03 and
�0:12þ0:14

�0:19 [34], respectively. The latter value suffers from

huge theoretical uncertainty, for the B ! �K� decays
involve cancellation of two amplitudes. It seems that the

B ! �ð0ÞK modes behave normally, i.e., their branching
ratios and CP asymmetries coincide with the PQCD pre-
dictions without the soft factor.

Our resolution differs from those based on new physics
models, such as the fourth-generation model [35,36],
where it is the electroweak penguin amplitude that is
enhanced. These proposals, with new weak phases being
introduced, change S�0KS

and S�KS
. Our proposal differs

from the elastic rescattering models for final-state interac-
tion, which involve multiple intermediate states [37]. A
large C has been generated through the charge exchange
mechanism in [38]. Since the QCDF approach was em-
ployed there, the parameter scenario ‘‘S4’’ [6] or the
inelastic scattering [39] has to be incorporated in order to
get the correct result for ACPð��K�Þ. The exchange

mechanism, which requires turning of two energetic quarks
into opposite directions, is suppressed according to the
factorization theorem. Moreover, �S�0KS

remains positive

in [38].

V. CONCLUSION

In this paper we have identified the uncanceled Glauber
divergences in the kT factorization for the nonfactorizable
B meson decay amplitudes, which are similar to those
observed in hadron hadroproduction. The divergences are
factorizable and demand the introduction of the soft factor,
under which we have computed C in the PQCD approach,
and found a possible simultaneous resolution of all the
puzzles: Bð�0�0Þ and Bð�0�0Þ are enhanced, the differ-
ence between ACPð��K�Þ and ACPð�0K�Þ is enlarged,
and �S�0KS

is reduced for the single soft parameter Se
around ��=2. The constraint on C from the B ! �� data
is evaded, because of the special role of the pion as a q �q
bound state and as a pseudo-NG boson. Our formalism
involves some assumption, so an evaluation of the b de-
pendence of the soft factor, or even of the soft parameter Se
by nonperturbative methods, will shed light on the resolu-
tion proposed here. The mechanism identified in this work
can be verified or falsified by more precise data in the
future. Based on our observation, we agree that the B !
�K data have not yet revealed a new physics signal [40].
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