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Pure SUð3Þ glue theories exhibit a deconfining phase transition at a nonzero temperature, Tc. Using

lattice measurements of the pressure, we develop a simple matrix model to describe the transition region,

when T � Tc. This model, which involves three parameters, is used to compute the behavior of the ’t

Hooft loop. There is a Higgs phase in this region, where off-diagonal color modes are heavy, and diagonal

modes are light. Lattice measurements of the latter suggest that the transition region is narrow, extending

only to about �1:2Tc. This is in stark contrast to lattice measurements of the renormalized Polyakov

loop, which indicates a much wider width. The possible implications for the differences in heavy ion

collisions between the Relativistic Heavy Ion Collider and the LHC are discussed.

DOI: 10.1103/PhysRevD.83.034022 PACS numbers: 12.38.Mh, 12.38.Gc, 25.75.Nq

Heavy ion collisions at the Relativistic Heavy Ion
Collider (RHIC) have demonstrated a rich variety of
unexpected behavior [1]. Notably, in peripheral collisions
the elliptical flow can only be described by nearly ideal
hydrodynamics, with a very small ratio between the shear
viscosity, �, and the entropy density, s. The differences
between collisions at RHIC and those which will soon be
observed soon at the Large Hadron Collider (LHC) will
be especially interesting: does the nearly ideal hydrody-
namic behavior, observed at RHIC, persist at the much
higher energies of the LHC?

One approach to deconfinement exploits the analogy
to N ¼ 4 supersymmetric gauge theories: using the anti–
de Sitter/CFT (AdS/CFT) correspondence, such theories
are computable analytically in the limit of infinite coupling,
for an infinite number of colors [2]. By introducing a
potential for the dilation field, the behavior of the entropy
density near the deconfining phase transition, at a tempera-
ture Tc, can be fit from measurements on the lattice [3–6].
While the entropy density, s, decreases strongly as T ! Tþ

c

because it is related to Hawking radiation, in AdS/CFT
models the ratio �=s remains completely independent of
temperature. This suggests that, like RHIC, collisions at
the LHC should also be described by nearly ideal hydro-
dynamics; see also, Ref. [7].

In this work we consider a very different approach to the
deconfining phase transition. It assumes that the coupling
is moderate even down to the transition temperature,
Tc [8]. We use an elementary matrix model, involving
three parameters, to parametrize the behavior of the de-
confining phase transition. A version of this model with

one parameter was first proposed by Meisinger, Miller, and
Ogilvie [9]. Similar models arise for theories in which one
(or more) spatial directions are of femtoscale size [10–13].
The parameters of the model are fixed from lattice

measurements of the pressure [14–17]. It then predicts
how the ’t Hooft loop [18–22] changes with temperature
near Tc, which we compare to the results of lattice simu-
lations [23,24]. Further, the model predicts that for a range
of temperatures above Tc, there is a Higgs phase, where
correlation functions of electric fields are a mixture of
heavy and light modes, from fields which are off diagonal,
and diagonal, in color, respectively. This may help to
understand the results of lattice simulations [15,25–27],
which are otherwise somewhat puzzling.
The most direct prediction of our model is for the

expectation value of the Polyakov loop. For the pure glue
SUð3Þ theory, lattice simulations find that the (renormal-
ized) Polyakov loop vanishes below Tc, jumps to �0:4 at
Tþ
c , and then rises with T, until it is approximately constant

above �4:0Tc [28–30]. This represents confinement
below Tc, a complete quark gluon plasma (QGP) at high
temperature, and a ‘‘semi’’-QGP in between [31–34].
Physically, there is no ionization of color in the confined
phase, total ionization in the complete QGP, and only
partial ionization in the semi-QGP [34]. (While we discuss
a purely gluonic plasma, we adopt the common term QGP.)
The principal thrust of this paper is that, from indirect

measurements on the lattice, we suggest that the width of
the semi-QGP is much narrower than indicated by present
results for the renormalized Polyakov loop: not up to
�4:0Tc, but only �1:2Tc. We do not understand this
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discrepancy in detail, but suggest a possible reason later.
This discrepancy is the reason why, having fit the parame-
ters of our model from the pressure, we compute both the
’t Hooft loop and gluon masses.

While we treat the pure glue theory, our model can be
extended to QCD, with dynamical quarks [17]. It is
reasonable to assume that in QCD, the semi-QGP is,
like that of the pure glue theory, relatively narrow. We
thus conclude by discussing the possible phenomenologi-
cal implications of our results for heavy ion collisions.

How confinement arises in our model can be understood
by analogy. For a bosonic field, with energy E and chemi-
cal potential �, the Bose-Einstein statistical distribution
function is

nðE; qÞ ¼ 1

eðE��Þ=T � 1
¼ 1

eE=T�2�iq � 1
: (1)

Instead of taking� to be real, as in ordinary thermodynam-
ical systems, for the purposes of the analogy we take it to be
purely imaginary, and define � ¼ 2�Tiq, where q is real.

Doing so, nðE; qÞ is clearly a periodic function of q,
invariant under q ! qþ 1. Thus we can choose to define q
to lie within the range from � 1

2 to þ 1
2 .

Now assume that we integrate over q, with a distribution
which is flat in q. Expand for large energy, so that the first
term is the Boltzmann statistical distribution function.
Given the assumed distribution in q, the integral of this
term vanishes,

e�E=T
Z þ1=2

�1=2
e2�iqdq ¼ 0: (2)

Indeed, we can expand the Bose-Einstein distribution
function term by term in powers of Boltzmann factors,

e�E=Tþ2�iq [13]; doing so, the integral over each and every
term obviously vanishes. The same is true for the Fermi-
Dirac distribution function as well.

Thus a flat distribution in q represents the confined
phase. To represent a phase with partial deconfinement,
one integrates over a limited region, say q: � q0 ! þq0,
with q0 <

1
2 . Complete deconfinement occurs when one

integrates over a distribution which is a delta-function in q.
This example appears somewhat artificial. For a given q,

the statistical distribution functions are complex valued,
and so only integrals over q can possibly represent physical
quantities. Indeed, the grand canonical ensemble is char-
acterized by a fixed value for the chemical potential, and
not by an integral over �’s.

Nevertheless, precisely this mechanism arises for the
deconfining phase transition in an SUðNÞ gauge theory.
Consider the expansion about a background field for the
timelike component of the vector potential,

ðAcl
0 Þab ¼ 2�T

g
qa�

ab; (3)

a and b are colors indices, running from 1 . . .N. For non-
zero qa’s, this background field acts like an imaginary

chemical potential for the diagonal elements of the gauge
group. Integration over the qa’s arises from imposing
Gauss’s law for those elements of the gauge group [19].
This background field generates a nontrivial expectation

for the Polyakov loop, ‘, which is the color trace of the
thermal Wilson line, L:

‘ ¼ 1

N
trL; L ¼ P exp

�
ig

Z 1=T

0
A0d�

�
; (4)

P represents path ordering, T is the temperature, and � the
imaginary time, �: 0 ! 1=T.
The lattice demonstrates that, near Tc, the expectation

value of the Polyakov loop is not near one, and decreases as
the temperature does. In such a region, the eigenvalues of
the logarithm of the thermal Wilson line are nonzero.
Taking an ansatz such as Eq. (3) is the simplest possible
way to model this. We do not attempt to derive the distri-
bution of these eigenvalues, but to guess that from lattice
results.
Since the gauge potential A0 is an element of SUðNÞ,P
N
a¼1 qa ¼ 0, modulo one, there are N � 1 independent

qa’s. At infinite N, the qa’s form a continuum, and the
example of Eq. (1) is exact; see, e.g., computations on a
femtosphere atN ¼ 1 [13]. For two colors, we can choose
the eigenvalues to be q1 ¼ �q2; for three, q1 ¼ �q2, and
q3 ¼ 0.
In the presence of the background field of Eq. (3), a

potential for the qa’s is generated at one loop order
[18–22],

V ptðqaÞ ¼ 2�2T4

3

XN
a;b¼1

q2abð1� jqabjÞ2 � ðN2 � 1Þ�
2T4

45
:

(5)

where qab ¼ qa � qb, defined modulo one. The minimum
is at qa ¼ 0, where �V ptð0Þ is the pressure for an ideal

gas of gluons.
The potential V ptðqaÞ enters in computations of the ’t

Hooft loop. It is useful to consider deconfinement as a type
of spin system. A pure SUðNÞ gauge theory has N degen-
erate vacua, where the thermal Wilson line L equals one
of the N roots of unity,

L ¼ e2�ij=N1; (6)

j ¼ 0 . . . ðN � 1Þ. The usual vacuum, with j ¼ 0 and
L ¼ 1, corresponds to all qa ¼ 0. A ZðNÞ vacuum with

j ¼ 1 and L ¼ e2�i=N1 corresponds to N � 1q0as ¼ 1=N,
and the remaining element ¼ �1þ 1=N.
At high temperature in the complete QGP, the theory

lies in one spin state, which we can choose to be j ¼ 0.
One can compute tunneling between two degenerate vacua
by constructing a box which is long in one spatial direction,
with j ¼ 0 at one end, and j ¼ 1 at the other. An interface
between the two ordered states forms in the center of
the box, with the interface tension between the two
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computable semiclassically, using the potential V ptðqaÞ
[18–22]. This interface is equivalent to a ’t Hooft loop
which wraps around the center of the box [20].

As the temperature decreases and T approaches Tc,
domains with j � 0 form and grow in size. They become
increasingly probable, until at T�

c and below, as a spin
system the vacuum is completely disordered, a sum over
many spin domains.

We want to add terms to the effective potential which
model the transition to deconfinement. We could add
perturbative corrections toV ptðqaÞ, which have been com-

puted to �g3 [21], but invariably they give qa ¼ 0 (or a
ZðNÞ equivalent state) as the vacuum. With a complete
theory, such as the monopole model of Liao and Shuryak
[7], this potential could be computed directly.

We adopt a more modest approach, attempting to guess
the form of the nonperturbative potential. We fit the coef-
ficients which enter to lattice results for the pressure, and
then use it to compute other quantities. The advantage of our
approach is that we can compute quantities not just in, but
near thermal equilibrium. Such quantities, like the shear
viscosity [34], are much harder to extract on the lattice.

Since the Polyakov loop is an order parameter for de-
confinement, a natural guess is that the nonperturbative
potential involves ZðNÞ invariant elements of the Lie
group. The first such term is the adjoint loop [12,31–36].
Instead, following the authors of Ref. [9], and computa-
tions of the ’t Hooft loop [18–22], we write a potential
which is a polynomial in the qa’s.

There are several symmetries which any potential of the
qa’s must satisfy. It must be periodic in each qa, with qa !
qa þ 1. It must also be invariant under ZðNÞ transforma-
tions, where N � 1 of the qa’s shift by 1=N, and the last
element, by �1þ 1=N. Lastly, if we interchange the or-
dering of the qa’s, we can change qab ! qba ¼ �qab.
These symmetries can be satisfied by constructing a
potential as a function of qabð1� qabÞ.

We can still form an infinite number of terms by tying
together the color indices in different ways; see, e.g., the
examples at two [21] and three [13] loop order. We adopt
the simplest approach, and take terms like those which
arise at one loop order, Eq. (5), which involve a sum over
one qab:

V nonðqaÞ ¼ T2T2
c

XN
a;b¼1

ðc1jqabjð1� jqabjÞ

þ c2q
2
abð1� jqabjÞ2 þ c3Þ: (7)

The model of Ref. [9] involves terms�c1 and c3; these are
kept in fixed ratio, given by the second Bernoulli polyno-
mial. Instead, we allow c1 and c3 to vary independently.
This helps to avoid a pathology of the model of Ref. [9],
where the pressure is negative at Tc.

We also introduce a term �c2q
2
abð1� qabÞ2; this is

proportional to the perturbative term in Eq. (5), and is
related to the fourth Bernoulli polynomial.

We take all of the nonperturbative terms to be �T2,
since lattice simulations indicate that, in the pure glue
theory, the leading corrections to terms �T4 are �T2

[9,10,33,37]. There is obviously no fundamental reason
why other terms, such as those �1, could not also appear.
When the qa’s develop an expectation value, this repre-

sents symmetry breaking for an adjoint scalar field, A0,
coupled to an SUðNÞ gauge field, the Ai’s [33]. As an
adjoint scalar, though, there is no strict order parameter
which distinguishes between the symmetric and broken
phases. Thus there need not be a phase transition in going
from the symmetric phase, the complete QGP, to the
‘‘broken’’ phase, the semi-QGP.
If there were such a phase transition, it would represent a

second transition, above Tc, separate from that for decon-
finement. While possible, in a pure SUðNÞ gauge theory
lattice simulations only find evidence for one phase tran-
sition, at Tc [14–17]. To avoid a phase transition between
the complete and semi-QGP, it is essential that the non-
perturbative potential has a term which is linear in the qa’s.
Assume that the effective potential only involved terms
such as �qnabð1� qabÞn for n � 2. For small qa, these are
of quadratic or higher order in the qa’s, and, of necessity,
there would then be a phase transition when the qa’s
developed a nonzero expectation value. This transition
might be of either first or second order, but there would
be a phase transition. When c1 � 0, though, a term linear
in the qa’s ensures that there is no such phase transition.
Instead, even for high temperature, there is always a small
but nonzero expectation value for the qa’s, hqai � 1=T2;
that is, the theory is always in a Higgsed phase. As we shall
see, however, this point is somewhat academic. For the
parameters relevant to two and three colors, the region in
which Higgsing matters is very narrow.
We remark that effective theories on the lattice often

exhibit phases with broken symmetry [38]. The necessity
of such a broken phase near Tc does not seem to have been
appreciated previously, though.
To determine the parameters of the model we compare to

lattice measurements of the pressure. For three colors, this
is illustrated in Fig. 1; for two colors, in Fig. 2. If pðTÞ is
the pressure, and eðTÞ the energy density, then a more
sensitive test of the fit is also to plot the interaction mea-
sure,� ¼ e� 3p. Thus in each figure we plot p=T4, e=T4,
and �=T4, both from the lattice, from Ref. [14] for two
colors, and from Ref. [15] for three colors.
The parameters of the fit are

c1¼�0:41488; c2¼�5:45957; c3¼0:21954 (8)

for three colors, and

c1¼�0:30267; c2¼�5:97440; c3¼0:18341 (9)

for two colors.
While our model appears to involve three parameters,

this is misleading. One parameter fixes the critical
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temperature, Tc. A second is chosen so that the pressure
vanishes at Tc. Thus we really have only one free para-
meter, which is tuned to fit the behavior of the pressure
near Tc.

For two colors, our model exhibits unphysical behavior,
as the energy density is negative below �1% of Tc.
This might be corrected by adding further terms in
the nonperturbative potential, such as higher Bernoulli
polynomials.

In any case, since we fix the pressure to vanish at Tc,
within our approximations the confined phase has vanish-
ing pressure. How to match to a more realistic description
of the confined phase is an important problem, which we
defer for now.

Given the effective Lagrangian, it is then straightforward
to compute the ’t Hooft loop. In the complete QGP, the
potential includes only the perturbative potential,V ptðqaÞ,
Eq. (5); in the semi-QGP, it is a sum of this and the
nonperturbative potential, V nonðqaÞ.

For two colors, as q2 ¼ �q1 there is only one indepen-
dent direction, and it is direct to compute the tunneling

path, and its associated action, analytically. The result for
the ’t Hooft loop is

�ðTÞ ¼ 4�2T2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6g2ðTÞp �ðg2Þ ð1� ðTc=TÞ2Þ3=2

1� 0:908ðTc=TÞ2
; (10)

where

�ðg2Þ ¼ 1� 0:16459g2ðTÞ:
The factors involving Tc=T are special to the semi-QGP,
so that, as T � Tc, the result reduces to that in the com-
plete QGP [18]. The function �ðg2Þ is the correction �g2

in the complete QGP; in plotting, we take g2ð2�TÞ [8].
The ’t Hooft loop vanishes at Tc, as expected for a

second order phase transition. From universality, the result
in the Ising model is �ðTÞ � ðT � TcÞ2�, with 2�� 1:26;
lattice results in a gauge theory [23] find 2�� 1:32 [23].
Our result, 2� ¼ 1:5, is not too far off, as expected for a
mean field theory. We note, however, that, because of the
term in the denominator, the numerical agreement is not
close. This is presumably related to the unphysical behav-
ior of the energy density near Tc, mentioned previously.
For three colors, in the semi-QGP the vacuum is along

	3 (using the Gell-Mann notation), while the path for the ’t
Hooft loop depends upon a change in 	8. The path was
determined numerically, and lies along both 	3 and 	8. The
action of the tunneling path was also determined numeri-
cally, and the result for the ’t Hooft loop for three colors is
illustrated in Fig. 3. (For N ¼ 2, we take Tc=�MS ¼ 1:31;
forN ¼ 3, 1:14. For the same value of Tc=�MS ¼ 1:31, the
results unexpectedly coincide.)
Including �ðg2Þ, the semiclassical computation of the ’t

Hooft loop in the complete QGP agrees with lattice simu-
lations above �4:0Tc; below that temperature, they agree
with the result in the semi-QGP [24]. To obtain agreement,
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FIG. 2 (color online). Comparison of lattice results for SUð2Þ
pure gauge theory to the model, for the pressure, energy density,
and interaction measure.
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pure gauge to the model, for the pressure, energy density, and
interaction measure.
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FIG. 3 (color online). The ’t Hooft loop for SUð3Þ pure gauge
theory: lattice data from Ref. [24], and GKA (Giovannangeli and
Korthals Altes), Ref. [21], the semiclassical computation in the
complete QGP, including corrections of �g2. In our model we
show results for two and three colors, assuming that the correc-
tions of �g2 are identical in the complete and semi-QGP;
see text.
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however, it is necessary to include the correction �ðg2Þ;
this is computed in the complete QGP, which is incorrect.
Two things are required to compute �ðg2Þ in the semi-QGP.
First, the potential for constant qa needs to be computed
to two loop order, expanding about the full potential,
V ptðqaÞ þV nonðqaÞ. Second, corrections to one loop or-

der need to be computed for the kinetic term. In the
complete QGP this brings in new functions, the c ðqaÞ
[18]. Other functions could arise in the semi-QGP. For
now, we defer these involved computations; since the
corrections �g2 are large, �50%, our results should be
considered as tentative.

Besides the ’t Hooft loop, which is an interface tension
for an order-order interface at T � Tc, the interface tension
for the order-disorder interface, at Tc, is also computable in
our model. This only exists for a first order transition; for
three colors,

�dis ¼ 0:0258012
T2
cffiffiffiffiffi
g2

p : (11)

It is necessary to compute the corrections �g2 before
comparing to lattice data, though.

The parameters for three colors, Eq. (8), and two colors,
Eq. (9), are similar; the difference is commensurate with a
dependence on �1=N2, with the coefficient of order one.
We have then assumed that the parameters for three colors
are close to those for higher N. We find reasonable agree-
ment for the interaction measure to lattice results [16].
When N � 4, there is more than one ’t Hooft loop.
Lattice simulations find that they obey Casimir scaling to
good approximation [24]. We have not checked this ex-
plicitly, but suspect that in our model, ’t Hooft loops
respect Casimir scaling.

The most novel prediction of our model is that there
is a Higgs effect in the semi-QGP. This was noted first in
Ref. [33], and in theories at a femtoscale [12]. To under-
stand it, consider the quantum fluctuations about the back-
ground field of Eq. (3):

hðAqu
0 Þabð ~xÞðAqu

0 Þbað0Þi �
Z d3p

ð2�Þ3 e
i ~p� ~x Xþ1

n¼�1
�00 (12)

where �00 is the quantum propagator

�00¼ e�ip0�

ð ~pÞ2þp2
0þm2

DðqÞ
; p0¼2�Tðnþqa�qbÞ: (13)

The shift in the energy, p0 ¼ 2�Tn ! 2�Tðnþ qa � qbÞ,
is because we are expanding about a background field.
The background field Acl

0 acts upon quantum fluctuations

like an adjoint Higgs field. Sinces the background field
is diagonal in color, Eq. (3), diagonal fluctuations
commute with it. Thus for diagonal fields, the only mass
they develop is the Debye mass, mD. This is of order �gT
times a function of the qa’s [34]. In contrast, off-diagonal
fields have nontrivial commutators with a diagonal

field, and so they develop ‘‘masses’’ which are large,
�2�Tðnþ qa � qbÞ.
We illustrate this in Fig. 4 for three colors. The masses

of the two diagonal gluons are equal, and decrease as T !
Tþ
c . There are two types of off diagonal gluons: four with

ja� bj ¼ 1, and twowith ja� bj ¼ 2. The splitting of the
masses is evident only close to Tc, for T < 1:2Tc.
We do not plot lattice data, because it is somewhat

contradictory. Lattice measurements of a gauge invariant
quantity, the two-point function between Polyakov loops,
show that the associated mass decreases as T ! Tþ

c [15].
In contrast, the two-point function of gluons indicates that
the gauge dependent mass increases as T ! Tþ

c [27].
Clearly it would be best to reanalyze the lattice data with
a Higgsed propagator in the effective theory, Eq. (13), with
its characteristic combination of modes whose masses both
increase and decrease.
The static, spatial gluon fields, the Ai, also undergo a

Higgs effect. This happens as well in a monopole gas [7].
We have not discussed the most obvious application of

our model: the computation of the Polyakov loop. We plot
this quantity, and the lattice results, for three colors in
Fig. 5. A direct comparison of the two is somewhat mis-
leading. We have not computed perturbative corrections
to the Polyakov loop, which enter at �g3 [39]. This con-
tribution is positive, and will increase the result.
Nevertheless, while the two coincide at Tc—which is
presumably coincidence—they immediately diverge from
one another. From Fig. 5, in our model the loop quickly
goes up to a constant value by�1:2Tc; this is very different
from lattice measurements, for which it is not constant
until a much higher temperature, �4:0Tc [28–30].
If our model is correct, why does the value of the

Polyakov loop, computed from our model, differ so sig-
nificantly from lattice measurements of the (renormalized)
Polyakov loop? There is an ambiguity associated with the
renormalized Polyakov loop, from the zero point energy.
In Ref. [34] two of us argued that, perturbatively, the zero

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1  1.2  1.4  1.6  1.8  2

m
 / 

gT

T / TC

a=b

|a-b|=1

|a-b|=2

FIG. 4 (color online). Gluon masses,mab=ðgTÞ, for SUð3Þ pure
gauge theory: diagonal gluons, with a ¼ b, are light; while there
are two off-diagonal gluons with heavy masses, for ja� bj ¼ 1
and ja� bj ¼ 2.

HOW WIDE IS THE TRANSITION TO DECONFINEMENT? PHYSICAL REVIEW D 83, 034022 (2011)

034022-5



point energy vanishes for a straight Polyakov loop. This
argument fails for a ‘‘smeared’’ loop (see, e.g., the appen-
dix of Ref. [29]). If so, then the effects of smearing must be
very dramatic.

We comment that a similar rapid growth in the Polyakov
loop is found in solutions of the Schwinger-Dyson equa-
tions [40]. Our results do not coincide numerically, though.

To understand our results better, consider first the limit
of intermediate temperature: say, above �1:5Tc, and up to
�4:0Tc. In this limit the qa’s are small. As noted before,
for small q the dominant terms are �c1T

2q in the
nonperturbative potential, Eq. (7), and �T4q2 in the per-
turbative potential, Eq. (5). Balancing these two gives
hqai � �c1=�

2ðTc=TÞ2; for three colors, hqai �
0:04ðTc=TÞ2. Thus while the theory is nominally always
in a ‘‘Higgsed’’ phase, as a practical matter this effect is
numerically miniscule. Further, since the loop involves
the cosine of the qa’s, asymptotically the deviation of the
loop from unity is even smaller: 1� ‘� q2 � ðTc=TÞ4.

At intermediate temperatures, what is the origin of the
term �T2 in the pressure, or equivalently, the behavior of
the interaction measure, �=T4 � 1=T2? If the q� 1=T2,
for small q terms�T4q2 and�T2q are of order one. Then
the only contribution to a term�T2 in the pressure is from
the q-independent terms in the nonperturbative potential.
In our model, this is a single term, �c3T

2
cT

2.
On the other hand, for intermediate temperatures, even if

the pressure does not probe the other terms in the potential,
the ’t Hooft loop does. By measuring a ’t Hooft loop, the
altered boundary conditions force the system to probe
the q-dependence of the potential in a nontrivial way. In
the present model, these are determined by the coefficients
for c1 and c2. (As a constant term, the value of c3 does not
matter.) In this way the lattice measurements of the ’t Hooft
loop [23,24] are an absolutely essential constraint on our
model.

In contrast, near Tc all of the parameters of the model
matter contribute to both the behavior of the pressure and
the value of the qa’s. By comparison, consider the model
of Ref. [9], where c2 ¼ 0. We take two colors, since then

the expressions are algebraically simple. From Ref. [9],
with q ¼ q1 ¼ �q2,

qc2¼0 ¼ 1

4

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
Tc

T

�
2

s �
: (14)

When c2 ¼ 0, though, the interaction measure is much
broader than indicated by the lattice data.
In the present model, with c1, c2 � 0,

q ¼ 1

4

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2c1

c2 þ ð2�2=3ÞðT=TcÞ2
s �

: (15)

The values of c1 and c2 are dictated by fitting the pressure,
or more sensitively, the interaction measure. By making c2
increasingly negative from c2 ¼ 0, one finds that the peak
in the interaction measure becomes increasingly sharp.
Since the loop vanishes at Tc for two colors, c1 is then
adjusted so that q ¼ 1=4 at T ¼ Tc.
Tuning c2 and c1 in this way, one finds that, as the peak

in the interaction measure sharpens, the region in which q
is nonzero narrows as well. This is due to the particular
values of our fit: near Tc, the term �c2T

2
cT

2 is not only
large, but approximately cancels the similar term, with
coefficient ð2�2=3ÞT4, in the perturbative potential.
Requiring q ¼ 1=4 at T ¼ Tc fixes c2 þ 2�2=3 ¼ �2c1,
so that jc1j is small, jc1j � jc2j. From Eq. (15), the com-
bination 2c1=ðc2 þ ð2�2=3ÞðTc=TÞ2Þ enters into q, and
implies that it is much sharper than the corresponding
factor, ðTc=TÞ2 for c2 ¼ 0, Eq. (14). A similar cancellation
happens for three colors.
We suggest that this reflects real physics: the sharpness

of the interaction measure reflects the narrowness of the
region in which the loop deviates significantly from unity.
For the model with c2 ¼ 0, Eq. (14), q always exceeds the
corresponding value in our model, with c2 � 0. This is also
seen for T � Tc: when c2 ¼ 0, q� 0:125ðTc=TÞ2; with
c2 � 0, q� 0:011ðTc=TÞ2.
It is also worth contrasting our results with those in a

Polyakov loop model. Consider a theory which only
involves the Polyakov loop of Eq. (4),

V effð‘Þ ¼
�
� b2

2
j‘j2 þ 1

4
ðj‘j2Þ2

�
b4T

4; (16)

see, e.g., Eq. (2) of Ref. [32], and Polyakov-Nambu-Jona-
Lasino (PNJL) models [35]. For three colors, the Zð3Þ
symmetry also allows a cubic term, �‘3 þ ð‘�Þ3, but its
addition would only complicate the algebra, and not our
qualitative conclusion. There is no cubic term for two
colors.
The minimum of the potential is ‘0 ¼

ffiffiffiffiffi
b2

p
, which we

choose to be real. As it is related to the pressure of an ideal
gas of gluons, we assume that the coefficient b4 is inde-
pendent of the temperature, and that only b2, or equiva-
lently ‘0, depends upon T. The pressure and the interaction
measure are then

 0
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FIG. 5 (color online). The Polyakov loop for a SUð3Þ pure
gauge theory from lattice simulations [30] and in our model.

DUMITRU et al. PHYSICAL REVIEW D 83, 034022 (2011)

034022-6



p

pideal
¼ ‘40;

e� 3p

4pideal

¼ ‘30T
@‘0
@T

: (17)

Consider first intermediate temperature, where the ex-
pectation value of the loop is near one. To obtain a term
�T2 in the pressure, in a loop model it is necessary to
assume that the loop deviates from one as 1� ‘0 �
ðTc=TÞ2 þ . . . . This is in contrast to our matrix model,
where the deviation of the loop is �1=T4, but there is
still a term �T2 in the pressure.

Near Tc, from Eq. (17), a peak in the interaction measure
corresponds to a rapid change in ‘0. This is similar to what
we find in a matrix model. For ‘ to decrease as T ! Tþ

c , so
must

ffiffiffiffiffi
b2

p
in Eq. (16). This is proportional to the mass of

the ‘ field, and so the ‘ mass decreases, like that of the
diagonal modes in the matrix model, Fig. 4; it is in contrast
to the masses of the off-diagonal modes, which increase.

In Ref. [32] and other loop models [35], in order to fit the
pressure, the temperature dependence of the pressure, b2,
must have a complicated form. In our matrix model, the
coefficients are just �T4, Eq. (5), and �T2, Eq. (7). In a
mean field theory such as this, simplicity is a virtue.

Lastly, the splitting of gluon masses near Tc is special to
a matrix model, as a Higgs effect for the adjoint scalar A0

field. See, e.g., the loop model of Ref. [10], where the
splitting of masses does not occur.

Our analysis is a preliminary first step. In deriving our
results, we balance the perturbative potential, V ptðqaÞ,
against the nonperturbative potential, V nonðqaÞ. In powers
of g2, the perturbative potential is of order one, so implic-
itly we have assumed that the nonperturbative is as well.
Since the nonperturbative potential represents a resumma-
tion of effects to all orders, this is a strong assumption.
Nevertheless, it allows us to envisage computing to higher
order in g2. Corrections at least to order �g2 and �g3 are
needed in order to make a serious comparison to lattice
data. This also requires precise lattice data, close to the
continuum limit, not just for the pressure, but also for the
’t Hooft loop and gluon masses.

There are several formal questions raised by our analy-
sis. The parameters of effective theories can be computed
from lattice simulations [36]; doing so for elements of the
Lie algebra, instead of for elements of the Lie group, may
be useful. It is also necessary to extend the analysis of hard
thermal loops in the complete QGP to the semi-QGP. This
is equivalent to understanding the analytic continuation of
the thermal Wilson line from imaginary to real time.

To compare with QCD it is necessary to include the
effects of dynamical quarks. It will be especially interest-
ing to see whether, upon adding the effects of quarks to the
perturbative potential, V ptðqaÞ, the thermodynamics [17],

and the Debye mass, are reproduced using the same pa-
rameters for the nonperturbative potential, V nonðqaÞ, in
the pure glue theory. (With dynamical quarks, the ’t Hooft
loop does not exist as an order parameter.)

Without detailed computation, we assume that a narrow
width for the semi-QGP in the pure glue theory implies the
same for QCD. We thus conclude with some speculations
for the phenomenology of heavy ion collisions.
If RHIC probes to some temperature in the QGP, then

LHC may probe to a temperature approximately �50%
higher. If the AdS/CFT correspondence holds for QCD,
then results at the LHC must mimic those at RHIC. With
the present analysis, the picture is rather more complicated.
We assume, for the sake of argument, that RHIC probes

only to a temperature in the semi-QGP, very near Tc. Then
the LHC begins at a temperature well in the complete QGP.
Any conclusions are tempered by the fact that, even if
the LHC starts at a higher temperature, as it cools it must
traverse through the semi-QGP.
In the semi-QGP, the ratio of�=s decreases as the square

of the Polyakov loop as T ! Tþ
c ; this is true both in the

pure glue theory and with dynamical quarks [34].
Conversely, then, �=s increases as the temperature goes
up from Tc. This is in sharp contrast to models based upon
the AdS/CFT correspondence, where �=s is constant
[3–5]. Unfortunately, a computation beyond leading loga-
rithmic order is required to compute the precise depen-
dence of �=s with temperature.
If the shear viscosity increases strongly from Tc, and the

system is in thermal equilibrium, then an increased shear
viscosity should lead to an increase in particle multiplicity,
and a decrease in the elliptical flow, over the results ex-
pected from a (nearly) ideal gas. If the shear viscosity
increases significantly, though, a hydrodynamic descrip-
tion could easily break down.
It is also possible that the temperature dependence of

�=s is weak; if so, then the particle multiplicity and
elliptical flow at LHC should be similar to that expected
by an extrapolation from the results at RHIC. There are
then other ways to probe the effects of the semi-QGP.
Consider, for example, energy loss, which is controlled

by a parameter q̂. In the complete QGP, q̂� T3, or equiv-
alently, the entropy density, s. In kinetic theory, q̂=s and
s=� are each proportional to a cross section, so one expects
that a minimum in �=s corresponds to a maximum in
the energy loss, q̂=s [7,41]. Following the methods of
Ref. [34], the energy loss of a quark can be computed
in the semi-QGP; as T ! Tþ

c , it vanishes linearly in the
Polyakov loop. Thus in the semi-QGP, both �=s and q̂
decrease as T ! Tþ

c ; the difference from Refs. [7,41] is
because the kinetic theory for the semi-QGP is in the
presence of a background A0 field. As the temperature
increases from Tc, then, excluding the obvious dependence
upon the entropy, the energy loss is larger in the complete
QGP than in the semi-QGP. As with the shear viscosity,
determining the precise dependence upon temperature
requires computation beyond leading logarithmic order.
There is also a qualitatively new phenomenon in the

semi-QGP: besides energy loss, the propagation of a col-
ored field is suppressed by the background A0 field [34].
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This suppression is universal, independent of the mass
or momentum of the colored field. A complete analysis
needs to incorporate this universal suppression as well as
energy loss.

Lastly, we note that, given the modified propagator of
the semi-QGP, Eq. (13), there are also significant modifi-
cations to the heavy quark potential [42]. This can also be
compared to lattice data, which we defer for now.

In the end, our speculations will soon be rendered moot
by the wealth of results which will flow from heavy ion
collisions at the LHC. The present approach is based upon
constructing an effective theory from the results of lattice
simulations, not just of the pressure, but of quantities such
as the ’t Hooft loop and screening masses. This can then be
tested against predictions from the AdS/CFT correspon-
dence [2–6] and other models [7].
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