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Using a generalized parton model approach including spin and intrinsic parton motion effects, and

assuming the validity of factorization for large-pT jet production in hadronic collisions, we study the

azimuthal distribution around the jet axis of leading unpolarized or (pseudo)scalar hadrons, namely pions,

produced in the jet fragmentation process. We identify the observable leading-twist azimuthal asymme-

tries for the unpolarized and single-polarized case related to quark and gluon-originated jets. We account

for all physically allowed combinations of the transverse momentum–dependent (TMD) parton distribu-

tion and fragmentation functions, with special attention to the Sivers, Boer-Mulders, and transversity

quark distributions, and to the Collins fragmentation function for quarks (and to the analogous functions

for gluons). For each of these effects we evaluate, at central and forward rapidities and for kinematical

configurations accessible at BNL-RHIC, the corresponding potentially maximized asymmetry (for �þ

production), obtained by saturating natural positivity bounds (and the Soffer bound for transversity) for

the distribution and fragmentation functions involved and summing additively all partonic contributions.

We then estimate, for both neutral and charged pions, the asymmetries involving TMD functions for which

parametrizations are available. We also study the role of the different mechanisms, and the corresponding

transverse single-spin asymmetries, for large-pT inclusive-jet production.
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I. INTRODUCTION

Transverse single-spin and azimuthal asymmetries in
high-energy hadronic reactions have raised a lot of interest
in the last years (see, e.g., Refs. [1,2] and references
therein). Huge spin asymmetries have been measured in
the inclusive forward production of pions in high-energy
pp collisions at moderately large transverse momentum.
The general trend of the early pioneer measurements of the
E704 Collaboration at Fermilab [3,4] has been recently
confirmed at much larger center-of-mass (c.m.) energies at
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratories (BNL) in similar kinematical con-
figurations [5,6]. A surprisingly large transverse polariza-
tion of� hyperons produced in the forward region was also
measured in unpolarized pp, pN fixed-target experiments
(see, e.g., Ref. [7]). In this case, too, it will hopefully be
possible in the near future to check if this intriguing effect
survives at the much larger energies reachable at RHIC and
at the Large Hadron Collider (LHC) at CERN. Similar
effects, leading to azimuthal asymmetries both in the
polarized and unpolarized case, have been measured in
Drell-Yan (DY) processes [8,9], in semi-inclusive deeply
inelastic scattering (SIDIS) [10–13], and in hadron-pair
production in eþe� collisions [14,15].

These results cannot be explained at leading-twist
(LT) approximation in the usual collinear approach of

perturbative QCD (pQCD), based on factorization theorems,
to inclusive particle production in hadronic collisions. Here
collinear means that intrinsic parton motion is neglected in
the hard scattering processes and integrated over up to the
large energy scale in the soft functions involved. On the
contrary, at least in the kinematical regimes under consid-
eration at RHIC, collinear next-to-leading order (NLO)
pQCD gives a fair account of unpolarized cross sections
(see, e.g., Refs. [16,17]).
Two different main theoretical approaches have been pro-

posed in the framework of perturbative QCD in order to
account for these measurements. One is the so-called twist-
three collinear approach,which generalizes the leading-order
(LO) collinear framework with the inclusion of higher-twist
quark-gluon correlations [18–20]. This involves a new class
of universal nonperturbative twist-three quark-gluon distri-
bution and fragmentation functions that need to be modeled
by fitting experimental data. Another formalism, which
will be adopted in this paper, is the so-called transverse
momentum–dependent (TMD) approach, which takes into
account spin and intrinsic parton motion effects.
Although the large single-spin asymmetries (SSAs) of

interest here were originally observed in single inclusive
particle production in hadronic collisions, it is now clear
that from the theoretical point of view these are not the
cleanest processes to consider. First of all, these SSAs are
twist-three effects in a series expansion in inverse powers of
the large energy scale (here, the transverse momentum of
the observed single hadron or jet). Several competing
mechanisms can therefore play a role and mix up.
Moreover, in the TMD formalism factorization has not yet
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been proven for these processes and its validity is presently
under much debate; see, e.g., Refs. [21] for inclusive one-
hadron production and [22–27] for inclusive two-hadron
production. Factorization breaking would in turn imply
nonuniversality of the soft TMD distribution and fragmen-
tation functions required to explain data. In the case of
single particle production in hadronic collisions, therefore,
the TMD approach can be seen at present as a useful
generalization of the parton model where factorization is
assumed as a reasonable starting point to be carefully scruti-
nized by comparison with available experimental results.

As mentioned above, similar spin and azimuthal asym-
metries were subsequently observed in SIDIS and DY pro-
cesses, where two energy scales are involved, the required
large energy scale (the momentum transfer Q in SIDIS, the
lepton-pair invariant mass, M, in DY) allowing use of
pQCD, and a small energy scale sensitive to intrinsic parton
motion (the transverse momentum, respectively, of the final
lepton pair in DYand of the produced hadron in SIDIS). For
these classes of processes both the twist-three collinear
formalism and a full gauge-invariant TMD approach have
been developed and factorization has been proven [28–31].
Moreover, it has been shown that when the value of the
small observed scale is intermediate between the typical
QCD nonperturbative scale and the large factorization scale,
the two approaches are mutually consistent [32–34].

In the TMD approach to DY (SIDIS) processes color
gauge invariance is ensured by the inclusion of gauge links
(Wilson lines), accounting for initial (final) state interac-
tions among the struck partons involved in the hard process
and the remnants of the parent hadrons (additional final
state interactions are also present in the fragmentation
process). Single-spin and azimuthal asymmetries are gen-
erated by TMD polarized partonic distribution and frag-
mentation functions, among which the most relevant from
a phenomenological point of view are the Sivers distribu-
tion [35,36] and, for transversely polarized quarks, the
Boer-Mulders distribution [37] and the Collins fragmenta-
tion function [38] (similar functions can be defined for
linearly polarized gluons; see, e.g., Ref. [39]).

For inclusive forward pion production the large trans-
verse single-spin asymmetry observed can be generated
both by the Sivers and the Collins effects; unfortunately,
these contributions cannot be disentangled and one has to
consider alternative measurements in order to separate the
different mechanisms. This is at variance with the case of
SIDIS and DY processes, where the Sivers and Collins
effects (and several other possible contributions to the
azimuthal asymmetries) can be disentangled. In hadronic
collisions one has to resort to different processes, e.g., the
DY process (no fragmentation), single photon or jet pro-
duction, two-particle (jet) production with transverse mo-
mentum imbalance, and so on.

From this point of view, a very interesting process is
pp ! jetþ �þ X, where one observes a large pT jet and

looks for the azimuthal distribution of leading pions inside
the jet. In this case, one should observe a symmetric pion
distribution for the fragmentation of an unpolarized parton
jet, and a cos� ( cos2�) distribution for a transversely
(linearly) polarized quark (gluon) parton jet (� indicates
the azimuthal angle of the leading pion distribution around
the jet axis). Therefore, despite the complexity of the
measurement (which is, however, at reach and presently
under active investigation at RHIC), this process might
offer plenty of new information as compared to single
inclusive pion production. It would in principle allow us
to disentangle the contributions coming from the Sivers
and the Collins effects. Other contributions involving dif-
ferent combinations of TMD distribution and fragmenta-
tion functions could also be disentangled. Finally, it could
also help in identifying jets coming from quark or gluon
fragmentation, since the pion azimuthal distribution is
different in the two cases. At RHIC kinematics a careful
tuning of the kinematical configuration considered can
help from this point of view.
Motivated by these considerations, in this paper we will

present, in the approach of the TMD generalized parton
model, and allowing for intrinsic parton motion both in the
initial colliding hadrons and in the fragmentation process
(which is crucial), the general expression for the polarized
cross section for the process p"p ! jetþ �þ X, and the
structure of the azimuthal asymmetries that can be mea-
sured in the distribution of leading pions around the jet
thrust axis (coinciding in our scheme with the final
scattered-parton direction of motion). A very preliminary
version of this study was first presented in Ref. [40]. A
similar analysis was discussed in Ref. [41], which, however,
considered intrinsic parton motion only in the fragmenta-
tion process, drastically reducing the possible contributions
to the asymmetry. Indeed, in that case, only the Collins
effect for quarks is at work. In fact, Ref. [41] aimed at
studying only the Collins fragmentation function (FF),
which should be universal, in a more simplified theoretical
scheme for which factorization has been proven. Our ap-
proach is different in some respects. It is more general and
has in principle a richer structure in the observable azimu-
thal asymmetries, since intrinsic motion is also taken into
account in the initial hadrons. However, since factorization
has not been proven in this case, but is rather taken as a
reasonable phenomenological assumption, the validity of
the scheme and the universality of the TMD distributions
involved require an even more severe scrutiny by compari-
son with experimental results. On the other hand, at the
present theoretical and experimental stage, we believe that
combined phenomenological tests of different approaches
are required to clarify the validity of factorization and,
related to this, the relevance of possible universality-
breaking terms for the TMD distributions.
The plan of the paper is the following. In Sec. II we will

summarize the TMD generalized parton model approach,
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which has been presented and discussed at length in a
series of papers (see, e.g., Refs. [39,42,43]). We will then
present the expression of the polarized cross section for the
process of interest, discussing in detail the different par-
tonic contributions to the process; we will finally list the
azimuthal asymmetries that can be measured and their
physical content. In Sec. III we will present phenomeno-
logical results for the azimuthal asymmetries discussed in
the kinematical configuration of the RHIC experiments, at
different c.m. energies and for central- and forward-
rapidity jet production. In particular, we will first present
results for the totally maximized effects, by taking all
TMD functions saturated to natural positivity bounds and
adding in sign all possible partonic contributions. This will
assess the potential phenomenological relevance of each
effect. We will then consider more carefully those effects
involving the Sivers and Boer-Mulders distributions and
the Collins fragmentation function, for which phenomeno-
logical parametrizations obtained by fitting combined data
for azimuthal asymmetries in SIDIS, Drell-Yan, and eþe�
collisions are available. Section IV contains our final re-
marks and conclusions.

II. FORMALISM

In this section we present and summarize the expres-
sions of the polarized cross section and of the measurable
azimuthal asymmetries for the process A"B ! jetþ
�þ X, where A and B are typically a pp or p �p pair.
Since most of the formalism has been already presented
in Refs. [39,42,43], we will shortly recall the main ingre-
dients of the approach, discussing more extensively only
relevant details specific to the process considered.

Within a generalized TMD parton model approach in-
cluding spin and intrinsic parton motion effects, and as-
suming factorization, the invariant differential cross
section for the process AðSAÞB ! jetþ �þ X can be
written, at leading twist in the soft TMD functions, as
follows:

Ejd�
AðSAÞB!jetþ�þX

d3pjdzd
2k?�

¼ X
a;b;c;d;f�g

Z dxadxb
16�2xaxbs

d2k?a

�d2k?b�
a=A;SA
�a�

0
a
f̂a=A;SAðxa;k?aÞ�b=B

�b�
0
b
f̂b=Bðxb;k?bÞ

�M̂�c;�d;�a;�b
M̂�

�0
c;�d;�

0
a;�

0
b
�ðŝþ t̂þ ûÞD̂�

�c;�
0
c
ðz;k?�Þ: (1)

In an LO pQCD approach the scattered parton c in the
hard elementary process ab ! cd is identified with
the observed fragmentation jet. Let us summarize briefly
the physical meaning of the terms in Eq. (1). Full details
and technical aspects can be found in Refs. [39,42,43].

We sum over all allowed partonic processes contributing
to the physical process observed. f�g stays for a sum over
all partonic helicities, � ¼ �1=2ð�1Þ for quark (gluon)
partons, respectively. xa;b and k?a;b are, respectively, the

initial parton light-cone momentum fractions and intrinsic

transverse momenta. Analogously, z and k?� are the light-
cone momentum fraction and the transverse momentum of
the observed pion inside the jet with respect to (w.r.t.) the
jet (parton c) direction of motion.

�a=A;SA
�a�

0
a
f̂a=A;SAðxa; k?aÞ contains all information on the

polarization state of the initial parton a, which depends in
turn on the (experimentally fixed) parent hadron A polar-
ization state and on the soft, nonperturbative dynamics
encoded in the eight leading-twist polarized and transverse
momentum–dependent parton distribution functions,

which will be discussed in the following. �a=A;SA
�a�

0
a

is the

helicity density matrix of parton a. Analogously, the po-
larization state of parton b inside the unpolarized hadron B

is encoded into �b=B
�b�

0
b
f̂b=Bðxb;k?bÞ.

The M̂�c;�d;�a;�b
’s are the pQCD leading-order helicity

scattering amplitudes for the hard partonic process ab ! cd.

The D̂�
�c;�

0
c
ðz;k?�Þ’s are the soft leading-twist TMD

fragmentation functions describing the fragmentation pro-
cess of the scattered (polarized) parton c into the final
leading pion inside the jet.
As already said, we will consider as initial particles A, B,

two spin-1=2 hadrons (typically, two protons) with hadron
B unpolarized and hadron A in a pure transverse spin state
denoted by SA, with polarization (pseudo)vector PA.
Ej and pj are, respectively, the energy and three-

momentum of the observed jet.
Unless otherwise stated, we will always work in the AB

hadronic c.m. frame, with hadron A moving along the

þẐcm direction; we will define ðXZÞcm as the production
plane containing the colliding beams and the observed jet,
with ðpjÞXcm

> 0. We therefore have, neglecting all masses

(see also Fig. 1):

FIG. 1 (color online). Kinematical configuration for the pro-
cess AðSAÞB ! jetþ �þ X in the hadronic c.m. reference
frame.
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p
�
A ¼

ffiffiffi
s

p
2
ð1;0;0;1Þ

S
�
A ¼S

�
T ¼ð0;cos�SA;sin�SA;0Þ

p�
B ¼

ffiffiffi
s

p
2
ð1;0;0;�1Þ

p
�
a ¼

�
xa

ffiffiffi
s

p
2
þ k2?a

2xa
ffiffiffi
s

p ;k?acos�a;k?a sin�a;

xa

ffiffiffi
s

p
2
� k2?a

2xa
ffiffiffi
s

p
�

p
�
b ¼

�
xb

ffiffiffi
s

p
2
þ k2?b

2xb
ffiffiffi
s

p ;k?bcos�b;k?b sin�b;

�xb

ffiffiffi
s

p
2
þ k2?b

2xb
ffiffiffi
s

p
�

p�
c �p�

j ¼ðEj;pjT;0;pjLÞ¼Ejð1;sin�j;0;cos�jÞ
¼pjTðcosh	j;1;0;sinh	jÞ

p�
� ¼E�ð1;sin��cos��;sin�� sin��;cos��Þ; (2)

where	j is the jet (pseudo)rapidity,	j ¼ � log½tanð�j=2Þ�.
Notice that, since the observed jet is identified with the

scattered parton c, the helicity frame of the fragmenting
parton, whose z axis, ẑj, is along the direction of motion of

parton c, is related to the hadronic c.m. frame by a simple

rotation by �j around Ŷcm � ŷj. In this frame (ẑj identifies

also the jet light-cone direction) we have:

~p�
c ¼ ~p�

j ¼ Ejð1; 0; 0; 1Þ

~p
�
� ¼

�
E�;k?�;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� � k2?�

q �

¼
�
E�; k?� cos�H

�; k?� sin�H
�;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� � k2?�

q �
;

(3)

where �H
� is the azimuthal angle of the pion three-

momentum around the jet direction of motion, as measured
in the fragmenting parton helicity frame.

The light-cone momentum fraction of the observed pion
is given by

z ¼ pþ
�

pþ
c

� pþ
�

pþ
j

¼ E� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� � k2?�

q
2Ej

: (4)

We can also write, respectively, in the jet (parton c)
helicity frame and in the hadronic c.m. frame:

p� ¼ k?� cos�H
� x̂j þ k?� sin�H

� ŷj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� � k2?�

q
ẑj

¼
�
k?� cos�H

� cos�j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� � k2?�

q
sin�j

�
X̂cm

þ k?� sin�H
� Ŷcm þ

�
�k?� cos�H

� sin�j

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� � k2?�

q
cos�j

�
Ẑcm: (5)

Let us stress that in our notation intrinsic transverse
momenta, k?i, i ¼ a, b,�, are always 3-vectors and k?i �
jk?ij. This has to be kept in mind when comparing with
literature, where often intrinsic momenta are intended as
4-vectors and k2? ¼ �k2?. From Eq. (5) it is easy to see that

the pion intrinsic transverse momentum is given, in the
hadronic c.m. frame, by

k?� ¼ k?� cos�H
� cos�jX̂cm þ k?� sin�H

� Ŷcm

� k?� cos�H
� sin�jẐcm: (6)

Defining by �k the azimuthal angle of the pion intrinsic
transverse momentum, k?�, as measured in the hadronic
c.m. frame (see Fig. 1), from Eq. (6) we easily see that

tan�k ¼ tan�H
�

cos�j
: (7)

Notice that, for central rapidity jets (�j ¼ �=2), �k ¼
�=2. Therefore, azimuthal asymmetries modulated in
terms of �k are artificially suppressed in the central rapid-
ity region, while the physically relevant angle is �H

� .
Instead, in the forward rapidity region, when cos�j ! 1,

the two angles are practically coincident. Notice also that
in Ref. [41], where only the forward rapidity region was
considered, the angle �k (called �h there) was adopted.
Let us now come back to the soft TMD partonic distri-

bution and fragmentation functions entering the differen-
tial cross section for the process AðSAÞB ! jetþ �þ X,
Eq. (1). Consider first the polarized soft process at the
distribution level, AðSAÞ ! aþ X; as said, in Eq. (1) all
information on this process is encoded in the factor

�a=A;SA
�a�

0
a
f̂a=A;SAðxa; k?aÞ. This factor depends on the polar-

ization state (fixed by experimental conditions) of the
parent hadron A, described by its own helicity density
matrix �A;SA , and on generalized soft distribution functions

for the process AðSAÞ ! aþ X, F̂�a;�
0
a

�A;�
0
A
ðxa;k?aÞ:

�a=A;SA
�a�

0
a
f̂a=A;SAðxa;k?aÞ¼

X
�A;�

0
A

�A;SA
�A;�

0
A
F̂�a;�

0
a

�A;�
0
A
ðxa;k?aÞ: (8)

The functions F̂�a;�
0
a

�A;�
0
A
are related to the well-known leading-

twist handbag diagram for deeply inelastic scattering.
Analogous relations hold for parton b inside the (un)po-
larized hadron B.
Rotational invariance and parity conservation for strong

interactions imply some very general relations for these
nonperturbative functions:

F̂
�a;�

0
a

�A;�
0
A
ðxa; k?aÞ ¼ F�a;�

0
a

�A;�
0
A
ðxa; k?aÞeið�A��0

A
Þ�a; (9)

where �a is the azimuthal angle of parton a intrinsic
transverse momentum, k?a, in the parent hadron A helicity
frame (coinciding in the present case with the hadronic
c.m. frame). Notice that the reduced soft functions F on the
right-hand side (without the hat) do not depend anymore on
azimuthal phases. Moreover,
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F��a;��0
a

��A;��0
A
ðxa;k?aÞ¼ ð�1ÞðSA�saÞ

�ð�1Þð�A��aÞþð�0
A
��0

aÞF�a;�
0
a

�A;�
0
A
ðxa;k?aÞ;

(10)

where SA and sa are the spins of the parent hadron and of
the parton, respectively. Notice that for spin-1=2 colliding

hadrons, SA ¼ 1=2, the factor ð�1ÞðSA�saÞ is positive (nega-
tive) for quark (gluon) partons, and therefore some parity
properties of the soft functions are different for quarks and
gluons. By combining complex conjugation and parity
properties, one can show that some of these functions are
purely real or purely imaginary. As a result, for spin-1=2
hadrons only eight independent soft distributions survive at
leading twist. They can be easily related to the TMD
distributions widely discussed in the literature. Before
listing them for completeness, let us recall another impor-

tant property of the hadronic functions F�a�
0
a

�A�
0
A
ðxa; k?aÞ,

coming from total angular momentum conservation in
the forward direction, that is, for k?a ! 0:

F�a;�
0
a

�A;�
0
A
ðxa; k?aÞ �

�
k?a

M

�j�A��a�ð�0
A��0

aÞj ~F�a;�
0
a

�A;�
0
A
ðxa; k?aÞ;

(11)

where M is a typical hadronic mass scale and the ~F’s stay
for the remaining part of the functions that, depending on
the details of dynamics, may or may not vanish in the
collinear configuration. The relevant hadronic functions
and their connection with the leading-twist TMD distribu-
tions is therefore, in the quark case (for clarity we adopt
here both the notation of Ref. [39] and that of the
Amsterdam group [22,37,44]),

Fþþ
qþþðx;k?ÞþF��

qþþðx;k?Þ¼fq=Aðx;k?Þ¼fq1ðx;k?Þ
Fþþ
qþþðx;k?Þ�F��

qþþðx;k?Þ¼�Lfq=Aðx;k?Þ¼gq1Lðx;k?Þ
Fþ�
qþ�ðx;k?Þ¼hq1ðx;k?Þ

F�þ
qþ�ðx;k?Þ¼

k2?
2M2

h?q
1T ðx;k?Þ

ReFþþ
qþ�ðx;k?Þ¼

k?
2M

g?q
1T ðx;k?Þ

ImFþþ
qþ�ðx;k?Þ¼

1

4
�Nfq=A" ðx;k?Þ

¼� k?
2M

f?q
1T ðx;k?Þ

ReFþ�
qþþðx;k?Þ¼

k?
2M

h?q
1L ðx;k?Þ

ImFþ�
qþþðx;k?Þ¼�1

2
�Nfq"=Aðx;k?Þ

¼ k?
2M

h?q
1 ðx;k?Þ:

(12)

Analogous relations hold for gluon partons with the
changes discussed above, due to the different spin of the
parton and leading to different parity properties. Notice
that instead of transversely polarized quarks we will have
linearly polarized gluons. Of course, the same relations
hold also for the B ! bþ X process. However, this time

the X̂B and ẐB axes of hadron B helicity frame are opposite
to those of the hadronic c.m. frame.
Concerning the fragmentation process, since here we are

considering only pions (in general, unpolarized hadrons),

the discussion of the soft fragmentation functions, D̂�
�c;�

0
c
,

is much simplified. In practice, only two independent TMD
fragmentation functions survive: one with diagonal parton
helicity indexes, related to the TMD unpolarized FF,

D̂�=c
��ðz; k?�Þ � D�=c

��ðz; k?�Þ ¼ D�=cðz; k?�Þ; (13)

and a second one with off-diagonal parton helicity indexes,

D̂�=c
þ�ðz; k?�Þ. This second function is purely imaginary for

quark partons and is related to the well-known Collins
function [38], describing the fragmentation of a trans-
versely polarized quark into a noncollinear unpolarized
hadron. Instead, for gluon partons the analogous Collins-
like function is purely real and is related to the fragmenta-
tion of linearly polarized gluons again into an unpolarized
hadron.
It is very important to realize that these off-diagonal

quark and gluon TMD FFs have different behaviors as a
function of the azimuthal angle of the observed pion
around the direction of motion of the fragmentation jet.
More specifically, for quarks we have

D̂
�=q
��ðz;k?�Þ ¼ �D�=q

þ�ðz; k?�Þe�i�H
� ; (14)

while for gluons the analogous relation reads

D̂
�=g
��ðz; k?�Þ ¼ D�=g

þ�ðz; k?�Þe�i2�H
� : (15)

As mentioned above, the azimuthal independent parts of
these TMD FFs are related to the probability for a trans-
versely (linearly) polarized quark (gluon) of fragmenting
into a noncollinear unpolarized hadron, the Collins
(Collins-like for gluons) fragmentation function [39],

D�=q
þ�ðz; k?�Þ ¼ i

2
�ND�=q" ðz; k?�Þ ¼ i

2

k?�

zm�

H?
1 ðz; k?�Þ

D�=g
þ�ðz; k?�Þ ¼ 1

2
�ND�=T g

1
ðz; k?�Þ: (16)

Again, total angular momentum conservation in the
forward direction dictates the power behavior of the
TMD FFs for k?� ! 0:
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D�
�c;�

0
c
ðz; k?�Þ �

�
k?�

M

�j�c��0
cj ~D�

�c;�
0
c
ðz; k?�Þ: (17)

In this case as well, the behavior of the off-diagonal FFs is
different for quarks and gluons.

Let us finally comment on the helicity amplitudes for the
partonic hard-scattering processes entering Eq. (1). Again,
details have already been presented in Refs. [39,43], and
here we limit ourselves to summarizing some useful prop-
erties. Because of intrinsic partonic motion in the distribu-
tions and in the fragmentation process, the general
kinematical configuration for the partonic process
ab ! cd is not planar in the hadronic c.m. frame. Since
partons can in general be polarized in the process, azimu-
thal phases are therefore essential and must be properly
taken into account. For massless partons, due to helicity
conservation in the quark-gluon vertex and parity invari-
ance only three independent helicity amplitudes survive:

M̂þþ;þþ ¼ M̂���;�� ¼ M̂0
1e

i’1

M̂�þ;�þ ¼ M̂�þ�;þ� ¼ M̂0
2e

i’2

M̂�þ;þ� ¼ M̂�þ�;�þ ¼ M̂0
3e

i’3 :

(18)

Here � stays for � ¼ �1=2 for quarks and � ¼ �1 for

gluons. M̂0
i (i ¼ 1, 2, 3) are the three independent helicity

amplitudes in the canonical partonic c.m. frame, that is, a
frame where partons a, b move along the �ẑ direction,
respectively, and the scattering plane coincides with the
ðxzÞ plane. The phases ’i collect all azimuthal phases
coming from rotations and boosts connecting the canonical
partonic c.m. frame with the hadronic c.m. frame adopted
in the paper. Their general expression is rather involved.

All details and the explicit expressions of the M̂0
i and ’i

can be found in Refs. [39,43]. Here we limit ourselves to
noting that for parton c lying in the ðXZÞcm plane, as in the
present case, the phases ’i are odd under k?a;b ! �k?a;b.

This property, as we will see below, is very helpful in
selecting only physically observable effects out of the
many contributions present in Eq. (1) because of the non-
planarity of the partonic process: in fact, some of these
contributions do not survive at the hadronic level under
integration over intrinsic parton momenta.

We now concentrate on the partonic kernels entering the
expression of the polarized cross section, Eq. (1):

�ðSAÞab!cd ¼ X
f�g

�a=A;SA
�a�

0
a
f̂a=A;SAðxa; k?aÞ

� �b=B
�b�

0
b
f̂b=Bðxb; k?bÞM̂�c;�d;�a;�b

� M̂�
�0
c;�d;�

0
a;�

0
b
D̂�

�c;�
0
c
ðz; k?�Þ: (19)

One has to evaluate the kernels for each of the eight
distinct partonic channels contributing to the cross section,

qq ! qq; qg ! qg; qg ! gq; gq ! qg;

gq ! gq gg ! q �q; q �q ! gg; gg ! gg;

(20)

where in the first line q stays for both quarks and anti-
quarks in all allowed combinations.
In practice, the calculation is performed by summing

explicitly over all helicity indexes and inserting the appro-
priate expressions for the helicity density matrices of
partons a, b and for the polarized distribution and frag-
mentation functions, as detailed above. Furthermore, after
factorizing explicitly all azimuthal dependencies, includ-
ing those coming from the hard-scattering helicity ampli-
tudes, collecting them and using symmetry properties
under k?a;b ! �k?a;b, one gets the final expression for

the kernels, containing only physically allowed terms at the
hadronic level.
We will not present explicitly the kernels for all chan-

nels. Instead, we limit ourselves to giving the kernels for
the qq ! qq and gg ! gg channels, which contain
the maximal number of terms and give examples of pos-
sible contributions involving both quark and gluon
distribution and fragmentation functions. Moreover, we
will directly present the combination of kernels, �ð�SAÞ �
�ð�SA þ �Þ, entering the numerator and the denominator

of the single-spin azimuthal asymmetries discussed in the
sequel. We will also omit for shortness the explicit depen-
dencies on the light-cone momentum fractions and intrin-
sic momenta of all TMD distribution and fragmentation
functions. On the contrary, all azimuthal dependencies are
explicitly shown. In particular, terms are collected accord-
ing to the azimuthal dependencies in the fragmentation
process which directly enter the azimuthal asymmetries
we want to study. Therefore, we get for the qq ! qq
channel:

½�ð�SAÞ þ �ð�SA þ �Þ�qq!qq � ffa=Afb=B½jM̂0
1j2

þ jM̂0
2j2 þ jM̂0

3j2� � 2�Nfa"=A�
Nfb"=BM̂

0
2M̂

0
3

� cosð’2 � ’3ÞgD�=q þ f�Nfa"=Afb=BM̂
0
1M̂

0
2

� cosð’1 � ’2Þ � fa=A�
Nfb"=BM̂

0
1M̂

0
3 cosð’1 � ’3Þg

� �ND�=q" cos�
H
�: (21)

The symbol � is to recall that, as discussed above, this
expression is valid only after integrating over the azimuthal
angles of the initial intrinsic parton momenta, k?a;b, and is

based on symmetry properties of the kernels under
k?a;b ! �k?a;b. It contains fewer terms than the general

expression for the kernels in the k?a;b-unintegrated, non-

planar partonic configuration.
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Analogously, for the numerator of the asymmetry, we find:

½�ð�SAÞ ��ð�SA þ �Þ�qq!qq �
�
1

2
�Nfa=A"fb=B cos�a½jM̂0

1j2 þ jM̂0
2j2 þ jM̂0

3j2�

� ha1�
Nfb"=B cosð�a � ’2 þ ’3Þ2M̂0

2M̂
0
3 þ

k2?a

2M2
h?a
1T �

Nfb"=B cosð�a þ ’2 � ’3Þ2M̂0
2M̂

0
3

�
sin�SAD�=q

þ
�
� 1

2
�Nfa=A"�Nfb"=B cos�a cosð’1 � ’3ÞM̂0

1M̂
0
3 þ ha1fb=B cosð�a þ ’1 � ’2ÞM̂0

1M̂
0
2

� k2?a

2M2
h?a
1T fb=B cosð�a � ’1 þ ’2ÞM̂0

1M̂
0
2

�
sin�SA�

ND�=q" cos�
H
�

þ
�
� 1

2
�Nfa=A"�Nfb"=B sin�a sinð’1 � ’3ÞM̂0

1M̂
0
3 � ha1fb=B cosð�a þ ’1 � ’2ÞM̂0

1M̂
0
2

� k2?a

2M2
h?a
1T fb=B cosð�a � ’1 þ ’2ÞM̂0

1M̂
0
2

�
cos�SA�

ND�=q" sin�
H
�: (22)

Let us discuss the physical content of these results.
Equation (21) gives the contribution of the qq ! qq chan-
nel to (twice) the unpolarized cross section. It contains two
terms azimuthally symmetric in the fragmentation process:
the first is the usual term already present in the collinear
factorization scheme, the second one is the possible con-
tribution due to the Boer-Mulders effect coming from both
initial partons.

The last two terms in Eq. (21) might potentially give rise
to an azimuthal asymmetry in the jet ! �þ X unpolar-
ized process: they are related to the combined action of the
Boer-Mulders function (either for parton quark a or b,
separately) and of the Collins fragmentation function.
Notice that only the first contribution in Eq. (21) survives
in a purely collinear scheme, or even in a scheme like that
adopted in Refs. [41,45,46], where intrinsic motion is kept
into account only in the fragmentation process.

Equation (22) is related to transverse spin asymmetries
for pion production inside a jet. Again, it contains terms
related to the unpolarized pion fragmentation function
D�=qðz; k?�Þ which are symmetric with respect to �H

� ,

and terms proportional to the Collins fragmentation func-
tion which are responsible for the azimuthal asymmetries
in the jet fragmentation process.

The first group of terms, proportional to D�=q, are

related to a single-spin asymmetry (only hadron A is
polarized). The only contribution allowed by rotational
invariance and parity conservation comes from hadron A
being polarized transversely to the jet production plane,
which explains the sin�SA factor.

Notice once more that the appearance of only the physi-
cally allowed contributions is not trivial in our expression,
which, at this stage, is still unintegrated over k?a;b.

However, as discussed above, taking into account symme-
try properties under k?a;b ! �k?a;b amounts to select

from the beginning only physically allowed contributions

from the wealth of partonic terms present in the general
nonplanar configuration for the partonic process.
In the case of Eq. (22) the terms proportional to D�=q

come from the Sivers effect (first term) and from combi-
nations of the transversity and the Boer-Mulders functions
for partons a and b, respectively.
Let us now consider the terms in Eq. (22) related to the

Collins fragmentation function, �ND�=q" . These refer ef-

fectively to a double-spin asymmetry, since both hadron A
and the final quark c (generating the observed jet) are
transversely polarized. Their physical content is also easy
to understand. The first three terms, proportional to
�ND�=q" sin�SA , correspond to a double transverse spin

asymmetry, where both hadron A and the final parton c are
transversely polarized w.r.t. the jet production plane, along

the Ŷcm axis. In this case, the Collins effect in the frag-
mentation process survives only for the component of the
pion transverse momentum (w.r.t. the jet) orthogonal to the
parton c polarization vector, that is, the component lying in
the production plane, which explains the associated cos�H

�

factor (see Fig. 1).
Analogously, the three terms proportional to

�ND�=q" cos�SA correspond again to a double transverse

spin asymmetry, this time for hadron A and the final parton
c transversely polarized w.r.t. their own direction of motion
but in the production plane (i.e., along the x axis of the
respective helicity frames). Again, only the component of
the pion transverse momentum orthogonal to the parton c
polarization vector contributes to the Collins asymmetry in
the fragmentation process, which is this time guaranteed by
the sin�H

� factor.
Although Eq. (22) makes the physical content of the

asymmetry more evident, the following equivalent expres-
sion, where the terms proportional to the Collins FF are
collected differently, makes the possible azimuthal asym-
metries in the jet fragmentation process more readable:
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½�ð�SAÞ ��ð�SA þ �Þ�qq!qq �
�
1

2
�Nfa=A"fb=B cos�a½jM̂0

1j2 þ jM̂0
2j2 þ jM̂0

3j2�

� ha1�
Nfb"=B cosð�a � ’2 þ ’3Þ2M̂0

2M̂
0
3 þ

k2?a

2M2
h?a
1T �

Nfb"=B cosð�a þ ’2 � ’3Þ2M̂0
2M̂

0
3

�
sin�SAD�=q

þ
�
½ha1fb=B cosð�a þ ’1 � ’2ÞM̂0

1M̂
0
2 �

1

4
�Nfa=A"�Nfb"=B cosð�a þ ’1 � ’3ÞM̂0

1M̂
0
3� sinð�SA ��H

� Þ

�
�
k2?a

2M2
h?a
1T fb=B cosð�a � ’1 þ ’2ÞM̂0

1M̂
0
2 þ

1

4
�Nfa=A"�Nfb"=B cosð�a � ’1 þ ’3ÞM̂0

1M̂
0
3

�
sinð�SA þ�H

� Þ
�

��ND�=q" : (23)

Therefore, apart from the term proportional to D�=q, two azimuthal asymmetries in the distribution of leading pions

inside the jet are possible, proportional, respectively, to sinð�SA ��H
� Þ.

Neglecting intrinsic motion of the initial partons, k?a;b ! 0, Eqs. (21) and (23) simplify considerably:

½�ð�SAÞ þ�ð�SA þ �Þ�qq!qq ! fa=AðxaÞfb=BðxbÞ½jM̂0
1j2 þ jM̂0

2j2 þ jM̂0
3j2�D�=qðz; k?�Þ; (24)

½�ð�SAÞ ��ð�SA þ �Þ�qq!qq ! ha1ðxaÞfb=BðxbÞM̂0
1M̂

0
2�

ND�=q" ðz; k?�Þ sinð�SA ��H
� Þ; (25)

in agreement with the results of Ref. [41]. Notice, however, that our angle �H
� is the azimuthal angle of k?� measured in

the jet (parton c) helicity frame. Therefore, it does not coincide with the angle �h utilized in Ref. [41], which is the
azimuthal angle of k?� measured in the hadronic c.m. frame [we call this angle �k in this paper; see Eq. (7) and Fig. 1].
Only for forward jet production ( cos�j ! 1) do these angles coincide with good approximation.

In the case of the gg ! gg partonic channel, the analogues of Eqs. (21) and (23) are

½�ð�SAÞ þ�ð�SA þ �Þ�gg!gg � ffa=Afb=B½jM̂0
1j2 þ jM̂0

2j2 þ jM̂0
3j2� � 2�NfT a

1=A
�NfT b

1=B
M̂0

2M̂
0
3 cosð’2 � ’3ÞgD�=g

þ f�NfT a
1=A

fb=BM̂
0
1M̂

0
2 cosð’1 � ’2Þ þ fa=A�

NfT b
1=B

M̂0
1M̂

0
3 cosð’1 � ’3Þg�ND�=T g

1
cos2�H

�; (26)

½�ð�SAÞ ��ð�SA þ �Þ�gg!gg �
�
1

2
�Nfa=A"fb=B cos�a

�
jM̂0

1j2 þ jM̂0
2j2 þ jM̂0

3j2
�

þ ImFþ�
aþ��NfT b

1=B
cosð�a � ’2 þ ’3Þ2M̂0

2M̂
0
3 þ ImF�þ

aþ��NfT b
1=B

cosð�a þ ’2 � ’3Þ2M̂0
2M̂

0
3

�
sin�SAD�=g

þ
��
ImFþ�

aþ�fb=B cosð�a þ ’1 � ’2ÞM̂0
1M̂

0
2 þ

1

4
�Nfa=A"�NfT b

1=B
cosð�a � ’1 þ ’3ÞM̂0

1M̂
0
3

�
sinð�SA � 2�H

� Þ

�
�
ImF�þ

aþ�fb=B cosð�a � ’1 þ ’2ÞM̂0
1M̂

0
2 þ

1

4
�Nfa=A"�NfT b

1=B
cosð�a þ ’1 � ’3ÞM̂0

1M̂
0
3

�
sinð�SA þ 2�H

� Þ
�

��ND�=T g
1
: (27)

The structure is the same as for the quark case, but this

time all distributions related to transversely polarized

quark partons and the Collins fragmentation functions are

replaced by analogous functions for linearly polarized

gluons; see Ref. [39] for more details. Notice that for

linearly polarized gluons inside the polarized hadron A,
to avoid confusion with notation we prefer to keep the

definitions in terms of the functions F�a;�
0
a

�A;�
0
A
. It is also

important to notice that this time the possible azimuthal

asymmetries in the distribution of leading pions inside

the (gluon) jet are proportional to cos2�H
� and

sinð�SA � 2�H
� Þ, respectively, for the unpolarized and

single-polarized case. Therefore, by measuring these

asymmetries one should in principle be able to select

contributions coming from either quark or gluon jet

fragmentation.
It is easy to see that in the case of collinear initial partons

Eq. (26) reduces again to the usual collinear contribution to
the unpolarized cross section, while Eq. (27) vanishes.
Therefore, the measurement of such types of asymmetries
would be a clear indication that effects originating from
intrinsic parton motion in the initial colliding hadrons
are at work. From the phenomenological point of
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view, this would be a crucial test for the TMD approach,
independently of the open issues concerning factorization
and universality of the TMD distribution functions men-
tioned in the introduction.

Expressions similar to those shown above for the
qq ! qq and gg ! gg channels hold also for all partonic
contributions involved, with the appropriate combinations
of quark and gluon distribution and fragmentation func-
tions. In general, fewer terms are present both in the
denominator and the numerator of the asymmetry.
Moreover, as a general rule distribution and fragmentation
functions related to transversely (linearly) polarized quarks
(gluons) appear only in couples. This limits the number of
allowed terms.

According to these results, the single-transverse polar-
ized cross section for the process AðSAÞB ! jetþ �þ X
will have the following general structure:

2d�ð�SA;�
H
� Þ � d�0 þ d��0 sin�SA þ d�1 cos�

H
�

þ d���
1 sinð�SA ��H

� Þ þ d��þ
1 sinð�SA þ�H

� Þ
þ d�2 cos2�

H
� þ d���

2 sinð�SA � 2�H
� Þ

þ d��þ
2 sinð�SA þ 2�H

� Þ: (28)

Equivalently, the numerator and denominator of the
asymmetry will have the following expression:

d�ð�SA;�
H
� Þ � d�ð�SA þ �;�H

� Þ � d��0 sin�SA

þ d���
1 sinð�SA ��H

� Þ þ d��þ
1 sinð�SA þ�H

� Þ
þ d���

2 sinð�SA � 2�H
� Þ þ d��þ

2 sinð�SA þ 2�H
� Þ;
(29)

d�ð�SA;�
H
� Þ þ d�ð�SA þ �;�H

� Þ
� 2d�unpð�H

� Þ � d�0 þ d�1 cos�
H
� þ d�2 cos2�

H
�:

(30)

In terms of the polarized cross section, Eq. (28), we can
define average values of appropriate circular functions of
�SA and �H

� , in order to single out the different contribu-

tions of interest:

hWð�SA;�
H
� Þiðpj; z; k?�Þ

¼
R
d�SAd�

H
�Wð�SA;�

H
� Þd�ð�SA;�

H
� ÞR

d�SAd�
H
�d�ð�SA;�

H
� Þ : (31)

Alternatively, for the single-spin asymmetry we can, in
close analogy with the case of semi-inclusive deeply in-
elastic scattering, define appropriate azimuthal moments,

A
Wð�SA

;�H
� Þ

N ðpj; z; k?�Þ � 2hWð�SA;�
H
� Þiðpj; z; k?�Þ ¼ 2

R
d�SAd�

H
�Wð�SA;�

H
� Þ½d�ð�SA;�

H
� Þ � d�ð�SA þ �;�H

� Þ�R
d�SAd�

H
� ½d�ð�SA;�

H
� Þ þ d�ð�SA þ �;�H

� Þ� ;

(32)

where Wð�SA;�
H
� Þ is again some appropriate circular

function of �SA and �H
� . In practice, it will be any of the

circular functions appearing, e.g., in Eqs. (23) and (27) for
specific partonic channels, and for polarized cross sections
in general in Eq. (29) so that the coefficient related to the
corresponding azimuthal moment is singled out.

III. PHENOMENOLOGY

In this section wewill present and discuss some phenome-
nological implications of our approach for the unpolarized
and single-transverse polarized cases in kinematical configu-
rations accessible at RHIC by the STAR and PHENIX ex-
periments. We will consider both central (	j ¼ 0) and

forward (	j ¼ 3:3) (pseudo)rapidity configurations and dif-

ferent c.m. energies,
ffiffiffi
s

p ¼ 62:4, 200, 500 GeV, aiming at a
check of the potentiality of the approach in disentangling
among different quark- and gluon-originating effects. We
will also consider two very different situations concerning
the TMD distribution and fragmentation functions involved.

Wewill first consider, for�þ production only, a scenario
in which the effects of all TMD functions are overmaxi-
mized. By this we mean that all TMD functions are

maximized in size by imposing natural positivity bounds
(and the Soffer bound for transversity [47,48]); moreover,
the relative signs of all active partonic contributions are
chosen so that they sum up additively. This very extreme
scenario of course might imply the violation of other, more
stringent, bounds and sum rules; examples are the Burkardt
sum rule for the Sivers distribution [49], and the Schäfer-
Teryaev sum rule for the Collins function [50]. On the
other hand, it has the advantage of setting an upper bound
on the absolute value of any of the effects playing a
potential role in the azimuthal asymmetries. Therefore,
all effects that are negligible or even marginal in this
scenario may be directly discarded in subsequent refined
phenomenological analyses.
As a second step in our study we will consider, for both

neutral and charged pions, only the surviving effects, in-
volving TMD functions for which parametrizations are
available from independent fits to other spin and azimuthal
asymmetries data in SIDIS, DY, and eþe� processes. Even
if in our approach factorization and universality are not
guaranteed for the process under consideration,
we still believe that at the present stage this analysis can
be of phenomenological relevance. It can certainly help in
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pointing out inconsistencies among fits based on different
processes, that could be a signal of universality-breaking
effects. On the contrary, good consistency among fits to
different observables from SIDIS, eþe�, and hadronic
collisions data, while not proving factorization, might
signal the smallness of possible universality-breaking
terms and the usefulness of the factorization hypothesis
in the present phenomenological analyses.

In this paper, for numerical calculations all TMD distri-
bution and fragmentation functions will be taken in the
simplified form where the functional dependencies on the
parton light-cone momentum fraction and on transverse
motion are completely factorized, assuming a Gaussian-
like flavor-independent shape for the transverse momen-
tum component. Preliminary lattice QCD calculations
seem to support the validity of this assumption, see, e.g.,
Ref. [51]. Notice, however, that kinematical cuts intro-
duced to prevent, as usual in the parton model, that the
parton longitudinal momentum (energy) be opposite to
(larger than) that of the parent hadron, effectively lead to
a correlation between the light-cone momentum fraction
and the transverse momentum, particularly at very small
and very large ( ! 1) light-cone momentum fractions (see,
e.g., Appendix A of Ref. [42]).

For the generic parton a, the unpolarized and any of
the polarized functions (that is, the Sivers and Boer-
Mulders distributions and the Collins FF, and the analo-
gous ones for gluons) will therefore assume, respectively,

the forms F unp
a ðu; pÞ ¼ f

unp
a ðuÞgð0ÞðpÞ and �F aðu; pÞ ¼

�faðuÞgðiÞðpÞ, with a ¼ q, �q, g, i ¼ 0, 1, 2, 3, u ¼ x or z,
and p ¼ k? or k?� for distribution/fragmentation func-
tions, respectively. Our parametrizations are required to
respect angular momentum conservation in the forward
direction, Eqs. (11) and (17); therefore, we define

gðiÞðpÞ ¼
�
p

M

�
i
hðiÞðpÞ: (33)

In particular, gð0ÞðpÞ � gðpÞ is a simple Gaussian normal-
ized to unity:

gð0ÞðpÞ � gðpÞ ¼ 1

�hp2
0i

exp½�p2=hp2
0i�; (34)

while

gðiÞðpÞ ¼
�
p

M

�
i
hðiÞðpÞ ¼ Ki

�
p

M

�
i
exp½�p2=hp2

i i�;
i ¼ 1; 2; 3:

(35)

All the polarized TMD functions are required to fulfill
natural positivity bounds (for transversity, the Soffer
bound) with respect to the corresponding unpolarized func-
tions, coming from their general definition as

F ðSÞ �F ð�SÞ
F ðSÞ þF ð�SÞ ¼ �F ðSÞ

nF unp ; (36)

where S is here the spin of the polarized quark or hadron
involved, and n ¼ 1, 2, depending on whether the polar-
ized particle is, respectively, the final/initial one in the soft
process considered (analogous relations hold for gluons).
The positivity bound therefore reads:

j�F ðu; pÞj
nF unpðu; pÞ 	 1 8 u; p: (37)

As a matter of fact, to simplify relations we will consider a
more conservative and stringent bound on the two factored
components,

j�faðuÞj
nfunpa ðuÞ 	 1 8 u;

gðiÞðpÞ
gð0ÞðpÞ 	 1 8 p: (38)

The first condition is usually fulfilled by defining

�faðuÞ ¼ nN aðuÞfunpa ðuÞ

¼ nNau

að1� uÞ�a

ð
a þ �aÞð
aþ�aÞ



a
a ��a

a

funpa ðuÞ;

with jNaj 	 1: (39)

Concerning the transverse momentum–dependent compo-

nent, gðiÞðpÞ, the positivity bound, Eq. (38), can only be
fulfilled if, in Eq. (35), hp2

i i< hp2
0i. We then fix the factors

Ki in Eq. (35) by saturating the bound at the maximum

value of gðiÞ. Finally, once a choice has been performed for
hp2

0i, the hp2
i i’s are fixed by maximizing the corresponding

(iþ 1)-th p moments. It is then an easy exercise to verify
that this gives the conditions:

hp2
1i ¼

2

3
hp2

0i; hp2
2i ¼

1

2
hp2

0i; hp2
3i ¼

2

5
hp2

0i:
(40)

From the above equations it is clear that the overmaxi-
mized scenario for �þ production we are going to present
is obtained by taking, for all polarized TMD functions, the
coefficients N aðuÞ ¼ 1. For the transverse momentum
component, the procedure delineated above guarantees
the correct powerlike behavior in the forward direction,
while maximizing the moments of the involved functions.
One also needs LO parametrizations for the usual un-

polarized collinear distribution and fragmentation func-
tions. Concerning the parton distribution functions, we
will adopt the unpolarized set GRV98 [52] and (for the
Soffer bound) the corresponding longitudinally polarized
set GRSV2000 [53]. Since the range of the jet transverse
momentum (the hard scale) covered is significant, we will
take into account proper evolution with scale. Concerning
transversity, in the maximized scenario we will fix it at the
initial scale by saturating the Soffer bound and then letting
it evolve. On the other hand, the transverse momentum
component of all TMD functions is kept fixed with no
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evolution with scale. Notice that at this stage evolution
properties of the full TMD functions are not known.

As for fragmentation functions, we will adopt two well-
knownLOsets among those available in the literature: the set
by Kretzer (K) [54] and the one by De Florian, Sassot, and
Stratmann (DSS) [55]. Our choice is dictated by the subse-
quent use of the two available parametrization sets for the
Sivers and Collins functions in our scheme, that have been
derived in the past years by adopting these sets of FFs. Let us
notice that, as the authors of Ref. [55] suggest, the LO DSS
fragmentation function set has to be handled with some care.
In fact, aiming at reproducing for the first time unpolarized
cross sections for inclusive hadronic collisions, at LO accu-
racy a very huge gluon component (as compared to other FF
sets) is required.This couldbe anartifact of theLOset,which
in fact is sizably reduced in the NLO parametrizations.
However, we are at present forced to work at leading order
in our TMD approach. The comparison among the two sets
adoptedwill allow us to stress the possible effects of the large
gluon component in the LO DSS set.

Concerning the parametrizations of the transversity and
Sivers distributions and of the Collins functions, we will
consider two sets resulting from the fits to available data on
azimuthal asymmetries in polarized SIDIS from HERMES
and COMPASS experiments, and on hadron-pair produc-
tion in eþe� collisions from Belle. Set 1 (SIDIS 1) in-
cludes the u, d quark Sivers functions of Ref. [56], the u, d
quark transversity distributions, and the favored and unfa-
vored Collins FFs of Ref. [57]. Data include preliminary
HERMES data for charged pions [58] and COMPASS data
on charged hadrons with a deuteron target [59] on the
SIDIS Sivers asymmetry; HERMES data for charged pions
[11,60] and COMPASS data for charged hadrons with a
deuteron target [61] on the SIDIS Collins asymmetry; and
early Belle data on azimuthal asymmetries for hadron-pair
production in eþe� collisions [14]. No SIDIS data on
kaons were used and the Kretzer set [54] for pion FFs
was used. Set 2 (SIDIS 2) includes the new u, d, and sea-
quark Sivers functions of Ref. [62] and an updated set of
the u, d quark transversity distributions and of the favored
and unfavored Collins FFs of Ref. [63]. Corresponding
data include: preliminary HERMES data on pions and
charged kaons [64] and preliminary COMPASS data on
charged pions and kaons with a deuteron target [65] for the
SIDIS Sivers asymmetry; preliminary HERMES data for
pions [64] and COMPASS data for charged pions with a
deuteron target [12] on the SIDIS Collins asymmetry;
recent Belle data on azimuthal asymmetries for hadron-
pair production in eþe� collisions [15]; the DSS set [55]
for pion and kaon FFs was adopted.

Notice that the almost unknown gluon Sivers function
was tentatively taken positive and saturated to an updated
version of the bound obtained in Ref. [66] by considering
PHENIX data for the �0 transverse SSA at midrapidity
production in polarized pp collisions at RHIC [67].

It is also important to stress here that polarized SIDIS
data on azimuthal asymmetries from HERMES and
COMPASS experiments cover a relatively limited range
of Bjorken x, xB 	 0:3. Therefore, the statistical uncer-
tainty of the parametrizations available for the transversity
and Sivers distributions is huge at large x values, where one
extrapolates their behavior. As we will see, this reflects in
the very different behavior of the Sivers and Collins asym-
metries when estimated adopting sets SIDIS 1 and SIDIS 2,
respectively.
Finally, regarding the quark Boer-Mulders distribution

function, much less is known and available parametriza-
tions have large uncertainties. In our calculations we have
adopted the recent parametrization by Barone, Melis, and
Prokudin (BMP) [68], which makes use of our set SIDIS 2
for the transversity and Sivers distributions and for the
Collins function.
We have considered the following kinematical configu-

rations for the PHENIX and STAR experiments at RHIC:
(1)

ffiffiffi
s

p ¼ 62:4 GeV, 	j ¼ 0, 1 	 pjT 	 14 GeV;

(2) At
ffiffiffi
s

p ¼ 62:4 GeV, the forward rapidity configura-
tion covers a very limited range of pjT values, which

probably prevents the unambiguous definition of
jets and leading particles, therefore we will not
consider it in the sequel;

(3)
ffiffiffi
s

p ¼ 200 GeV, 	j ¼ 0, 2 	 pjT 	 15 GeV;

(4)
ffiffiffi
s

p ¼ 200 GeV, 	j ¼ 3:3, 2 	 pjT 	 6:5 GeV

[0:27 	 xF 	 0:88];
(5)

ffiffiffi
s

p ¼ 500 GeV, 	j ¼ 0, 2 	 pjT 	 15 GeV;

(6)
ffiffiffi
s

p ¼ 500 GeV, 	j ¼ 3:3, 2 	 pjT 	 15 GeV

[0:11 	 xF 	 0:81].
For completeness, in the forward rapidity case we have

also shown the range of xF covered, where xF is the usual
Feynman variable for the jet, xF ¼ 2pjL=

ffiffiffi
s

p
.

In all cases considered, since we are interested in azi-
muthal asymmetries for leading particles inside the jet, we
will present results obtained by integrating the light-cone
momentum fraction of the observed hadron, z, in the range
z 
 0:3.

A. Azimuthal asymmetries for the unpolarized
cross section

In this section we will discuss results for the azimuthal
hcos�H

� i, hcos2�H
� i asymmetries [see Eq. (31)] in the un-

polarized cross section for the process pp ! jetþ �þ X.
As it is easy to verify by looking, e.g., at Eqs. (21) and

(26) for the qq ! qq and gg ! gg partonic contributions
(analogous results, where allowed, hold for all other chan-
nels), in the unpolarized case:
(1) The symmetric part gets contributions by the usual

unpolarized term, already present in the collinear
approach, and by an additional term involving a
Boer-Mulders�Boer-Mulders convolution for the
initial quarks (or the analogous terms involving lin-
early polarized gluons); however, we have explicitly
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checked that even in themaximized scenario this last
contribution is always negligible in all the kinemati-
cal configurations considered; therefore, we will not
discuss it anymore in the sequel;

(2) The cos�H
� asymmetry is generated by the quark

Boer-Mulders�Collins convolution term, involving
a transversely polarized quark and an unpolarized
hadronboth in the initial state and in the fragmentation
process. In the central rapidity region (	j ¼ 0) the

maximized value of this asymmetry is of the order
1–3%, depending on the fragmentation function set
adopted and on the c.m. energy considered, being
almost negligible at

ffiffiffi
s

p ¼ 500 GeV. In the forward
rapidity region, 	j ¼ 3:3, the maximized cos�H

�

asymmetry can be much larger both at
ffiffiffi
s

p ¼ 200
and 500 GeV. As an example, in Fig. 2 we show the
maximized cos�H

� asymmetry (solid red lines) for�þ
production at c.m. energy

ffiffiffi
s

p ¼ 200 GeV in the cen-
tral (left panel) and forward (right panel) rapidity
regions as a function of pjT , from pjT ¼ 2 GeV up

to the maximum allowed value, adopting the Kretzer
FF set. Slightly lower values are obtained using the
DSS set.

(3) The cos2�H
� asymmetry is related to the term in-

volving linearly polarized gluons and unpolarized
hadrons both in the initial state and in the fragmen-
tation process, that is, the convolution of a Boer-
Mulders-like gluon distribution with a Collins-like
gluon FF. Even the maximized contribution is prac-
tically negligible in the kinematical configurations
considered. As an example, again in Fig. 2, we show
the maximized cos2�H

� asymmetry (dashed green
lines) for �þ production at

ffiffiffi
s

p ¼ 200 GeV c.m.
energy in the central (left panel) and forward (right

panel) rapidity regions as a function of pjT , adopting

the Kretzer FF set. Similar results are obtained using
the DSS set.

Concerning results with available parametrizations, for
the quark-originated cos�H

� asymmetry we have verified
that the asymmetries obtained with the parametrizations
adopted here, our set SIDIS 2 and the BMP set for the
Boer-Mulders function, are negligible in all kinematical
configurations considered. No parametrizations are pres-
ently available for the analogous gluon contributions lead-
ing to the cos2�H

� asymmetry.

B. Azimuthal asymmetries for ANðp"p ! jetþ � þ XÞ
Let us now discuss our numerical results for the Sivers

(A
sin�SA
N ) asymmetry and the quark [A

sinð�SA
��H

� Þ
N ] and gluon

[A
sinð�SA

�2�H
� Þ

N ] Collins(-like) asymmetries; see Eq. (32).
Our estimates are qualitatively similar at the three different
c.m. energies considered, with some differences in the size
of the asymmetries and in the relative weight of the
quark and gluon contributions where both play a role.
Therefore, we will concentrate on the results obtained atffiffiffi
s

p ¼ 200 GeV.

1. The Sivers asymmetry

In this case, both quark and gluon contributions can be
present, and they cannot be disentangled. However, some
kinematical configurations can be dominated by quark or
gluon terms, and a sizable asymmetry in these regions
might be an unambiguous indication for a Sivers asymme-
try generated by the dominant partonic contribution.
In Fig. 3 we show the total observable Sivers asymmetry

(solid red line) and the corresponding quark and
gluon contributions (dashed green and dotted blue lines,

  = cosφπ
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FIG. 2 (color online). Maximized quark-originated ( cos�H
� ) and gluon-originated ( cos2�H

� ) asymmetries (solid red and dashed
green lines, respectively) for the unpolarized pp ! jetþ �þ þ X process, at

ffiffiffi
s

p ¼ 200 GeV c.m. energy in the central (left panel)
and forward (right panel) rapidity regions as a function of pjT , from pjT ¼ 2 GeV up to the maximum allowed value, adopting the

Kretzer FF set. Slightly lower (similar) values are obtained for quark (gluon) asymmetries when using the DSS set.
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respectively) for �þ production, in the maximized sce-
nario and adopting the Kretzer fragmentation function set,
at

ffiffiffi
s

p ¼ 200 GeV and as a function of pjT in the central

(left panel) and forward (right panel) rapidity regions. The
maximized potential Sivers asymmetry can be very large in
both cases. In the central rapidity region, the asymmetry is
dominated by the gluon contribution at the lowest pjT

range while gets comparable quark and gluon contributions
in the large pjT range. A large Sivers asymmetry around

pjT ¼ 4–6 GeV could then be a clear indication for a

sizable gluon contribution. However, one must not forget
that, as mentioned above, recent PHENIX results for
ANðp"p ! �0 þ XÞ in the central rapidity region put
much more stringent bounds on the gluon Sivers distribu-
tion than the simple positivity bound adopted in the maxi-
mized scenario. We have checked that even adopting
this more stringent bound, a potential gluon-generated
Sivers asymmetry of the order of 2% might survive in
this region, being possibly measurable. In the forward
rapidity region, on the contrary, the quark and gluon con-
tributions are comparable at low pjT values, while the

maximized asymmetry is dominated by the quark contri-
bution for pjT * 4 GeV. Therefore, a large Sivers asym-

metry in this kinematical range could be ascribed
unambiguously to the quark Sivers effect. Qualitatively
similar results are obtained at the other c.m. energies
considered or adopting the DSS set of fragmentation func-
tions, with some changes in the total size and in the relative
weights of the quark and gluon contributions.

In Fig. 4 we show, for both neutral and charged pions,
the quark and gluon contributions to the Sivers asymmetry,
obtained by adopting, respectively, the parametrization
sets SIDIS 1 (quark contribution: solid red line; gluon

contribution: dashed green line) and SIDIS 2 (quark con-
tribution: dotted blue line; gluon contribution: dot-dashed
cyan line), and the updated version of the bound on
the gluon Sivers function derived in Ref. [66], atffiffiffi
s

p ¼ 200 GeV and in the forward rapidity region, as a
function of pjT . The dotted black vertical line delimits the

region beyond which the SIDIS parametrizations for the
quark Sivers distribution are extrapolated outside the xB
region covered by SIDIS data and are therefore plagued by
large uncertainties. This reflects on the fact that below this
limit the two sets give comparable results, while above it
they differ remarkably. In particular, at the largest reach-
able pjT values the SIDIS 1 set gives a Sivers asymmetry of

the order 2–4%, while the SIDIS 2 set leads to a negligible
asymmetry. Therefore, a measurement of this asymmetry
might help in clarifying the behavior of the quark Sivers
distribution in the large x region, which is not covered by
present SIDIS data from HERMES and COMPASS experi-
ments. Future planned measurements at the Jefferson Lab
(JLab) 12 GeV Upgrade will also be very useful in this
respect (see, e.g., Ref. [69]).

2. The Collins A
sinð�SA

��H
� Þ

N and the Collins-like

A
sinð�SA

�2�H
� Þ

N asymmetries

Let us first briefly discuss the quark-generated asymme-

try A
sinð�SA

þ�H
� Þ

N . It comes from two distinct contributions—
see, e.g., Eq. (23)—for the qq ! qq channel: one
involving the convolution between the term of the TMD
transversity distribution suppressed in the collinear con-

figuration (/ k2?qh
?q
1T ) and the Collins function; another

term involving the convolution of the Sivers and Boer-
Mulders distributions for the initial quarks with the

total (q+g)

q
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FIG. 3 (color online). Maximized total (solid red line), quark-originated (dashed green line) and gluon-originated (dotted blue line)
Sivers asymmetry for the p"p ! jetþ �þ þ X process, at

ffiffiffi
s

p ¼ 200 GeV c.m. energy in the central (left panel) and forward (right
panel) rapidity regions as a function of pjT , from pjT ¼ 2 GeV up to the maximum allowed value, adopting the Kretzer FF set. Similar

results with some differences in the total size and in the relative weight of the quark and gluon contributions are obtained adopting the
DSS set of fragmentation functions and considering different c.m. energies.
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Collins function for the final quark [an analogous term

appears also in the A
sinð�SA

��H
� Þ

N asymmetry; see Eq. (23)].

We have explicitly checked that for the process under study
and the kinematical configurations considered both these
contributions are always negligible already in the maxi-
mized scenario. Therefore we will not consider the
sinð�SA þ�H

� Þ asymmetry in the sequel. A similar situ-

ation holds also for the gluon-generated A
sinð�SA

þ2�H
� Þ

N

asymmetry, where two contributions analogous to the
quark ones discussed above but for linearly polarized
gluons are involved.

In Fig. 5 we present the quark A
sinð�SA

��H
� Þ

N Collins

asymmetry (solid red lines) and the gluon A
sinð�SA

�2�H
� Þ

N

Collins-like asymmetry (dashed green lines) in the maxi-
mized scenario for the p"p ! jetþ �þ þ X process, atffiffiffi
s

p ¼ 200 GeV c.m. energy in the central (left panel) and
forward (right panel) rapidity regions as a function of pjT ,

from pjT ¼ 2 GeV up to the maximum allowed value,

adopting the Kretzer FF set. In the central rapidity region
the quark Collins asymmetry is very small at the lowest pjT

values, then increases almost linearly, reaching about 8% at
the upper range. At

ffiffiffi
s

p ¼ 500ð62:4Þ GeV c.m. energy the
behavior is similar and the largest reached size, at large pjT

values, is about half (twice), respectively. Results with the
DSS fragmentation function set are slightly lower in size.
Instead, in the forward rapidity region the asymmetry is
(potentially) always large and increases almost linearly
from about 25% to about 70% going from the lowest
to the largest pjT values. Results are very similar atffiffiffi
s

p ¼ 500 GeV and when adopting the DSS fragmentation
function set.

Concerning the gluon Collins-like asymmetry, both in
the central and in the forward rapidity regions it is of the
order of 5% at the lowest pjT values, then starts decreasing

slowly and becomes negligible at large pjT values. Very

similar results hold at different energies and when adopting
the DSS set.
Let us now consider, for both neutral and charged pions,

numerical results for the quark Collins asymmetry ob-
tained adopting the parametrizations SIDIS 1 and SIDIS
2 for the transversity distribution and the Collins fragmen-
tation function (no parametrizations are available yet in the
analogous gluon case). It turns out that in the central
rapidity region the estimated asymmetry is practically
negligible in all cases considered (different c.m. energies
and FF sets). For the SIDIS 2 parametrization and atffiffiffi
s

p ¼ 62:4 GeV the asymmetry for charged pions can
reach about 2–3% in size at large pjT values.

Concerning the forward rapidity region, in Fig. 6 we
present, for both charged and neutral pions, some results atffiffiffi
s

p ¼ 200 GeV c.m. energy as a function of pjT , adopting

the SIDIS 1 (left panel) and the SIDIS 2 (right panel)
parametrizations. The Collins asymmetry for neutral pions
(dashed green lines) turns out to be practically negligible.
This can be easily understood since in the available pa-
rametrizations the favored (e.g., u ! �þ) and unfavored
(e.g., d ! �þ) Collins fragmentation functions are com-
parable in size and opposite in sign. Because of isospin
symmetry the �0 FFs are half the sum of those for charged
pions, therefore the �0 Collins FF is always very small.
Moreover, the u, d quark transversity distributions are also
opposite in sign, leading to additional cancellations among
quark contributions. For charged pions, similarly to the
case of the Sivers asymmetry, the two parametrizations
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FIG. 4 (color online). The estimated quark and gluon contributions to the Sivers asymmetry for the p"p ! jetþ �þ X process,
obtained adopting, respectively, the parametrization sets SIDIS 1 (quark contribution: solid red line; gluon contribution: dashed green
line) and SIDIS 2 (quark contribution: dotted blue line; gluon contribution: dot-dashed cyan line), at

ffiffiffi
s

p ¼ 200 GeV c.m. energy in the
forward rapidity region and as a function of pjT , from pjT ¼ 2 GeV up to the maximum allowed value. The dotted black vertical line

delimits the region beyond which the SIDIS parametrizations for the quark Sivers function are presently plagued by large uncertainties.
Similar results are obtained when considering different c.m. energies.
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give comparable results (notice the different scale adopted
in the two panels) in the pjT region where the transversity

distribution is reasonably constrained by SIDIS data (see
the dotted black vertical line), while they lead to com-
pletely different estimates in the large pjT region where the

parametrizations are basically unconstrained by SIDIS
data. In particular, in this region the SIDIS 1 set gives
almost negligible results, while the SIDIS 2 set leads to an
asymmetry of about 8% (�þ) and 15% (��) in size, which
should be hopefully measurable. A measurement of this
asymmetry would be then very important and helpful in
clarifying the large x behavior of the quark transversity

distribution. A qualitatively similar situation is obtained atffiffiffi
s

p ¼ 500 GeV.

3. Transverse single-spin asymmetry for inclusive
jet production

For completeness we have extended our analysis to the
transverse single-spin asymmetry for inclusive jet produc-
tion in polarized pp collisions, ANðp"p ! jetþ XÞ. In
principle, this case can be obtained by the jet þ pion
production process by integrating over the full pion phase
space. Of course, in this case the unobserved fragmentation
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FIG. 5 (color online). Maximized quark (solid red line) and gluon (dashed green line) Collins(-like) asymmetries for the p"p !
jetþ �þ þ X process, at

ffiffiffi
s

p ¼ 200 GeV c.m. energy in the central (left panel) and forward (right panel) rapidity regions as a function
of pjT , from pjT ¼ 2 GeV up to the maximum allowed value, adopting the Kretzer FF set. Notice the difference in scale between the

two panels. Similar results, with some differences in the total size and in the relative weight of the quark and gluon contributions are
obtained adopting the DSS set of fragmentation functions and considering different c.m. energies.
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FIG. 6 (color online). The estimated quark Collins asymmetry for the p"p ! jetþ �þ X process, obtained adopting the
parametrizations SIDIS 1 (left panel) and SIDIS 2 (right panel), respectively, at
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p ¼ 200 GeV c.m. energy in the forward rapidity
region and as a function of pjT , from pjT ¼ 2 GeV up to the maximum allowed value. Notice the difference in scale between the two

panels. The dotted black vertical line delimits the region beyond which the SIDIS parametrizations for the quark transversity
distribution are presently plagued by large uncertainties. Similar results are obtained when considering different c.m. energies.
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process in the final state plays no role in the azimuthal
asymmetries, which can only be originated bymechanisms,
like the Sivers effect, acting in the initial state. Moreover,
we have verified that for the kinematical configurations
considered in this paper all contributions but the Sivers
effect play a negligible role already in the maximized
scenario. Therefore, in what follows, we limit our discus-
sion to the Sivers asymmetry. As already mentioned, in this
case quark and gluon contributions cannot be disentangled
since they add up, leading to a sin�SA asymmetry.

Let us first discuss the maximized scenario. In the central
rapidity region, the maximized gluon contribution is of the
order 20% at the lowest pjT values, decreasing fast to about

3% at large pjT for all c.m. energies considered. The maxi-

mized quark contribution is of the order 1–3% in the fullpjT

range, slowly decreasing with the increase of the c.m.
energy. The total potential effect is therefore sizable only
at small pjT values due to the gluon component. The situ-

ation is different in the forward rapidity region. Here both
quark and gluon maximized contributions can be very
sizable, showing as expected an opposite, respectively, in-
creasing and decreasing, behavior versus pjT . The total

maximized Sivers effect is therefore large in the full pjT

range with little dependence on the c.m. energy.
Concerning numerical estimates obtained adopting the

available parametrizations SIDIS 1 and SIDIS 2 for the
quark Sivers function, and the updated bound on the gluon
Sivers function, the situation is the following:

(1) In the central rapidity region, for both SIDIS 1,2 sets
and all energies considered the quark contribution is

practically negligible. Instead, the gluon contribu-
tion can be at most of the order 10–15% at the
lowest pjT values but decreases quickly with the

increasing of pjT . However, at least for
ffiffiffi
s

p ¼ 200

and 500 GeV, it can still be about 2–4% in the upper
pjT range. The measurement of a comparable Sivers

asymmetry in these kinematical configurations
could then be a clear indication for a gluonic con-
tribution to the Sivers effect.

(2) In the forward rapidity region the quark contribution
is small and negative at pjT ¼ 2 GeV for both sets

adopted, while at large pjT values it is negligible for

the SIDIS 2 set and positive and of the order 2–4%
for the SIDIS 1 set. The gluon contribution can be
sizable at very low pjT values but becomes negli-

gible quickly as pjT increases.

As an example, in Fig. 7 we show the estimated quark
and gluon Sivers contributions to the transverse single-spin
asymmetry for inclusive jet production in the central
(left panel) and forward (right panel) rapidity regions atffiffiffi
s

p ¼ 200 GeV, obtained adopting the SIDIS 1 and SIDIS
2 parametrizations for the quark Sivers function and the
updated bound for the gluon Sivers function (assumed to be
positive).

IV. CONCLUSIONS

In this paper we have presented a study of the azimuthal
asymmetries measurable in the distribution of leading un-
polarized or spinless hadrons (mainly pions) inside a
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FIG. 7 (color online). The estimated quark and gluon Sivers contributions to the transverse single-spin asymmetry for the
p"p ! jetþ X process, at

ffiffiffi
s

p ¼ 200 GeV c.m. energy in the central (left panel) and forward (right panel) rapidity regions as a
function of pjT , from pjT ¼ 2 GeV up to the maximum allowed value, obtained adopting the parametrization sets SIDIS 1 (quark

contribution: solid red line; gluon contribution: dashed green line) and SIDIS 2 (quark contribution: dotted blue line; gluon
contribution: dot-dashed cyan line). The dotted black vertical line in the right panel delimits the region beyond which the SIDIS
parametrizations for the quark transversity distribution are presently plagued by large uncertainties. Similar results with some
differences in the total size and in the relative weight of the quark and gluon contributions are obtained considering different c.m.
energies.
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large-pT jet produced in unpolarized and single-transverse
polarized proton-proton collisions for kinematical configu-
rations accessible at RHIC. To this end, we have adopted a
generalized TMD parton model approach with inclusion of
spin and intrinsic parton motion effects both in the distri-
bution and in the fragmentation sectors. We have shown
how a detailed phenomenological analysis of these effects
can be very useful in shedding light on several aspects of
azimuthal and transverse single-spin asymmetries in (un)
polarized hadronic collisions. It may also help in clarifying
the role played by the quark (gluon) Sivers distribution and
by the Collins(-like) fragmentation function in the sizable
single-spin asymmetries observed at RHIC for forward
pion production. Available parametrizations for the TMD
quark transversity and Sivers distribution functions, ob-
tained by fitting SIDIS and eþe� data, are presently largely
unconstrained for light-cone momentum fractions x 
 0:3,
that is, the region playing a fundamental role for forward
pion production at RHIC. The transverse single-spin asym-
metry for inclusive particle production is a complicated
higher-twist effect involving several TMD mechanisms
that cannot be easily disentangled as in the case of SIDIS
and DY processes. On the contrary, the leading-twist azi-
muthal asymmetries discussed in this paper allow one, in
close analogy with the SIDIS case, to discriminate among
different effects by taking suitable moments of the asym-
metries. Moreover, we have shown that in principle quark
and gluon originating jets can be distinguished, at least in
some kinematical regimes. Neglecting intrinsic motion in
the distribution sector leaves at work only the Collins
azimuthal asymmetry. As already shown by Yuan [41],
the measurements proposed in this paper would allow
one to determine unambiguously the role played by the
Collins effect. Universality properties of the Collins func-
tion have been proved, so that this process can be comple-
mentary to the SIDIS and eþe� measurements in order to
constrain the quark Collins fragmentation function and, as

an important by-product, the large x behavior of the TMD
transversity distribution function.
For the quark and gluon Sivers function and for the Boer-

Mulders function the situation is more complicated. Since
factorization has not been proven yet for inclusive particle
production in hadronic collisions, the use, based on univer-
sality, of the parametrizations obtained by fitting SIDIS and
eþe� data might be questionable. The phenomenological
analysis proposed in this paper gives us the opportunity of
testing the factorization and universality assumptions, and
of gaining information on the size and sign of the TMD
functions discussed. This can be very useful also for further
developments of the TMD approach, since it is difficult a
priori to assess at which values of the factorization scale the
role and the size of possible factorization-breaking terms
become relevant and non-negligible.
Let us finally stress again that the unambiguous mea-

surement of any of the asymmetries, other than the Collins
one, discussed in this paper would be a clear indication of
the role played by intrinsic parton motion in the initial
colliding hadrons for the spin asymmetry sector in polar-
ized hadronic collisions.
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[50] A. Schäfer and O.V. Teryaev, Phys. Rev. D 61, 077903

(2000).
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