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We present a general, model independent argument demonstrating that gluons produced in high energy

hadronic collision are necessarily correlated in rapidity and also in the emission angle. The strength of the

correlation depends on the process and on the structure/model of the colliding particles. In particular we

argue that it is strongly affected (and underestimated) by factorized approximations frequently used to

quantify the effect.
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I. INTRODUCTION

The CMS observation of angular and long-range rapidity
correlations in the hadron spectrum, the so-called ‘‘ridge’’
in proton-proton collisions [1], has triggered a lot of dis-
cussions in recent literature [2,3]. A similar if more pro-
nounced correlated structure was observed in gold-gold
collisions at the Relativistic Heavy Ion Collider (RHIC)
[4]. There is a variety of candidate explanations for the
RHIC observation [5,6] most of them utilizing strong
radial flow as a collimating mechanism. Although flow
measurements have not been reported for the LHC data,
it is difficult to imagine that flow will have a significant
effect in p-p collisions. Thus the viable explanation should
probably not appeal to any collective behavior of produced
particles.

The purpose of this note is to point out that at high
energy, rapidity and angular correlations between pro-
duced particles are to be expected on very general grounds.
The framework of our discussion here is similar to that of
[3], but the argumentation will be quite general without
referring to specific models of high energy evolution and/
or hadronic wave function.

We note that much discussion recently has been in the
context of so-called ‘‘glasma’’ [7], which refers to an
interacting system of produced gluons immediately after
the collision. We feel that placing discussion squarely in
this setup is not necessarily useful, and will start therefore
by pointing out that the basic physics of correlations could
be understood without reference to either glasma or
‘‘glasma flux tubes.’’

The issue to some extent is in what frame one wishes to
discuss the physics. The center of mass frame is not the
simplest in the following sense. A very simple way of
thinking about high energy scattering is the eikonal ap-
proximation, in which very energetic projectile partons
scatter eikonally off the target fields. However if we are
interested in particles produced at or close to central ra-
pidity (like in the CMS data), we cannot use eikonal
approximation in the center of mass frame. The incoming
partons are stopped and lose most of their longitudinal

momentum, thus clearly the eikonal approximation breaks
down. To have a valid description of particle production in
the center of mass frame one has therefore to take into
account nonlinear interactions between the produced par-
ticles, at least on the level of classical approximation [8].
The interacting system of gluons in the center of mass
frame can then be viewed as glasma. On the other hand
if we follow the same exact process in the lab frame, it
looks quite different. The incoming particles are indeed
very energetic and they scatter by a very small angle with
pþ � pT . Thus recoil is negligible and eikonal approxi-
mation is applicable at high enough energy. Of course the
physics is still the same. Thus, for example, even in the lab
frame one has longitudinal electric and magnetic fields
develop directly after collision, except that here their
interpretation is rather less exotic than ‘‘glasma flux
tubes’’ [9].
The wave function of the incoming projectile carries

a valence color charge density Lorentz contracted to a
plane J�a ðx; x�Þ ¼ �aðxÞ�ðx�Þ. These charges create the
Weizsacker-Williams field of softer gluons bai ðxÞ. TheWW
vector potential is determined through the classical equa-
tions of motion [10]

@ib
a
i ðxÞ ¼ �aðxÞ;

@ib
a
j � @jb

a
i � gfabdbbi ðxÞbcjðxÞ ¼ 0:

(1.1)

The first of these equations is essentially Gauss’s law,
while the second defines b as a two-dimensionally pure
gauge vector potential. The color electric and color mag-
netic fields that correspond to this vector potential are
localized in the plane containing the color charge density
Fþi ¼ biðxÞ�ðx�Þ. When this configuration of charges and
fields passes through the target, it experiences a simple
eikonal rotation

�ðxÞ ! ��ðxÞ ¼ SðxÞ�ðxÞ;
bai ! �bai ¼ Sybai ½S��;

Fþi ¼ �bai ðxÞ�ðx�Þ:
(1.2)
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Here SðxÞ is a unitary matrix determined by the target color
fields, which rotates the color of the incoming parton wave
function. The effect of such a rotation is such that after the
collision

@ �bi � ��: (1.3)

Thus Gauss’s law requires the presence of a longitudinal
electric field. In the light front the longitudinal field is not
an independent degree of freedom, but rather is given by

E3 ¼ 1

@þ
½DiF

þi � ���ðx�Þ�
¼ �ðx�Þ@i½Sybi½S�� � bi½S��� � 0: (1.4)

The longitudinal magnetic field is also generated by the
eikonal scattering, since the vector potential after scatter-
ing is not a two-dimensional pure gauge anymore:

Fij ¼ ½@i �baj � @j �b
a
i � gfabd �bbi ðxÞ �bcjðxÞ��ðx�Þ: (1.5)

We stress again, the only physical process we are discus-
sing is the eikonal scattering of gluons of the projectile on
the static target. The origin of the longitudinal fields is
therefore simply the Weizsacker-Williams fields of the
gluons which are scattered out of the incoming beam.
Once the direction of propagation of gluons is not parallel
to the z axis, the color electric and magnetic fields which
are transverse to the direction of propagation have a non-
vanishing projection onto the z axis—hence the appear-
ance of the ‘‘longitudinal fields.’’ This is a purely
kinematical effect and it does not involve any dynamics
of formation of flux tubes, or even interaction of produced
gluons as such. In the rest of this paper we will therefore
not refer to glasma flux tubes, and our view of the scatter-
ing process will be that of a straightforward eikonal scat-
tering of the projectile gluons on the color fields of the
target.

II. WHERE DO CORRELATIONS COME FROM?

We first discuss a very simple picture of the origin of
correlations, and then confront it with the available today,
albeit incomplete, formulas for the double inclusive
distribution.

Consider high-energy scattering of a hadronic projectile
on a stationary target in the lab frame. Since the projectile
is very energetic, its wave function is approximately boost
invariant. The boost invariance is of course only approxi-
mate, since at too high energy the rapidity evolution is
important, and that introduces rapidity dependence inside
the wave function. However for rapidity intervals �Y < 1

�s

the evolution is not important[6], and thus can be neglected
if the produced particles are separated by a rapidity interval
which is not parametrically large.

The boost invariance leads naturally and straightfor-
wardly to long-range rapidity correlations. Simply put,
the incoming wave function is the same at rapidity Y1

and Y2. The gluon distribution at rapidity Y1 and Y2 is
the same, these gluons scatter exactly on the same target,
and thus whatever happens at Y1 also happens at Y2. If for a
particular target field configuration a gluon is likely to be
produced at Y1 at some impact parameter, a gluon is also
likely to be produced at Y2 at the same impact parameter:
e voila—correlations. This is especially true in the context
of the projectile wave function dominated by the large
‘‘classical’’ Weizsacker-Williams field, since in this case
fluctuations in the wave function are small and the gluon
density configuration by configuration is almost the same
at all rapidities. This is the property of the hadronic wave
function at high energy [11].

j�i ¼ exp

�
i
Z

d2xbai ðxÞ
Z

d�ðayai ðx; �Þ

þ aai ðx; �ÞÞ
�
Bða; ayÞjc i: (2.1)

Here c is the wave function of valence charges, determin-
ing the distribution of the charge density �, B is a
Bogolyubov-type operator of the soft gluon fieds a, and
the Weizsacker-Williams field b is given in terms of � by
Eq. (1.1). For a large projectile the WW field is parametri-
cally large b� 1

g , while the Bogolyubov operator B pro-

duces the fluctuations of the gluon field of order unity.
Thus for fixed �ðxÞ the gluon density fluctuates very
weakly around large average value determined by the
classical field

n ¼ hayai / b2 �O

�
1

�s

�
; hn2i � hni2 � 1: (2.2)

The smallness of the fluctuations is clearly helpful.
Although the wave function at different rapidities in a boost
invariant projectile must be the same, the magnitude of the
color field (and therefore the number of gluons) may differ
at different values of Y for the same configuration of the
valence color charge density �, if the fluctuations in this
wave function are significant. Thus in the same scattering
event there may be significant differences between particle
production at different rapidities. Still, although the quasi-
classical nature of the state Eq. (2.1) ensures long-range
rapidity correlations at large values of �, it is not absolutely
necessary. Even in the presence of considerable fluctua-
tions in the soft gluon wave function, one nevertheless
would expect positive correlations in rapidity. The only
really necessary condition is that the density of incoming
partons is large enough, so that there is a large probability
to produce more than one particle at a given impact pa-
rameter (we will quantify what we mean by ‘‘given impact
parameter’’ shortly).
Thus the long-range rapidity correlations come practi-

cally for free whenever the energy is high enough so that
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the wave function of the incoming hadron is approximately
boost invariant, and there is very little in the actual dynam-
ics of the collision that can affect this feature. But by
almost exactly the same logic we must conclude that
positive angular correlations are also almost unavoidable.
Indeed, if two gluons hit the target at the same impact
parameter, their scattering amplitude is determined by the
same configuration of the target field. Thus if the first gluon
is likely to be scattered with momentum q, the same is true
for the second gluon. One therefore expects clear forward
correlations for gluons that scatter at the same impact
parameter. Of course, the two gluons will not scatter al-
ways with exactly the same momentum transfer even if
they hit at exactly the same impact parameter, since even a
fixed configuration of target fields corresponds to a non-
trivial probability distribution of momentum transfer.
Nevertheless, given that this distribution has a maximum
at some particular momentum transfer, the angular corre-
lations must be very generic.

The previous discussion is clearly oversimplified, since
it does not address some important points. For example, for
a soft gluon to be produced in the final state, it is not
enough for it to acquire some transverse momentum. It
also must decorrelate from the valence charge that emitted
it in the incoming wave function. Otherwise it will not be
produced as a particle in the final state, but rather as part of
the Weizsacker-Williams field of the produced valence

parton. We will therefore turn to an explicit formula that
determines the gluon double inclusive spectrum in order
to see to what extent this explicit expression is consistent
with our simple discussion.
Calculation of multigluon amplitudes at high energy has

been a subject of several papers in recent years [12–16].
Nevertheless, unfortunately we still do not have a final
formula which can be used to analyze p-p collision at
high energy. The approach of [14] is suited for applications
when both colliding hadrons are dense, while that of
[12,13,16] is appropriate when one of the objects is dense
and one dilute. The actual situation in p-p collisions at the
LHC is probably one where the density in the proton wave
function is still not parametrically large, but is already not
perturbatively small. In that sense the expressions of [16]
are probably more appropriate, since they do not discard
terms which are leading at low densities, which is done in
[14]. At any rate, we believe that qualitative features of our
discussion are general enough, and we will use the explicit
formulas from [16].
According to [16] (see also [13]) the inclusive two-gluon

production probability is given by

dN

d2pd2kd�d�
¼ hAab

ij ðk; pÞA�ab
ij ðk; pÞiP;T (2.3)

with the amplitude

Aab
ij ðk; pÞ ¼

Z
u;z

eikzþipu
Z
x1;x2

ffiðz� x1Þ½Sðx1Þ � SðzÞ�ac�cðx1Þgffjðu� x2Þ½SðuÞ � Sðx2Þ�bd�dðx2Þg

� g

2

Z
x1

fiðz� x1Þfjðu� x1Þf½Sðx1Þ � SðzÞ�~�ðx1Þ½SyðuÞ þ Syðx1Þ�gab

þ g
Z
x1

fiðz� uÞfjðu� x1ÞfðSðzÞ � SðuÞÞ~�ðx1ÞSyðuÞgab: (2.4)

Here

fiðx� yÞ ¼ ðx� yÞi
ðx� yÞ2 (2.5)

and we have defined ~� � �iTa�a. The charge density is
normalized such that for a single gluon �a ¼ gTa. In these
formulas �aðxÞ is the valence color charge density in the
projectile wave function, while SabðxÞ is the eikonal scat-
tering matrix determined by the target color fields. The
average in Eq. (2.3) denotes averaging over the projectile
and the target wave functions. We also note that in this
expression the gluon with momentum p is assumed to have
larger rapidity, and thus the emission of the two gluons is
not completely symmetric.

The actual equation given in [16] is slightly different and
this requires explanation. The color charge densities ap-
pearing in [16] are quantum operators with quantum com-
mutation relations of SUðNÞ algebra. On the other hand �a

in Eq. (2.4) are c-number functions, and averaging over �
is understood as averaging over a classical ensemble

hOiP ¼
Z

D�WP½��O: (2.6)

As discussed at length in [17], the full quantum averaging
is equivalent to the classical averaging procedure Eq. (2.6)
for totally symmetrized products of operators �̂a. To obtain
Eq. (2.4) from the expression given in [16] we have rewrit-
ten the original expression of [16] in terms of the anti-
commutator of two �̂’s in the first line. Thus the classical
expression �a�b is equivalent to the quantum operator
1
2 f�̂a; �̂bg. This procedure of reordering generates an addi-

tional term in Eq. (2.4) which is not present in [16].
The physical meaning of the three terms in Eq. (2.4) is

straightforward. The first term corresponds to independent
production of the two gluons. This term is leading in the
limit of large color density �� 1=g. One should keep in
mind, however that in this limit other terms not included in
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Eq. (2.4) are equally important [14],[15]. The second term
corresponds to production of two gluons emitted from
the same color source in the incoming projectile wave-
function. The third term corresponds to the process
whereby the softer gluon has been emitted in the wave
function by the harder one, with both gluons subsequently
produced in the collision. In terms of BFKL ladders, the
(square of the) first term is a part of the diagram containing
two independent ladders, while the (square of the) last two
terms describe emission of two gluons contained in the
same BFKL ladder.

To calculate the cross section one has to square the
amplitude. This produces many terms, since in accordance
with our previous discussion one has to symmetrize the
factors of charge density between the amplitude and the
conjugate amplitude. The full expression for the cross
section is given in the Appendix. Here in the text we
only reproduce one part of this expression which arises
from squaring the first term in the amplitude Eq. (2.4)
which is responsible for independent production of the
two gluons.

dN

d2pd2kd�d�
¼ h�4 þ �2 þ �3iP;T (2.7)

with

�4 ¼
Z
u;z; �u;�z

eikðz��zÞþipðu� �uÞ Z
x1;x2; �x1; �x2

~fð�z� �x1Þ � ~fðx1 � zÞ

� ~fð �u� �x2Þ � ~fðx2 � uÞf�ðx1Þ½Syðx1Þ � SyðzÞ�
� ½Sð �x1Þ � Sð�zÞ��ð �x1Þgf�ðx2Þ½SyðuÞ � Syðx2Þ�
� ½Sð �uÞ � Sð �x2Þ�ð �x2Þg: (2.8)

The explicit expressions for �2 and �3 are given in the
Appendix. Although these are long expressions, only the
term given in Eq. (2.8) is relevant for most of our discus-
sion. This is precisely the contribution which has the
physics discussed above. The two gluons here are produced
independently from each other, but from exactly the same
configuration of sources through scattering on the same
target field. In the other terms the two gluons are correlated
with each other in the incoming wave function, and thus
these terms contain additional physics. Let us therefore
consider the cross section of Eq. (2.8). It is very easy to see
that it indeed produces angular correlations. One can write
it as

�4ðk; pÞ ¼ h�ðkÞ�ðpÞiP;T (2.9)

where

�ðkÞ¼
Z
z;�z
eikðz��zÞZ

x1; �x1

~fð �z� �x1Þ � ~fðx1�zÞ

�f�ðx1Þ½Syðx1Þ�SyðzÞ�½Sð �x1Þ�Sð�zÞ��ð �x1Þg:
(2.10)

For fixed configuration of the projectile sources �ðxÞ and
target fields SðxÞ, the function �ðkÞ as a function of

momentum has a maximum at some value k ¼ q.
Therefore clearly the product in Eq. (2.9) is maximal for
k ¼ p ¼ q. The value of the vector q of course differs
from one configuration to another, but the fact that mo-
menta k and p are parallel does not. Therefore after
averaging over the ensemble �4ðk; pÞ has maximum at
relative zero angle between the two momenta.
We reiterate, that even though averaged overall configu-

ration h�ðkÞiP;T must be isotropic, there is absolutely no

reason for it to be isotropic for any given configuration.
The strength of the maximum of course depends on the
detailed nature of the field configurations constituting the
two ensembles (the projectile and the target). We will
discuss some qualitative features of these in the next
section. But first, it is interesting to ask if the maximum
of �ðkÞ is unique, or perhaps there is finite degeneracy. It is
in fact easy to see that the maximum is doubly degenerate.
The probability �ðkÞ can be written in terms of the single
gluon production amplitude aðkÞ

aai ðkÞ ¼
Z

dzeikz
Z
x1

fiðz� x1Þ½Sðx1Þ � SðzÞ�ab�bðx1Þ:
(2.11)

Since the amplitude a is real in coordinate space, we have

�ðkÞ ¼ aðkÞa�ðkÞ ¼ aðkÞað�kÞ: (2.12)

Configuration by configuration this is clearly symmetric

�ðkÞ ¼ �ð�kÞ: (2.13)

The classical’ contribution to the two particle inclusive
production probability is therefore symmetric under

�4ðk; pÞ ¼ �4ð�k; pÞ; (2.14)

and must have two degenerate maxima—at relative angles
�� ¼ 0, 	. We believe that the feature of the equal
strength of forward and backward correlations stays true
beyond the specific form of the single gluon production
amplitude Eq. (2.11). In the limit of dense projectile
Eq. (2.10) is not strictly applicable. However, although
one does not have an analytic formula valid in this limit,
the formalism of [14] expresses the double gluon produc-
tion probability in terms of a solution of classical equations
of motion. This solution, which is precisely the single
gluon production amplitude, is real in coordinate space
for any fixed configuration of projectile and target fields.
This is also the property of the explicit analytic expression
of [15] (albeit this expression has a limited range of
validity). The reality of the amplitude in the coordinate
space is the only property required to establish degeneracy,
and thus degeneracy must persist in the dense projectile
limit as well (see however [18]).
The other terms in the gluon production amplitude

Eq. (2.4) are not likely to lead to correlations of the type
just described.
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The third term in Eq. (2.4), where the gluon produced at
the point z is emitted from the other observed gluon at the
point u, disfavors production at the same impact parameter
because of the suppression factor SðuÞ � SðzÞ. The two
gluons when scattered at the same impact parameter do
not decohere, but rather scatter as a single coherent state,
with the gluon at z emerging in the final state as part of the
Weizsacker-Williams field of the gluon at u. On the other
hand whenever the two gluons do decohere, since they
were correlated in the incoming wave function, they
emerge in the final state with large relative transverse
momentum. Thus this particular term in the amplitude
mostly leads to back-to-back production in the final state
and is responsible for the large away side, rapidity inde-
pendent maximum at relative angle 	, prominently present
in the data.

The second term in Eq. (2.4) favors production at the
point u close to x1, but z far from x1. Thus one expects the
momentum of the gluon produced at z to be uncorrelated
with that of the gluon produced at u. Whenever the gluon at
u is produced with significant transverse momentum, the
balancing transverse momentum resides at the ‘‘valence’’
rapidity. This term is therefore responsible for the away
side peak between one of the observed particles and an-
other particle produced at a more forward rapidity.

One can estimate the overall magnitude of the correla-
tion by the following simple argument. In order for two
produced gluons to be correlated in the final state, they
have to be close in the initial state and also scatter off the
same target field. We will assume that both the target and
the projectile are characterized by corresponding satura-

tion momenta QPðTÞ
s . The inverse of the correlation mo-

mentum is the correlation length in the hadron L� 1=Qs.
It is reasonable to expect that typical field configurations
contributing to the hadronic ensemble of, say the target,
have variation only on a distance scale greater than 1=Qs.
Thus the two gluons that hit the target at distance
x < 1=QT

s apart from each other scatter on the same field.
By the same argument, for the two incoming gluons to be
in the same state they have to be located in the impact
parameter plane no further than 1=QP

s away from each
other. Thus for correlated production the two gluons need
to be within the radius 1

Qmax
s

of each other, whereQmax
c is the

larger of the two saturation momenta QP
s and QT

s . On the
other hand the total number of produced gluons is propor-
tional to the total transverse area of the smaller between the
two objects participating in collision. Thus parametrically

�
d2N

d2pd2k
� dN

d2k

dN

d2p

��
dN

d2k

dN

d2p
� 1

ðQmax
s Þ2Smin

: (2.15)

This estimate is of course parametrically the same as given
in [6].

We would like at this point to make contact with the
recent paper [3]. The calculation of gluon production in [3]

is based on simplified version of Eq. (2.9) supplemented
with a specific prescription for averaging over the projec-
tile and target fields. Specifically, [3] expands the scatter-
ing matrix S to first order in target fields, and keeps only
the leading term SðxÞ ! 1þ �ðxÞ. The expression for �4

then becomes a homogeneous function of the target and
projectile fields

�4 � ð����Þð����Þ: (2.16)

For simplicity we suppress the color indices and transverse
coordinates on all the functions. One next averages over
the charge densities assuming Gaussian ensemble

h�4i ¼ 3h�2ih�2i (2.17)

and similarly for the target. And finally the high-energy
evolution is included by substitution

h�ðxÞ�ðyÞi ! �ðx� yÞ (2.18)

with � taken to be a solution of the Balitsky-Kovchegov
equation [19]. Although the angular distribution has not
actually been calculated in [3], the authors argued that the
correlation should in fact have a maximum at collinear
momenta. The subsequent numerical investigations based
on the same approach bear this out [20].
Our general discussion provides an intuitive explanation

for this result and also makes it clear that the presence of
the correlations does not depend on the specifics of the

approximation used to estimate d2N
d2kd2p

. The magnitude of

the effect however may depend on the approximation quite
strongly. We next want to comment on this issue.

III. ISSUES WITH AVERAGING

From Eqs. (2.9) and (2.10) we know that the basic
averages that one needs to calculate are of the type

h½SyðxÞSðzÞ�ab½SyðyÞSðuÞ�cdiT (3.1)

and similarly for the projectile

h�aðxÞ�bð �xÞ�cðyÞ�dð �yÞiP: (3.2)

The Gaussian averaging procedure described above is
fairly restrictive, in the sense that as any Gaussian averag-
ing it probably tends to underestimate correlations. In
particular Gaussian averaging over color singlet ensemble
necessarily puts the densities in Eq. (3.2) pairwise into
color singlet states. As pointed out in [21] this leaves out
some possible configurations which are overall color sin-
glets, but where no two factors of � form a color singlet
separately. This, for example, happens, when the factors of
� are pairwise in color octets, with the two octets forming
an overall singlet. Such configurations in principle can
also contribute to the correlated part of the particle
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production. Formally they are suppressed in the large Nc

limit. However the correlated part of the production proba-
bility itselfwhen calculated with the Gaussian averaging is
also suppressed by 1=N2

c relative to the uncorrelated part,
and thus omission of these terms may be dangerous [21].
Physically these terms correspond to interference contri-
butions. For example when the two factors of � in
Eq. (2.10) are in an octet, this corresponds to a situation
when the charge densities in the amplitude and complex
conjugate amplitude are different, but still the same gluon
in the final state is produced due to the difference in the
scattering factors S in the amplitude and the conjugate
amplitude.

Although these 1=N2
c suppressed terms are interesting,

taking them properly into account requires one to go
beyond the dipole model [22] and the BK equation, and
in the dense region studying the full B-JIMWLK evolution
[23]. However it is not obvious that even in the leading
order in 1=Nc the Gaussian approximation is adequate to
discuss correlated production. Here we would like to dis-
cuss only these leading-order terms. We will argue that the
Gaussian averaging procedure is likely to miss terms in the
correlated production probability which are of the same
order in 1=Nc as the uncorrelated piece.

The leading Nc piece in Eq. (2.9) comes from the
configuration where the charge densities in each one of
the single gluon production amplitudes are in the color
singlet. The relevant average to calculate is

h�aðx1Þ�að �x1Þ�bðx2Þ�bð �x2ÞiPhTrf½Syðx1Þ � SyðzÞ�
� ½Sð �x1Þ � Sð�zÞ�gTrf½Syðx2Þ � SyðuÞ�½Sð �x2Þ � Sð �uÞ�giT:

(3.3)

Let us first concentrate on the projectile average. As men-
tioned above, averaging with a Gaussian weight one ob-
tains in the leading order in 1=Nc

h�aðx1Þ�að �x1Þ�bðx2Þ�bð �x2ÞiGaussian
¼ h�aðx1Þ�að �x1ÞiGaussianh�bðx2Þ�bð �x2ÞiGaussian: (3.4)

In this approximation, therefore, clearly the correlated
piece in the production probability vanishes, and only the
subleading in the 1=Nc correction resurrects the correla-
tions. We stress, however, that this is not the result of the
leadingNc approximation per se, but rather of the Gaussian
averaging procedure.

It may be tempting to think that factorization in the large
Nc limit is natural due to the presence of a large number of
degrees of freedom, and therefore in some sense large Nc

might act similarly to a heavy nucleus. However this is not
the case. Even though the number of degrees of freedom is
large, even in the large Nc limit the theory has legitimate
states which contain a small number of particles. A color
dipole is an example of such a state. It is a superposition of

many states (different color orientations) of two particles,
rather than a state with many particles. In a state like this
the central limit theorem does not hold, the fluctuations in
density can be large even in the large Nc limit, and it is the
large fluctuations in the ensemble that break factorization
of correlation functions.
In fact a very similar question was considered a while

ago in [24] in connection with factorization of dipole
densities in the dipole model [22]. Indeed the observable
we are interested in Eq. (3.3) is rather similar to the dipole
density

nðx1; �x1Þ ¼ ð�aðx1Þ � �að �x1ÞÞ2: (3.5)

As shown in [24] within the dipole model (which is defined
entirely within the large Nc limit [25]) the product of two
densities does not factorize, but rather behaves as

hnðx1; �x1Þnðx2; �x2Þi � hnðx1; �x2Þihnðx2; �x2Þi � hnðx1; �x2Þi
� hnðx2; �x2Þib�
 (3.6)

where b is the transverse distance between the two dipoles
and 
 is a number, whose exact value is unimportant for us.
This results in the limit where the distance between the two
dipoles is much greater than their respective sizes, and thus
it does not display any angular correlation between the
orientations of the two dipoles. Nevertheless Eq. (3.6)
clearly exhibits the fact that factorization is not an inherent
property of the large Nc limit. Once we accept that the
factorization is broken, it is natural to expect that the actual
correlation function in the regime where the two dipoles
overlap in space also exhibits angular correlations in the
orientation of the two dipoles.
Note that this is precisely the regime relevant to our

discussion of angular correlations in emission. The same
configuration of color charges produces the same gluons
(at different rapidities), which produce correlated hadrons
in the final state. Thus the most important region of the
phase space is when all four points in the correlator
Eq. (3.3) are close to each other, in the sense that they
are all within the correlation length 1=Qs. It is very hard to
imagine that in this regime factorization holds (see [26,27]
for more discussion of such correlations). Thus we indeed
expect that any realistic non-Gaussian weight function
for the ensemble averaging will lead to a nonvanishing
contribution to the correlated piece of gluon production
even in the large Nc limit.
Turning to the target averaging in Eq. (3.3), the terms

that have to be averaged are of the type of observables
described in the large Nc limit by the dipole model [22]

hTrf½SyðxÞSðzÞ�gTrf½SyðyÞSðuÞ�giT
¼ hsðx; zÞsðz; xÞsðy; uÞsðu; yÞiT (3.7)

where sðx; yÞ ¼ Tr½SyFðxÞSFðyÞ� is the scattering amplitude
of the fundamental dipole, and the equality in Eq. (3.7)
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holds in the large Nc limit. The approximation which is
frequently used in the literature to calculate the averages of
this type also invokes factorization

hsðx; yÞsðu; vÞi ¼ hsðx; yÞihsðu; vÞi: (3.8)

The target averaging of [3] would follow from this ap-
proximation in the limit of weak fields. When the dipole
ðx; yÞ is far from the dipole ðu; vÞ (much further than 1=Qs),
the factorization is a good approximation since the fields
on which the scattering amplitude is calculated are not
correlated with each other. However, as before we are
clearly interested in the case where all the points are within
the distance of order 1=Qs or smaller. In this case, just like
for the projectile, the factorization of Eq. (3.8) is not a
property of the large Nc limit but is rather an ad hoc
assumption, used only due to its simplicity.

Strict factorization of the type Eq. (3.8) is only possible
if the statistical ensemble consists of a single configuration.
There is however no reason to expect that in the large Nc

limit fluctuations around some leading configurations are
suppressed by powers of 1=Nc. For example, the energy
evolution of s is given by the dipole model Hamiltonian,
which does not contain Nc at all. The probability distribu-
tion of the dipole modelW½s� evolves with rapidity accord-
ing to [25,26]

d

dY
W½s� ¼ ��s

2	

Z
x;y;z

ðx� yÞ2
ðx� zÞ2ðz� yÞ2

� ½sðx; yÞ � sðx; zÞsðy; zÞ� �

�sðx; yÞW½s� (3.9)

with ��—the ’tHooft coupling, which is finite at infiniteNc.
Thus any nontrivial initial distribution W½s� evolves
smoothly to higher energy and remains nontrivial.

In fact it would be very interesting to see what happens
to correlations that one can put into the initial ensemble, as
rapidity grows. Technically one should choose an en-
semble W0½s� of initial configurations sðx; yÞ, which con-
tains short-range correlations. These correlations should
be confined to within the saturation radius, that is
hsðx; yÞsðu; vÞi � hsðx; yÞihsðu; vÞi only when jx� uj,
jy� vj< 1=Qs. Each configuration of the ensemble
should be evolved independently according to the BK
equation [25]. The correlations at the final rapidity are
then calculated by averaging the correlator calculated in
the final ensemble over the ensemble of initial conditions.

This procedure is the same as the one implemented in
[28]. However in order to study the angular correlations
between the produced particles, it is important to under-
stand angular correlations in the target ensemble.
Therefore the individual members sðx� yÞ of the initial
ensemble should not be isotropic. The rotational invariance
must be restored by averaging over the whole ensemble
rather than configuration by configuration.

As the rapidity grows, so does Qs and the correlation
radius shrinks so that one naively expects only the points
inside this new saturation radius 1=QsðYÞ to stay corre-
lated. We note however that it is also possible that the
correlation length in this particular channel is larger than
1=Qs. For example it was shown recently in [29] in a
QCD-like model, that the saturation momentum itself
varies rather slowly in the impact parameter plane. In
some sense one can ascribe to it a correlation length which

is far greater than 1=Qs, and is instead 
 / 1
Qs
ecln

21=�s .

Although there is no particular reason to expect that such
a large correlation length will also determine the scale of
disappearance of correlations of the dipole amplitudes, if it
does it would be very interesting and one would have to
revise the estimate Eq. (2.15) accordingly.
To summarize, there are good reasons to expect that the

factorization of both projectile and target averages is bro-
ken at leading order in 1=Nc in the kinematical domain
relevant to the correlated production of particles. To study
this question one certainly has to go beyond simple rota-
tionally invariant solutions of the BK equation. While
technically challenging, it would be very interesting to
understand and quantify this effect.

IV. CONCLUSIONS

We conclude with a short summary. We have shown that
rapidity and angular correlations are a very general feature
of particle production at high energy. They are an auto-
matic consequence of the boost invariance of the projectile
wave function, provided two conditions are met.
First, there should be some classical component in the

(projectile) wave function, meaning that the short range
rapidity fluctuations in the wave function should not be
overwhelming and should not lead to complete decorrela-
tion between gluons at different rapidities. This condition
is satisfied in QCD for dense as well as dilute projectiles. In
the dense case the soft gluon wave function is dominated
by the classical rapidity independent Weizsacker-Williams
field. For dilute projectile fluctuations they are significant,
but their contribution to gluon density is not parametrically
larger than that of the WW field.
Second, the particle density/scattering probability must

be large enough so that there is non-negligible probability
to produce more than one particle at a fixed impact pa-
rameter within the saturation radius 1=Qs. This condition is
satisfied when both colliding objects are dense and the
values of the two saturation momenta are not vastly differ-
ent. In that case the number of gluons in the incoming wave
function within area 1=Q2

s is of order 1=�sðQsÞ, while the
probability of producing one particle is of order one. For
scattering of two dilute objects this condition is not met.
However at high enough energies the density in the wave
function grows and the effect must become visible.
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The angular correlations originate from configuration by
configuration fluctuations of the projectile and target struc-
ture in the transverse plane away from a rotationally in-
variant state. The effect we have discussed here has several
telltale features. Produced particles are correlated in angle,
with forward and backward correlations being of equal
strength in the case where the two colliding objects are
nuclei. When the colliding objects are not dense, there is
an additional contribution to particle production, from a
‘‘single ladder’’ which significantly enhances back to back
correlations. This contribution is responsible for the bulk
of the observed back to back correlated production. The
correlation is present also in the magnitude of the trans-
verse momentum and not just in the angle. The single
gluon production probability �ðkÞ must have a maximum
at momenta of orderQs. Thus most of the correlated gluons
are emitted with the momentum of roughly this magnitude
and the correlation is maximal at jkj, jpj �Qs. The latter
correlation in fact does not require local rotational asym-
metry of the projectile/target configurations. It would be
interesting to try and measure these correlations as well.

The relative magnitude of the forward correlations
should initially increase with energy for p-p collisions,
since the relative importance of the single ladder terms
diminishes. Interestingly however, the estimate of
Eq. (2.15) suggests that the effect decreases with energy,
once the colliding systems can be treated as saturated
objects with well-defined saturation momentum, since the
saturation momentum grows with energy. Thus at very
high energies the effect should disappear. If we apply this
logic also to nuclear collisions, we should conclude that the
effect if observed by ALICE should be significantly
smaller than that observed by PHOBOS and STAR. Our
discussion of course disregards the effects of flow, which is
generally believed to be very important for nucleus-
nucleus collisions. The latest STAR data [30] support this
view. It is possible therefore that our considerations about
angular correlations are not valid for nuclear collisions, in
the sense that the main mechanism of collimation is indeed
due to the flow. It would nevertheless be interesting to try
and disentangle the flow effects from the intrinsic correla-
tions in the initial state discussed in this note. We also note
that the estimate Eq. (2.15) refers not only to angular
correlation, but rapidity correlation in general. Thus inde-
pendently of the question of radial flow, if the observed
long-range rapidity correlations are due to production from
correlated domains in the boost invariant incoming wave
function, the trend should be that of decreasing correlated
production going to higher energy.

We have also argued that the correlations must survive
also in the leading order in 1=Nc expansion. Their sub-
leading nature in current numerical implementations is due
to the factorization assumption which is not valid in the
region of the phase space relevant for the correlated pro-
duction. We believe that improvement of this aspect of

current calculations is imperative in order for the results to
be quantitatively reliable.
Finally we want to elaborate a little more on the possible

relation of our considerations with the ridge observed by
CMS [1]. The ridge is not observed in minimal bias events
but only in a small fraction of all events, which have high
multiplicity. This suggests that the energy of the collision
is not high enough so that the ‘‘average’’ configurations of
the proton wave function do not contain enough gluons at
different rapidities and the same impact parameter for
correlations to be observable. The high multiplicity events
are presumably due to rare fluctuations in the proton wave
function which create ‘‘hot spots’’—collisions between
these hot spots then produce high multiplicity final states
[31]. Such hot spots will then naturally also lead to en-
hanced correlations since more particles than average are
concentrated at the same impact parameter. This picture is
also qualitatively consistent with the range of transverse
momenta at which the correlation is actually observed. The
ridge appears at transverse momenta in the range 1 GeV<
pt < 3 GeV. Given that experimentally one observes had-
rons which are products of the hadronization of the emitted
gluons, the transverse momentum of the gluons emitted
initially must have been in the range 3–5 GeV. This is much
too high to be associated with the saturation momentum
Qs, which at these energies should not be higher than
2 GeV. Hot spots however have a small radius and high
density, and thus have a saturation momentum significantly

higher than the minimal bias configurations Qðhot spotÞ
s �

Qs. The correlated gluons will then naturally have momen-

tum of order Qðhot spotÞ
s which is much higher than the

expected value of Qs.
If the hot spot scenario is correct, it would mean that in

order to describe the effect quantitatively one needs to have
knowledge not of the ‘‘standard deviation’’ which charac-
terizes fluctuations (and correlations) in the bulk of the
wave function, but to understand the ‘‘tail’’ of the distri-
bution which contains the hot spots.
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APPENDIX: ORDERING

In this appendix we derive the completely symmetrized
expression for the doubly inclusive gluon production.
When averaging this expression over the projectile wave
function, the color charge density � should be treated as
classical commuting variable. Simply squaring the expres-
sion for the amplitude in Eq. (2.4), one gets Eq. (2.7) with
�4 given in Eq. (2.8) and
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�2 ¼
Z
u;z; �u;�z

eikðz��zÞþipðu� �uÞZ
x1; �x1

g2

4
~fð�z� �x1Þ � ~fðx1 � zÞ ~fð �u� �x1Þ � ~fðx1 � uÞ

� Trf½SðuÞ þ Sðx1Þ� ��ðx1Þ½Syðx1Þ � SyðzÞ�½Sð �x1Þ � Sð�zÞ�~�ð �x1Þ½Syð �uÞ þ Syð �x1Þ�g
þ g2 ~fð �z� �uÞ � ~fðu� zÞ ~fð �u� �x1Þ � ~fðx1 � uÞTr½fSðuÞ~�ðx1ÞðSyðzÞ � SyðuÞÞgfðSð�zÞ � Sð �uÞÞ~�ð �x1ÞSyð �uÞg�

� g2

2
~fð �z� �x1Þ � ~fðu� zÞ ~fð �u� �x1Þ � ~fðx1 � uÞTr½fSðuÞ~�ðx1ÞðSyðzÞ � SyðuÞÞg½Sð �x1Þ � Sð�zÞ�~�ð �x1Þ½Syð �uÞ þ Syð �x1Þ��

� g2

2
~fð �z� �uÞ � ~fðx1 � zÞ ~fð �u� �x1Þ � ~fðx1 � uÞTr½½SðuÞ þ Sðx1Þ� ��ðx1Þ½Syðx1Þ þ SyðzÞ�fðSð �zÞ � Sð �uÞÞ~�ð �x1ÞSyð �uÞg�

(A1)

�3¼
Z
u;z; �u;�z

eikðz��zÞþipðu� �uÞZ
x1; �x1;x2ð �x2Þ

�g

2
~fð�z� �x1Þ � ~fðx1�zÞ ~fð �u� �x1Þ � ~fðx2�uÞ

��ðx1Þ½Syðx1Þ�SyðzÞ�½Sð �x1Þ�Sð�zÞ�~�ð �x1Þ½Syð �uÞþSyð �x1Þ�½SðuÞ�Sðx2Þ��ðx2Þ
�g

2
~fð �z� �x1Þ� ~fðx1�zÞ ~fð �u� �x2Þ � ~fðx1�uÞ�ð �x2Þ½Syð �uÞ�Syð �x2Þ�½SðuÞþSðx1Þ�~�ðx1Þ½Syðx1Þ�SyðzÞ�½Sð �x1Þ�Sð�zÞ��ð �x1Þ

þg ~fð�z� �uÞ � ~fðx1�zÞ ~fð �u� �x1Þ � ~fðx2�uÞ�ðx1Þ½Syðx1Þ�SyðzÞ�fðSð�zÞ�Sð �uÞÞ~�ð �x1ÞSyð �uÞg½SðuÞ�Sðx2Þ��ðx2Þ
þg ~fð�z� �x1Þ � ~fðx1�zÞ ~fð �u� �x2Þ � ~fðx1�uÞ�ð �x2Þ½Syð �uÞ�Syð �x2Þ�SðuÞ~�ðx1Þ½SyðzÞ�SyðuÞ�½Sð �x1Þ�Sð�zÞ��ð �x1Þ:

(A2)

However in this expression the factors of � coming from
the amplitude are not symmetrized with respect to factors
coming from the conjugate amplitude. To derive the fully
symmetric expression we instead follow the formalism
of [13].

The amplitude of a single gluon production in the dense-
dilute scattering is given by

Qa
i ðzÞ ¼

Z
d2xfiðz� xÞ½SabðzÞ � SabðxÞ�JbR½S; x�;

JaRðS; xÞ ¼ �tr

�
SðxÞTa �

�SyðxÞ
�
:

(A3)

In this expression the projectile wave function has been
‘‘integrated out’’[13]. It can be however ‘‘integrated back
in’’ by representing the right rotation operators as the
projectile charge density operators acting on the projectile
wave function [25]:

JaRðxÞjPi ¼ �̂a
x jPi; JaRðxÞJbRðyÞjPi ¼ �̂b

y�̂
a
x jPi: (A4)

The operator associated with inclusive production of a
single gluon with momentum k is

O gðkÞ ¼
Z d2z

2	

d2 �z

2	
eikðz��zÞQa

i ðz; ½S�ÞQa
i ð�z; ½ �S�Þ (A5)

where S is the single gluon S-matrix in the amplitude and �S
in the conjugate amplitude. Double gluon production with-
out rapidity evolution between the two produced gluons is
given by

dN

d2pd2kd�d�
¼ hOgðkÞOgðpÞiP;TjS¼ �S: (A6)

The operators Qa
i ðz; ½S�Þ do not commute with each other.

We will move all the right rotation operators JR to the right
and then convert them into the operators �̂ according
to Eq. (A4). We also keep all operators JR½ �S� to the right
of JR½S�.
The amplitude Aab

ij reads

Aab
ij ðk; pÞ ¼

Z
z;u

eikzþipuQa
i ðzÞQb

j ðuÞ

¼
Z
z;u

eikzþipu
Z
x1x2

½fiðz� x1Þ½Sz � Sx1�acfjðu� x2Þ½Su � Sx2�bdJcRðx1ÞJdRðx2Þ

þ fiðz� x1Þ½Sz � Sx1�acfjðu� x2Þ½Su�ux1 � Sx2�x2x1�bmTc
mdJ

d
Rðx2Þ

¼
Z
z;u

eikzþipu
Z
x1x2

½fiðz� x1Þ½Sz � Sx1�acfjðu� x2Þ½Su � Sx2�bd�̂d
x2
�̂c
x1

þ fiðz� x1Þ½Sz � Sx1�acfjðu� x2Þ½Su�ux1 � Sx2�x2x1�bmTc
md�̂

d
x2
: (A7)
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Symmetrizing the operators within this amplitude, one
recovers Eq. (2.4). Our aim here is to obtain the fully
ordered expression for the probability. We therefore square
the amplitude first and then perform the full symmetriza-
tion between the operators �̂ entering both the amplitude
and its conjugate. Let us introduce some notations that will
help to make our expressions compact.

Nzx1 �z �x1 � ~fðz� x1Þ � ~fð �x1 � �zÞ (A8)

Fab
zx1 �z �x1

� Nzx1 �z �x1½ðSyz � Syx1ÞðS�z � S �x1Þ�ab;
Fab
x1 �x1

ðkÞ �
Z
z�z
eikðz��zÞFab

zx1 �z �x1
;

Fab
x1 �x1

ðkÞ ¼ Fba
�x1x1

ð�kÞ
(A9)

Gab
zx1 �z �x1

� Nzx1 �z �x1½Syx1ðS�z � S �x1Þ�ab;
Gab

x1 �x1
ðkÞ �

Z
z�z
eikðz��zÞGab

zx1 �z �x1
;

Mab
zx1 �z �x1

� Nzx1 �z �x1½Syz ðS�z � S �x1Þ�ab
(A10)

Squaring the amplitude Eq. (A7) we obtain

dN

d2pd2kd�d�
¼ h�4 þ �2 þ �3iP;T (A11)

with (sum over both the color and coordinate indices is
implied)

�4 ¼ Fab
x1 �x1

ðkÞFcd
x2 �x2

ðpÞ�̂c
x2
�̂a
x1
�̂d

�x2
�̂b

�x1

�3 ¼
�Z

u �u
eipðu� �uÞFab

u �x1
ðkÞMmd

ux2 �u �x2
Ta
cm � Fab

x1 �x1
ðkÞGmd

x2 �x2
ðpÞTa

cm

�
�̂c
x2
�̂d

�x2
�̂b

�x1

þ
�Z

u �u
eipðu� �uÞFab

x1 �u
ðkÞMmc

�u �x2ux2
Tb
md � Fab

x1 �x2
ðkÞGmc

�x2x2
ð�pÞTb

md

�
�̂c
x2
�̂a
x1
�̂d

�x2
�2

¼
Z
u �u
eipðu� �uÞFab

x1 �x1
ðkÞNux2 �u �x2T

a
cm½ðSyu�ux1 � Syx2�x1x2ÞðS �u� �u �x1 � S �x2� �x1 �x2Þ�mnTb

nd�̂
c
x2
�̂d

�x2
: (A12)

Following [17], the operators are substituted by commuting c-number functions according to:

�̂ a
x1 ! �b

x1

�
1� g

2

�
Tc �

��c
x1

�
þ g2

12

�
Tc �

��c
x1

�
2
. . .

�
ba
: (A13)

After long algebra we obtain the fully ordered expression

dN

d2pd2kd�d�
¼ h�4 þ ��3 þ ��2iP;T (A14)

with

�4 ¼ ½�FðkÞ��½�FðpÞ�� (A15)

��3 ¼ �3 þ g

�
1

2
�xFxyð�kÞ~�yFywð�pÞ�w þ 1

2
�xFxyðkÞ~�yFywðpÞ�w þ 1

2
tr½~�xFxxðkÞ�½�yFywðpÞ�w�

þ 1

2
½�xFxyðkÞ�y� tr½~�xFxxðpÞ�

�

�3 ¼ g

�
1

2
�xFxyðkÞ~�yFywð�pÞ�w þ 1

2
�xFxyð�kÞ~�yFywðpÞ�w þ �xFxyð�kÞ~�yGywðpÞ�w � �xFxyðkÞ~�yGywð�pÞ�w

�
Z
u �u
eipðu� �uÞ½� �x1F �x1uð�kÞ~�x2

Mux2 �u �x2� �x2 þ �x1Fx1 �uðkÞ~� �x2
M �u �x2ux2�x2�

�
(A16)
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��2 ¼ �2 þ g2
�
� 1

4
tr½~�xFxxðkÞTa�½Fxyð�pÞ�y�a � 1

12
tr½FxxðkÞTa�½~�xFxyð�pÞ�y�a � 1

12
tr½TaFxxðkÞ~�x�½Fxyð�pÞ�y�a

þ 1

4
½�xFxyðkÞ�a tr½~�yFyyðpÞTa� � 1

4
½�xFxyð�kÞ�a tr½~�yFyyðpÞTa� þ 1

4
tr½~�xFxyðkÞ~�yFyxðpÞ�

þ 1

4
tr½FxxðkÞTa�½~�xFxyðpÞ�y�a þ 1

4
tr½~�xFxxðkÞ� tr½~�yFyyðpÞ� þ 1

12
½�xFxyð�kÞ~�y�a tr½TaFyyðpÞ�

� 1

12
½�xFxyð�kÞ�a tr½TaFyyðpÞ~�y� þ 1

12
tr½~�xFxxðkÞTa�½FxyðpÞ�y�a þ 1

12
tr½TaFxxðkÞ~�x�½FxyðpÞ�y�a�

� 1

12
½�xFxyðkÞ�a tr½TaFyyðpÞ~�y� þ 1

12
½�xFxyðkÞ~�y�a tr½TaFyyðpÞ� � 1

2
½�xFxyð�kÞ�a tr½TaGyyðpÞ~�y�

þ 1

2
tr½TaFxxðkÞ~�x�½GxyðpÞ�y�a � 1

2
½�xFxyðkÞ�a tr½TaGyyð�pÞ~�y� þ 1

2
tr½TaFxxðkÞ~�x�½Gxyð�pÞ�y�a

þ 1

2

Z
u �u
eipðu� �uÞð½� �x1F �x1uð�kÞ�a tr½TaMux2 �ux2 ~�x2

� � tr½TaFux2ðkÞ~�x2
�½Mux2 �u �x2� �x2�a

� tr½~�x1
Fx1 �uðkÞTa�½M �ux1ux2 ~�x2

�a þ ½�x1Fx1 �uðkÞ�a tr½TaM �ux2ux2 ~�x2
�ÞÞ�2

¼ g2
�
� 1

4
tr½~�xFxyðkÞ~�yFyxð�pÞ

�
� 1

2
tr½Fxyð�kÞ~�yGyxðpÞ~�x� þ 1

2
tr½FxyðkÞ~�yGyxð�pÞ~�x�

þ 1

2

Z
u �u
eipðu� �uÞðtr½~� �x2

F �x2uð�kÞ~�x2
Mux2 �u �x2� þ tr½~�x2

Fx2 �uðkÞ~� �x2
M �u �x2ux2�Þ

þ 1

2

Z
u �u
eipðu� �uÞðNux2 �u �x2 tr½F �uuð�kÞ~�x2

SyuS �u ~� �x2
� � Nux2 �u �x2 tr½F �x2uð�kÞ~�x2

SyuS �x2 ~� �x2
�

� Nux2 �u �x2 tr½F �ux2ð�kÞ~�x2
Syx2S �u ~� �x2

� þ Nux2 �u �x2 tr½F �x1 �x2ð�kÞ~�x2
Syx2S �x2 ~� �x2

�Þ�: (A17)

This can now be averaged over the projectile wave function with the help of classical ensemble averaging procedure

h. . .iP ¼
Z
½d��WP½�� . . . (A18)
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