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We perform a model study of deconfinement and chiral symmetry restoration in a strong magnetic

background. We use a Nambu–Jona-Lasinio model with the Polyakov loop, taking into account a possible

dependence of the coupling on the Polyakov-loop expectation value, as suggested by the recent literature.

Our main result is that, within this model, the deconfinement and chiral crossovers of QCD in strong

magnetic field are entangled even at the largest value of eB considered here, namely eB ¼ 30m2
� (that is,

B � 6� 1015 T). The amount of split that we measure is, at this value of eB, of the order of 2%. We also

study briefly the role of the 8-quark term on the entanglement of the two crossovers. We then compare the

phase diagram of this model with previous results, as well as with available lattice data.
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I. INTRODUCTION

The study of the quantum chromodynamics (QCD) vac-
uum, and of its modifications under the influence of exter-
nal factors like temperature, baryon chemical potential,
and external fields, is one of the most attractive topics of
modern physics. One of the best strategies to overcome the
difficulty to study chiral symmetry breaking and decon-
finement, which share a nonperturbative origin, is offered
by lattice QCD simulations at zero chemical potential
[1–5]. At vanishing quark chemical potential, it is estab-
lished that two crossovers take place in a narrow range of
temperature; one for quark deconfinement, and another one
for the (approximate) restoration of chiral symmetry.
Besides, the use of the Schwinger-Dyson equations for
the quark self-energy [6,7], and the use of functional
renormalization group [8] to the Hamiltonian formulation
of Yang-Mills theory in Coulomb gauge, are very promis-
ing [9,10]. QCD with one quark flavor at finite temperature
and quark chemical potential has been considered in [11]
within the functional renormalization group approach,
combined with rebosonization techniques; in [12], the
renormalization group flow of the Polyakov-loop potential
and the flow of the chiral order parameter have been
computed. The results of [12] suggest that the chiral and
deconfinement phase transition temperature agree within a
few MeV for vanishing and (small) quark chemical poten-
tials. Furthermore, an interesting possibility to map solu-
tions of the Yang-Mills equations of motion with those of a
scalar field theory has been proved in [13].

An alternative approach to the physics of strong
interactions, which is capable to capture some of the non-
perturbative properties of the QCD vacuum, is the
Nambu–Jona-Lasinio (NJL) model [14], see Ref. [15] for
reviews. In this model, the QCD gluon-mediated interac-

tions are replaced by effective interactions among quarks,
which are built in order to respect the global symmetries of
QCD. Beside this, the parameters of the model are fixed to
reproduce some phenomenological quantity of the QCD
vacuum; therefore, it is reasonable that the main character-
istics of its phase diagram represent, at least qualitatively,
those of QCD.
In recent years, the NJL model has been improved in

order to be capable to compute quantities which are related
to the confinement-deconfinement transition of QCD. It is
well known that color confinement can be described in
terms of the center symmetry of the color gauge group and
of the Polyakov loop [16], which is an order parameter for
the center symmetry in the pure gauge theory. In theories
with dynamical fermions, the Polyakov loop is still a good
indicator for the confinement-deconfinement transition, as
suggested by lattice data at zero chemical potential [1–5].
Motivated by this property, the Polyakov extended
Nambu–Jona-Lasinio model (P-NJL model) has been in-
troduced [17,18], in which the concept of statistical con-
finement replaces that of the true confinement of QCD, and
an effective potential describing interaction among the
chiral condensate and the Polyakov loop is achieved by
the coupling of quarks to a background temporal gluon
field, and then integrating over quark fields in the partition
function. The P-NJL model, as well as its renormalizable
extension, namely the Polyakov extended quark-meson
model (P-QM), have been studied extensively in many
contexts [19–36].
In a remarkable paper [37] it has been shown by Kondo

that it is possible to derive the effective 4-quark interaction
of the NJL model, starting from the QCD Lagrangian. In
his derivation, Kondo has shown explicitly that the NJL
vertex has a nonlocal structure, that is, it is momentum
dependent; besides, the vertex acquires a nontrivial depen-
dence on the phase of the Polyakov loop. This idea has
been implemented within the P-NJL model in [31]; the
modified model has then been named EPNJL, and the
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Polyakov-loop-dependent vertex has been called entangle-
ment vertex. We will make use of this nomenclature in the
present article. Before going ahead, it is worth noticing that
a low-energy limit of QCD, leading to the nonlocal
Nambu–Jona-Lasinio model studied in [38], has been dis-
cussed independently in [39]. In this reference, the low-
energy limit of the gluon propagator leads to a relation
among the NJL coupling constant and the string tension.

In this article, we report on our study of deconfinement
and chiral symmetry restoration at finite temperature in a
strong magnetic background. This study is motivated by
several reasons. First, it is extremely interesting to under-
stand how an external field can modify the main character-
istics of confinement and spontaneous chiral symmetry
breaking. Lattice studies on QCD in magnetic (as well as
chromomagnetic) backgrounds can be found in [40–42].
Studies of QCD in magnetic fields, and of QCD-like theo-
ries as well, can be found in Refs. [43–50]. Besides, strong
magnetic fields might be produced in noncentral heavy ion
collisions [51,52]. More concretely, at the center-of-mass
energy reachable at LHC,

ffiffiffiffiffiffiffiffi
sNN

p � 4:5 TeV, the magnetic

field can be as large as1 eB � 15m2
� according to [52]. It

has been argued that in these conditions, the sphaleron
transitions of finite temperature QCD give rise to chiral
magnetic effect [51,53].

The novelty of this study is the use of the EPNJL model
in our calculations, in the one-loop approximation. In
comparison with the original P-NJL model of [18], the
EPNJL model has two additional parameters. However,
they are fixed from the QCD thermodynamics at zero
magnetic field, as we will discuss in more detail later.
Therefore, the results at a finite value of the magnetic field
strength have to be considered as predictions of the model.
Our main result is that the entanglement of the NJL cou-
pling constant and the Polyakov loop might affect crucially
the phase diagram in the temperature/magnetic field
strength plane. Previous model studies [43–45] have re-
vealed that both the deconfinement temperature, TL, and
the chiral symmetry restoration temperature, T�, are en-

hanced by a magnetic field, in agreement with the lattice
data of Ref. [40]. The model results are in slight disagree-
ment with the lattice, in the sense that the former predict a
considerable split of TL and T� as the strength of the

magnetic field is increased. Within the EPNJL model, we
can anticipate one of the results, that is, the split among TL

and T� might be considerably reduced even at large values

of the magnetic field strength. In particular, using the
values of the parameters of [31], which arise from a best
fit of lattice data at zero and imaginary chemical potential
and which are appropriate for our study, we find a split of
the order of 2% at the largest value of eB considered,
namely eB ¼ 30m2

�.

In [45] a similar computation within a model without
entanglement, but with an 8-quark interaction added, has
been performed. Following the nomenclature of [31], we
call the latter model, PNJL8 model. We find the compari-
son among the EPNJL and the PNJL8 models very instruc-
tive. As a matter of fact, the parameters in the two models
are chosen to reproduce the QCD thermodynamics at zero
and imaginary chemical potential [28,31]. Therefore, both
of them are capable to describe QCD in the same regime. It
is interesting that, because of the different interactions
content, the two models predict a slight different behavior
of hot quark matter in strong magnetic field. In the next
future, the comparison with refined lattice data can en-
lighten on which of the two models is a more faithful
description of QCD.
The paper is organized as follows: in Sec. II we sum-

marize the formalism: we derive the quark propagator and
the equation for the chiral condensates in magnetic field,
within the EPNJL model, in the one-loop approximation;
then, we compute the thermodynamic potential. In Sec. III,
we collect our results for the chiral condensate and the
expectation value of the Polyakov loop, for several values
of the magnetic field strength. In Sec. IV, we briefly inves-
tigate the effect of the 8-quark interaction in the EPNJL
model in magnetic field. In Sec. V, we draw the phase
diagram of the EPNJL model in magnetic field, and make a
comparison with our previous result [45]. Finally, in
Sec. VI we draw our conclusions, and briefly comment
on possible extensions and prosecutions of our study.
We use natural units throughout this paper, ℏ ¼ c ¼

kB ¼ 1, and work in Euclidean space-time R4 ¼ �V,
where V is the volume and � ¼ 1=T with T corresponding
to the temperature of the system. Moreover, we take a
nonzero current quark mass. In this case, both deconfine-
ment and chiral symmetry breaking are crossovers; how-
ever, we sometimes will make use of the term ‘‘phase
transition’’ to describe them, for stylistic reasons. It should
be clear from the context that our ‘‘phase transitions’’ are
meant to be crossovers unless stated differently.

II. THEMODELWITH ENTANGLEMENT VERTEX

We consider a model in which quark interaction is
described by the following Lagrangian density:

L ¼ �c ði��D� �mÞc þLI: (1)

Here c is the quark Dirac spinor in the fundamental
representation of the flavor SUð2Þ and the color group; �
correspond to the Pauli matrices in flavor space. A sum
over color and flavor is understood. The covariant deriva-
tive embeds the QED coupling of the quarks with the
external magnetic field, as well as the QCD coupling
with the background gluon field which is related to the
Polyakov loop, see below. Furthermore, we have defined

L I ¼ G½ð �c c Þ2 þ ði �c�5�c Þ2�: (2)
1In this article, we measure eB in units of the vacuum squared

pion mass m2
�; then, eB ¼ m2

� corresponds to B � 2� 1014 T.
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This interaction term is invariant under SUð2ÞV �
SUð2ÞA �Uð1ÞV . In the chiral limit, this is the symmetry
group of the action as well, if no magnetic field is applied.
However, this group is broken explicitly to Uð1Þ3V �
Uð1Þ3A �Uð1ÞV if the magnetic field is coupled to the

quarks, because of the different electric charge of u and
d quarks. Here, the superscript 3 in the V and A groups
denotes the transformations generated by �3, �3�5, respec-
tively. Therefore, the chiral group in the presence of a
magnetic field is Uð1Þ3V �Uð1Þ3A. This group is then ex-

plicitly broken by the quark mass term to Uð1Þ3V .
We are interested in the interplay among chiral symme-

try restoration and deconfinement in a strong magnetic
field. To compute a temperature for the deconfinement
crossover, we use the expectation value of the Polyakov
loop, which we denote by L. In order to compute L we
introduce a static, homogeneous and Euclidean back-
ground temporal gluon field, A0 ¼ iA4 ¼ i�aA

a
4 , coupled

minimally to the quarks via the QCD covariant derivative
[18]. Then

L ¼ 1
3 Trc expði��aA

a
4Þ; (3)

where � ¼ 1=T. In the Polyakov gauge, which is conve-
nient for this study, A0 ¼ i�3�þ i�8�

8; moreover, we
work at zero quark chemical potential, therefore we can
take L ¼ Ly from the beginning, which implies A8

4 ¼ 0.
This choice is also motivated by the study of [44], where it
is shown that the paramagnetic contribution of the quarks
to the thermodynamic potential induces the breaking of the
Z3 symmetry, favoring the configurations with a real-
valued Polyakov loop (see Sec. III C of [44] for an excel-
lent discussion of this point). We have then [18,19]

L ¼ 1þ 2 cosð��Þ
3

: (4)

As already discussed in the Introduction, it has been
shown that it is possible to derive the effective 4-quark
interaction (2) starting from the QCD Lagrangian [37]. In
[37] it has been shown that the NJL vertex has a nonlocal
structure, that is, it is momentum dependent. An analogous
conclusion is achieved in [39]. More important for our
study, the NJL vertex acquires a nontrivial dependence
on the phase of the Polyakov loop. Therefore, in the model
we consider here, it is important to keep into account this
dependence. The exact dependence of G on L has not yet
been computed; it is possible that it will be determined in
the near future by means of the functional renormalization
group approach [37]. In our study, we follow a more
phenomenological approach to the problem, using the
ansatz introduced in [31], that is,

G ¼ g½1� 	1L �L� 	2ðL3 þ �L3Þ�; (5)

and we take L ¼ �L from the beginning. The functional
form in the above equation is constrained by C and ex-
tended Z3 symmetry. We refer to [31] for a more detailed

discussion. The numerical values of 	1 and 	2 have been
fixed in [31] by a best fit of the available lattice data at zero
and imaginary chemical potential of Ref. [54], which have
been confirmed recently in [55]. In particular, the fitted
data are the critical temperature at zero chemical potential,
and the dependence of the Roberge-Weiss end point on the
bare quark mass.
The values 	1 ¼ 	2 � 	 ¼ 0:2� 0:05 have been ob-

tained in [31] using a hard cutoff regularization scheme.
We will focus mainly on the case 	 ¼ 0:2 as in [31]. We
have verified that in our regularization scheme, our results
are in quantitative agreement with those of [31], when we
take the parameter T0 ¼ 190 MeV in the Polyakov-loop
effective potential in agreement with [31], see below. Then,
we will study how the results change when we vary 	.

A. Quark propagator and chiral condensate
in magnetic field

We work in the mean field approximation throughout
this paper, neglecting pseudoscalar condensates; moreover,
we make the assumption that condensation takes place
only in the flavor channels �0 and �3. The mean field
interaction term [Eq. (2)] can be cast in the form

L ¼ �2G�ð �uuþ �ddÞ �G�2; (6)

where � ¼ �h �uuþ �ddi.
In a magnetic field, the chiral condensates of u and d

quarks have to be different, because the electric charges of
these quarks are different. Even if the one-loop quark
self-energies in Eq. (6) depend on the sum of the two
condensates, being therefore flavor independent, it is
straightforward to show that the two condensates turn out
to be different, by taking the trace of the propagator of the
two quarks. The interaction (6) is diagonal in flavor space,
therefore we can focus on the propagator of a single
flavor f.
To write the quark propagator we use the Ritus method

[56], which allows one to expand the propagator on the
complete and orthonormal set made of the eigenfunctions
of a charged fermion in a homogeneous and static magnetic
field. This is a well-known procedure, discussed many
times in the literature (see for example [57–60]); therefore
it is enough to quote the final result,

Sfðx; yÞ ¼
X1
k¼0

Z dp0dp2dp3

ð2�Þ4 EPðxÞ�k

1

P � ��M
�EPðyÞ;

(7)

where EPðxÞ corresponds to the eigenfunction of a charged
fermion in magnetic field, and �EPðxÞ � �0ðEPðxÞÞy�0. In
the above equation,

P ¼ ðp0 þ iA4; 0;Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kjQfeBj

q
; pzÞ; (8)

where k ¼ 0; 1; 2; . . . labels the kth Landau level, andQ �
signðQfÞ, withQf denoting the charge of the flavor f;�k is
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a projector in Dirac space which keeps into account the
degeneracy of the Landau levels; it is given by

�k ¼ 
k0½Pþ
Q;þ1 þ P�
Q;�1� þ ð1� 
k0ÞI; (9)

where P� are spin projectors and I is the identity matrix in
Dirac spinor indices. The propagator in Eq. (7) has a non-
trivial color structure, due to the coupling to the back-
ground gauge field [see Eq. (8)].

The trace of the f-quark propagator is minus the chiral
condensate h �ffi, with f ¼ u; d. Taking the trace in coor-
dinate and internal space, it is easy to show that the
following equation holds:

h �ffi ¼ �Nc

jQfeBj
2�

X1
k¼0

�k

Z dpz

2�

Mf

!f

CðL; �L; Tjpz; kÞ:

(10)

Here,

C ðL; �L; Tjpz; kÞ ¼ U� � 2N ðL; �L; Tjpz; kÞ; (11)

and N denotes the statistically confining Fermi distribu-
tion function,

C ðL; �L; Tjpz; kÞ ¼ 1þ 2Le�!f þ Le2�!f

1þ 3Le�!f þ 3Le2�!f þ e3�!f
;

(12)

where

!2
f ¼ p2

z þ 2jQfeBjkþM2
f; (13)

with

Mu ¼ Md ¼ m0 þ 2G�: (14)

The first and the second addenda in the right-hand side
(rhs) of Eq. (10) correspond to the vacuum and the thermal
fluctuations contribution to the chiral condensate, respec-
tively. The coefficient�k ¼ 2� 
k0 keeps into account the
degeneracy of the Landau levels. The vacuum contribution
is ultraviolet divergent. In order to regularize it, we adopt a
smooth regulator U�, which is more suitable, from the
numerical point of view, in our model calculation with
respect to the hard cutoff which is used in analogous
calculations without magnetic field. In this article we chose

U� ¼ �2N

�2N þ ðp2
z þ 2jQfeBjkÞN

: (15)

To be specific, we consider here the case N ¼ 5, for
numerical convenience. A larger value of N increases the
cutoff artifacts, as already discussed in detail in [43,45,47],
but leaves the qualitative picture unchanged; on the other
hand, a smaller value of N, namely N 	 3, makes not
possible the fit of the pion decay constant and of the chiral
condensate in the vacuum. The (more usual) 3-momentum
cutoff regularization scheme is recovered in the limit
N ! 1; we notice that, even if the choice N ¼ 5 may
seem arbitrary to some extent, it is not more arbitrary than

the choice of the hard cutoff, that is, of a regularization
scheme.
By virtue of Eq. (10) it is easy to argue that the con-

densates of u and d quarks are different in the magnetic
field. As a matter of fact, the different value of the charges
makes the rhs of the above equation flavor dependent, even
if � is flavor singlet. Once we compute the mean field
value of � by minimization of the thermodynamic poten-
tial (see the next section), we will use Eq. (10) to evaluate
the chiral condensates for u and d quarks in magnetic field.

B. Thermodynamic potential

In the one-loop approximation, the thermodynamic po-
tential � is given by

� ¼ UðL; �L; TÞ þG�2 � 1

�V
Tr logð�S�1Þ; (16)

where the trace is over color, flavor, Dirac and space-time
indices, and the propagator for each flavor is given by
Eq. (7). It is straightforward to derive the final result,
namely,

�¼UðL; �L;TÞþUM

� X
f¼u;d

jQfeBj
2�

X
k

�k

Z þ1

�1
dpz

2�
GðL; �L;Tjpz; kÞ: (17)

In the above equation, the first line corresponds to the
classical contribution; we have defined

UM ¼ GS�
2; (18)

the second line corresponds to the sum of vacuum and
thermal one-loop contributions, respectively, and arise
after integration over the fermion fluctuations in the func-
tional integral. We have defined

G ðL; �L; Tjpz; kÞ ¼ NcU�ðpÞ!f þ 2

�
logF ; (19)

with

F ðL; �L; Tjpz; kÞ ¼ 1þ 3Le��!f þ 3 �Le�2�!f þ e�3�!f :

(20)

The potential term U½L; �L; T� in Eq. (17) is built by
hand in order to reproduce the pure gluonic lattice data
[19,20]. We adopt the following logarithmic form [20]:

U½L; �L;T�¼T4

�
�aðTÞ

2
�LLþbðTÞ ln½1�6 �LLþ4ð �L3þL3Þ

�3ð �LLÞ2�
�
; (21)

with three model parameters (one of four is constrained by
the Stefan-Boltzmann limit),
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aðTÞ¼a0þa1

�
T0

T

�
þa2

�
T0

T

�
2
; bðTÞ¼b3

�
T0

T

�
3
: (22)

The standard choice of the parameters reads a0 ¼ 3:51,
a1 ¼ �2:47, a2 ¼ 15:2, and b3 ¼ �1:75. The parameter
T0 in Eq. (21) sets the deconfinement scale in the pure
gauge theory. In the absence of dynamical fermions, one
has T0 ¼ 270 MeV. However, dynamical fermions induce
a dependence of this parameter on the number of active
flavors [33]. For the case of two light flavors to which we
are interested here, we take T0 ¼ 212 MeV as in [45].

As a final remark, it is easy to show that summing
Eq. (10) for u and d quarks, one reproduces the equation
satisfied by �, the latter being obtained from the stationar-
ity condition @�=@� ¼ 0.

III. DECONFINEMENTAND CHIRAL
SYMMETRY RESTORATION

In this section we summarize our numerical results.
In this study we fix the values of g,�, and m0 to reproduce
the values of f� and m� in the vacuum, as well as the
numerical value of the light quarks chiral condensate. We
have then� ¼ 626:76 MeV, g ¼ 2:02=�2. The pion mass
in the vacuum, m� ¼ 139 MeV, is used to fix the numeri-
cal value of the bare quark mass via the Gell-Mann-Oakes-
Renner relation f2�m

2
� ¼ �2m0h �uui; this gives m0 ¼

5 MeV when we take h �uui ¼ ð�253 MeVÞ3. Finally, we
take T0 ¼ 212 MeV in the Polyakov-loop effective poten-
tial as in [45], unless stated differently. The values of� and
L are computed by the minimization of the thermodynamic
potential.

A. The case �1 ¼ �2 ¼ 0:2

In Fig. 1 we plot our data for the chiral condensate �,
measured in units of the condensate at T ¼ eB ¼ 0, that is
�0 ¼ 2� ð�253 MeVÞ3, and the expectation value of the
Polyakov loop as a function of temperature, computed for
several values of the magnetic field strength. They are
computed from the minimization of the thermodynamic
potential in Eq. (17). In the numerical computation, we
have chosen 	1 ¼ 	2 � 	 ¼ 0:2 as in [31].

The results shown in Fig. 1 are interesting for several
reasons. First, if we identify the deconfinement crossover
with the temperature TL at which dL=dT is maximum, and
the chiral crossover with the temperature T� at which

jd�=dTj is maximum, we observe that the two tempera-
tures are very close also in a strong magnetic field. For
concreteness, at eB ¼ 0 we find TP ¼ T� ¼ 185:5 MeV.

Besides, at eB ¼ 19m2
� we find TP ¼ 199 MeV and T� ¼

201 MeV. Hence, at the strongest value of eB considered
here, namely eB ¼ 19m2

�, the entanglement vertex makes
the split of the two crossovers of � 1:5%. From the model
point of view, it is easy to understand why deconfinement
and chiral symmetry restoration are entangled also in the
strong magnetic field. As a matter of fact, using the data

shown in Fig. 1, it is possible to show that the NJL coupling
constant in the pseudocritical region in this model de-
creases of the amount of 15% as a consequence of the
deconfinement crossover. Therefore, the strength of the
interaction responsible for the spontaneous chiral symme-
try breaking is strongly affected by the deconfinement,
with the obvious consequence that the numerical value of
the chiral condensate drops down and the chiral crossover
takes place. We have verified that the picture remains
qualitatively and quantitatively unchanged if we perform
a calculation at eB ¼ 30m2

�. In this case, we find TL ¼
224 MeV and T� ¼ 225 MeV.

Before going ahead, it is worth noticing that we have also
considered the case T0 ¼ 190 MeV, which corresponds to
the value considered in [31]. In this case, for eB ¼ 0we find
T� ¼ TL ¼ 175 MeV, in excellent agreement with [31].

This results is comforting, because it shows that even using
a different regularization scheme, theUV regulator does not
affect the physical predictions at eB ¼ 0. Moreover, at
eB=m2

� ¼ 30, we find T� � TL ¼ 215 MeV.

This result can be compared with our previous calcula-
tion [43] in which we did not include the Polyakov-loop
dependence of the NJL coupling constant. In [43] we

eB 19
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L

FIG. 1. Upper panel: Chiral condensate �, measured in units
of the chiral condensate at zero temperature and zero field, �0, as
a function of temperature, for several values of the magnetic field
strength. Lower panel: Expectation value of the Polyakov loop,
L, as a function of temperature, for several values of the
magnetic field strength. The data are obtained for 	 ¼ 0:2. In
the figures, the magnetic fields are measured in units of m2

�.
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worked in the chiral limit and we observed that the
Polyakov-loop crossover in the P-NJL model is almost
insensitive to the magnetic field; on the other hand, the
chiral phase transition temperature was found to be very
sensitive to the strength of the applied magnetic field, in
agreement with the well-known magnetic catalysis sce-
nario [46]. This model prediction has been confirmed
within the Polyakov extended quark-meson model in
[44], when the contribution from the vacuum fermion
fluctuations to the energy density is kept into account;2

we then obtained a similar result in [45], in which we
turned from the chiral to the physical limit at which m� ¼
139 MeV, and introduced the 8-quark term as well (PNJL8

model, according to the nomenclature of [31]). The com-
parison with the results of the PNJL8 model of [45] is
interesting because the model considered there was tuned
in order to reproduce the lattice data at zero and imaginary
chemical potential [28], like the model we use in this study.
Therefore, they share the property to describe the QCD
thermodynamics at zero and imaginary chemical potential;
it is therefore instructive to compare their predictions at
finite eB.

For concreteness, in [45] we found TP ¼ 185 MeV and
T� ¼ 208 MeV at eB ¼ 19m2

�, corresponding to a split of

� 12%. On the other hand, in the present calculation we
measure a split of � 1:5% at the largest value of eB
considered. Therefore, the results of the two models are
in slight quantitative disagreement; this disagreement is
then reflected in a slightly different phase diagram. Wewill
draw the phase diagram of the two models in a next
section; however, since now it is easy to understand what
the main difference consists in: the PNJL8 model predicts
some window in the eB� T plane in which chiral sym-
metry is still broken by a chiral condensate, but deconfine-
ment already took place. In the case of the EPNJL model,
this window is shrunk to a very small one, because of the
entanglement of the two crossovers at finite eB. On the
other hand, it is worth stressing that the two models share
an important qualitative feature: both chiral restoration and
deconfinement temperatures are enhanced by a strong
magnetic field, in qualitative agreement with the existing
lattice data [40].

A further interesting feature of our data is that in the low
temperature region, the Polyakov loop is suppressed as we
increase the strength of the magnetic field; on the other
hand, in the deconfinement phase, L is enhanced by the
magnetic field. This result was also found in our previous
studies [43,45] with a fixed coupling constant; more re-
markably, this result is in agreement with the lattice data

[40]. At the moment we do not have physical arguments to
explain this result, but we agree with the authors of
Ref. [40] that this aspect should be considered in more
detail from the theoretical point of view.
For completeness, we plot in Fig. 2 the chiral conden-

sates of u and d quarks as a function of temperature, at
eB ¼ 15m2

� and eB ¼ 30m2
�. The condensates are mea-

sured in units of their value at zero magnetic field and zero
temperature, namely,�0 � h �uui ¼ h �ddi ¼ ð�253 MeVÞ3.
They are computed by a two-step procedure: first, we find
the values of � and L that minimize the thermodynamic
potential; then, we make use of Eq. (10) to compute the
expectation values of �uu and �dd in magnetic field. If we
measure the strength of the crossover by the value of the
peak of jd�=dTj, it is obvious from the figure that
the chiral crossover becomes stronger and stronger as the
strength of the magnetic field is increased, in agreement
with [40].

B. Varying �

Since our study is based on a simple model, and we
cannot compute the exact values of the parameter 	 in
Eq. (5) starting from first principles, we find it very

eB 30

eB 15

u

d

180 190 200 210 220 230 240
0.0

0.5

1.0

1.5

2.0

T MeV

u
0
,

d
0

eB 30

eB 15

180 190 200 210 220 230 240
0.0

0.2

0.4

0.6

0.8

T MeV

L

FIG. 2. Upper panel: Chiral condensates of u and d quarks
as functions of temperatures in the pseudocritical region, at
eB ¼ 15m2

� and eB ¼ 30m2
�. Condensates are measured in units

of their value at zero magnetic field and zero temperature,
namely �0 ¼ ð�253 MeVÞ3. Lower panel: Polyakov-loop ex-
pectation value as a function of temperature, at eB ¼ 15m2

� and
eB ¼ 30m2

�. Data correspond to 	 ¼ 0:2.

2If the vacuum corrections are neglected, the deconfinement
and chiral crossovers are found to be coincident even in very
strong magnetic fields [44], but the critical temperature de-
creases as a function of eB; this scenario is very interesting
theoretically, but it seems it is excluded from the recent lattice
simulations [40].
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instructive to measure the robustness of our results as we
vary the numerical value of this parameter. We emphasize
that in [31] an estimate for the numerical value of 	 is
achieved via the best fit of the model data with the lattice
data at zero and imaginary chemical potential. However, in
that reference a different regularization scheme is used.
Therefore, we can expect that a slightly different value of	
is needed in our case. However, it is useful to observe that
in the limit of zero field, our regulator is very similar,
quantitatively speaking, to the hard cutoff of [31], because
of the strong power-law decay of U� as jpj � �.
Therefore, the possible numerical deviation in the parame-
ters is expected to be very tiny, if any. We have a further
corroboration we are on target with parameters: if we
choose T0 ¼ 190 MeV as in [31], we find T� ¼ TL ¼
175 MeV, in quantitative agreement with [31]; this con-
vinces that our ultraviolet regulator does not lead to quan-
titative discrepancy with [31] at zero magnetic field.

We have investigated the dependence of the pseudocriti-
cal temperatures as a function of 	, at eB ¼ 0 and

eB ¼ 19m2
�. The results of our computations are collected

in the upper panel of Fig. 3. At 	 ¼ 0, which corresponds
to the original P-NJL model, we measure a split of the two
critical temperatures of � 18% even at eB ¼ 0. This is
well-known result in the P-NJL literature [19,20], and to
overcome this problem, several solutions have been sug-
gested, like the use of the 8-quark interaction [24,31].
However, the discrepancy of the critical temperatures is
enhanced as the value of eB is increased. At eB ¼ 19m2

�

we find a split of � 30%. As we increase 	, the two
temperatures get closer rapidly, both at zero and at nonzero
value of the magnetic field strength. At 	 ¼ 0:2, which is
the result that we have discussed previously and is the
value quoted in [31], the two temperatures are almost
coincident.
An interesting point that we have found is that, increas-

ing further the value of 	, the crossovers become stronger
and stronger; there exists a critical value of 	 at which the
crossover is replaced by a sudden jump in the chiral
condensate and in the Polyakov-loop expectation value.
This value of	 is denoted by a green square in Fig. 3, and it
is eB dependent. For concreteness, in the lower panel of
Fig. 3 we plot our data for the half of the chiral condensate
and the Polyakov loop at 	 ¼ 0:275, which should be
compared with the data in Fig. 1 where 	 ¼ 0:2.

IV. THE EFFECT OF THE 8-QUARK
INTERACTION

We have briefly investigated the role of other interac-
tions on the entanglement of deconfinement and chiral
symmetry restoration crossovers. We report here the results
related to the effect of the 8-quark term, which has been
extensively studied in [61] in relation to the vacuum stabil-
ity of the NJL model, to the hadron properties, and to the
critical temperature at zero baryon density; besides, it
has been studied in the context of the P-NJL model in
[24,31,45]. To this end, we add to the interaction
Lagrangian in Eq. (2), the following term:

G8½ð �c c Þ2 þ ði �c�5�c Þ2�2: (23)

In principle, we expect that the constant G8 acquires a
dependence on the Polyakov loop as well; however, for
simplicity we neglect this dependence here, since we are
only interested in understanding the qualitative effect of
the interaction (23). We remark that the model studied in
this section is different from the P-NJL8 model defined in
[31]; in the latter, the dependence of G on L is neglected.
At the one-loop order we have

L ¼ �2 �uu½G�þ 2G8�
3� � 2 �dd½G�þ 2G8�

3�
� 3G8�

4 �G�2; (24)

instead of Eq. (6). The thermodynamic potential is still
given by Eq. (17), with

without 8 quark interaction
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FIG. 3. Upper panel: Pseudocritical temperatures as functions
of the parameter 	 in the NJL coupling constant. Dashed lines
correspond to the Polyakov-loop crossover, for eB ¼ 0 and
eB ¼ 19. Dot-dashed lines correspond to the chiral crossover.
The grey squares denote the value of 	 at which the crossover
becomes a first-order phase transition. Lower panel:
Polyakov-loop expectation value (dashed lines) and half of
�ðeBÞ=�ðeB ¼ 0Þ (solid lines) as functions of temperature, for
	 ¼ 0:275. In both panels the magnetic fields are measured in
units of m2

�.
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UM ¼ 3G8�
4 þGS�

2; (25)

and

Mu ¼ Md ¼ m0 þ 2ðG�þ 2G8�
3Þ; (26)

instead of Eq. (14). The parameters are fixed as in [45],
that is � ¼ 589 MeV, g ¼ 5� 10�6 MeV�2, G8¼
6�10�22 MeV�8, and m0 ¼ 5:6 MeV.

In Fig. 4 we plot our data for the chiral condensate and
the expectation value of the Polyakov loop, as a function of
temperature, for several values of the magnetic field
strength and for 	 ¼ 0:1. We find that, even at this smaller
value of 	, the two crossovers are entangled at large
magnetic fields. On the other hand, we find that taking a
running NJL coupling makes the crossovers sharper, and
eventually we measure a discontinuity in the order parame-
ters for a large magnetic field strength.

In Fig. 5 we plot the critical temperatures as a function
of 	, for eB ¼ 0 and eB ¼ 19m2

�. At eB ¼ 0 the two
crossovers are entangled already at 	 ¼ 0; therefore, the
effect of the entanglement vertex is to make the crossover
sharper. Eventually, at the critical value 	 ¼ 0:125 the

crossover is replaced by a sudden jump of the expectation
values, analogously to the results that we find in the model
without 8-quark term. As we increase eB, the deconfine-
ment and chiral crossovers are split at 	 ¼ 0, in agreement
with our previous findings [45]. However, the split in this
case is more modest than the split that we measure in the
model with G8 ¼ 0. In that case, at eB ¼ 19m2

� we find a
split of � 30%, to be compared with the one that we read
from Fig. 5 for the model with 8-quark interaction, namely
� 12%. Therefore, our conclusion is that the 8-quark
interaction helps to keep the two crossovers close in a
strong magnetic field, even if it is not enough and the
entanglement vertex has to be included, as it is clear
from Fig. 5.

V. THE PHASE DIAGRAM

In Fig. 6 we collect our data on the pseudocritical
temperatures for deconfinement and chiral symmetry res-
toration, in the form of a phase diagram in the eB� T
plane. In the upper panel we show the results obtained
within the EPNJL model; in the lower panel, we plot the
results of the PNJL8 model, which are obtained using the
fitting functions computed in [45]. In the figure, the mag-
netic field is measured in units of m2

�; temperature is
measured in units of the deconfinement pseudocritical
temperature at zero magnetic field, namely TB¼0 ¼
185:5 MeV for the EPNJL model, and TB¼0 ¼ 175 MeV
for the PNJL8 model. For any value of eB, we identify the
pseudocritical temperature with the peak of the effective
susceptibility.
It should be kept in mind, however, that the definition of

a pseudocritical temperature in this case is not unique,
because of the crossover nature of the phenomena that
we describe. Other satisfactory definitions include the
temperature at which the order parameter reaches
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FIG. 4. Upper panel: Chiral condensate �, measured in units
of the chiral condensate at zero temperature and zero field, �0, as
a function of temperature, for several values of the magnetic field
strength. Lower panel: Expectation value of the Polyakov loop P
as a function of temperature, for several values of the magnetic
field strength. The results are obtained within the model with
8-quark interaction and 	 ¼ 0:1. In the figures, the magnetic
fields are measured in units of m2

�. Lines with the same dashing
correspond to the same value of the magnetic field strength.
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FIG. 5. Pseudocritical temperatures as functions of the pa-
rameter 	 in the NJL coupling constant. Dashed lines correspond
to the Polyakov-loop crossover, for eB ¼ 0 and eB ¼ 19. Dot-
dashed lines correspond to the chiral crossover. The grey squares
denote the value of 	 at which the crossover becomes a first-
order phase transition.
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one-half of its asymptotic value (which corresponds to the
T ! 0 limit for the chiral condensate, and to the
T ! þ1 for the Polyakov loop), and the position of
the peak in the true susceptibilities. The expectation is that
the critical temperatures computed in these different
ways differ from each other only by a few percent. This
can be confirmed concretely using the data in Fig. 2 at
eB ¼ 30m2

�. Using the peak of the effective susceptibility
we find T� ¼ 225 MeV and TL ¼ 224 MeV; on the other

hand, using the half-value criterion, we find T� ¼
227 MeV and TL ¼ 222 MeV, in very good agreement
with the previous estimate. Therefore, the qualitative pic-
ture that we derive within our simple calculational scheme,
namely the entanglement of the two crossovers in a strong
magnetic field, should not be affected by using different
definitions of the critical temperatures.

First, we focus on the phase diagram of the EPNJL
model, which is one of the novelties of our study. In the
upper panel of Fig. 6, the dashed and dot-dashed lines
correspond to the deconfinement and chiral symmetry
restoration pseudocritical temperatures, respectively. We
have fit our data using the following functional form:

T�;LðeBÞ
Tc

¼ 1þ A

�jeBj
T2
c

�
	
; (27)

where the subscripts �;L correspond to the (approximate)
chiral restoration and deconfinement temperatures, respec-
tively. The functional form is taken in analogy to the one
used in [40]. Numerical values of the best-fit coefficients
are collected in Table I. As a consequence of the entangle-
ment, the two crossovers stay closed also in very strong
magnetic field, as we have already discussed in the pre-
vious sections. The grey region in the figure denotes a
phase in which quark matter is (statistically) deconfined,
but chiral symmetry is still broken. According to [62,63],
we can call this phase the constituent quark phase (CQP).
On the lower panel of Fig. 6 we have drawn the phase

diagram for the PNJL8 model; it is obtained using Eq. (27)
with the coefficients computed in Ref. [45], and collected
in Table I. The critical temperature at zero field in this case
is a little smaller than the same temperature for the EPNJL
model, because the parameters needed to fit the vacuum
properties are different. However, a comparison between
the two phase diagrams is still instructive. The most aston-
ishing feature of the phase diagram of the PNJL8 model is
the entity of the split among the deconfinement and the
chiral restoration crossover. The difference with the result
of the EPNJLmodel is that, in the former, the entanglement
with the Polyakov loop is neglected in the NJL coupling
constant. As we have already mentioned in the previous
section, the maximum amount of split that we find within
the EPNJL model, at the largest value of magnetic field
considered here, is of the order of 2%; this number has to
be compared with the split at eB ¼ 20m2

� in the PNJL8

model, namely � 12%. The larger split causes a consid-
erable portion of the phase diagram to be occupied by
the CQP.
Taking into account the crudeness of the two models,

it is fair to say that they share one important feature:
both deconfinement and chiral symmetry restoration
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FIG. 6 (color online). Upper panel: Phase diagram in the
eB� T plane for the EPNJL model. Temperatures on the vertical
axis are measured in units of the pseudocritical temperature for
deconfinement at eB ¼ 0, namely Tc ¼ 185:5 MeV. Lower
panel: Phase diagram in the eB� T plane for the PNJL8 model.
Temperatures on the vertical axis are measured in units of the
pseudocritical temperature for deconfinement at eB ¼ 0, namely
Tc ¼ 175 MeV. In both the phase diagrams, T�, TL correspond

to the chiral and deconfinement pseudocritical temperatures,
respectively. The grey shaded region denotes the portion of
phase diagram in which hot quark matter is deconfined and
chiral symmetry is still broken spontaneously.

TABLE I. Coefficients of the fit function defined in Eq. (27)
for the two models.

A 	 Tc (MeV)

T�, EPNJL 2:34� 10�3 1.49 185.5

TL, EPNJL 1:43� 10�3 1.68 185.5

T�, PNJL8 [45] 2:4� 10�3 1.85 175

TL, PNJL8 [45] 2:1� 10�3 1.41 175
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temperature are increased by a strong magnetic field. They
disagree quantitatively, in the sense that the amount of split
in the EPNJL model is more modest in comparison with
that obtained in the PNJL8 model. Before closing, we
notice that a similar phase diagram calculation has been
performed within the quark-meson (QM in the following)
model in [44]. In this reference, the magnetic field has the
same effect that we measure in the PNJL8 model, that is, to
split of deconfinement and chiral symmetry restoration
crossovers. Besides, both T� and TL are enhanced by a

magnetic field, in excellent agreement with the behavior
that we find within the several NJL-like models that we
have used in this study.

On the lattice side, the most recent data about this kind
of study are those of Ref. [40]. In these data, the split
among the two crossovers is absent. Then the lattice data
seem to point towards the phase diagram of the EPNJL
model. On the other hand, the results of [40] might not be
definitive, in the sense that both the lattice size might be
enlarged and the pion mass could be lowered to its physical
value in the vacuum. Therefore, it will be interesting to
compare our results with more refined data.

VI. CONCLUSIONS

In this article, we have studied chiral symmetry restora-
tion and deconfinement in a strong magnetic background,
using an effective model of QCD. In particular, we have
reported our results about the effect of the entangled vertex
on the phase diagram. Our main result is that the entangle-
ment reduces considerably the split among the deconfine-
ment and the chiral symmetry crossovers studied in
[43–45], as expected.

We have also studied the effect of the 8-quark term on
the split. Our results suggest that the 8-quark interaction
helps the two crossovers to be close. Furthermore, we have
shown that the crossovers become sharper and then they
are replaced by a sudden jump of the expectation values, as
the value of 	 in the entanglement vertex is larger than a
critical value.

We have then compared our results with those of other
model calculations, namely the P-NJL model [43], the
quark-meson model [44], and the PNJL8 model [45]. The
most striking similarity among the several models is that
they all support the scenario in which chiral symmetry
restoration and deconfinement temperatures are enhanced
by a strong magnetic field. The models differ quantitatively
for the amount of split measured (very few percent for the
EPNJLmodel, and of the order of 10% for the other models
for eB � 20m2

�).
Furthermore, we have compared our results with those

obtained on the lattice [40]. In [40], the largest value of
magnetic field considered is eB � 0:75 GeV2, which cor-
responds to eB=m2

� � 38. The lattice data seem to point
towards the phase diagram of the EPNJL model. On the
other hand, the results of [40] might not be definitive: the

lattice size might be enlarged, the lattice spacing could be
taken smaller (in [40] the lattice spacing is a ¼ 0:3 fm),
and the pion mass could be lowered to its physical value in
the vacuum. As a consequence, it will be interesting to
compare our results with more refined data in the future.
This comparison can be interesting also for another

reason. Indeed, the EPNJL model and the PNJL8 can
describe the same QCD thermodynamics at zero and
imaginary quark chemical potential [31], but they differ
qualitatively for the interaction content. As we have shown,
they have some quantitative discrepancy for what concerns
the response to a strong magnetic field. Therefore, more
refined lattice data in the magnetic field might help to
discern which of the two models is a more faithful descrip-
tion of QCD.
From our point of view, it is fair to admit that our study

might have a weak point, namely, we miss a microscopic
computation of the parameters 	1, 	2 in Eq. (5). For
concreteness, we have used the best-fit values quoted in
[31], showing in addition that changing the value of T0 in
the Polyakov-loop effective potential as in [31], we obtain
T� ¼ TL ¼ 175 MeV, in excellent agreement with that

reference. This is comforting, since it shows that our differ-
ent UV regulator does not affect the qualitative result at
zero field, namely the coincidence of T� and TL. Besides,

we are aware that Eq. (5) is just a particular choice of the
functional dependence of the NJL coupling constant on the
Polyakov-loop expectation value. Different functional
forms respecting the C and the extended Z3 symmetry
are certainly possible, and without a rigorous derivation
of Eq. (5) using functional renormalization group tech-
niques as suggested in [37], it merits to study our problem
using different choices for GðLÞ in the next future. For
these reasons, we prefer to adopt a conservative point of
view: it is interesting that a model which is adjusted in
order to reproduce lattice data at zero and imaginary
chemical potential, predicts that the two QCD transitions
are entangled in a strong magnetic background; however,
this conclusion might not be definitive, since there exist
other model calculations which share a common basis with
ours, and which show a more pronounced split of the QCD
transitions in a strong magnetic background. More refined
lattice data will certainly help to discern which of the two
scenarios is the most favorable.
As a natural continuation of this work, it is worth

performing the computation of the chiral magnetization
[41] at finite temperature. Besides, the technical machinery
used here can be easily applied to a microscopic study of
the spectral properties of mesons in a strong magnetic field.
In this direction, it is interesting to compute the masses of
the charged � mesons at low temperature, in order to
investigate their condensation at large magnetic field as
suggested in [48]. Furthermore, it would be interesting to
make a complete (analytical or semianalytical) study of the
chiral limit, to estimate the effect of the magnetic field on
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the universality class of two-flavor QCD. We will report on
these topics in the near future.
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