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The nonlinear evolution equation at small x with impact parameter dependence is analyzed numerically.

The saturation scales and the radius of expansion in the impact parameter are extracted as functions of

rapidity. Running coupling is included in this evolution, and it is found that the solution is sensitive to the

infrared regularization. Kinematical effects beyond the leading logarithmic approximation are taken

partially into account by modifying the kernel which includes the rapidity-dependent cuts. These effects

are important for the nonlinear evolution with the impact parameter dependence.
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I. INTRODUCTION

The high energy limit in quantum chromodynamics is
one of the most intriguing problems in strong interaction
physics. Since the Large Hadron Collider has recently
opened a new kinematic regime, it is of vital importance
to understand how one can calculate the cross section at
high energies from basic principles in QCD. The Balitsky-
Fadin-Kuraev-Lipatov (BFKL) equation obtained in the
Regge limit of QCD [1–4] predicted fast growth of
the cross section with the energy, due to the exchange of
the hard Pomeron. This behavior is, however, known to
violate the unitarity bound of the scattering amplitude.
Higher order corrections to the BFKL [5–13] tame the
growth, but other terms due to the parton recombination
[14] and multiple Pomeron exchanges have to be taken into
account in order to guarantee the unitarity of the scattering
amplitudes.

The Balitsky-Kovchegov equation was derived in
[15,16] in the dipole approach [17] to high energy scatter-
ing in QCD and independently in the formalism for the
operator product expansion at high energy as an evolution
of the Wilson line correlators with respect to the rapidity
[18–22]. This equation also emerges in the color glass
condensate formalism as a limit of the Jalilian-Marian–
Iancu–McLerran–Weigert–Leonidov–Kovner functional
equation [23–27]; see also [28,29]. The Balitsky-
Kovchegov (BK) equation was shown to agree with the
BFKL evolution with the triple Pomeron vertex [30,31]
when the latter one is restricted to the Möbius space of
functions [32] and in the large Nc limit.

Numerous analyses of the BK equation which were
performed up to date—see, for example, [33–39]—focused
on finding the solutions to this equation under the assump-
tion that the amplitude does not depend on the impact

parameter but only on the dipole size and rapidity. This
assumption makes the equation relatively easy to solve (at
least numerically). Usually one is justifying this approxi-
mation by considering the scattering off a very large target,
therefore bringing a large scale into the problem. This
results in breaking the symmetry between the infrared
and ultraviolet regions even in the case of the fixed cou-
pling by generating a saturation scale which acts as a
boundary and suppresses the diffusion into the infrared
region [35,40,41]. In the momentum space this approxi-
mation is equivalent to taking the forward limit in the
evolution with the simplifying approximation on the triple
Pomeron vertex resulting in zero momentum transfer
through the vertex in both Reggeized gluon pairs [42].
On the other hand, the kernel of the equation has the
property that it is invariant with respect to the translations,
dilatations, rotations, and inversions, which are Möbius
transformations. Therefore the solutions to the nonlinear
equation should also reflect these symmetry properties, at
least in the leading logarithmic, fixed coupling limit. On a
deeper level it is related to the Möbius invariance of the
2 ! 4 Reggeized gluon transition vertex which was dem-
onstrated explicitly [43]. In relation to the experiment,
detailed knowledge about the dynamics and expansion in
the impact parameter is of the utmost importance for the
qualitative and quantitative description of the multiparticle
production in hadronic collisions.
In this paper we analyze this equation numerically in-

cluding the full impact parameter dependence. This is an
extension of the previous work [44] where this type of
analysis was performed; see also [45]. We significantly
improve over Ref. [44] the numerical accuracy and tech-
nique which enables us to evolve the equation much faster
and to very high values of rapidity, of the order of �50. In
this way one can more accurately extract the asymptotic
values of different exponents which govern the growth of
the saturation scales in this equation. We confirm the
results of [44] on the dependence of the scattering
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amplitude as a function of dipole size and demonstrate that
it vanishes for large dipole sizes. We also find the fast
diffusion of the solution in impact parameter space and
recover the power tails. The saturation scale for both small
and large dipoles is extracted, and the dependencies on the
impact parameter and rapidity are found. The results of the
solutions to the equation in the leading logarithmic ap-
proximation (LL) are compared with the modified version
of the equation proposed in [46]. The modified version
contains the cutoffs in rapidity which originate from kine-
matical constraints. These cutoffs contain kinematical con-
straints in an only approximate way, but we know from the
analysis of forward BFKL in momentum space that these
constraints are known to reduce the speed of the evolution
in a significant way [47]. (For a related analysis on impact
parameter dependence in the nonlinear equation and the
energy conservation see [48]. The BK without impact
parameter dependence and with rapidity cutoffs was also
analyzed in [35,49].) We also include the running coupling
in our analysis and find that the effect of the running
coupling is quite different than in the case without the
impact parameter. In this paper we consider a prescription
for the running coupling with the external dipole as the
scale as well as the prescription derived in [50]. The impact
parameter dependent equation is extremely sensitive to the
large dipole sizes, and this is the region where the running
coupling is very large and needs to be regularized by some
other mechanism.

In this analysis we did not attempt to regularize the large
dipole size region in any way. It is at present totally unclear
how confinement effects should be consistently included in
the dipole formalism. Of course, for any phenomenological
applications such a cut should be included, perhaps simi-
larly to what was done in [51]. As we were interested in
general properties of the evolution we did not attempt here
to introduce additional cuts on large dipole sizes (via
masses), which would interfere with the specific dynamics
of the evolution.

The paper is organized in the following way. In Sec. II
we briefly present the BK equation and discuss the modi-
fied version which includes the cutoffs in rapidity. In
Sec. III we describe the numerical methods of finding the
solution. In Sec. IV we first show the results of the solution
without the impact parameter and extract the saturation
scale for both the LL and the modified equation. In Sec. V
we present the solutions with the impact parameter. We
discuss the form of the amplitude as a function of the
dipole size, extract the saturation scales (for both small
and large dipoles), and discuss the form of the impact
parameter profile which emerges in the evolution. We
present the solutions both in the case of the LL and for
the modified kernel. Using the representation in terms of
the conformal eigenfunctions we discuss the origins of
different peaks in the amplitude as well as present esti-
mates for the rapidity dependence of the small and large

dipole saturation scales and the expansion radius in the
impact parameter. We also present the estimate of the cross
section of the black disk radius and its dependence on the
rapidity. In Sec. VI we discuss the results with the running
coupling, both for the case without and with impact pa-
rameter dependence and for two different prescriptions of
the running coupling. Finally, in Sec. VII we state our
conclusions.

II. THE BK KERNEL IN LO AND BEYOND

In the leading logarithmic approximation in ln1=x, the
nonlinear Balitsky-Kovchegov [15,16,18–22] evolution
equation derived in the dipole picture [17] has the follow-
ing form:

@Nx0x1

@Y
¼ ��s

Z d2x2

2�

ðx0 � x1Þ2
ðx0 � x2Þ2ðx1 � x2Þ2

� ½Nx0x2
þ Nx1x2

� Nx0x1
� Nx0x2

Nx1x2
�; (1)

where ��s ¼ �sNc=� is the strong coupling constant. Here,
Nx0x1

� Nðx0;x1; YÞ is the dipole-nucleus scattering am-

plitude, and x0 and x1 are two-dimensional vectors of the
transverse position of the dipole ends. Alternatively, one
can introduce the vector denoting the dipole size r01 ¼
x0 � x1, and the impact parameter b01 ¼ ðx0 þ x1Þ=2.
Thus in general, the amplitude depends on the 4 degrees
of freedom in transverse space and rapidity, Y ¼ lnð1=xÞ,
playing the role of the evolution parameter. The transverse
part of the LL kernel

dz

z

d2x2

2�

x201
x202x

2
12

is conformally (Möbius) invariant in 2 dimensions. Here,
we introduced a more compact notation denoting xij �
xi � xj, xij ¼ jxijj, and z is the longitudinal momentum

fraction so that rapidity is y ¼ ln1=z.
To obtain the solution of this equation, one has to specify

an initial condition at Y ¼ Y0: N
ð0Þ
x0x1

¼Nð0Þðx0;x1;Y¼Y0Þ.
The amplitude Nx0x1

in (1) is given by the following

correlator:

Nx0x1 ¼
1

Nc

Trh1�Uyðx0ÞUðx1Þi; (2)

where the trace is done in the color space, and the eikonal
factorU is defined as the path ordered exponential with the
SUðNÞ gauge fields (in the gauge A�

a ¼ 0):

UðxÞ ¼ P exp

�
i
Z

dx�TaAþ
a ðx�;xÞ

�
: (3)

The averaging h. . .i in (2) is performed over an ensemble of
classical gauge fields.
The next-to-leading logarithmic corrections to the BK

equation have been computed in [50,52]. It would be
instructive to perform the analysis of the BK equation
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with the full next-to-leading logarithmic approximation.
Because of the complicated form of this kernel we are not
trying to solve it here. What we consider instead is the
equation with two important modifications. The first one is
the running coupling correction, which we analyze in
Sec. VI of this paper. The second one is the subleading
correction coming from the kinematical corrections, in-
cluded in the form of the modified kernel proposed in [46].

The soft gluon approximation performed in [17] was
crucial in order to factorize the branching kernel for the
gluon emissions. In [46] a modified version of the kernel
was proposed, which includes part of the subleading cor-
rections coming from the kinematics. By taking into ac-
count an improvement in the kernel in which the value of
the energy denominator is obtained from the invariant mass
of the produced gluon pair, this leads to a new color dipole
kernel which has the form

dz

z
z
d2x2

x201

�
K2

1

�
x02
x01

ffiffiffi
z

p �
þ K2

1

�
x12
x01

ffiffiffi
z

p �

� 2K1

�
x02
x01

ffiffiffi
z

p �
K1

�
x12
x01

ffiffiffi
z

p �
x02 � x12

x02x12

�
; (4)

where K1 is the modified Bessel function. The modified
kernel becomes equivalent to the leading logarithmic ker-
nel for zx202 � x201 and zx

2
21 � x201 but differs significantly

otherwise. To be precise, the production of larger dipole
sizes is exponentially suppressed above the cutoff size
which depends on the longitudinal momentum fraction of
the soft gluon. The modified kernel introduces corrections
at all orders beyond the leading logarithmic approxima-
tion. The suppression of the large dipole emission implies
also a suppression of the diffusion in the impact parameter.
An alert reader might notice that the above modified kernel
is not conformally invariant. This is due to the fact that in
[46] only part of the kinematical corrections were taken
into account resulting in kernel (4). In general there should
be also a cutoff on small dipoles, similarly to what was
done in [53], which would yield conformally invariant
kernel. We postpone the derivation and numerical analysis
of such a kernel to a later work.

In what follows we will analyze both forms of the
equations numerically, taking into account also running
coupling corrections. We shall demonstrate that the sensi-
tivity to the subleading corrections strongly depends on the
type of approximation one is working on, i.e. whether the
solutions are impact parameter dependent or not.

III. NUMERICAL METHODS

The BK equation was solved numerically by discretizing
the scattering amplitude in terms of variables
ðlog10r; log10b; cos�Þ, where � is the angle between impact
parameter b and dipole size r. We have assumed that the
solution is rotationally invariant; this condition removes an
additional angle from the equation which reflects the over-

all orientation of the dipole. To be precise, in the dipole-
dipole scattering case this second angle reflects the orien-
tation of one of the dipoles in two-dimensional transverse
space. As we will see later, this simplifying assumption
leads to slight violations of the conformal symmetry of the
solution. The solution with full angular dependence will be
discussed elsewhere. The amplitude Nðr; b; cos�Þ was
placed on a grid with dimensions 200r � 200b � 20�. It
was found that the number of points in the grid was less
important than the absolute limits on the grid and the
number of integration regions. The limits of the grid
were 10�8 ! 108 in r and b. We note that the grid limits
of r and b cannot not be set independently due to the
correlations in dipole size and impact parameter. The

initial condition Nð0Þ at rapidity Y ¼ 0 was chosen as in
Ref. [44] to be of the Glauber-Mueller [54,55] form

Nð0Þ ¼ 1� e�10r2e�ðb2=2Þ
: (5)

This is the form of the scattering amplitude at the initial
rapidity. We note that in this analysis the constants are
arbitrary and have not been fit to any experimental data.
The initial condition (5) has the property that it reaches
unity when the dipole size is large and it goes to zero for
large values of the impact parameter by the steeply falling
profile in b. The amplitude is evolved in small steps
�Y ¼ 0:2 as it was found that the smaller spacings had
no significant effect on the accuracy of the evolution of the
amplitude. Below, we denote integration over x2 simply byR
x2
and this is understood to absorb the kernel as well as a

measure d2x2 for ease of notation in this section. The basis
of the method for the solution is the same as utilized in
Ref. [44] and we briefly outline it below. After one step of
evolution from Y0 to Y ¼ Y0 þ �Y Eq. (1) becomes

Nx0x1ðY0 þ �YÞ ¼ Nx0x1ðY0Þ þ
Z
x2

Z Y0þ�Y

Y0

½Nx0x2 þ Nx1x2

� Nx0x1 � Nx0x2Nx1x2�: (6)

The lowest approximation for this equation is

Nð1Þ
x0x1 ¼Nð0Þ

x0x1 þ�Y
Z
x2

½Nð0Þ
x0x2 þNð0Þ

x1x2 �Nð0Þ
x0x1 �Nð0Þ

x0x2N
ð0Þ
x1x2�:

(7)

The superscript 1 denotes the first approximation while
the superscript 0 denotes the initial condition. The accu-
racy of the equation is measured by the relative difference

of the approximation defined by jðNð1Þ
xixj � Nð0Þ

xixjÞ=Nð0Þ
xixj j. If

this is less than some required accuracy, then the value of

Nð1Þ
xixj is taken as the scattering amplitude at Y ¼ Y0 þ �Y.

In our case the relative accuracy was set to equal 0.02.
If the accuracy condition is not satisfied, then we can
find a second approximation by utilizing linear interpola-

tion Nð2Þ
xixj ¼

YðNð1Þ
xixj

�Nð0Þ
xixj

Þ
�Y þ Nð0Þ

xixj . By using this linear
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interpolation in the right-hand side of (6) the expression for
the next iteration can be attained:

Nð2Þ
x0x1 ¼Nð0Þ

x0x1 þ
�Y

2

Z
x2

½Nð0Þ
x0x2 þNð0Þ

x1x2 �Nð0Þ
x0x1 �Nð0Þ

x0x2N
ð0Þ
x1x2�

þ�Y

2

Z
x2

½Nð1Þ
x0x2 þNð1Þ

x1x2 �Nð1Þ
x0x1 �Nð1Þ

x0x2N
ð1Þ
x1x2�

þ�Y

6

Z
x2

½Nð1Þ
x0x2 �Nð0Þ

x0x2�½Nð1Þ
x1x2 �Nð0Þ

x1x2�: (8)

If the accuracy condition mentioned earlier is still not

satisfied, this can be repeated by utilizing NðnÞ ¼
YðNðn�1Þ�Nð0ÞÞ

�Y þ Nð0Þ. The number of iterations required to

reach this level of accuracy varies on how close one is to
the initial condition and the exact form of the equation
(kernel used, running coupling form, etc.). Near the initial
conditions it could take upwards of ten iterations, but far
away from the initial condition two or three iterations are
usually sufficient to obtain the accuracy assumed. With this
in mind an algorithm was written so that the iteration
number was not fixed but only continued until the desired
accuracy was reached. Once the amplitude has been found

for Y ¼ Y0 þ �Y, that takes the place of Nð0Þ in the nu-
merics and the procedure is repeated to find the amplitude
at Y ¼ Y0 þ 2�Y. In this way the amplitude is evolved
numerically to higher rapidities.

As wasmentioned earlier the number of points in the grid
was not as important as the number of integration regions
the program executes to get a good solution. For our limits it
was found that breaking the range into at least 20 integra-
tions was needed. This meant there would be an incredible
number of function evaluations and in order to reach any
useful rapidity on a standard dual-core machine would take
upwards of a month. The program was parallelized using
the Message Passing Interface library so it could be used
with computer clusters to run the program. Each run took
approximately three days to run on 32 linked 3 GHz pro-
cessors and generated a total of 5 gigabytes of data.

IV. RESULTS WITHOUT IMPACT PARAMETER
DEPENDENCE

In this section we briefly present the results of the
numerical solution without impact parameter dependence.
This was of course done in many previous works
[33–35,56], but we repeat this analysis below for several
reasons. First of all, we wanted to have a benchmark for the
comparison of the solutions. Second, wewanted to perform
the analysis of the modified BK equation with the Bessel
function kernel, a computation not performed earlier in the
literature.

The BK equation can be evaluated without the impact
parameter or angular dependence, and this greatly reduces
the time needed to evolve the scattering amplitude. The
initial condition used in this case is taken to be

Nð0Þ ¼ 1� e�r2 ; (9)

without an impact parameter profile. This form goes to
unity as the dipole size gets large and has a narrow tran-
sition region from 0 to 1. The absolute limits on the dipole
size here are 10�10 ! 1010 and the number of points in the
grid is 5000. These results are for fixed coupling ��s ¼ 0:1;
the case with running coupling is considered in Sec. VI.
The solid lines shown in the left graph in Fig. 1 corre-

spond to a set of scattering amplitudes found from the LO
BK equation at constant rapidity. The result has the well
known form of a traveling wave with rapidity playing the
role of the time in the evolution. As rapidity increases the
front moves towards the small values of dipoles.
Next, we performed the evolution of the modified equa-

tion with the Bessel function kernel, and the solutions are
illustrated by the dashed lines in Fig. 1. The normalization
of the amplitude in the dilute regime is much smaller than
the LO case. This is to be expected as the K1 functions fall
off faster than the powerlike LO kernel. The speed of this
evolution can be quantified by the evaluation of the satu-
ration scale. The equation to define the saturation scale is

hNðr ¼ 1=Qs; YÞi ¼ �; (10)

where � is a constant between 0 and 1. It determines the
point at which nonlinearities begin to become important in
the evolution equation. In all the analysis in this paper
� ¼ 0:5 was chosen. Based on the results of [40,57] we
expect the saturation scale to have the following form:

Q2
sðYÞ ¼ Q2

0 exp

�
��s

�
�ð�cÞ
1� �c

Y � 3

2ð1� �cÞ lnY
��

; (11)

where �ð�Þ is the BFKL kernel eigenvalue and �c ¼ 0:62.

This gives �ð�cÞ
1��c

¼ 4:88 and 3
2ð1��cÞ ¼ 2:39 for the LO ker-

nel. The second term in the exponent is a correction of less
than 10% compared to the first term for the rapidities
which we are considering so we take the saturation scale
to be parameterized in this paper by

Q2
s ¼ Q2

0e
�s ��sY; (12)

where �s is extracted from the numerical solution andQ0 is
a normalization term. The extracted value for the saturation
exponent is �s ¼ 4:4 for both the LO and Bessel function
kernels. The exponent was extracted for both ��s ¼ 0:1 and
��s ¼ 0:2 and it was found to be the same. The values of �s

are evaluated in the region of rapidities where the exponent
is constant, i.e. nearly asymptotic. We observed that for the
lower rapidities near the initial condition the exponent
slowly increases and at very large rapidities the exponent
begins to decrease. The latter effect is due to the absolute
limits of the dipole size (or the box in which the equation is
being solved). This strongly affects the solution, and one of
the effects is to slow down the evolution. This effect can be
clearly seen in Fig. 1, where the three regimes are distinct.
The first regime is where there are a lot of preasymptotic
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effects, there is strong dependence on the initial condition,
and the speed of evolution increases (approximately be-
tween 0 and 34 units of rapidity), the regime where evolu-
tion is a constant (approximately between 34 and 47 units
of rapidity), and finally the regime where box size limits
growth (rapidity 47+). These values clearly shift with box
size and they also change depending on the value of ��s and
to a lesser extent which kernel is used.

The extracted value of the exponent of the saturation
scale is consistent with the theoretical predictions of
[40,57]. What is, however, surprising at first is the fact
that the asymptotic value of �s is nearly the same for the
modified version of the equation. This is also evident by
investigating the right plot in Fig. 1, where the two satu-
ration scales grow with rapidity in almost exactly the same
way. This effect can be easily understood by inspecting the
form of the modified kernel:

Q2
01

�
K2

1ðQ01x02Þ þ K2
1ðQ01x12Þ � 2K1ðQ01x02ÞK1ðQ01x12Þ

� x02 � x12
jx02jjx12j

�
: (13)

Here Q01 ¼ ffiffiffi
z

p
=x01 and z ¼ e�y. When Q01 is small

and the arguments of the Bessel functions are small, this
expression reduces to the LO kernel. At large rapidities
where the exponent �s is evaluated, z is small and thusQ01

is also small. The difference between the modified kernel
and the LO kernel comes from the regime where the dipole
sizes x12 and x02 are large, that is, when

x12; x02 � 1

Q01

:

In this large dipole regime (and for large rapidities), the
scattering amplitude is close to unity, and the right-hand
side of the BK equation goes to zero so there is no con-
tribution from that regime. This means that the effect of the
infrared modification of the kernel of the type (13) is
negligible when the nonlinear evolution is considered.
The modified kernel (13) was shown to reproduce the
double-logarithmic terms in the exact next-to-leading loga-
rithmic calculation. These types of terms are known to
come from the scale choice in the amplitude [58–61].
Two comments are in order here. The first observation is

that, as we shall see later, the presence of the impact
parameter changes the dynamics significantly, and in this
case the dependence on the form of the kernel is more
pronounced. In particular, in this case we do find the
differences in the evolution speed due to the cutoffs in
the infrared. The second comment is that, in order to
address the question of the scale choices, one needs to
take into account the corrections beyond the BK equation.
The BK equation is highly asymmetric with respect to the
target and projectile and therefore cannot address the prob-
lems of all the scale choices. The corrections would nec-
essarily have to include the Pomeron loops in order to
make the evolution symmetric with respect to the target
and projectile. Such a formulation has been implemented
in a Monte Carlo approach [51,53,62,63] with Pomeron
loops effectively taken via so-called dipole swing and with
cutoffs in both the infrared and ultraviolet regions.
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FIG. 1. Left: Comparison between the LO kernel (solid lines) and the kernel with Bessel functions, (4) (dashed lines), at constant
rapidities. The solid line at the far right is the initial condition for both cases, and each line to the left represents an evolution in ten
units of rapidity to a maximum of Y ¼ 40. Right: Plot of the logarithm of the saturation scale as a function of rapidity. The solid line
represents the evaluation with the LO kernel, and the dashed line represents the solution with the Bessel kernel. The slope of the curve
gives �s, and the three regimes of evolution can be seen. This calculation was done for the fixed coupling case and without the impact
parameter.
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V. RESULTS WITH IMPACT PARAMETER
DEPENDENCE

A. Dependence on the dipole size

In this section we discuss the results which include the
impact parameter dependence as well as the angular de-
pendence between the dipole sizes and the impact parame-
ter orientation. Let us first investigate the dependence of
the scattering amplitude on the dipole size with the fixed
impact parameter value. Figure 2 shows the case of the LO
simulation with ��s ¼ 0:1. The scattering amplitude at
small dipole sizes evolves in a similar manner as in the
case without the impact parameter.

At large dipole sizes the situation is drastically changed
with respect to the translationally invariant case. Here, we
observe that the amplitude drops down from the initial
distribution and forms a second evolution front. This
drop is very rapid compared to the expansion evolution
of the small dipole size regime or the large dipole size
regime at higher rapidities. The evolution of the front at
large dipole sizes can be best seen in Fig. 2(b), where the
steps in rapidity are greater. As discussed in [44] there is a
clear physical reason for this effect. For a large dipole, its
end points are in the region where there is no gauge field. In
this situation the gauge field correlator

Nðx; yÞ ¼ 1

Nc

Trh1�UyðxÞUðyÞi (14)

vanishes becauseUðxÞ ’ UðyÞ ’ 1. In this case the dipole is
larger than any of the other scales in the problem, including
the impact parameter of the collision. In other words, this
situation corresponds to the setup of very large dipole
scattering on a localized target, and in this case the dipole

misses the target, resulting in the vanishing scattering am-
plitude. This effect is not present in the case where impact
parameter dependence is neglected simply because this
approximate case corresponds to the infinitely large target.
The fact that the amplitude drops for large dipole sizes is

inherently related to the finite extension of the interaction
region. This effect is thus tied to the impact parameter
dependence of the scattering amplitude (see, for example,
Fig. 7 in [44] and discussion thereabout). In the perturba-
tive evolution the large dipole sizes are still accessible at
sufficiently large rapidities and hence lead to the genera-
tion of the power tails in impact parameter space. In the
realistic case of confining QCD, one would expect the large
dipole sizes to be cut off by the confinement scale. The
amplitude for large dipole sizes would therefore be set to
zero, and it is expected that the resulting impact parameter
expansion will be significantly slowed down and the func-
tional dependence on the rapidity changed from powerlike
to exponential (or Gaussian depending on the details of the
cutoff). The simulation of the case with the massive kernel
is currently under investigation.
It is interesting to investigate the dipole size dependence

of the amplitude at large values of the impact parameter as
in Fig. 3. There the initial condition sets the amplitude to
zero. The evolution quickly changes this value, and a
unique feature of the solution develops. Namely, a peak
is formed with the center at the dipole size value which is
exactly twice the impact parameter value. The peak grows
until saturation is reached and the evolution of the fronts
proceeds to the infrared and ultraviolet regions. The dis-
cussion about the origin of peaks is given in Sec. VD.
We have repeated this analysis for the case of the modi-

fied kernel. As can be seen in Fig. 4(a) the evolution in the
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FIG. 2. Graphs of the scattering amplitude Nðx; b; �; YÞ at various constant rapidities for the calculation with impact parameter
dependence. Left: The individual lines correspond to the rapidity intervals �Y ¼ 1:0 up to rapidity of Y ¼ 10. Right: The individual
lines correspond to the rapidity intervals of �Y ¼ 10 and the maximal rapidity is Y ¼ 50. The dotted line represents the initial
condition which is the same in both graphs. The impact parameter and angle are fixed for both graphs at b ¼ 1:0 and cosð�Þ ¼ 0.
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small dipole regime is now quite different from the LO
kernel. The evolution is significantly slower in this regime
for the Bessel function kernel. Interestingly, the evolution
in the large dipole region is slowed too but not as much as
for small dipoles. This is best illustrated in Fig. 4(b), where
the evolution has been performed to large rapidities. The
larger influence of the cutoff from the Bessel function in
the impact parameter case is the result of the fact that it is
sensitive to the region of large dipole sizes where the
amplitude is not saturated. On the other hand, in the local

case the infrared region is completely cut off by the satu-
ration scale, and therefore any cutoffs in this regime do not
change significantly the speed of the evolution although
they have significant impact on the normalization of the
saturation scale. One has to note that in the linear case such
cuts are important both in the forward and in the non-
forward cases. However, the forward (which is equivalent
to the local case) linear BFKL evolution is well defined due
to the conservation of the number of gluons in the t
channel, when viewed in the momentum space. On the
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FIG. 3. Graphs of the scattering amplitude at different constant rapidities for two different impact parameter values. The dotted line
represents the initial condition which is the same in both graphs; however. the initial condition is near zero on the second graph with
cosð�Þ ¼ 0. Each line past the initial condition represents five rapidity units to a maximum of 50.
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FIG. 4. Graphs of the scattering amplitude as a function of the dipole size at various constant rapidities for fixed impact parameter
b ¼ 1:0 and angle cosð�Þ ¼ 0. The solid lines are for the LO kernel, and the dashed lines correspond to the Bessel kernel. The initial
distribution is equivalent for both kernels and is represented by the dotted-dashed line. On the left graph each line represents a change
in two units of rapidity to a maximum of ten, and on the right graph each line represents a change in ten units of rapidity to a maximum
of 50.
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other hand, in the nonlinear case the triple Pomeron vertex
allows for a changing number of gluons in the t channel
and therefore the evolution necessarily involves off-
forward gluon Green’s functions. In this sense, the local
case in the nonlinear evolution is an approximation, and
therefore in general one cannot expect that the next-to-
leading corrections will have the same impact. An example
is the situation when the strong coupling is running, as the
impact parameter dependent solution to BK is sensitive to
the details of the regularization of the running coupling
whereas the local nonlinear evolution is generally insensi-
tive. We note, however, that in order to firmly establish the
role of the next-to-leading-order corrections of the BK one
needs to solve the exact equation at this order.

B. Impact parameter profile of the scattering amplitude

Dependence of the dipole amplitude on the impact pa-
rameter is illustrated in Fig. 5. The leftmost dashed-dotted
line is the initial condition Eq. (5), which has a very steep
profile in the impact parameter. The evolution of the scat-
tering amplitude towards large values of the impact pa-
rameter follows the diffusion of large dipoles. The speed of
this evolution can be extracted numerically and is deter-
mined by the expansion of the black disk radius. We will
discuss this quantity in detail in the next section.

Evolution in the impact parameter shows a marked
change in profile from the steeply falling exponential in
the initial condition. This is better illustrated in the right
plot in Fig. 5, where we replot the impact parameter using
the logarithmic scale in the scattering amplitude. The
profile changes from the exponential to a power tail at
small scattering amplitudes. This can be seen as an
‘‘ankle’’ in the curves of constant rapidity. The origin of

this powerlike tail was discussed in detail in Ref. [44].
These power tails are also present in the modified kernel. In
the latter case, however, there is a slower evolution of the
profile towards the large values of impact parameters.
There also exists a nontrivial angular dependence which
is most prominent in the cases of large dipole size or
impact parameter but for very specific configurations. In
the case when the dipole size is much smaller or much
larger than the impact parameter, the solution does not
depend much on the spatial orientation of the dipoles. On
the other hand, for the case when the dipole size is twice as
large as the impact parameter, there exists strong angular
dependence. This angle � is defined as the angle between
the dipole and the impact parameter, as illustrated in
Fig. 6. The effects of this angle are best illustrated in
Figs. 7(a), 7(b), 8(a), and 8(b). In these figures the scatter-
ing amplitude is plotted as a function of both dipole size
and impact parameter for different choices of the angle �.
The amplitude has a peak when at r ¼ 2b for both orien-
tations as is shown in both plots in Fig. 7. Note, however,
that the peak is distinctively sharper for the ‘‘aligned’’
dipole configurations, when cos� ¼ 1:0 or �1:0, than for
the ‘‘perpendicular’’ configuration. This is also illustrated
in Fig. 9, where the dependence on the angle is shown. For
values that are near the r ¼ 2b point there are enhance-
ments at cos� ¼ 1:0;�1:0 and this is present in both
kernels. These effects can be seen in both plots in terms
of dipole size and impact parameter. It is interesting to note
that the peak is present in the case of scattering amplitude
versus dipole size even when cos� ¼ 0:0. On the other
hand, such structure is absent for this configuration in the
impact parameter profile with a fixed dipole size. It is also
evident in Fig. 8 that the amplitude is flat in the impact
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FIG. 5. Graph of the scattering amplitude as a function of the impact parameter for fixed dipole size r ¼ 1:0. The solution with the
case of the LO kernel is plotted as a solid line and with the modified kernel (13) as a dotted line. The dotted-dashed line on the left is
the initial condition. Each line thereafter represents an increase in rapidity of ten units to a maximum of 50. Right plot: The same but
for the dipole size r ¼ 0:11 and in logarithmic scale for the amplitude.
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parameter when the dipole size is much larger than b. We
will demonstrate that all these effects can be easily under-
stood from a conformal representation of the amplitude in
Sec. VD.

C. Saturation scales

The saturation scale in the impact parameter dependent
scenario is again defined by the following equation:

hNðr ¼ 1=Qs; b; �; YÞi ¼ �; (15)

where � is a constant. In all the following analysis we have
set � ¼ 0:5. It is important to note that in this case the form
of the amplitude admits two solutions to the above equa-
tion. As is evident from Fig. 2 one solution for the satura-
tion scale is for a larger dipole size and one for a smaller

dipole size. The saturation scale Qs always refers to the
solution where the dipole size is smaller. We have found
that the slope in rapidity of the saturation scale Qs in-
creases for low values of rapidities and then reaches an
approximately constant value, and for ultrahigh rapidities
it starts to decrease. The first effect is caused by the
preasymptotic contributions; the latter effect is caused by
the finite size of the grid. We have found that the effects of
the grid can be neglected below the rapidities of order�60.
The saturation scale as a function of the rapidity is shown
in the left plot in Fig. 10. The solid line shows the calcu-
lation in the case of the LO kernel and the dashed line is for
the Bessel kernel. It is clear that the dependence on the
rapidity is exponential as expected for the computation
with a fixed value of the coupling. The numerical value
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FIG. 7. Graphs of the scattering amplitude versus the dipole size for fixed impact parameter b ¼ 100:0 and various rapidities and
angles. The initial condition is the same in all graphs and it is near zero; each curve represents an increase in ten units of rapidity to a
maximum of 50. The LO kernel (solid lines) and the Bessel kernel (dotted lines) are plotted on the same graph.

FIG. 6. Two configurations, aligned and perpendicular, of the dipole orientation with respect to the impact parameter.
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of the exponent governing the rapidity dependence of
the saturation scale extracted in the LO kernel case is
�s ¼ 4:4; see (16). The value of the exponent extracted
for the evolution with the Bessel kernel was found to be
�s ¼ 3:6. Clearly, the subleading effects of the modified
kernel cannot be neglected here, which has to be contrasted
with the case without the impact parameter.

In the case when the impact parameter is much larger
than the inverse of the saturation scale the exponent in

rapidity is independent of the impact parameter value. This
means that the saturation scale has a factorized form:

Q2
sðY; bÞ ¼ Q2

0 expð ��s�sYÞSðbÞ: (16)

This is demonstrated in Fig. 10, where the small dipole
saturation scale is shown as a function of the impact
parameter for two different values of rapidity. The power
tail 1=b4 is clearly prominent. There is a significant
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FIG. 9. Graphs of the scattering amplitude versus the angle. Both have the LO kernel (solid line) and the Bessel kernel (dashed line)
graphed on them. The first graph shows no angular dependence, and the second shows a marked increase at values of
cosð�Þ ¼ 1:0;�1:0 which accounts for the difference in peaks in Figs. 7 and 8.
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FIG. 8. Graphs of the scattering amplitude versus the dipole impact parameter for constant dipole size r ¼ 100:0 and various
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to a maximum of 50.
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difference between the saturation scale from the Bessel
function kernel and the LO kernel.

The second solution of Eq. (15), which shall be called
QsLðY; bÞ, gives the saturation scale at a large dipole size.
As mentioned before, the fact that the amplitude expands
very fast towards large dipole sizes is due to the fact that the
calculation is based on the lowest order of the perturbation
theory. In reality, the behavior of the amplitude in this
region when r� 1=�QCD is going to be heavily modified

by the nonperturbative effects of confinement. Therefore
one has to regard the large QsL as more of an academic
interest rather than the quantity of physical meaning.

Nevertheless, the same analysis that was performed on
Qs can be performed on QsL with the parameterization of
this saturation scale taken to be

Q2
sL ¼ Q2

0Le
��sL ��sY; (17)

where once again Q0L is a normalization term and the
minus sign in the exponent is because the evolution is
now moving towards larger dipole sizes.

The extracted value for the LO kernel is �sL ¼ 6:0 and
for the Bessel function kernel �sL ¼ 5:6. The difference
between these two exponents is now about 7%, and it can
be seen in Fig. 11 that these curves are much closer than in
Fig. 10.

The reason for these effects can be understood by again
inspecting the form of the Bessel kernel

Q2
01

�
K2

1ðQ01x02Þ þ K2
1ðQ01x12Þ � 2K1ðQ01x02ÞK1ðQ01x12Þ

� x02 � x12
jx02jjx12j

�
: (18)

When x01 is small then Q01 is large and the cutoff is on
dipoles such that x02 > 1=Q01 is very large. This means
that unless x02 is very large (which would also correspond
to large x12) then the modified kernel is very close the LO
kernel. It is this limitation of the phase space of the
modified kernel that causes the dipole saturation scale for
large dipoles to have a rather modest difference between
the Bessel and LO cases. At this point it is worth noting
that the Bessel kernel does not exhaust all the kinematical
effects. To be more precise, we would expect that the
kinematical cuts are resulting in the kernel which is also
conformally invariant. This will give cuts on both small
and large dipole sizes and further reduce the evolution
speed.
One can also define from (15) a scale which corresponds

to the extension in impact parameter space. This scale is
the radius of the black disk. This can be done by solving
this equation for b rather than for the dipole size.
We therefore define the black disk radius in impact

parameter Bs by solving the equation

hNðr; b ¼ Bs; �Þi ¼ �; (19)

with respect to b and where once again � ¼ 0:5 is chosen.
We assume the exponential form for the behavior of the
impact parameter radius as a function of rapidity:

B2
s ¼ B2

s0e
�Bs ��sY: (20)

Here Bs0 is a normalization term and �Bs is extracted
from the numerical solution. We have found for the LO
kernel �Bs ¼ 2:6 and for the modified kernel �Bs ¼ 2:2.
This is approximately half of the �s in the case of the LO
kernel. As argued before [44,64] this is due to the fact that
the amplitude depends on one variable, which in the case of
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FIG. 10. Left: Plot of the saturation scale as a function of rapidity. The solid line corresponds to the LO simulation, and the dashed
line is the saturation scale of the Bessel kernel. The impact parameter is fixed at b ¼ 1:0. Right: The dependence of the saturation scale
on the impact parameter for two different values of rapidity. Solid line: the LO kernel; dashed line: the Bessel kernel. Strong coupling
is fixed at ��s ¼ 0:1.
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the configuration b � r is proportional to r=b2. This im-
mediately means that the impact parameter dependence in
rapidity is twice slower than the one of the dipole size. The
computation for the Bessel function kernel shows that it
does not hold as closely in this case because in such a case
we do not have an exact conformal symmetry. These
properties will be explained in more detail in the next
section.

The simulations with different values of the fixed cou-
pling were also performed. The results are summarized in
Table I. It can be seen that the exponents for the LO kernel
do not depend on the value of the coupling, which is the
expected behavior as this is a fixed order calculation. On
the other hand, the exponents extracted for the modified
kernel significantly differ, exhibiting the nonlinearity in the
coupling constant. The exponents are further reduced with
respect to the LO values which is due to the resummation
of the subleading terms in ln1=x.

The dependence on the initial conditions was also tested.
As an alternative, we have taken the second initial condi-
tion to be modified by the cutoff in the large dipole size

Nð0Þ
ð2Þ ¼ Nð0Þ expð�r�Þ; (21)

where � ¼ 1=5. The exponents are also shown in Table I
[LO (2)]. We observe a modest variation of the exponents
with the change on the initial condition. The most signifi-
cant change is for the large dipole saturation scale. This is
to be expected as in this region the two initial conditions
differ significantly.
In Fig. 12(a) the amplitude as a function of the dipole

size and various impact parameters is shown. It is interest-
ing that for large dipole sizes the amplitude has the same
front for all the impact parameters. This is related to the
properties of the solutions stemming from the conformal
symmetry; see Sec. VD. In Fig. 12(b) we show the satu-
ration region for the solution with the impact parameter.
Unlike in the local case (without the impact parameter)
here the saturation region has a ‘‘V’’ shape in ðY; lnrÞ
space, which is moving towards higher rapidities and larger
dipole sizes as the impact parameter increases. Different
shaded areas correspond to three different impact parame-
ters. Again, the common front for the different values of b
is clear. The distortion at lower rapidities and for a small
impact parameter stems from the initial conditions.

D. Conformal representation and properties of
the amplitude

Most of the features observed in the numerical solutions
can be explained by using the conformal representation of
the solution for the scattering amplitude. In general the
representation can be shown to be of the form [4]

Fðr0; r;b;YÞ ¼
Z cþ1

c�i1
d!

2�i
expð!YÞFðr0; r;b;!Þ; (22)
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FIG. 11. Left: Plot of the saturation scale for a large dipole size as a function of rapidity. The solid line represents the result using the
LO kernel, and the dashed line represents the result using the Bessel kernel. The impact parameter is fixed at b ¼ 1:0. Right: Plot of the
black disk radius defined by Eq. (19) for the LO kernel (solid line) and the modified kernel (dashed line). The dipole size is fixed
at r ¼ 1:0.

TABLE I. Summary of extracted saturation exponents for so-
lutions with the impact parameter. (1) means Glauber-Mueller
initial conditions, and (2) means Glauber -Mueller with the
exponential cutoff on the large dipole sizes.

�s �sL �sB

LO kernel (1) ��s ¼ 0:1 4.4 6.0 2.6

LO kernel (2) ��s ¼ 0:1 4.4 5.8 2.6

Modified kernel ��s ¼ 0:1 3.6 5.8 2.2

LO kernel ��s ¼ 0:2 4.4 5.9 2.6

Modified kernel ��s ¼ 0:2 2.5 5.2 2.0
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with

Fðr0; r;b;!Þ ¼ Xþ1

n¼�1

Z 1

�1
d	

Z
d2w

�
	2 þ n2

4

�

� F ð	; n; �s;!Þ
½	2 þ ðn�1

2 Þ2�½	2 þ ðnþ1
2 Þ2�

� En;		
�
r0
2
� w;� r0

2
� w

�

� En;	

�
r

2
þ b� w;� r

2
þ b� w

�
; (23)

where r0 and r are the transverse sizes of two scattering
objects (for example, onia) and b is their relative impact
parameter.

The conformal eigenfunctions are defined as

En;	ð
10; 
20Þ ¼ ð�1Þn
�


12


10
20

�
h
�


	
12


	
10


	
20

� �h
; (24)

where complex notation for the two-dimensional vectors
ð
x; 
yÞ has been used:


 ¼ 
x þ i
y; 
	 ¼ 
x � i
y;

and where the conformal weights are

h ¼ 1� n

2
þ i	; �h ¼ 1� n

2
þ i	:

The function F ð	; n; �s;!Þ contains the details of the
dynamics. For the case of evolution with linear BFKL,
the form of it is well known:

F BFKLð	; n; �s;!Þ ¼ 1

!� �ðn; 	Þ ;

with

�ðn; 	Þ ¼ 2�ð1Þ ��

�
1þ jnj

2
þ i	

�
��

�
1þ jnj

2
� i	

�

being the LO BFKL kernel eigenvalue. In the case of
the nonlinear equation the exact form of the function
F ð	; n; �s;!Þ is unknown. The origins of the peaks in
the amplitude can be understood by analyzing the trans-
verse structure encoded in functions En;	. We fix r0 and
investigate the dependence on r from the transverse inte-
gral. We switch from the vector notation to the complex
notation for the arguments of the E functions. Using the
explicit expression (23) we obtain

Z
d2wEn;		

�
r0
2
�w;�r0

2
�w

�
En;	

�
r

2
þb�w;�r

2
þb�w

�

¼
Z
d2wEn;		

�
r0
2
�w;�r0

2
�w

�
ð�1Þn

�
�

r

ðbþ r
2�wÞðb� r

2�wÞ
�
h

�
�

r	

ðbþ r
2�wÞ	ðb� r

2�wÞ	
� �h
; (25)

where we switched to the complex notation for the argu-
ments. The biggest contribution comes from the region of
w ’ 0. For our purposes it is also enough to take n ¼ 0. In
this region the integrand has the approximate form

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106
0.0

0.2

0.4

0.6

0.8

1.0

cos(θ): 0.0 | Y : 30.0

Dipole Size

N
(y

)

b 
= 

1.
0

b 
= 

10
.9

b 
= 

10
0.

0
10-8 10-710-6 10-5 10-4 10-310-2 10-1 100 101 102 103 104 105 106 107 108
0

10

20

30

40

50

b = 1.0

b = 100

b = 10^4

Graph of Saturation Region

Dipole Size

Y
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NUMERICAL SOLUTION OF THE NONLINEAR EVOLUTION . . . PHYSICAL REVIEW D 83, 034015 (2011)

034015-13



En;		
�
r0
2
;� r0

2

�� jrj2
½b2 � ðr2Þ2�½ðb	Þ2 � ðr	2 Þ2�

�
1=2þi	

: (26)

Using b ¼ jbjei�b , r ¼ jrjei�r , and �� ¼ �r � �b we have
that

En;		
�
r0
2
;� r0

2

�

�
� jrj2
½jbj2 � e2i��ðjrj2 Þ2�½jbj2 � e�2i��ðjrj2 Þ2�

�
1=2þi	

: (27)

It is immediately clear that there will be angular depen-
dence for the b ’ r

2 case with the configurations of aligned

dipoles �� ¼ 0; � giving the largest contributions. In the
case of the perpendicular orientation of dipoles with re-
spect to the impact parameter � ¼ �=2;��=2, the expres-
sion reduces to

En;		
�
r0
2
;� r0

2

�� jrj
jbj2 þ ðjrj2 Þ2

�
1þ2i	

: (28)

This structure is responsible for the presence of the peak in
the amplitude in the case when b is fixed and r varied, and
the absence of the peak in the case when r is fixed and b
varied, for �� ¼ �=2;��=2. This corresponds to the
situations in the right-hand plots in Figs. 7 and 8,
correspondingly.

An expression for the saturation scale dependent on the
impact parameter can be derived using the method in [40].
To this aim one needs to take the Mellin representation for
the solution to the linear equation and apply the absorptive
boundary. The integral over the transverse variable can be
performed using the representation [4]

Z
d2
0E

n;	ð
10; 
20ÞEn;		ð
100; 
200Þ
¼ c1x

hx	 �hFðh; h; 2h; xÞFð �h; �h; 2 �h; x	Þ
þ c2x

1�hx	1� �hFð1� h; 1� h; 2� 2h; xÞ
� Fð1� �h; 1� �h; 2� 2 �h; x	Þ; (29)

where

x ¼ 
12
1020


110
220
(30)

is the anharmonic ratio and F are the hypergeometric
functions. To obtain the saturation scale we take n ¼ 0
and expand around x ’ 0. This simplifies the above ex-
pressions as in this limit Fðh; h; 2h; xÞ � 1 and the whole

dependence on x comes through factors xhx	 �h. In the case
when the impact parameter b is much larger than the dipole
sizes, b � r; r0, one has

jxj ’ rr0
b2

:

Putting everything together, the scattering amplitude in the
linear evolution case reduces to [65,66]

Fðr0; r;b;YÞ ¼ ��2
sr0r

b2

Z 1

�1
d	

2�

i	

½	2 þ 1
4�2

� exp

�
��s�ð�ÞY þ 2i	 ln

b2

r0r

�
: (31)

Here, we have taken into account the contribution from
only zero conformal spin. Using � ¼ 1=2þ i	 the above
expression can be recast into

Fðr0; r;b;YÞ ¼ ��2
s

Z ð1=2Þþi1

ð1=2Þ�i1
d�

2�
2ð�� 1=2Þ

� exp

�
��s�ð�ÞY � ð1� �Þ ln

�
b2

r0r

�
2
�
;

(32)

where the prefactor in (31) has been expanded around
	 ¼ 0. Taking the saddle point condition and the condition
that the exponent vanishes at the saddle point which is the
requirement on the saturation boundary one arrives at two
conditions for this line (noted by a subscript 0):

�� sY�
0ð�0Þ þ lnðb2=ðr0rÞÞ2 ¼ 0; (33)

�� sY�ð�0Þ � ð1� �0Þ lnðb2=ðr0rÞÞ2 ¼ 0: (34)

These equations can be solved to yield the saturation
scale but it was found that one can include further correc-
tions [40]. We can obtain these corrections by using the
solution to the saddle point equation to find �c and use this
to evaluate the prefactor. The resulting modified equations
are then

�� sY�
0ð�cÞ þ lnðb2=ðr0rÞÞ2 ¼ 0; (35)

�� sY�ð�cÞ � ð1� �cÞ lnðb2=ðr0rÞÞ2 ¼ 3
2 ln½ ��sY�

00ð�cÞ�:
(36)

By keeping one of the dipole sizes fixed, say, r0, we can
solve for r to get the saturation line

Q2
c;1ðr0; b;YÞ ¼

r20
b4

e ��sY�ð�cÞ=ð1��cÞ

½ ��sY�
00ð�cÞ�3=2ð1��cÞ : (37)

For large ��sY the �c approaches the �0 value, with
�0 ¼ 0:37. The saturation scale has 1=b4 dependence,
which comes automatically from conformal symmetry.
One can solve the above equation for b and keep r0 and
r fixed, which yields

B2
sðr0; r;YÞ ¼ r0r

e ��sY�ð�cÞ=2ð1��cÞ

½ ��sY�
00ð�cÞ�3=4ð1��cÞ : (38)

This is the rate of the expansion of the radius in impact
parameter space. Note that the speed of the expansion is
governed by the exponent which is half that of the satura-
tion scale and the dependence on the dipole size is linear.
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This is also found in the numerical solution. For the large
dipole sizes r � r0; b the anharmonic ratio reduces to

jxj ’ 4r0
r

:

Following the same scheme one obtains for the saturation
scale

Q2
c;2ðr0; b;YÞ ¼

e ��sY�ð�cÞ=ð1��cÞ

r20½ ��sY�
00ð�cÞ�3=2ð1��cÞ : (39)

The saturation scale for large dipole sizes is independent of
the impact parameter b. This is also found in the solution,
as is clear in Fig. 12. Therefore the V shape of the satura-
tion region is a consequence of the conformal symmetry of
the LO kernel. From the above considerations one can see
that the rapidity behavior of both saturation scales is iden-
tical for large and small dipoles. We found that the two
exponents differ somewhat; see Table I. Most probably this
is due to the fact that we have neglected an additional angle
which is necessary to fully describe the orientation of the
dipoles. In this solution here, one is taking the angular
average over the spatial configurations of the dipoles which
can result in a slightly faster expansion in impact parameter
space. However, a more detailed analysis is needed to
confirm this effect.

In general we see that both saturation scales are in fact
originating from one saturation scale due to the fact that the
solution is expressed in terms of the anharmonic ratio.

E. Dipole cross section and black disk radius

By integrating the amplitude over the impact parameter
the dipole cross section is obtained as a function of the
dipole size and rapidity. Despite the fact that the amplitude
is bound and never exceeds unity, the dipole cross section
can still increase very fast due to the fact that the amplitude
has power tails in the impact parameter; see the discussion
in [67,68]. We thus expect the powerlike growth of the
dipole cross section with the energy or exponential with
rapidity.

The dipole cross section is defined as an integral over
b of the amplitude

�ðr; YÞ ¼ 2
Z

d2bNðr;b; YÞ: (40)

In what follows, we will investigate the part of the dipole
cross section which is coming from the black disk regime.
To be precise, we integrate the amplitude over the values
which are close to unity. This is once again performed by
constraining the amplitude through Eq. (19).
The black disk (BD) part of the cross section is therefore

defined as

�BDðr; YÞ ¼ 2
Z

d2bNðr;b; YÞ�½Nðr;b; YÞ � ��

 2�R2

BDðr; YÞ: (41)

This black disk cross section is plotted in Fig. 13, and it
can be seen that the slope of the black disk cross section in
rapidity reaches a constant value at large rapidities. One
can parametrize RBD as

R2
BDðr; YÞ ¼ Rð0Þ2

BD e�BD ��sY; (42)

where Rð0Þ
BD is a normalization constant and �BD is extracted

from the numerical solutions in the regime where it is
approximately constant. These extracted values for the
solutions with two kernels as well as various values of ��s

are found in Table II. The table also shows that with
changing ��s the exponent is relatively constant for the
LO kernel, and once again nonlinearities in the exponent
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FIG. 13. Graphs of the natural logarithm of the black disk cross section versus rapidity at various fixed dipole sizes. The dashed line
represents the solutions obtained with the Bessel kernel, while the solid line represents the solutions with the LO kernel.

TABLE II. Extracted exponents governing the behavior of the
black disk cross section.

�BD

LO kernel ��s ¼ 0:1 2.4

Modified kernel ��s ¼ 0:1 2.0

LO kernel ��s ¼ 0:2 2.6

Modified kernel ��s ¼ 0:2 1.6
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appear for the Bessel kernel. Reported exponents are aver-
aged from values of dipole size r ¼ 10�1 ! 101 because
�BD does vary slightly with dipole size.

VI. INCLUDING THE RUNNING COUPLING

Turning now to the running of the QCD coupling, ��s is

taken to be �sðrÞ ¼ 1=b lnð 1
r2�2Þ where b ¼ 33�2nf

12� , nf is

the number of active flavors and � ¼ 0:246 GeV is used. In
the infrared regime, the coupling was frozen when r > rcut,
which is defined as ��sðrcutÞ ¼ 0:3. As is well known the
BK equation without the impact parameter is not very
sensitive to the way the coupling is regularized. This is
because the amplitude is saturated for all the large values of
the dipole size from the inverse of the saturation scale to
infinity. In the case with the impact parameter, however,
there are contributions from the large dipole regime which
spoil this self-regularizing behavior. In this case there is a
large sensitivity to the regularization scenario for the run-
ning coupling.

There are two different schemes for including the running
coupling in the BK equation [69,70]. In addition to these
two scenarios we will use also the so-called parent dipole
scheme, where the coupling depends on the size of the
external dipole, that is, x01. This scheme is convenient to
use with the Bessel function kernel. We have also evaluated
the solutions using the prescription proposed in [69]:

KBalðx01; x02Þ ¼ Nc�sðx201Þ
2�2

�
x201

x202x
2
12

þ 1

x202

�
�sðx202Þ
�sðx212Þ

� 1

�

þ 1

x212

�
�sðx212Þ
�sðx202Þ

� 1

��
: (43)

Since it is not clear at the moment how to use this scheme
with the Bessel function kernel we will use it only with the
LO kernel. The scheme dependence between the two pre-
scriptions [69,70] originates from the choice of the sub-
traction point. The scheme by Ref. [70] was shown to agree
with the scheme by Ref. [69] by the calculation of the
appropriate subtraction corrections. In this paper we have
not evaluated the scheme byRef. [70], aswe have found that
in order to achieve the desired accuracy for the solutionwith
the impact parameter within this scheme takes considerably
longer time.
We first shall show the results with the running coupling

without the impact parameter. The running of the coupling
has the effect of slowing down the evolution of the scat-
tering amplitude as seen in Fig. 14. The difference between
the LO and the modified kernel with the running coupling
is rather small. This can also be seen in Fig. 15, which
shows the saturation scale of the two kernels with the
running coupling which are extremely close to each other.
The dependence on the saturation scale with respect to the
rapidity is as in Refs. [40,57]:

Q2
s ¼ �2 exp

��
2�ð�cÞ
b�c

Y

�
1=2

þ 3

4
�1

�
�00ð�cÞ

2b�c�ð�cÞ
�
1=3

Y1=6

�
; (44)

where �1 ¼ �2:338. Here the second term involving Y1=6

is numerically non-negligible for the rapidities we con-

sider. In terms of numbers the coefficients above giveQ2
s ¼

�2e3:6Y
1=2�5:4Y1=6

. We have found that the LO saturation
scale with the running coupling and the parent dipole
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FIG. 14. Graphs of the scattering amplitude versus the dipole size for the case without the impact parameter. The left graph illustrates
how much slower propagation is due to the running of the coupling, and the right graph shows the modified and LO kernels compared
to each other in the case of the running coupling. Each line corresponds to the rapidity increasing in rapidity in intervals of �Y ¼ 10 up
to Y ¼ 100.
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size prescription is Q2
s ¼ e3:4Y

1=2�4:8Y1=6
, which is very

similar to the one given by the analytical value. The run-
ning coupling with prescription (43) has also been run and

found to have a fit of Q2
s ¼ e3:4Y

1=2�5:7Y1=6
, which is closer

to the value given by (44).
In the scenario with the impact parameter we find quite

different behavior of the solution. As is seen in Fig. 16(a)
the evolution of the running coupling (with the parent
dipole scheme) is actually very fast in the small dipole
region, and it is much faster in the large dipole region. This
is obvious since in the large dipole region the coupling is
fixed at ��s ¼ 0:3, which yields approximately 3 times as
fast an evolution versus the case where ��s ¼ 0:1 is fixed. It

can be seen there are box effects beginning to manifest in
the running coupling case due to the frozen coupling
evolving very quickly in the large dipole regime and reach-
ing the box.
It can be seen in Fig. 17 that the dependence of the

saturation scales on the rapidity is now again almost ex-
ponential. In this case we can extract the exponents by
fitting exponential forms in the rapidity as we did for the
fixed coupling case (Table III). Note that the definitions of
the exponents are now different than in the previous sec-
tion. Here, we took Qs � expð�sYÞ, QsL � expð��LYÞ,
and Bs � expð�BYÞ. The reason that the dependencies are
almost exponential is due to the large sensitivity to the
infrared and the fact that the coupling is frozen. In that case
the solutions behave almost as with the fixed running
determined by the freezing value.
A similar pattern is found in the case of the running

coupling with the scenario (43). The only difference is
in the small dipole regime where the evolution is slightly
slower than that of the parent dipole scheme. This can
be seen by comparing the extracted exponents in Table III.
The behavior observed is of course something that has

been analyzed before, in the context of the linear BFKL
with running coupling [71]. In particular, it was observed
that the BFKL solution shows the tunneling scenario,
where at some value of rapidity the solution is completely
dominated by the infrared region. Strictly speaking we are
not observing the tunneling scenario here, due to the fact
that we have chosen our initial conditions to be concen-
trated around rather large dipole sizes where the coupling
is already large.
Rather, our solutions are completely dominated by the

large coupling values and hence the saturation scale has
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FIG. 15. Graph of the saturation scale of the LO kernel (solid
line) and the modified kernel (dashed line) with running coupling
and no impact parameter dependence.
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FIG. 16. (a) Dipole scattering amplitude as a function of the dipole size for the fixed impact parameter and angle. Solid lines: Fixed
coupling with ��s ¼ 0:1; dashed lines: running coupling with the parent dipole scheme. (b) Saturation scale as a function of rapidity for
the LO kernel, the fixed coupling ��s ¼ 0:1 (solid line) and running coupling (dashed line) cases.
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nearly exponential dependence on rapidity. It will be in-
teresting to analyze the solution for the initial conditions
which are located in the small dipole regime to see if the
tunneling occurs here.

We have also evaluated the dipole cross section coming
from the black disk regime in the running coupling sce-
nario, and we parametrize it in the form

�BD ¼ 2�R2
BDðx; YÞ ¼ 2�Rð0Þ2

BD e�BDY: (45)

The extracted value for the exponent �BD is shown also
in Table III. Again the black disk cross section increases
very fast due to the large value of the coupling in the region
of freezing. We have also compared the solutions in the
case of the LO and Bessel kernel; the results are shown in
Fig. 18. Since the coupling is relatively large, the differ-
ences between the evolution with LO and Bessel kernels
are more amplified.

The anomalous dimension

We have also extracted from the numerical solution the
value of the anomalous dimension defined by the parame-
trization N � r2�s . In the impact parameter dependent case
one has two anomalous dimensions, the second one for the
large dipole sizes, which we parametrize asN � r�2�l . The
extracted values of the anomalous dimension for the differ-
ent scenarios are summarized in Table IV. The values of the
anomalous dimension change significantly depending on
the value of the amplitude at which they were extracted.

Therefore the range of values of the amplitude is shown
which gives the corresponding range of values of the
anomalous dimension.
To illustrate better the variation of the anomalous di-

mension on the rapidity and the dipole size we have plotted
the extracted effective anomalous dimension defined by
�eff � @ lnN

@ lnr as a function of the scaling variable rQs for

different values of rapidity. This is shown in Fig. 19, where
in the left plot we show the calculation in the fixed cou-
pling case and on the right-hand side for the running
coupling case. The geometrical scaling is observed when
the curves of different rapidity coincide with each other.1

The anomalous dimension clearly exhibits a change in the
dependence on the scaling variable. Roughly speaking the
change in the extracted anomalous dimension coincides
with the size of the scaling window. The change appears at
about �� 0:5–0:6, which is relatively consistent with the
analytical estimates [40]. The scaling is much better in the
fixed coupling case than in the running coupling case.
In the impact parameter dependent case the anomalous

dimensions for the fixed coupling LO case are about the
same as in the impact parameter independent scenario. The
anomalous dimension in the running coupling case is also
close to the one in the impact parameter independent
solution. On the other hand, the cutoffs induced by the
modification of the kernel result in the larger anomalous
dimension in the impact parameter dependent scenario,
and this is quite different from the local solution. We
also note that in the case of the Bessel kernel there is a
dependence on the value of the fixed coupling at which the
anomalous dimension is extracted, meaning that the cor-
rections are nonlinear in the coupling.
The anomalous dimension for the larger dipoles turns

out to be slightly lower, of about �l � 0:58–0:6, and the
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FIG. 17. Small dipole saturation scale, large dipole saturation scale, and the black disk radius for the case of the running coupling
within the parent dipole scheme. The solid lines are for the LO kernel, and the dashed lines are for Bessel kernel.

TABLE III. Summary of extracted evolution exponents with
the impact parameter for the running coupling case. PD means
parent dipole prescription, and Bal means prescription (43).

�s �L �B �BD

LO kernel ��ðPDÞ
s 0.30 1.68 0.60 0.65

LO kernel ��ðBalÞ
s 0.29 1.68 0.64 0.68

Bessel kernel ��ðPDÞ
s 0.22 1.42 0.24 0.32

1The sharp rise of the anomalous dimension at the left edges of
the curves is not physical but rather an artifact of the numerical
effect, the value of the amplitude in this region is very small, and
the numerical errors tend to be rather large.
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variations among the scenarios are not significant with
respect to the accuracy of the solution. From arguments
of conformal symmetry one would think that the value of
�l should be the same in the LO fixed coupling case as �s.
One reason for that could be that one is extracting these
values at different values of rapidity; this is in order to
avoid the dependencies of the finite extension of the grid
one is working with. In this case the typical rapidities are
smaller and therefore the anomalous dimension can be
systematically lower as well (this is seen in the case of
�s). The second reason could be that one is using the
assumption of the independence of the solution on the

global azimuthal angle which possibly leads to small vio-
lations of the conformal symmetry. We observe though that
the values of �l are comparable for different scenarios.
This has a rather clear explanation, as the running coupling
should not affect the �l since it is regularized in this region,
and therefore the solution for large dipole sizes with the
running coupling should have the same characteristics as in
the fixed coupling case. The fact that the modified Bessel
function kernel is not affecting large dipole sizes is also
consistent with the arguments presented in Sec. VC.
Clearly these results call for more extensive analytical
and numerical studies.
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FIG. 18. Dipole cross section. Contribution from the ‘‘black disk.’’

TABLE IV. Extracted values of the anomalous dimension in different scenarios. Ys and Yl are the rapidities at which the exponents
were extracted. N range means the range of values of the amplitude for which the values were computed.

With impact parameter dependence N range Ys �s Yl �l

LO kernel ��s ¼ 0:1 10�4 ! 10�2 40 0:68 ! 0:58 30 0:58 ! 0:47
Bessel kernel ��s ¼ 0:1 10�4 ! 10�2 50 0:77 ! 0:66 30 0:58 ! 0:46
LO kernel ��s ¼ 0:2 10�4 ! 10�2 20 0:67 ! 0:59 15 0:60 ! 0:46
Bessel kernel ��s ¼ 0:2 10�4 ! 10�2 25 0:90 ! 0:77 15 0:56 ! 0:47
LO kernel ��s ¼ run (parent dipole) 10�4 ! 10�2 17 0:86 ! 0:77 8 0:60 ! 0:49
LO kernel ��s ¼ run (Balitsky) 10�4 ! 10�2 13 0:87 ! 0:79 9 0:57 ! 0:47
Bessel kernel ��s ¼ run (parent dipole) 10�4 ! 10�2 13 1:15 ! 1:02 8 0:58 ! 0:47

No impact parameter dependence

LO kernel ��s ¼ 0:1 10�6 ! 10�2 60 0:68 ! 0:55 X X

Bessel kernel ��s ¼ 0:1 10�6 ! 10�2 60 0:68 ! 0:55 X X

LO kernel ��s ¼ 0:2 10�4 ! 10�2 40 0:68 ! 0:54 X X

Bessel kernel ��s ¼ 0:2 10�4 ! 10�2 40 0:64 ! 0:55 X X

LO kernel ��s ¼ run (parent dipole) 10�6 ! 10�2 100 0:82 ! 0:67 X X

LO kernel ��s ¼ run (Balitsky) 10�6 ! 10�2 100 0:81 ! 0:67 X X

Bessel kernel ��s ¼ run (parent dipole) 10�6 ! 10�2 100 0:82 ! 0:67 X X
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VII. CONCLUSIONS

Let us summarize the most important points of our
analysis.

In the case of the solution with the LO kernel, the
extracted exponents of the saturation scales and the black
disk radius are consistent with values obtained from the
boundary method. The peaks in the impact parameter and
in the dipole size can be very easily understood from
arguments based on the conformal symmetry. The relative
strength of the evolution of different saturation scales
follows as well from the arguments on the conformal
symmetry. In particular, the black disk radius has an ex-
pansion rate which is twice slower than that of the satura-
tion scale for small dipoles (as we mentioned before,
this is only approximately true due to effects of angular
averaging).

For the running coupling scenario, in the case of the
solutions with the impact parameter we no longer observe
the self-regularizing behavior of the nonlinear equation.
This is of course due to the increased sensitivity to the large
values of the dipole size. Rather, for the initial conditions
chosen one observes strong dependence on the details of
the regularization, and basically the exponents of both the
saturation scales are dominated by the largest value of the
coupling. This could be tested in more detail by choosing a
different initial condition; nevertheless one can expect that
for the sufficiently large rapidity, the solution becomes
regularization-sensitive, much like it was observed in ear-
lier simulations.

The cuts on the large dipole sizes introduced in the form
of the modified kernel have in general a very small effect
for the case of the impact parameter independent kernel.
For the case with the impact parameter they are no longer
negligible and reduce the exponent by about 25% for
coupling of ��s ¼ 0:1. It is important to note that the
modified kernel we have chosen does not account for all
the type of kinematical cuts, and therefore other cuts on the
small dipole sizes should be included similarly to what was
done in [53]. One could expect therefore an even stronger
effect in this case.
We therefore conclude that the observed self-

regularizing behavior of the local BK equation with the
running coupling and almost complete insensitivity to the
other next-to-leading-order corrections probably appear
due to the simplified assumption about the impact parame-
ter independence.
In a broader perspective, it will be interesting to perform

the analysis with a full next-to-leading-order kernel or the
more correct form of the kinematical cuts, as well as to
introduce effectively confinement effects. It is also vital to
analyze the impact of the corrections which go beyond the
mean field approximation [66,72–74].
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