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The effects of intermediate charmed mesons on charmonium transitions with the emission of one pion

or eta are studied systematically. Based on a nonrelativistic effective field theory we show that charmed

meson loops are enhanced compared to the corresponding tree-level contributions for transitions between

two S-wave charmonia as well as for transitions between two P-wave charmonia. On the contrary, for the

transitions between one S-wave and one P-wave charmonium state, the loops need to be analyzed case by

case and often appear to be suppressed. The relation to and possible implications for an effective

Lagrangian approach are also discussed. This study at the same time provides a cross-check for the

numerical evaluations.
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I. INTRODUCTION

Since the discovery of the J=c more than 30 years ago,
the decays of heavy quarkonia have played an important
role in the physics of quarks and hadrons. During the past
decades, experimental studies of the heavy quarkonia at
CLEO, Belle, BABAR, CDF, D0, and BES-II have provided
great opportunities for examining many interesting prop-
erties of quantum chromodynamics (QCD). At the present
stage, BES-III [1] has accumulated the largest data samples
for J=c and c 0 decays, and PANDA [2] plans to accumu-
late data for charmonia which cannot be produced directly
in electron-positron annihilations. These facilities will
deepen our understanding of the charmonium physics
and hence the nonperturbative aspects of QCD. Although
many theoretical investigations have been performed in
the past 30 years (for comprehensive reviews, see
Refs. [1,3,4]), there remain many mysteries in charmonium
physics to be settled. On the contrary, due to the new
experimental data with unprecedented statistics, many
new interesting problems have appeared; e.g. the nature
of many of the new X; Y; Z resonances discovered in the
charmoniummass region has still not been well understood
(for recent reviews, see, e.g. Refs. [5–9]).

Furthermore, various recent phenomenological calcula-
tions suggest that charmed meson loops may play an
important role in the decays of heavy quarkonia (for an

overview, see [10]). For instance, using an effective
Lagrangian approach (ELA), intermediate heavy–meson-
loop contributions are found to be essential for understand-
ing the puzzling c ð3770Þ non-D �D decays [11,12]. They
are also important in the J=c decays into a vector and a
pseudoscalar meson [13] and in the M1 radiative transi-
tions between two charmonia [14]. Besides, using the
on-shell approximation, the bottom meson loops were
suggested to make the �ð5SÞ transitions to the lower �
states with the emission of two pions [15] or one � [16]
different from those of the �ð4SÞ. The inclusion of inter-
mediate heavy mesons in heavy quarkonium transitions,
sometimes called coupled-channel effects, has been no-
ticed for more than 20 years [17–19]. Also, the effect of the
mass differences between the neutral and charged mesons
in the intermediate states (i.e. in the meson loops) plays a
role in other isospin breaking processes. This effect, known
to be of particular importance near the continuum thresh-
olds, was already studied in the �0 decays [20] and in the
decays � ! !�0 [21,22], J=c ! ���0 [23,24], and
Ds0ð2317Þ ! Ds�

0 [25–27].
An often used formalism dealing with the hadronic

transitions between two heavy quarkonia is the QCDmulti-
pole expansion (QCDME) [28–30]. The QCDME is based
on the assumption that the emitted gluons are soft so that
their wavelengths are much larger than the size of a heavy
quarkonium. As a result, a multipole expansion similar to
that in classical electrodynamics can be performed. The
soft gluons then hadronize into light meson(s), for instance,
the pion(s) or eta, and the matrix elements may be worked
out using soft pion theorems. A schematic diagram for the
multipole transition from a heavy quarkonium to another
one with the emission of one pion is plotted in Fig. 1(a).
However, this ansatz clearly misses the contribution from
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intermediate mesons. This can be understood as a heavy
quarkonium can couple to a heavy meson and heavy anti-
meson pair through the nonperturbative production of a
light quark and antiquark pair; see Fig. 1(b). In
Refs. [19,31], within the framework of the QCDME, the
intermediate heavy-meson effects were considered to ac-
count for nonmultipole effects in the dipion transitions
between two charmonia, the c states, or bottomonia, the
� states. Better agreement with the experimental data was
obtained.

In light of these phenomenological indications, it is
important to have a theoretical formalism which has a
controlled uncertainty to study the effects of heavy-meson
loops in the transitions of heavy quarkonia. In Ref. [32],
such a nonrelativistic effective field theory (NREFT) for-
malism was constructed to investigate the charmed meson
loops in the decays c 0 ! J=c�0ð�Þ. Because the c 0 and
J=c are isospin and SU(3) flavor singlets, the decay pro-
cess c 0 ! J=c�0 violates isospin symmetry and c 0 !
J=c� violates SU(3) symmetry. Isospin symmetry can be
violated by both electromagnetic (e.m.) effects and the
mass difference between the u and d quarks. Because
the e.m. effects are small [33,34] [it can be easily shown
in the framework of chiral perturbation theory (CHPT)
with virtual photons [35,36]; see Sec. II B], these two
decays were used to extract the light quark mass ratio
mu=md [37–41]. The relation between the ratio of the
decay widths

R�0=� � Bðc 0 ! J=c�0Þ
Bðc 0 ! J=c�Þ

and the light quark masses is given by [7,38]

R�0=� ¼ 3

�
md �mu

md þmu

�
2 F2

�

F2
�

M4
�

M4
�

�������� ~q�
~q�

��������3

; (1)

where F�ð�Þ and M�ð�Þ are the decay constant and mass of

the pion (eta), respectively. The extracted quark mass ratio
using Eq. (1) and the recent measurements of the decay
widths from the CLEO Collaboration [42], the BES

Collaboration [43], and the Particle Data Group (PDG) fit
[44] are listed in Table I.
Comparing with the result obtained using the Goldstone

boson masses from leading order (LO) CHPT [45,46]

mu

md
¼ M2

Kþ �M2
K0 þ 2M2

�0 �M2
�þ

M2
K0 �M2

Kþ þM2
�þ

¼ 0:56; (2)

the discrepancy is striking. We remark that there might be
sizable higher order corrections to this LO result. The up-
to-date knowledge of the light quark mass ratio from
various determinations including lattice calculations (but
excluding c 0 decays) was summarized by Leutwyler as
mu=md ¼ 0:47� 0:08 [47]. The relatively large uncer-
tainty given here thus provides an overlap with the results
quoted in Table I, however, only at the very low end. In
Ref. [32] it was stressed that for the mentioned transitions
the effects of charmed meson loops, ignored in the pre-
vious analyses, should be sizable. The charmonia c 0 and
J=c couple to charmed and anticharmed mesons, and the
pion is emitted from one intermediate charmed meson. The
proper expansion parameter is the velocity of the inter-
mediate meson, which for below threshold decays is de-
fined via the analytic continuation of the standard

definition, namely, v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�E=MD

p
, with E measured rela-

tive to the open charm threshold. We find v � 0:5 for most
of the decays studied. It is found that loops are enhanced by
a factor of 1=v compared to the tree-level contribution
where the pion is emitted directly from the charmonium.
Therefore the dominant (LO) contributions to these decays
come from the loops instead of from the tree graphs which
are proportional to the quark mass differences directly, and
hence the extraction of quark mass differences from c 0
decays mentioned above is not reliable. Stated differently,
quarkonium decays could only be used to extract the light
quark mass ratio, if either the loop contributions could be
controlled quantitatively (at present their uncertainty is
quite sizable—see discussion below), or if loop contribu-
tions are suppressed. It turned out that the enhancement of
the loops in case of the c 0 to J=c transitions emerges only
because the transitions at hand violate isospin or SU(3)
symmetry. The power counting is discussed in detail in
Sec. III D.
In Ref. [48], the same NREFT is applied to the decays

c 0 ! hc�
0 and �0

c ! �c0�
0. As a consequence of the

quantum numbers of the charmonia involved, in these

FIG. 1. Schematic diagrams of the QCDME mechanism (a)
and the nonmultipole (b) effects of the intermediate heavy-
meson loops for heavy quarkonium transition with the emission
of one pion.

TABLE I. The light quark mass ratio mu=md extracted using
Eq. (1) from the recent experimental measurements by different
collaborations.

R�0=� mu=md

CLEO [42] ð3:88� 0:23� 0:05Þ% 0:40� 0:01
BES [43] ð4:8� 0:5Þ% 0:35� 0:02
PDG fit [44] ð4:0� 0:3Þ% 0:39� 0:02
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two decays the loop contributions are highly suppressed,
and hence the tree-level terms, i.e. the quark mass differ-
ence terms, dominate the decay amplitudes. Unfortunately
there is no charmonium transition, where one can exploit
this observation in order to extract the light quark mass
ratio, since typically the phase space available is insuffi-
cient for an � in the final state. However, in the bottomo-
nium system analogous transitions appear to exist [49] and
will allow for the mentioned analysis. This illustrates that
the effective field theory at hand predicts a highly non-
trivial pattern for the loop contributions in different decays
that can be tested experimentally.

In this paper, we will systematically investigate the
charmed meson loop contributions to the transitions be-
tween two charmonia with the emission of one light pseu-
doscalar meson. We restrict the charmonia to S- and
P-wave states with radial quantum number n less than or
equal to 2. In other words, we will consider the transitions
between or within the following charmonia spin multiplets:
fJ=c ; �cg, f�c0; �c1; �c2; hcg with n ¼ 1 and fc 0; �0

cg,
f�0

c0; �
0
c1; �

0
c2; h

0
cg with n ¼ 2. Charge conjugation allows

for the emission of one light pseudoscalar meson between
two charmonia with the same value of C. Considering
further the constraints from parity conservation, all the
allowed transitions are plotted in Fig. 2,1 and the following
will be considered in the paper:

(1) transitions between two S-wave charmonia: c 0 !
J=c�0 and c 0 ! J=c�;

(2) transitions between one S-wave and one P-wave
charmonium: c 0 ! hc�

0, hc ! J=c�0, h0c !
c 0�0, �0

c ! �c0�
0, �c0 ! �c�

0, and �0
c0 ! �0

c�
0;

(3) transitions between two P-wave charmonia: �0
c0 !

�c1�
0, �0

c1 ! �cJ�
0 (J ¼ 0; 1; 2), �0

c2 ! �c1ð2Þ�0,

and h0c ! hc�
0.

In fact, as plotted in Fig. 2, the decays h0c ! J=c�0ð�Þ
and �0

c0 ! �c�
0ð�Þ can also occur. However, the mass

difference between the initial and final charmonium ex-
ceeds 800 MeV, of orderOð��Þ, with �� � 1 GeV denot-

ing the typical hadronic scale. Since the chiral expansion is
an expansion in p=��, with p denoting a typical momen-

tum or mass, for those energies the chiral expansion is not
expected to converge any more. We therefore do not con-
sider these transitions. There could also be D-wave tran-
sitions �c2 ! �c�

0ð�Þ and �0
c2 ! �0

c�
0 (not shown in the

figure). However, their partial decay widths would be too
small to be detected in the near future because of the
D-wave suppression, the isospin or SU(3) breaking,
and small phase space. They will also not be considered
here.
The paper is organized as follows. In Sec. II, the tree-

level chiral effective Lagrangians and the resulting ampli-
tudes are given for all the decays discussed in the paper.
The isospin and SU(3) breaking are given by quark mass
differences. Consistent with earlier analyses, e.m. contri-
butions are found to be small and can be neglected. Various
aspects of the charmed meson loops will be discussed in
Sec. III. Section IV is devoted to the results of the meson
loops for various transitions in the NREFT. In Sec. V, a
detailed parallel study of the meson-loop transitions in the
framework of the ELA is presented and the results are
compared to those from the NREFT. A brief summary is
given in the last section. Various technicalities such as the
utilized loop functions, the decay amplitudes from the
meson loops, and the ingredients of the ELA are given in
the appendixes.

II. EFFECTIVE LAGRANGIANS FOR
TREE-LEVEL DIAGRAMS

Isospin breaking has two sources. One is the mass
difference between the up and down quarks, and the other
one is of e.m. origin because photons do not have definite
isospin. This section is devoted to the construction of the
LO chiral Lagrangians for the tree-level diagrams of the
transitions considered in this paper. Both the quark mass
difference and the e.m. effects will be taken into account.
The chiral effective Lagrangians are of the most general

form which is invariant under the transformations of
SUð3ÞL � SUð3ÞR, parity and charge conjugation. The
charmonia are treated as matter fields, and the pion and
eta are the Goldstone bosons of the spontaneous breaking
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FIG. 2 (color online). All possible S- and P-wave transitions
among the ground state and the first radial excited S- and P-wave
charmonia with the emission of one light pseudoscalar meson
(�0, �). The unobserved resonances and decay modes are
plotted in dashed lines. The masses for the unobserved reso-
nances are taken from predictions in Ref. [50]. The thresholds
for the D �D, D �D�, and D� �D� are represented by the dotted
horizontal lines. The solid lines represent the measured decays.
The dashed and dotted lines are not yet measured with only the
former discussed in the paper and the latter are beyond the range
of the applicability of the chiral EFT (but can be considered in
the model-dependent ELA also discussed here). Thick lines
indicate transitions with enhanced charmed meson loops.

1In the figure, the masses of the so far unobserved (or un-
identified) 2P charmonia are taken from a quark model calcu-
lation considering the color-screening effect due to the light
quark and antiquark pair creation [50]. Note that these values are
only used for illustration.
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of SUð3ÞL � SUð3ÞR down to its vector subgroup SUð3ÞV .
The charmonia are SU(3) singlets, so they do not change
under the chiral transformation. The Goldstone boson
fields

� ¼
1ffiffi
2

p �0 þ 1ffiffi
6

p � �þ Kþ

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p � K0

K� �K0 � 2ffiffi
6

p �

0
BB@

1
CCA; (3)

where we have approximated the � as one element of

the octet SU(3) representation, are collected in u ¼
expði�=

ffiffiffi
2

p
FÞ with F being the pion decay constant in

the chiral limit. Under the transformation of SUð3ÞL �
SUð3ÞR, we have

u ! Ruhy ¼ huLy; (4)

where h is the compensator field. It is convenient to con-
struct chiral Lagrangians using operators whose chiral
transformation isO ! hOhy. The following such building
blocks will be used:

u� ¼ iðuy@�uþ @�uu
yÞ;

�� ¼ uy�uy � u�yu;

Q� ¼ 1
2ðuyQu� uQuyÞ; (5)

where the diagonal quark mass matrix and the charge
matrix are

� ¼ 2B0 � diagðmu;md;msÞ;
Q ¼ e � diagð2=3;�1=3;�1=3Þ; (6)

in terms of B0 ¼ jh0j �qqj0ij=F2 and the elementary electric
charge e (e > 0).

In the heavy quark limit withmQ ! 1, the coupling of a

heavy quark to a gluon is spin-independent [51]. As a
result, there is a spin symmetry in that limit, and the heavy
quarkonia, which differ from each other only in the total
spin of the heavy quark and antiquark, can be grouped into
the same spin multiplet. It is then convenient to introduce a
single field for a spin multiplet of heavy quarkonia [52,53]
using the trace formalism proposed for single-heavy me-
sons [54,55]. In this way, the consequence of the heavy
quark spin symmetry can be obtained automatically by
evaluating a trace in spinor space. The construction of
charmonium fields with arbitrary orbital angular momen-
tum l in the trace formalism can be found in Ref. [53].
Since we are dealing with the transitions between two
charmonia, the heavy quark four-velocity is conserved up
to higher order corrections. In this case, it is convenient to
use the two-component notation as introduced in Ref. [56].

For doing that, the four-velocity is chosen to be v� ¼
ð1; ~0Þ. In the two-component notation, the field for the
S-wave charmonia reads

J ¼ ~c � ~�þ �c; (7)

with ~c and �c annihilating the J=c and �c states. The
field for the P-wave charmonia is2

�i ¼ �j

�
��ij

c2 �
1ffiffiffi
2

p �ijk�k
c1 þ

1ffiffiffi
3

p �ij�c0

�
þ hic; (8)

where �ij
c2, �

i
c1, �c0, and hc annihilate the �c2, �c1, �c0,

and hc states, respectively. �
ij
c2 is a symmetric and traceless

tensor.
The quantum numbers of the charmonia determine their

parity and charge conjugation transformation properties.
The parity transformations for the charmonia fields are
given by

J!P � J; �i!P �i; (9)

and the charge conjugation transformations are given by

J!C �2J
T�2¼� ~c � ~�þ�c;

�i!C ��2�
i�2¼�j

�
��ij

c2�
1ffiffiffi
2

p �ijk�k
c1þ

1ffiffiffi
3

p �ij�c0

�
�hic;

(10)

where JT is the transpose of J. Denoting the rotation in the
SU(2) spin space of the heavy quark (antiquark) by S ( �S),
the transformation of the charmonium fields reads

J!S SJ �Sy; �i!S S�i �Sy: (11)

The transformation for a heavy quarkonium field with
arbitrary orbital angular momentum is given in [53] in
four-component notation. In two-component notation, the
transformation properties for the �cJ fields can be found in
Ref. [57].

A. Quark mass difference

In the transitions considered in this paper, one pion or
eta is emitted. Therefore we need to construct the chiral
Lagrangian using the external field ��, which is propor-
tional to the light quark mass matrix and contains an odd
number of the Goldstone bosons. Under parity and charge
conjugation, �� transforms as

��!P � �� ¼ �y�; ��!C �T�; (12)

respectively.
The LO Lagrangian for the transitions between two

S-wave charmonia can be constructed considering
parity conservation, which requires the presence of a de-
rivative, charge conjugation, chiral symmetry, and Galilean
invariance:

L SS ¼ A

4

�
hJ0�iJyi � hJy�iJ0i

�
@ið��Þaa; (13)

2The sign convention for the �c2 and �c1 fields are different
from those in Ref. [57].
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where h. . .i denotes the trace in spinor space, the subscript
a ¼ u; d; s is a flavor index, and aa as a sum over it denotes
the trace in flavor space. Similarly, the Lagrangian for the
transitions between one S- and one P-wave charmonium
states is

L SP ¼ i

4
C½h ~�y � ~�J0i þ hJ0 ~� � ~�yi�ð��Þaa; (14)

and that for the transitions between two P-wave
charmonia is

L PP ¼ i
	

2
�ijkh�i0�jyi@kð��Þaa: (15)

These Lagrangians were first proposed in Ref. [58] in four-
component notation. Note that due to the presence of a
Pauli matrix between the two heavy quarkonium fields in
Eqs. (13) and (14), the heavy quark spin symmetry is
violated. On the contrary, the Lagrangian LPP preserves
the spin symmetry.

The goal of the present work is to set up an effective field
theory that allows one to systematically study both loop as
well as tree-level transition amplitudes. To prepare for this
we need to assign an order of magnitude estimate to the
coupling constants given above. They may be determined
in principle as the result of some matching procedure
between the hadronic matrix elements and the more fun-
damental quark-gluon dynamics calculated within (poten-
tial) nonrelativistic QCD (for recent reviews, see
Refs. [1,3,4,59]. For instance, the coupling constant A in
the Lagrangian Eq. (13) has a mass dimension �2. There
are several different scales in the physics related to heavy
quarkonia. They are the heavy quark mass mQ, the mo-

mentum mQvQ, the inverse of which sets the length scale

of a heavy quarkonium, and the energy scale mQv
2
Q [60],

where vQ denotes the velocity of the heavy quark within a

heavy quarkonium to be distinguished from the velocity v
of the heavy mesons in the loops to be introduced in the
next section—for an estimate of the values of various
scales in heavy quarkonia, one may refer to [61]. In addi-
tion, there is the nonperturbative QCD scale �QCD. In this

paper, we are considering the low-lying heavy quarkonia.
For these states, it is believed that mQv

2
Q * �QCD, which

defines the weak-coupling regime [59]—e.g. with v2
c ’ 0:3

andmc ¼ 1:5 GeVwe findmQv
2
Q ’ 450 MeV. Since most

of the coupling constants introduced in the Lagrangians are
dimensionful, they should have certain scaling properties
expressed by the above mentioned scales. The tree-level
Lagrangian describes a process with the emission of soft
gluons, which then hadronize into a pion or an eta. As
mentioned in the introduction, the applicable regime of our
effective field theory is limited to the transitions with the
pion (eta) energy much smaller than ��, i.e. E�ð�Þ &
600 MeV. Hence the energy of the emitted gluons should
also be & 600 MeV. Therefore, the proper dimensionful
parameter that sets the scale for this nonperturbative

process should be either mcv
2
c, which is sometimes called

ultrasoft, or �QCD. As mentioned above, the charmonia

considered in this paper are weakly coupled, i.e. mcv
2
c *

�QCD. So conservatively, one may take�QCD to set the soft

scale. Furthermore, since the transition violates spin sym-
metry we have to put in a factor �QCD=mc to finally get

A	 1

�QCD2mc

�QCD

mc

¼ 1

2m2
c

; (16)

where a factor of 1=ð2mcÞ was introduced to make A have
the correct dimension. In addition, assigning the pion
decay constant as F	�QCD, and the quark condensate

as jh0j �qqj0ij 	�3
QCD, one has

Bdu ¼ B0

F
ðmd �muÞ 	 �; (17)

with � denoting the quark mass difference. So using the
expressions given in Table II, the tree-level amplitude for a
pionic transition scales as

M SS
tree 	 1

mc

q�; (18)

where 1=ð2mcÞ has been canceled by the factor ffiffiffiffiffiffiffiffiffiffiffiffiffi
MiMf

p
due

to nonrelativistic normalization.
The dimension of the coupling constant 	 in the

Lagrangian for the transitions between two P-wave quar-
konia is the same as that of A. However, for these transi-
tions, the spin symmetry is preserved as can be seen from
Eq. (15). So in the scaling of 	 the suppression factor
�QCD=mc should not be present. This is the only difference

from that of A. The dimension of C in Eq. (14) is higher
than that of A or 	 by one unit. Therefore, analogous to
Eq. (18), the scaling of the tree-level amplitude for a pionic
transition between two P-wave charmonia and that for a
transition between one S- and one P-wave states should be
given by

TABLE II. Tree-level amplitudes for the charmonium transi-
tions with the emission of one pion or eta. A factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MiMf

p
,

with MiðfÞ denoting the mass of the initial (final) charmonium,

should be multiplied to all the expressions to account for the
nonrelativistic normalization of the charmonium fields.

c 0 ! J=c�0 i6A�ijk"iðc 0Þ"jðJ=c ÞqkBdu

c 0 ! J=c� ið8= ffiffiffi
3

p ÞA�ijk"iðc 0Þ"jðJ=c ÞqkBsl

c 0 ! hc�
0 6C~"ðc 0Þ � ~"ðhcÞBdu

�0
c ! �c0�

0 6
ffiffiffi
3

p
CBdu

�0
c0 ! �c1�

0 �2
ffiffiffi
6

p
i	 ~"ð�c1Þ � ~qBdu

�0
c1 ! �c1�

0 �i3	�ijk"ið�0
c1Þ"jð�c1ÞqkBdu

�0
c1 ! �c2�

0 3
ffiffiffi
2

p
i	"ið�0

c1Þ"ijð�c2ÞqjBdu

�0
c2 ! �c2�

0 �i6	�ijk"ilð�0
c2Þ"jlð�c2ÞqkBdu

h0c ! hc�
0 �i6	�ijk"iðh0cÞ"jðhcÞqkBdu
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M PP
tree 	 1

�QCD

q�; MSP
tree 	 �: (19)

B. Virtual photons

The e.m. effects come from virtual photons exchanged
in the processes. The inclusion of virtual photons has been
first considered systematically for three-flavor CHPT in
Ref. [36].

Since the photons are virtual, we need to consider op-
erators with at least two powers of electric charge. At
Oðm0

q
Þ, with 
 � e2=ð4�Þ ’ 1=137 the fine structure

constant, one virtual photon is exchanged. There are three
types of operators, and we will discuss them one by one:

(1) The virtual photon is exchanged between light
quarks, which is the standard case in CHPT with
virtual photons. One needs quadratic combinations
of the spurions Qþ and Q� which act on the light
quarks. The parity and charge conjugation proper-
ties of the Q� are given by [62]

Q�!P �Qy
�; Q�!C �QT�: (20)

There is only one light pseudoscalar meson in the
final states of all the transitions considered in the
paper. Qþ and Q� contain an even and odd number
of the Goldstone fields, respectively, and their ex-
pansion reads

Qþ ¼ QþOð�2Þ;

Q� ¼ iffiffiffi
2

p
F
ðQ���QÞ þOð�3Þ: (21)

Therefore, at Oð
Þ, the possible virtual photon op-
erators for the one pion (eta) emission transitions
between charmonia are ðQþQ�Þaa and ðQþÞaa �
ðQ�Þaa. The traces come from the fact that the
charmonia are SU(3) singlets. However, one can
easily show that

ðQ�Þaa ¼ 0; ðQþQ�Þaa ¼ 0: (22)

Thus, there is no electromagnetic contribution to the
one pion emission transitions at order Oð
Þ.
Actually, there is a more general relation

ðQnþQ�Þaa ¼ 0þOð�3Þ: (23)

That means, for any transition with the emission of
one soft pion between two isosinglets, the contribu-
tion from virtual photons exchanged between light
quarks vanishes at tree level.

(2) The virtual photon is exchanged inside the heavy
quarkonia. In this case, no operator containing light
mesons without derivative or quark mass can be

constructed. This may be understood as virtual pho-
tons exchanged inside the heavy quarkonia cannot
contribute to the isospin breaking transitions.

(3) The virtual photon is exchanged between a heavy
(anti)quark and a light (anti)quark. This kind of
virtual photon is important in understanding the
isospin mass splitting of heavy hadrons [63,64]. In
principle, this will give a nonvanishing contribution
to isospin breaking transitions. For the transitions
considered here, however, only one Goldstone bo-
son is emitted. Therefore, the operator for the light
flavor part should be ðQ�Þaa. However, the trace of
Q� vanishes [see Eq. (22)].

Therefore, there is no e.m. contribution to the isospin
breaking heavy quarkonium transitions at order Oð
Þ and
thus they can be neglected compared to the quark mass
difference terms. This conclusion agrees with those of
earlier studies in Refs. [33,34].

C. Tree-level amplitudes

Before working out the tree-level amplitudes using the
Lagrangians given in Sec. II A, one subtlety needs to be
addressed. In Eq. (3), the �0 and � are SU(3) flavor
eigenstates. However, they are not exactly the same as
the physical pion and eta which are mass eigenstates.
Denoting the physical states by ~�0 and ~�, the �0 � �
mixing is given as

�0 ¼ ~�0 cos��0� � ~� sin��0� ¼ ~�0 � ��0� ~�þOð�2
�0�

Þ;
� ¼ ~� cos��0� þ ~�0 sin��0� ¼ ~�þ ��0� ~�

0 þOð�2
�0�

Þ;
(24)

where ��0� is the well-known�0 � �mixing angle, which

reads to LO in the chiral expansion

��0� ¼
ffiffiffi
3

p
4

md �mu

ms � m̂
(25)

with m̂ ¼ ðmu þmdÞ=2 the average mass of the u and d
quarks. Using Dashen’s theorem [65], one may express the
mixing angle in terms of the masses of the Goldstone
bosons at LO in CHPT

��0� ¼ 1ffiffiffi
3

p M2
K0 �M2

Kþ þM2
�þ �M2

�0

M2
� �M2

�0

¼ 0:01: (26)

The mixing of the �0 or � with the �0 is not considered
since it is of higher order. The reason is that the �0 is not a
Goldstone boson of the spontaneous breaking of SUð3ÞL �
SUð3ÞR to the vector subgroup SUð3ÞV and its mass as a
large scale provides a suppression.
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The tree-level amplitudes for the charmonium transi-
tions with the emission of one pion or eta are listed in
Table II,3 where we have defined Bdu ¼ B0ðmd �muÞ=F
and Bsl ¼ B0ðms � m̂Þ=F.

A factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MiMf

p
, with MiðfÞ denoting the mass of the

initial (final) charmonium, should be multiplied to all the
expressions to account for the nonrelativistic normalization
of the charmonium fields used in the effective Lagrangians.

III. DECAYAMPLITUDES FROM
CHARMED MESON LOOPS

A. Charmed meson loops

In this section, we list all the possible loops (i.e. the
triangle graphs) with the lowest-lying pseudoscalar and
vector charmed mesons for each transition. There are three
charmed mesons in each loop. To be specific, we denote the
one connecting the initial charmonium and the light meson
as M1, the one connecting two charmonia as M2, and the
one connecting the final charmonium and the light meson
asM3. The mesonMi has a massmi. For instance, in Fig. 3
which shows all loops contributing to the c 0 !
J=c�0ð�Þ, M1, M2, and M3 are the D, �D, and D�,
respectively, in diagram (a). All the loops contributing to
each decay are listed in Table III.

B. Leading order effective Lagrangians

In order to calculate the leading contributions from the
charmed meson loops, we need the LO effective
Lagrangians for the couplings. Because the pion and eta
are pseudo-Goldstone bosons of the spontaneous chiral
symmetry breaking of QCD, their coupling to the charmed
mesons in the low-energy limit is constrained by chiral
symmetry. The effective Lagrangians were constructed
considering both the heavy quark symmetry and chiral
symmetry in Refs. [66–68] (for a review, we refer to
Ref. [69]). In the two-component notation of Ref. [56],

the charmed mesons are represented by Ha ¼ ~Va � ~�þ
Pa, with Va and Pa denoting the vector and pseudoscalar
charmed mesons, respectively, ~� are the Pauli matrices,
and a is the light flavor index. Explicitly, one can write

PaðVaÞ ¼ ðDð�Þ0; Dð�Þþ; Dð�Þþ
s Þ. The lowest order chiral ef-

fective Lagrangian for the axial coupling is [56]

L � ¼ � g

2
hHy

aHb ~� � ~ubai; (27)

where the axial current is ~u ¼ � ffiffiffi
2

p
~@�=FþOð�3Þ.

The LO Lagrangian for the coupling of the S- or P-wave
charmonium fields to the charmed and anticharmed me-
sons can be constructed considering parity, charge conju-

gation, and spin symmetry. In two-component notation, the
one for the S-wave charmonia J=c and �c reads [32]

L c ¼ i
g2
2
hJyHa ~� � @$ �Hai þ H:c:; (28)

where A@
$
B � Að ~@BÞ � ð ~@AÞB, and �Ha ¼ � ~�Va � ~�þ �Pa

is the field for anticharmed mesons [57]. The Lagrangian
for the P-wave charmonia at LO is [57]

L � ¼ i
g1
2
h�yiHa�

i �Hai þ H:c: (29)

These Lagrangians were introduced in Ref. [70] in four-
component notation. The values of g1 and g2 are twice of
those in Ref. [70].4 The Lagrangians for the coupling of the
radial excited charmonia to the charmed and anticharmed
mesons have the same form as Eqs. (28) and (29) with the
coupling constants changed to those for the excited states
g02 and g

0
1. For later use, we evaluate the traces in Eqs. (28)

and (29) and rewrite the Lagrangians in terms of the meson
fields. The Lagrangian for the J=c and �c is

L c ¼ ig2c
yiðVj

a@
$i

�Vj
a � Vi

a@
$j

�Vj
a � Vj

a@
$j

�Vi
aÞ

þ g2�
ijkc yiðPa@

$j
�Vk
a � Vj

a@
$k

�PaÞ
þ ig2c

yiPa@
$j

�Pa þ g2�
y
c �ijkVi

a@
$j

�Vk
a

þ ig2�
y
c ðVi

a@
$i

�Pa � Pa@
$i

�Vi
aÞ þ H:c: (30)

The Lagrangian for the �cJ and hc reads

FIG. 3. The decays c 0 ! J=c�0ð�Þ through triangle charmed
meson loops. Charmonia, light mesons, and pseudoscalar and
vector charmed mesons are denoted by double, dashed, thin, and
thick solid lines, respectively.

3We have checked that the ratios among the spin-averaged
absolute square of the transition amplitudes for the transitions
between P-wave charmonia given in Ref. [58] can be
reproduced.

4In the definition of the Lagrangians of Ref. [70], each term is
doubled for heavy quarkonia with the same flavor of quark and
antiquark. Hence the values of the coupling constants there
should be half of those in our paper.
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L� ¼ ig1�
yij
c2 ðVi

a
�Vj
a þ Vj

a �Vi
aÞ þ

ffiffiffi
2

p
g1�

yi
c1ðVi

a
�Pa þ Pa

�Vi
aÞ

þ iffiffiffi
3

p g1�
y
c0ð ~Va � ~�Va þ 3Pa

�PaÞ � g1�
ijkhyic Vj

a �Vk
a

þ ig1h
yi
c ðVi

a
�Pa � Pa

�Vi
aÞ þ H:c:; (31)

where the trace and symmetry properties �ij
c2�

ij ¼ 0 and

�ij
c2�

ijk ¼ 0 have been used in the derivations.

C. Decay amplitudes of the pion or eta
emission transitions

The amplitudes for all the transitions with charged
charmed meson loops are listed in Appendix B. The char-
monia are isospin and SU(3) flavor singlets, the pions form
an isospin triplet, and the � is an element of the SU(3)
octet. Therefore, the transitions between two charmonia
with the emission of one pion or eta break isospin or SU(3)
symmetry. The leading contributions to the eta transition
amplitudes are given by the differences between the non-
strange and strange charmed meson loops. The decay
amplitude for the c 0 ! J=c� is

Mðc 0 ! J=c�Þ ¼ 1ffiffiffi
3

p ½Mðc 0 ! J=c�Þ0
þMðc 0 ! J=c�Þ� � 2Mðc 0 ! J=c�Þs�; (32)

where � denotes the light pseudoscalar meson, and the
expression of Mðc 0 ! J=c�Þ� is given as Eq. (B1) in
Appendix B. The amplitude with lower index 0 can be
obtained by simply replacing the charged charmed mesons
in Eq. (B1) by the neutral ones, and the lower index s
denotes the charmed-strange meson loops. The leading
contributions to the pionic transition amplitudes are given
by the differences between the neutral and charged
charmed meson loops and also from the �0 � � mixing
through the loops contributing to the eta transition. From
Eq. (24), the physical pion is

~� 0 ¼ �0 þ ��0��þOð�2
�0�

Þ: (33)

Hence, the amplitude for the c 0 ! J=c�0 reads

Mðc 0 ! J=c�0Þ ¼ ��0�ffiffiffi
3

p ½Mðc 0 ! J=c�Þ0
þMðc 0 ! J=c�Þ� � 2Mðc 0 ! J=c�Þs�
þMðc 0 ! J=c�Þ0 �Mðc 0 ! J=c�Þ�: (34)

Note that although the loop amplitudes Mðc 0 !
J=c�Þ0;�;s take the same form as those in Eq. (32), the

momentum q is different for the different decays; it is
given by the three-momentum of the light meson in the
final state. For all the other transitions considered in this
paper, the available phase spaces only allow the emission
of one pion, and the amplitudes can be obtained in a similar
way to Eq. (34) using the equations given in Appendix B.
As can be seen from the presence of a Pauli matrix

between two charmonium fields in the Lagrangians LSS

and LSP, the transitions between the S-wave charmonia
violate the heavy quark spin symmetry, and so do those
between one S and one P-wave charmonia. Were the heavy
quark spin symmetry exact, the vector and pseudoscalar
charmed mesons would have the same mass. In the heavy
quark spin symmetric world, all the meson-loop ampli-
tudes for the transitions between two S-wave charmonia,
and those between one S and one P-wave charmonia would
vanish. This is because the contributions from different
loops would cancel with each other completely as one may
easily see from the amplitudes listed in Appendix B by
putting MD ¼ MD� . This means the vector and pseudosca-
lar heavy mesons have to be considered simultaneously to
keep the structure of the spin symmetry which is used in
constructing the Lagrangians and relating the coupling
constants for different transitions. The transitions between
the P-wave charmonia respect the spin symmetry, so the
resulting amplitudes do not vanish in the given heavy quark
spin symmetric world as shown in Appendix B 3. Keeping
spin symmetry structure of the tree-level amplitudes might
be a general feature of the heavy hadron loops, so that the
analysis of the spin partner of heavy hadron molecules in

TABLE III. All the loops contributing to each transition. The mesons are listed as
½M1;M2;M3�. Flavor labels are dropped for simplicity.

c 0 ! J=c�0ð�Þ ½D; �D;D��, ½D�; �D;D�, ½D; �D�; D��, ½D�; �D�; D�, ½D�; �D;D��, ½D�; �D�; D��
c 0 ! hc�

0 ½D; �D;D��, ½D�; �D;D��, ½D�; �D�; D�, ½D; �D�; D��, ½D�; �D�; D��
hc ! J=c�0 ½D�; �D;D�, ½D�; �D;D��, ½D; �D�; D��, ½D�; �D�; D�, ½D�; �D�; D��
�0
c ! �c0�

0 ½D�; �D;D�, ½D; �D�; D��, ½D�; �D�; D��
�c0 ! �c�

0 ½D; �D;D��, ½D�; �D�; D�, ½D�; �D�; D��
�0
c0 ! �c1�

0 ½D; �D;D��, ½D�; �D�; D�
�0
c1 ! �c0�

0 ½D�; �D;D�, ½D; �D�; D��
�0
c1 ! �c1�

0 ½D�; �D;D��
�0
c1 ! �c2�

0 ½D; �D�; D��
�0
c2 ! �c1�

0 ½D�; �D�; D�
�0
c2 ! �c2�

0 ½D�; �D�; D��
h0c ! hc�

0 ½D�; �D;D��, ½D; �D�; D��, ½D�; �D�; D�, ½D�; �D�; D��
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Ref. [71], which is based on the spin symmetry without
considering loops, would not be affected.

D. Power counting of the loops

Before proceeding to numerical calculations, one must
analyze the power counting of the loops in the NREFT
formalism. Any loop diagram in the paper is composed of
two vertices for the coupling of a charmonium to charmed
and anticharmed mesons—both characterized by a vertex
structure and a coupling constant, one vertex for the cou-
pling of a pion or eta to charmed mesons, and three
propagators for charmed mesons. The power counting of
a given diagram is obtained via estimating each individual
ingredient by a typical value. Based on this analysis, each
diagram can be assigned a definite order n in the given
expansion parameter, which for the transitions at hand turn

out to be the velocity v of the intermediate heavy mesons.
Once a complete calculation up to order n is performed, the

uncertainty of the calculation may be estimated as vðnþ1Þ—
wewill show below that additional scales introduced by the
dimensionful coupling constants do not distort this picture.
Since effective field theories are in general nonrenorma-

lizable, they have to be regularized and renormalized order
by order. A consistent power counting thus has to guaran-
tee that at each order where there are divergences there are
also appropriate counterterms available. In this section we
check this for the transitions and the power counting at
hand.
Let us first focus on the propagators and take the scalar

loop integral as an example. The scalar loop integral in d
dimensions for the triangle graphs under consideration is
defined as

IðqÞ ¼
Z ddl

ð2�Þd
i

D
¼

Z ddl

ð2�Þd
i

ðl2 �m2
1 þ i�Þ½ðP� lÞ2 �m2

2 þ i��½ðl� qÞ2 �m2
3 þ i�� ; (35)

where P is the momentum of the initial charmonium and q is the momentum of the light meson in the final state.
Nonrelativistically, in the rest frame of the initial charmonium, the loop can be written as

IðqÞ ¼ i

8m1m2m3

Z d4l

ð2�Þ4
1

ðl0 � T1ðj~ljÞÞðP0 � l0 � T2ðj~ljÞÞðl0 � q0 � T3ðj~l� ~qjÞÞ

¼ 1

8m1m2m3

Z d3l

ð2�Þ3
1

ðEi � T2ðj~ljÞ � T1ðj~ljÞÞðEf � T2ðj~ljÞ � T3ðj~l� ~qjÞÞ ; (36)

where TiðpÞ ¼ p2=2mi ¼ miv
2=2, with v being the

charmed meson velocity, denotes the kinetic energy for
the charmed mesons with masses m1, m2, and m3, Ei ¼
Mi �m1 �m2 and Ef ¼ Mf �m2 �m3 � E� denote the
energies available for the first (before the pion emission)
and second (after the pion emission) two–heavy–meson
intermediate state, respectively. One may assign the
charmed meson momentum as MDv. Here, we will only
count the power of v since the dimension of the loops can
be simply implemented by multiplying proper power of
MD. Thus, the scalar loop scales as 1=ð16�Þ½v3=ðv2Þ2� ¼
1=ð16�vÞ, since in the last line of Eq. (36) each of the
nonrelativistic propagators is counted as 1=v2 and the
integral measure is counted as v3=ð16�Þ, where it was
used that the loops are dominated by the unitarity cut,
which produces a factor of � to be combined with the
standard factor 1=ð4�Þ2 from the integral measure. This
factor is common to all loop contributions as given in
Table IV.

As indicated in Eq. (27) for the axial coupling of the
pion or eta to the charmed mesons, the corresponding
vertex is proportional to the external momentum of the
pion or eta, denoted by q—this gives one power of q in the
expressions for all the loop contributions in Table IV.
Further, we have to account for the isospin or SU(3)

violation as well as the momentum dependence of the
charmonium-charmed meson vertices—the scaling of the
coupling constants will be discussed below. To account for
the corresponding symmetry breaking, in each power
counting estimate for the loops listed in Table IV, we

TABLE IV. Power counting of the tree-level amplitudes and
the (leading) loops. Here SS, SP, and PP represent transitions
between two S-wave, one S-wave and one P-wave, and two
P-wave charmonia, respectively. The parameter � denotes the
quark mass differences, and � the charmed meson mass differ-
ences. They are the strength parameters for isospin or SU(3)
symmetry violation. v is the heavy-meson velocity in the inter-
mediate loops, q the momentum of the outgoing pseudoscalar
meson, and MD the mass of the heavy mesons in the loop. For
the origin of the individual factors, see the text.N ¼ 1=ð4�v3

cÞ,
1=ð2 ffiffiffi

3
p

�v4
cÞ, and 1=ð3�v5

cÞ for the SS, SP, and PP transitions,
respectively, where vc denotes the charm quark velocity inside
the charmonia.

Tree-level Loops

SS 1
mc

q� N
mc

ðv3

v4Þv2qð�
v2Þ ¼ N

mc

q�
v

SP � N ðv3

v4Þ qq
M2

D

ð�
v2Þ ¼ N q2

v3M2
D

�

PP 1
�QCD

q� N
�QCD

ðv3

v4Þqð�v2Þ ¼ N
�QCD

q�
v3
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have pulled out the meson mass difference, denoted as �,5

which is a small energy scale, and divided � by a factor
which characterizes the intrinsic energy v2 for balance.
The vertices are more complicated since their scaling
behavior depends on the quantum numbers of the charmo-
nia in both the initial and final states. We therefore classify
the vertices into three groups:

(1) Both the vertices for the initial and final charmonia
are in S-wave. This corresponds to the transitions
between two P-wave charmonia (denoted by PP in
Table IV). In this case, the vertices do not give any
nontrivial contribution to the power counting, and
they scale as Oðv0q0Þ ¼ Oð1Þ.

(2) One vertex is in S-wave, and the other one is in
P-wave. This corresponds to the transitions between
one S-wave and one P-wave charmonia (denoted by
SP in Table IV). In this case, the loop momentum
must be contracted with the external momentum q
and hence render the scale of the P-wave vertex to
be OðqÞ. In this case a factor 1=M2

D needs to be
introduced to match dimensions.

(3) Both the vertices are in P-wave. This corresponds to
the transitions between two S-wave charmonia (de-
noted by SS in Table IV). In this case the loops are
tensor loops, which can be split into two parts as

given in Eq. (A5). The part qiqjIð2Þ0 ðqÞ scales as two
powers of the eternal momentum, i.e. Oðq2Þ. In the
other part, the two momenta in the numerator of the
loop integrand contract with each other, and as a
result, the Kronecker delta appears. Here all mo-
menta appearing are internal momenta, which, by
assumption, scale as v. Thus, for this piece of the
integral the two vertex functions together scale as
v2. In the transitions considered in the paper, one
always has q & MDv. Hence, the product of the two
vertices in this case can be counted as Oðv2Þ.

The last ingredients to be discussed are the coupling
constants g, g1, and g2. g is the axial coupling constant for
the heavy mesons. It is dimensionless and should be of
order unity. Based on the underlying Lagrangians, e.g. the
dimension of g2, the coupling of the S-wave charmonia to
the open charm ground states, is �3=2. In Ref. [70], using
vector meson dominance arguments, the authors obtain

g2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
MJ=c

p
=ðMDfJ=c Þ, where fJ=c is the decay constant

of the J=c . On the quark level it scales with the J=c wave
function at the origin that, on dimensional grounds, should

be fJ=c 	mcv
3=2
c —the quark mass and velocitymc and vc

were introduced at the end of Sec. II A. Hence, we have

g2 	
ffiffiffi
2

p

ðmcvcÞ3=2
: (37)

Using mc ¼ 1:5 GeV and v2
c ¼ 0:3 we get g2 ¼

1:9 GeV�3=2, which is close to independent model esti-

mates in a range of 2:1–2:9 GeV�3=2 for this quantity
existing in the literature [72–74].
The expression for g1 derived from vector meson domi-

nance is g1 ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�c0

=3
q

=f�c0
[70]. From dimensional

analysis, the decay constant of the P-wave charmonium
�c0 should scale with the first derivative of the wave
function at the origin. Hence,

g1 	�
ffiffiffi
2

3

s
2ffiffiffiffiffiffi

mc
p

v5=2
c

: (38)

Using the above scaling, we can work out the power
counting of the loops for different processes. For the SS
transitions, as mentioned at the end of Sec. III C, the loop
amplitudes vanish in case of MD ¼ MD� ; i.e. the loop
amplitude violates spin symmetry as the tree-level ampli-
tude does. So a factor of �QCD=mc should also be consid-

ered in the scaling of the loop amplitude as well as the
estimate for the loop integral itself, 1=ð16�vÞ, and a factor
v2, which originates from the two decay vertices.
Furthermore, the nonrelativistic normalization factorffiffiffiffiffiffiffiffiffiffiffiffiffi
MiMf

p
m1m2m3 gives a factor 2m4

c. As explained in the

above, a factor of �=ðmDv
2Þ 	�=ðmcv

2Þ should also be
introduced to account for the isospin breaking. Collecting
all factors, we get for the scaling of the loop amplitude for
the SS transitions

M SS
loop	

g

F
g2g

0
2q2m

4
c

v2

16�v

�QCD

mc

�

mcv
2
	 1

4�v3
c

1

mc

q�

v
:

(39)

As will be shown later, these rules for power counting of
the loops are satisfied by explicit nonrelativistic
calculations.
Similarly, for the SP and PP transitions, using the scal-

ing of g1 given in Eq. (38) we have

MSP
loop 	

g

F
g1g2q2m

4
c

1

16�v

q

M2
D

�QCD

mc

�

mcv
2

	 1

2
ffiffiffi
3

p
�v4

c

q2�

M2
Dv

3
(40)

and

M PP
loop 	

g

F
g1g

0
1q2m

4
c

1

16�m2
cv

�

mcv
2
	 1

3�v5
c

1

�QCD

q�

v3
:

(41)

In the last equation, a factor of 1=M2
D 	 1=m2

c was taken
into account to give the correct dimension of the scalar
loop. This can be done as mentioned below Eq. (36).
The scaling for the loop amplitudes in Eqs. (39)–(41)

need to be compared to the corresponding estimates for
the tree-level amplitudes. The relevant estimate is given

5These meson mass differences are, of course, generated by
quark mass differences and e.m. effects. For the charmed me-
sons, � is of similar size as the quark mass differences �.
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explicitly in Eq. (18) for the SS transitions and Eq. (19) for
the PP and SP transitions—the final results for all tran-
sitions are given in Table IV. For charmed mesons, � is of
similar size as � as may be checked numerically, i.e.
MDþ �MD0 ’ md �mu and MDþ

s
�MDþ ’ ms �md. At

this stage, let us make a remark about the factor containing
the charm quark velocity scaling of the coupling constants,

i.e. N ¼ 1=ð4�v3
cÞ, 1=ð2

ffiffiffi
3

p
�v4

cÞ, and 1=ð3�v5
cÞ for the

SS, SP, and PP transitions, respectively. Taking vc ¼ffiffiffiffiffiffiffi
0:3

p
, we get N ¼ 0:5, 1, and 2 for the SS, SP, and PP

transitions, respectively. All these numbers are of order
unity. Although N scales differently in powers of vc for
different processes, the numerical values are not very
different. This is because the charm quark velocity vc in
such a charmonium is not so small. Hence the numerical
values of the presumably well-separated scales may be
similar in practice. Sometimes, the order of the scales is
even reversed. For instance, purely from the scaling,

fJ=c 	mcv
3=2
c should be larger than f�c0

	mcv
5=2
c .

However, using the experimental value �ðJ=c !
eþe�Þ ¼ 5:55� 0:14 keV [44], and the relation between
decay constant and the leptonic width of the J=c

�ðJ=c ! eþe�Þ ¼ 16�

27


2

MJ=c

f2J=c ; (42)

fJ=c ¼ 416 MeV, while the numerical result from QCD

sum rules gives f�c0
¼ 510� 40 MeV [75]. Furthermore,

in view that there must be unknown numerical factors in
the coupling constants g1, g2 and also the tree-level ones,
and the vc scaling of tree-level couplings is not known yet
as mentioned before Eq. (16), we will neglect the subtlety
caused by N in the power counting and just take it to be
unity for all the transitions (numerical calculations in the
next section will not be affected). Based on the underlying
power counting, we therefore predict loops to be enhanced
by a power of 1=v for SS and 1=v3 for PP transitions,
while for SP transitions in many cases loops appear to be
suppressed—see detailed discussion below. One should
also keep in mind that the meson velocity v in some of
the processes to be discussed is as large as 0.5 so that 1=v
for the SS transitions might be in practice not a large
enhancement. But it should be sufficient to say that the
loops are important compared to the tree-level contribu-
tions and should not be neglected in any realistic analysis.

As mentioned above, a consistent power counting needs
to ensure that all appearing divergences can be absorbed
into appropriate counterterms. This is of importance here
since the leading counterterms are supplied by the tree-
level amplitudes discussed above, which in some cases
appear in higher orders than the leading loops. In such a
case, they might get renormalized by absorbing the diver-
gence of the loops. Although the scalar loop, defined in
Eq. (35) is convergent, for some transitions there are
momentum factors at the vertices, resulting in divergent
integrals. In Appendix B the contributions to all transitions

are expressed in terms of a few fundamental integrals
defined in Appendix A. Note that, in order to account for
the nonrelativistic normalization of the charmonium and
charmed meson fields, one needs to multiply each ampli-

tude by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MiMf

p
m1m2m3, where MiðfÞ is the

mass of the initial (final) charmonium, and mi (i ¼ 1; 2; 3)
are the masses of the charmed mesons in the loops. The

loop functions Ið1ÞðqÞ, Ið2Þ0 ðqÞ, and Ið2Þ1 ðqÞ are constructed

from the basic scalar loop functions IðqÞ defined in Eq. (35)

qiIð1ÞðqÞ ¼ i
Z ddl

ð2�Þd
li

D
;

qiqjIð2Þ0 ðqÞ þ �ij ~q2Ið2Þ1 ðqÞ ¼ i
Z ddl

ð2�Þd
lilj

D
;

(43)

and BðcÞ, which in d space-time dimensions is

BðcÞ ¼ 4�N
Z dd�1l

ð2�Þd�1

1

~l2 þ c� i�
; (44)

where N ¼ �12�23=ð16�m1m2m3Þ with �ij ¼ mimj=

ðmi þmjÞ for the reduced masses. For later use, we define

the following quantities:

a ¼
�
�23

m3

�
2
~q2; c ¼ 2�12b12;

c0 ¼ 2�23b23 þ�23

m3

~q2;

(45)

where b12¼m1þm2�Mi and b23¼m2þm3þq0�Mi.
In our full calculation all integrals are evaluated using

dimensional regularization. In this section, however, in
order to make all divergences explicit, we investigate the
divergence structure by introducing a sharp momentum
cutoff in three dimensions. With this one finds

BðcÞ ¼ 4�N
Z � d3l

ð2�Þ3
1

~l2 þ c� i�

¼ N

�
2�

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c� i�
p þO

�
1

�

��
: (46)

The nonanalytic part is finite. It is determined by unitarity
and hence does not depend on the choice of regularization

method. In the integral Ið1Þ only the linear combination
Bðc0 � aÞ � BðcÞ appears—cf. Eq. (A6)—and thus the
divergence of BðcÞ cancels. The UV divergent part of

~q2Ið2Þ0;1ðqÞ is

~q 2Ið2Þ0 ðqÞUV ¼ ~q2Ið2Þ1 ðqÞUV ¼ N

�
�: (47)

For the loop amplitudes given in Appendix B, only the
transitions between two S-wave charmonia, i.e. c 0 !
J=c�0ð�Þ, are divergent.
In order to estimate the finite parts of the pertinent

integrals we may use a 
 c � c0 � ffiffiffiffiffiffiffiffiffiffi
2�b

p � MDv and
expand the expressions in a series around a ¼ 0. With this
we find
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Bðc0 � aÞ ¼ BðcÞ þOðaÞ ¼ �N
ffiffiffi
c

p þOðaÞ;
IðqÞ � N

1ffiffiffi
c

p þOðaÞ;

Ið1ÞðqÞ � N
�23

m3

1

2
ffiffiffi
c

p þOðaÞ;

~q2Ið2Þ1 ðqÞfinite � �N
ffiffiffi
c

p þOðaÞ;
~q2Ið2Þ0 ðqÞfinite ¼ OðaÞ: (48)

The exact expressions are given in Appendix A.
As an example we now focus on the analysis of diagram

(b) in Fig. 3 to the amplitude of the c 0 ! J=c�0—the
discussion is easily generalized to the other diagrams. The
amplitude reads

Mðc 0 !J=c�0ÞðbÞ ¼NðbÞ½ ~q2Ið2Þ1 ðq;D�0;D0;D0Þ
� ~q2Ið2Þ1 ðq;D��;D�;D�Þ�; (49)

with NðbÞ ¼ �4ðg=FÞg2g02�ijkqi"jðc 0Þ"kðJ=c Þ. The con-

tribution of the finite part of the loop function Ið2Þ1 ðqÞ to
diagram (b) behaves as

Mðc 0 ! J=c�0ÞfiniteðbÞ 	 �NðbÞðNn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�nbn

p
� Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�cbc

p Þ; (50)

where the lower index n means neutral and c charged.
Denoting the mass difference between the charged and
neutral charmed mesons by �,6 we have �c ¼
�n þ�=2 and bc ¼ bn þ 2�. Thus, we have

Mðc 0 ! J=c�0ÞfiniteðbÞ 	 NðbÞN�
2�n þ bn=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�nbn
p þOð�2Þ

	 NðbÞN
�

v
; (51)

which is consistent with the power counting analysis for SS
transitions given above. Here, we neglect the difference
between Nn and Nc since it is of higher order. On the other
hand, the UV divergence of diagram (b) is

Mðc 0 ! J=c�0ÞUVðbÞ ¼ NðbÞ
�

�
ðNn � NcÞ

	 NðbÞN
�

�n

�

�
: (52)

Therefore, for diagram (b), the finite part is of order
Oð�v�1Þ, while the UV divergence is of order Oð�v0Þ.
Hence the UV divergence is one order higher in the
expansion of v. Recalling the tree-level contribution to

the c 0 ! J=c�0 starts from the same order as
Oð�v0Þ—see the column for SS transitions in
Table IV—such a divergence can be renormalized by a
counterterm in the Lagrangian for the tree-level
contribution.
As a result of this analysis we summarize, comparing the

loop contributions with the tree-level decay amplitudes
given in the last section and in Table IV, where we assume
the same scale for the light quark mass and the heavy-
meson mass differences, � ’ � [27], that the loop contri-
butions for the SS transitions are enhanced by a factor of
1=v � 2 and for the PP transitions even by a factor of
1=v3 � 10. The situation for the SP transitions should be
analyzed case by case since an enhancement factor 1=v3

competes with a suppression factor q2=M2
D. For the SP

transitions with small phase space, the external momentum
q might be small enough to make q2=ðv3M2

DÞ much
smaller than 1, which is satisfied for the decays c 0 !
hc�

0 and �0
c ! �c0�

0 [48]. In this case, the decay is
dominated by the tree-level contributions. However, for

the decays with external momentum q * MDv
3=2, the

factor q2=ðv3M2
DÞ * 1 and so is no more a suppression,

and hence the tree-level contributions are at least as im-
portant as the loop contributions. In summary, our power
counting was shown to be consistent with the divergence
structure of the pertinent integrals.

IV. RESULTS FOR THE DECAY WIDTHS

In this section, we give the results from explicit calcu-
lations of all the mentioned transitions with emphasis on
the contributions from charmed meson loops. In the nu-
merical evaluations we use the following values for the
meson masses [44]:

M�0 ¼ 134:98 MeV; M� ¼ 547:85 MeV;

MDþ ¼ 1869:60 MeV; MD0 ¼ 1864:83 MeV;

MDs
¼ 1968:47 MeV; MD�þ ¼ 2010:25 MeV;

MD�0 ¼ 2006:96 MeV; MD�
s
¼ 2112:3 MeV;

MJ=c ¼ 3096:92 MeV; M�c
¼ 2980:3 MeV;

Mc 0 ¼ 3686:09 MeV; M�0
c
¼ 3637 MeV;

Mhc ¼ 3525:42 MeV; M�c0
¼ 3414:75 MeV;

M�c1
¼ 3510:66 MeV; M�c2

¼ 3556:20 MeV;

M�0
c2
¼ 3929 MeV: (53)

Here we have identified the �0
c2 with the Zð3930Þ as done

by the Particle Data Group; see e.g. Refs. [6,50,76,77]. The
Zð3930Þ was observed in the D �D mass distribution in
photon-photon collisions by the Belle Collaboration [76]
with a mass of 3929� 5� 2 MeV and width of 29�
10� 2 MeV. The observed angular distribution suggests
that its quantum numbers are JPC ¼ 2þþ. The widths of

6We neglect the difference between the mass difference for the
pseudoscalar mesons and that for the vector ones, which is of
higher order in heavy quark expansion. Empirically, one finds
�P ¼ mD� �mD0 ¼ 4:77� 0:10 MeV and �V ¼ mD�� �
mD�0 ¼ 3:29� 0:21 MeV. Their difference is about 30% of
�P, which can be understood as Oð�QCD=mcÞ effects.
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the �0
c2 calculated in quark models are consistent with the

observed values for the Zð3930Þ [50,77].
There is no unambiguous candidate for either of the

other three excited P-wave charmonia �0
c0, �

0
c1, and h0c.

Very recently, the Belle Collaboration observed an en-
hancement, called the Xð3915Þ, in the J=c! mass distri-
bution in photon-photon collisions [78]. The mass and
width of the Xð3915Þ were reported to be 3915� 3� 2
and 17� 10� 3, respectively [78]. In Ref. [79], the au-
thors suggest the Xð3915Þ as the �0

c0. However, this assign-

ment may be criticized from the following points: First,
since the �0

c0 is above the D
�D threshold, and it couples to

D �D in an S wave, one would expect it to have a larger
width than the 17 MeV of the Xð3915Þ. Second, were the
Zð3930Þ the �0

c2, the mass differenceMZð3930Þ�MXð3915Þ ¼
14�6MeV is too small for the hyperfine splitting, since
the mass splitting between the ground state �c2 and �c0 is
1 order of magnitude larger, M�c2

�M�c0
¼ 141 MeV

[44]. In addition, one expects the hyperfine splittings for
the bottomonia are smaller than the corresponding ones for
the charmonia, as can be checked from all the measured
cases. The mass splitting between the excited P-wave
bottomonia �0

b2 and �0
b0 is 36:2� 0:8 MeV [44]. It is

larger than MZð3930Þ �MXð3915Þ and therefore does not

support the assignment of the Xð3915Þ and Zð3930Þ as
the �0

c0 and �0
c2 simultaneously. Based on the above argu-

ments, we shall let the mass of the �0
c0 run in a range from

3800 to 3930 MeV which covers the predicted values from
quark models [50,80].

In the observed spectrum of the charmonia, the only
candidate of the �0

c1 with well-established quantum num-

bers is the Xð3872Þ discovered by the Belle Collaboration
[81]. However, due to the proximity to the D �D� threshold,
the interpretation of the Xð3872Þ as a molecular state
[82,83] or virtual state [84] (for an update of the latter
analysis see Ref. [85]) is very intriguing (for reviews, see,
e.g. Refs. [5–8]). Therefore, although a molecular inter-
pretation of the Xð3872Þ was questioned in Ref. [86] (see
also Ref. [87] for a critical reevaluation), we shall not
identify the Xð3872Þ as the �0

c1, and the mass of the �0
c1

will also be allowed to vary. To be specific, a range from
3.83 to 3.93 GeV will be chosen which covers the predicted
value from some quark models, e.g. Ref. [50], and the mass
of the Xð3872Þ.

A. Transitions between the S-wave charmonia

The decays studied in this class are c 0 ! J=c�0 and
c 0 ! J=c�. As shown in Sec. III D (see especially
Table IV), for these transitions the charmed meson loops

are enhanced by 1=v. The velocity can be estimated as v	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2MD̂ �Mĉ Þ=MD̂

q
’ 0:53 with MD̂ being the averaged

charmed meson mass, and Mĉ ¼ ðMJ=c þMc 0 Þ=2.
Hence, the LO result for the width is provided by the loops

[32], although the relatively large expansion parameter
leads to a sizable uncertainty.
Taking into account only the loop contributions, we give

the numerical results for the c 0 ! J=c�0 and c 0 !
J=c�. To account for the nonrelativistic normalization,
one needs to multiply the amplitudes by a proper factor.
One way to do this is to multiply the amplitude for each

loop by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mc 0MJ=c

p �m1m2m3, with mi being

the masses of the charmed mesons in the loop. In this way,
the factor may differ for different loops. From the decay
D� ! D� the coupling g, defined in Eq. (27), can be fixed
to g ¼ 0:6 using F ¼ 92:4 MeV. We thus get for the decay
widths

�ðc 0 ! J=c�0Þ ¼ ð0:048� 0:025Þg22g022 keV;

�ðc 0 ! J=c�Þ ¼ ð0:43� 0:23Þg22g022 keV;
(54)

where an uncertainty of 53%, which is the value of v, has
been taken into account. Here and in the following values

for g2 and g02 are given in units of GeV�3=2. The resulting
ratio, which is parameter-free, reads

R�0=� ¼ 0:11� 0:06; (55)

with an uncertainty of 53%. Comparing with the measured
values listed in Table I, it is within two sigma of the CLEO
and PDG-fit data and even overlaps within uncertainties
with the result given by the BES Collaboration. A more
conservative estimate of the uncertainty of the ratio may be
given by assuming the uncertainties in Eq. (54) are uncor-
related, which would give R�0=� in a much larger range

from 0.03 to 0.36. It is consistent with the data in Table I.
Within the effective field theory we cannot predict the

absolute rates for the decays, for the couplings are un-
known. However, we may use the results given above to
extract some averaged coupling constants that may then be
compared to the corresponding values in the literature.
Using the experimental data for two decay widths �ðc 0 !
J=c�0Þ ¼ 0:40� 0:03 keV and �ðc 0 ! J=c�Þ ¼
10:0� 0:4 keV [44], the value of G � ffiffiffiffiffiffiffiffiffiffi

g2g
0
2

p
can be

deduced. Since with the more conservative uncertainty
estimate a ratio consistent with the data is obtained, a
combined fit to both widths is possible. The widths for
both decays agree with the data within uncertainties giving

G � 2:0 GeV�3=2. We can define dimensionless coupling

constants g
cDð�Þ

ðsÞD
ð�Þ
ðsÞ
¼ g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MJ=cMDð�Þ

ðsÞ
M

Dð�Þ
ðsÞ

q
and similar

quantities for the c 0. Assuming the coupling constants

are SU(6) symmetric, i.e. gcDD ¼ g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MJ=c �m2

q
with �m

being the average mass of the charmed meson spin-flavor
SU(6) multiplet, we obtain GcDD � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gcDDgc 0DD
p � 7:3.

Another way to account for the nonrelativistic normal-
ization is to use an overall normalization factor, i.e.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mc 0MJ=c

p
�m3. In this way, the results are collected as

follows:
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�ðc 0 ! J=c�0Þ ¼ ð0:098� 0:052Þg22g022 keV; (56)

�ðc 0 ! J=c�Þ ¼ ð0:84� 0:45Þg22g022 keV; (57)

and their ratio is almost the same as that given in Eq. (55).
The combined coupling constant is extracted from a com-

bined fit asG � 1:7 GeV�3=2 and the dimensionless one is
GcDD � 6:0.

Note that because the c 0 and J=c are below the open
charm threshold, their coupling to the charmed mesons
cannot be extracted directly using the decay widths.
Nevertheless, there are several theoretical estimates.
Using vector meson dominance, the value for the J=cDD
coupling was estimated to be 7.7 in Ref. [72] and 8:0� 0:5
in Ref. [73]. Using QCD sum rules, Ref. [74] obtained
8:2� 1:3, and using an SU(4) chiralmodel, it was estimated
to be 4.93 in Ref. [88]. Assuming gcDD ¼ gc 0DD, the

J=cDD coupling extracted from the c 0 ! J=c�0ð�Þ con-
sidering only the charmed meson loops is of similar size as
these phenomenological estimates.

Since the results for the widths considering these two
ways to account for the nonrelativistic normalization are
consistent within uncertainties, in the following, we shall
only use the former one, i.e. using the physical masses of

the intermediate mesons in the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MiMf

p
m1m2m3.

B. Transitions between the S- and P-wave charmonia

In these transitions, the situation is different. As ana-
lyzed in Sec. III D, the loops do not necessarily dominate
the transitions. Especially for those decays which have a
very small phase space, the contribution from the charmed
meson loops is highly suppressed [48]. For these decays
the momentum of the emitted pion is so small that
q2=ðv3M2

DÞ 
 1. Two examples are given by c 0 !
hc�

0, with q ¼ 86 MeV, and �0
c ! �c0�

0, with q ¼
171 MeV. Considering that the velocity v is aboutffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2MD̂ � ðMc 0 þMhcÞ=2�=MD̂

q
’ 0:4, in the case of the

former transition the dimensionless factor is

1

v3

~q2

m2
D

� 0:03: (58)

Thus, if all couplings are natural, the heavy-meson-loop
contributions are estimated to only give a few percent
correction to the tree-level contribution. In case only loops
are considered we get for the width of the c 0 ! hc�

0 the
very small prediction

�ðc 0 ! hc�
0Þloop ¼ 2:1� 10�7g21g

02
2 keV; (59)

where the value of g1 is given in units of GeV�1=2. The
decay width has been measured by the BES-III
Collaboration very recently [89], and the absolute value
of the branching ratio for the c 0 ! hc�

0 is Bðc 0 !
�0hcÞ ¼ ð8:4� 1:3� 1:0Þ � 10�4. Using the PDG value
for the width of the c 0, �ðc 0Þ ¼ 304� 9 keV [44], the

measured width is �ðc 0 ! hc�
0Þ ¼ 0:26� 0:05 keV.

Taking into account that g02 is about 2 GeV�3=2 as ex-
tracted in Sec. IVA and Ref. [32], and g1 is about

�4 GeV1=2 from an estimate using the vector meson domi-
nance [70], the numerical value �ðc 0 ! hc�

0Þloop 	
10�5 keV is orders of magnitude smaller than the
measured value. This confirms our very rough estimate
for the loop contributions in the above.
The same situation happens to the �0

c ! �c0�
0. For this

decay, the momentum of the pion is 171 MeV, and the
suppression factor is

1

v3

~q2

m2
D

� 0:1: (60)

Thus, here, for natural couplings, the loops are expected to
give a correction of the order of 10% to the tree-level
amplitude. If again only loops are considered, the width
is again quite small:

�ð�0
c ! �c0�

0Þloop ¼ 1:0� 10�5g21g
02
2 keV: (61)

The pion momentum is 382 MeV for the transitions
hc ! J=c�0 and 387 MeV for the �c0 ! �c�

0. The
dimensionless suppression factor is about 0.3, still a small
number although much larger than the previous two cases.
Especially through the interference with the tree-level
amplitude meson loops may give a significant contribution
for the mentioned decays and should not be neglected in
any quantitative analysis. The widths, considering only the
loop contributions, are given by

�ðhc ! J=c�0Þloop ¼ 1:9� 10�4g21g
2
2 keV;

�ð�c0 ! �c�
0Þloop ¼ 3:3� 10�4g21g

2
2 keV: (62)

For the transitions �0
c0 ! �0

c�
0 and h0c ! c 0�0, the

situation is more complicated. Although the pion momen-
tum is small for these decays, the dimensionless factor
ðq�=MDÞ2=v3 does not necessarily give a large suppres-
sion. For these two transitions, the masses of both the
initial and final charmonia are close to the thresholds of
the charmed mesons involved in the loops. As a result,

the velocity as approximated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jbj= �MD

q
, where �jbj ¼

ðjb12j þ jb23jÞ=2, is small. As discussed at the beginning of
this section, the �0

c0 and h0c have not been unambiguously

identified so far. To illustrate the point, one may use values
for their masses from quark model calculations. For the
�0
c0 ! �0

c�
0, considering the loop ½D; �D;D��, the velocity

is about 0.30 if we use M�0
c0
¼ 3842 MeV predicted in

Ref. [50], and ðq�=MDÞ2=v3 � 0:23 is still a suppression
factor. If we use M�0

c0
¼ 3916 MeV predicted in the

quark model [80], the velocity is about 0.33, and
ðq�=MDÞ2=v3 � 0:43. The loops are not highly sup-
pressed, and they may have a contribution comparable to
or at least not much smaller than the tree-level one. Taking
into account only the loops, one gets
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�ð�0
c0 ! �0

c�
0Þloop ¼ 0:002ð0:010Þg021 g022 keV; (63)

where the numbers outside and inside the parentheses are
obtained using M�0

c0
predicted in Ref. [50,80], respec-

tively—the difference reflects the difference in the factor
ðq�=MDÞ2=v3 which enters squared in the expression for
the width. In Fig. 4(a), the width of the decay �0

c0 ! �0
c�

0

as a function of M�0
c0
is shown.

For the decay h0c ! c 0�0, considering the loop
½D�; �D;D�, the velocity is about 0.14 using Mh0c ¼
3908 MeV given in Ref. [50]. As a result, the factor
ðq�=MDÞ2=v3 � 2:9 even gives an enhancement. Then
the width in this case is induced mainly by the charmed
meson loops. The result for a varying Mh0c is shown in

Fig. 4(b). In the figure, the thresholds of theD �D and D� �D�
are approached at the lower and higher end, respectively.
Consequently, the curve for the width shows an increasing
tendency at both ends. Because the width of the �0

c0 !
�0
c�

0 is tree-level dominated, and that of the h0c ! c 0�0 is
dominated by loops, which give an enhancement, we pre-
dict their ratio to be significantly smaller than the one
derived from the assumption that both are tree-level domi-
nated:

�ð�0
c0 ! �0

c�
0Þtree

�ðh0c ! c 0�0Þtree
¼ 3

q1
q2

M�0
c
Mh0c

M�0
c0
Mc 0

; (64)

where q1 and q2 are the pion momenta in the rest frame of
the initial state for the decays �0

c0 ! �0
c�

0 and h0c !
c 0�0, respectively. Once the masses of the �0

c0 and h0c
are measured, our statement on the ratio can be tested.

C. Transitions between two P-wave charmonia

As has been shown in Sec. III D, the charmed meson
loops scale as q�=v3. Compared to the tree-level ampli-
tudes, the loops are enhanced by a factor of 1=v3; see
Table II.
Therefore, it is reasonable to neglect the contributions

from the tree-level diagrams for the transitions between
two P-wave charmonia. There are in total seven transition
processes from the first radial excited P-wave charmonia to
the ground state ones. All of the amplitudes are propor-
tional to the product of the same coupling constants
gg1g

0
1=F. Therefore, the ratios among these decay widths

can be predicted without any free parameter.
Instead of taking some value of the unknown coupling

constants g1 and g01 from model estimates, we choose to
show the coupling-constant dependent width for the �0

c0 !
�c1�

0 in Fig. 5. The curve is obtained by setting the

coupling constants g1 and g01 to 1 GeV�1=2, and the width
can be obtained by multiplying the value plotted in the
figure by g21g

02
1 .

The mass of the �0
c1 is also allowed to vary, and

the width for the �0
c1 ! �c0�

0 is shown in Fig. 6(a). In
Fig. 6(b), the parameter-free ratio of the decay widths
�ð�0

c1 ! �c0�
0Þloop=�ð�0

c0 ! �c1�
0Þloop is shown.

In the plots, a double-cusp structure is prominent. These
cusps correspond to the thresholds of the neutral and
charged D �D� mesons. When the thresholds are approach-
ing, the velocities of the intermediate charmed mesons
decrease, and then the enhancement characterized by
1=v3 becomes larger. A similar double-cusp structure
was found in a study of a0ð980Þ � f0ð980Þ mixing in the
decays of charmonia [23,24,90], where the cusps are due to
the thresholds of the charged and neutral kaons [91].
For the decays of the �0

c1 ! �cJ�
0, the ratios defined as

R
loop
1012 �

�ð�0
c1 ! �c0�

0Þloop
�ð�0

c1 ! �c2�
0Þloop

;

Rloop
1112 �

�ð�0
c1 ! �c1�

0Þloop
�ð�0

c1 ! �c2�
0Þloop

(65)
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are plotted in Fig. 7 as the solid and dashed lines, respec-
tively, in a parameter-free way. One may also construct
similar ratios taking into account only the tree-level con-
tributions, which are

Rtree
1012 ¼

4q3�0
5q3�2

M�c0

M�c2

; Rtree
1112 ¼

3q3�1
5q3�2

M�c1

M�c2

; (66)

where q�J is the pion momentum for the decays �0
c1 !

�cJ�
0. The dotted and dot-dashed curves in Fig. 7 repre-

sent these ratios, respectively. Comparing the curves

considering only the meson loops with the tree-level
ones, the difference is not tremendous. Since the uncer-
tainty is large in our loop calculations [cf. Eq. (55) and the
discussion below], it may be difficult to draw a definite
conclusion from the comparison without a refined uncer-
tainty analysis.
The ratios for the tree-level contributions agree with

those derived in Ref. [58] using chiral Lagrangians but
differ from those given for the c �c option of the Xð3872Þ in
Ref. [92] using the QCDME. However, as shown above,
even if the Xð3872Þ is a c �c state, its decays into the �cJ�

0

are mainly given by the intermediate charmed meson
loops, i.e. by nonmultipole contributions.
The widths of the �0

c2 decays into the �c1�
0 and �c2�

0

considering only the meson loops are

�ð�0
c2 ! �c1�

0Þloop ¼ ð0:08� 0:03Þg21g021 keV;

�ð�0
c2 ! �c2�

0Þloop ¼ ð0:10� 0:04Þg21g021 keV;
(67)

where the uncertainties are 33% and 36%, which are the
velocities of the intermediate charmed mesons for these
two processes, respectively. The ratios of decay widths
defined as

R
loop
2112 �

�ð�0
c2 ! �c1�

0Þloop
�ð�0

c1 ! �c2�
0Þloop

;

R
loop
2212 �

�ð�0
c2 ! �c2�

0Þloop
�ð�0

c1 ! �c2�
0Þloop

(68)

for the loop contributions only are shown as the solid and
dashed lines, respectively, in Fig. 8. The same ratios con-
sidering only the tree-level contributions

Rtree
2112 ¼

3q31
5q32

M�c1
M�0

c1

M�0
c2
M�c2

; Rtree
2212 ¼

9q31
5q32

M�0
c1

M�0
c2

; (69)

where qi is the pion momentum for the corresponding
decay, are given by the dotted and dot-dashed lines in
Fig. 8, respectively. The difference is obvious and may
be tested by future experiments. The width of the decay
h0c ! hc�

0 considering only the meson loops is shown in
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0Þloop=�ð�0
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3842 MeV as predicted in Ref. [50] is used.
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Fig. 9. The double-cusp structure is again due to the
coupling to the intermediate D �D� mesons.

V. COMPARISON WITH THE EFFECTIVE
LAGRANGIAN APPROACH

As emphasized before, the power counting of the
NREFT provides a control of the theoretical uncertainties.
However, for transitions where the mass difference be-
tween the initial and final charmonium exceeds
	800 MeV, i.e. Oð��Þ, the NREFT is not applicable any

more. The ELA, on the other hand, which deals with the
nonlocal effects by introducing empirical form factors to
cut off the divergences, can be applied to broader kine-
matic regions. But the disadvantage is that, due to a lack of
knowledge about the behavior of the counterterms, model
dependence will be present in association with the cutoff
energies and different forms for the form factors. By
comparing these two approaches with each other, we ex-
pect that the model-dependent aspects of the ELA can be
identified and reduced. In this way, one may have more
confidence in the ELA when it is applied in kinematical
regions where the NREFT is not applicable.

In this section, we first present the general formulas for
the ELA. The calculation results will be summarized and
compared with the NREFT for those transitions studied in
the previous section. The detailed formulation is given in
Appendix C.

The loop transition amplitudes for the transitions in
Fig. 2 can be expressed in a general form in the ELA as
follows:

Mfi ¼
Z d4q2

ð2�Þ4
X

D�pol:

V1V2V3

a1a2a3

Y
i

F iðmi; q
2
i Þ; (70)

where Vi (i ¼ 1; 2; 3) are the vertex functions; ai ¼ q2i �
m2

i (i ¼ 1; 2; 3) are the denominators of the inter-
mediate meson propagators. We adopt the form factorQ

iF iðmi; q
2
i Þ, which is a product of monopole form factors

for each internal meson, i.e.

Y
i

F iðmi;q
2
i Þ�F 1ðm1;q

2
1ÞF 2ðm2;q

2
2ÞF 3ðm3;q

2
3Þ; (71)

with

F iðmi; q
2
i Þ �

�
�2

i �m2
i

�2
i � q2i

�
; (72)

where �i � mi þ 
�QCD [93] and the QCD energy scale

is�QCD ¼ 220 MeV. The numerator is introduced in order

not to modify the expression at the on-shell point. This
form factor is supposed to parameterize the nonlocal ef-
fects of the vertex functions and to remove the loop diver-
gence in the integrals. In this approach the local couplings
for a charmonium to charmed mesons, or a light meson to
charmedmesons, are the same as used in the NREFT, while
the form factor parameter 
 will be determined by com-
parison to experimental information. Thus, it is assumed
here that all—or at least the dominant part—of the short-
range physics related to meson loops can be parameterized
in the form of Eq. (72) with a reaction independent
parameter 
.
Although used widely and very convenient for the actual

evaluation of the pertinent integrals, the form factor pa-
rameterization given in Eq. (71) also has its drawbacks.
Especially, unphysical thresholds, which are located at
�i þmj ¼ mi þmj þ 
�QCD and�i þ�j ¼ mi þmjþ
2
�QCD, are introduced into the integrals. Thus, for suffi-

ciently heavy decaying charmonia and small values of 
,
these singularities are located nearby or even inside the
physical regime and additionally introduce unphysical
contributions. Clearly, those are not part of the NREFT.
We therefore expect, and indeed observe, that there exist
significant quantitative differences between these two ap-
proaches in the decays of heavy charmonia. It suggests that
a different form factor parameterization or larger values of

 should be considered. On the other hand, for those cases
where the form factor singularities do not contribute, we
expect interesting insights from the comparison of the ELA
and NREFT results.

A. Transitions between the S-wave charmonia

For transitions between the S-wave charmonia, i.e.
c 0 ! J=c�0ð�Þ, we plot the 
 dependence of the partial
decay widths of c 0 ! J=c�0ð�Þ in Fig. 10(a) as shown by
the solid and dashed lines, respectively. The �0 � �
mixing has been taken into account. Using 
 in a range
of 
 ’ 1–2, the measured ratio R�0=� by both the CLEO

and BES Collaborations can be reproduced, and the central
value of the PDG fit as listed in Table I may be obtained
with 
 ¼ 1:64:

�ðc 0 ! J=c�0Þ ¼ 0:031g22g
02
2 keV; (73)

�ðc 0 ! J=c�Þ ¼ 0:77g22g
02
2 keV; (74)
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FIG. 9 (color online). The width of the decay h0c ! hc�
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where the vertex couplings are taken the same as those in
the NREFT. These results are consistent with the NREFT.

In Fig. 10(b), the ratio R�0=� calculated in the ELA is

given in terms of 
. The predominant feature is that the 

dependence of the ratios is quite stable. It is because the
loop amplitudes for the transitions play a dominant role in
the transition and have the same divergence structure
which is regularized by the form factors. With 
 ¼ 1:64,

the resulting ratio R
loop

�0=�
is consistent with the result from

the NREFT [32].

B. Transitions between the S- and P-wave charmonia

Recall that the power counting suggests suppressions on
most of the transitions between the S- and P-wave char-
monia via intermediate meson loops, such as c 0 ! hc�

0,
while the loops in the transition h0c ! c 0�0 are enhanced.
The dominance of the tree-level contribution means that
the physics is described by contact interactions—some-
times loosely called short-distance physics. On the con-
trary, in the ELA, since form factors are adopted, part of
the short-range physics is already included in the loops.
Therefore, one may expect large differences between the
NREFT and the ELA in this sector, and the ELA results
would typically be larger than those in the NREFT, espe-
cially for the tree-level dominant transitions.

With the form factor parameter determined in the pre-
vious subsection and the same couplings for the vertices as

in the NREFT, we now examine the predictions from the
ELA for those transitions. Instead of going to all the
channels, we shall concentrate on two sets of decays,
(i) c 0 ! hc�

0 and hc ! J=c�0 and (ii) �0
c ! �c0�

0

and �c0 ! �c�
0, and summarize the others in Table V.

The two transitions in each set involve similar coupling
vertices but different kinematics. Their ratios will again
eliminate the uncertainties arising from the unknown cou-
pling constants. In Fig. 11, the decay widths with the
charmonium–D-meson couplings normalized to unity are
plotted for these two pairs of decay channels, i.e. c 0 !
hc�

0 (solid line), hc ! J=c�0 (dashed line), �0
c ! �c0�

0

(dot-dashed line), and �c0 ! �c�
0 (dotted line) in a range

of 
 ¼ 1–2. Note that the BES-III measurement gives a
central value �expðc 0 ! hc�

0Þ ¼ 0:61 keV [89]. Within

 ¼ 1–2 which is found in the transitions c 0 !
J=c�0ð�Þ, the partial decay width of c 0 ! hc�

0 from
the meson loops is much smaller than the experimental
data [89], which confirms the suppression of the meson
loops found in the NREFT, although these two approaches
give quite different values for the meson-loop magnitudes.
This comparison is listed in Table V as qualitative
agreement.
Such a suppression also occurs to hc ! J=c�0 in the

ELA and exhibits some peculiar features in comparison
with the NREFT expectation. Since the decay hc !
J=c�0 has a relatively large phase space, the power count-
ing suppression in the NREFT is not as much as for c 0 !
hc�

0 as pointed out in the previous section. In the ELA,
however, as shown in Fig. 11, these two decay widths are of
the same order in the range of 
 ¼ 1–2. Nevertheless, the
suppression of the charmed meson loops as analyzed in the
NREFT in both decays is confirmed in the ELA.
The partial decay width of the transition hc ! J=c�0

FIG. 10 (color online). (a) 
 dependence for the decay widths
of the decay c 0 ! J=c�0 (dashed line) and J=c� (solid line).
(b) 
 dependence of the ratio R�0=�. The coupling is defined as

G2 � g22g
02
2 .

TABLE V. Summary of the qualitative and quantitative fea-
tures in the comparison between the ELA and NREFT results for
various decay transitions. For PP transitions, we take the width
ratios in order to compare the ELAwith the NREFT results. The
appearance of the crosses can be understood, as explained in the
text.

Decays Qualitative Quantitative

SS c 0 ! J=c�0 ✓ ✓

c 0 ! J=c� ✓ ✓

SP c 0 ! hc�
0 ✓ �

hc ! J=c�0 ✓ ✓

�0
c ! �c0�

0 ✓ �
�c0 ! �c�

0 ✓ �
h0c ! c 0�0 ✓ �
�0
c0 ! �0

c�
0 ✓ �

PP �0
c1 ! �c0�

0=�0
c0 ! �c1�

0 ✓ �
�0
c1 ! �c0�

0=�0
c1 ! �c2�

0 ✓ �
�0
c1 ! �c1�

0=�0
c1 ! �c2�

0 ✓ ✓

�0
c2 ! �c1�

0=�0
c1 ! �c2�

0 ✓ ✓

�0
c2 ! �c2�

0=�0
c1 ! �c2�

0 ✓ ✓
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considering only loops is even quantitatively consistent
with the NREFT expectation.

As shown by the dotted and dot-dashed lines in Fig. 11,
we also observe a suppression of the meson loops in �0

c !
�c0�

0 and �c0 ! �c�
0 which, however, is weaker as in

the NREFT calculation. As already mentioned, this may be
understood as part of the short-range physics is already
mimicked by the form factors in the ELA. Such an uncer-
tainty seems inevitable in the ELA and a measurement of
the ratios of branching fractions would be less sensitive to
it. The normalized widths of�0

c ! �c0�
0 and �c0 ! �c�

0

have a different ordering compared with the NREFT re-
sults, and the �0

c ! �c0�
0 appears to be 1 order of magni-

tude larger. This is because the mass of the �0
c is much

closer to the D �D� threshold than �c, and the form factor
parameterization adopted in the ELA makes the effect of
the proximity more prominent than the NREFT.

The other decay channels of interest are between the
radial excitation S- and P-wave charmonia, such as h0c !
c 0�0 and �0

c0 ! �0
c�

0. The NREFT predicts that the

width of �0
c0 ! �0

c�
0 is tree-level dominant, but the

charmed meson loops may give a significant contribution,
while the transition h0c ! c 0�0 is dominated by the meson
loops. We find that the ELA result for h0c ! c 0�0 has a
much larger normalized decay width considering loops
only, which indicates the dominance of the loops for this
transitions. It agrees qualitatively with the NREFT one
quite well though has a larger value. The ELA result of
the transition �0

c0 ! �0
c�

0 is smaller than that of h0c !
c 0�0 while much larger than that of the other SP transi-
tions. We consider this as a qualitative agreement with the
NREFT, since in the NREFT the pattern is similar.

This is consistent with our prospect that these two
approaches would agree with each other given the domi-
nance of the meson loops in the transitions. It should also
be pointed out that in the ELA, singularities would appear
when the mass of the initial charmonium is larger than the
artificial threshold �1 þ�2 introduced by the form factor.
When the ‘‘threshold’’ is approaching, one typically gets

larger results. The comparison of these two approaches
turns out to be a useful tool for our understanding the
properties of the ELA.

C. Transitions between two P-wave charmonia

The transitions between P-wave charmonia, especially
for the �cJ decays, allow for an especially sensitive test of
the meson-loop transitions, as the power counting analysis
suggests that the meson-loop contributions relative to the
tree-level transitions will be enhanced significantly (cf.
Table IV). Thus, the comparison between the NREFT and
the ELAwill help restrict the possible parameter ranges in
the ELA as well as study further the implications of the
adopted form factor parameterization.
In the case of �0

c0 ! �c1�
0 and �0

c1 ! �c0�
0, our cal-

culation shows that the normalized partial widths, �ð�0
c0 !

�c1�
0Þ=ðg21g22Þ, and the mass dependence of �ð�0

c1 !
�c0�

0Þ=ðg21g021 Þ have similar structures as those given by
the NREFT, but the relative magnitude of the decay widths
is different. The ELA predicts larger results for the widths
of the transitions �0

c0 ! �c1�
0 and �0

c1 ! �cJ�
0 than the

corresponding values in the NREFT, except for the �0
c1 !

�c0�
0, which is opposite.

A comparison is also made for these two methods in the

predictions of the ratios Rloop
1012 and Rloop

1112 as defined by

Eq. (65). In Fig. 12, these two ratios are plotted in terms
of 
 values. It is sensible to observe the stability of the
ratios within the varying �0

c1 mass region. In comparison

with the NREFT results in Fig. 7, ratio R
loop
1112 is consistent

with the dashed line there even in magnitude, while ratio

Rloop
1012 exhibits an inverse relative magnitude between

�ð�0
c1 ! �c0�

0Þ and �ð�0
c1 ! �c2�

0Þ. Although there ex-
ist significant discrepancies between these two methods
here, we emphasize that the flat behavior of the ratios again
suggests some systematic model-independent features of
the meson-loop contributions. Especially, there are two

kinks in R
loop
1012 in both methods, which indicate the opening

of theD0 �D�0 andDþD�� thresholds. In this sense, it is also
listed as in qualitative agreement in Table V.

FIG. 11 (color online). 
 dependence of the decay widths of
c 0 ! hc�

0 (solid line), hc ! J=c�0 (dashed line), �c0 !
�c�

0 (dotted line), and �0
c ! �c0�

0 (dot-dashed line). The
coupling is G2 � g21g

02
2 for c 0 ! hc�

0 and �0
c ! �c0�

0, while

G2 � g21g
2
2 for hc ! J=c�0 and �c0 ! �c�

0.

FIG. 12 (color online). Parameter-free ratios among the decay
widths of �0

c1 ! �cJ�
0 considering only the meson loops in the

ELA.
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We further compare the ELA results for the P-wave
decays, �0

c2 ! �c1�
0 and �0

c2 ! �c2�
0, with the NREFT

ones. For these two transitions, the contributing loops have
M1 ¼ M2 ¼ D�. The mass of the initial state M�c2

is

smaller than the threshold 2MD� and much smaller than
the artificial threshold 2ðMD� þ 
�QCDÞ, and hence the

unphysical singularities would have little effect. So one
may expect the ELA would give similar results compared
with the NREFT. The meson loops in the ELA give

�ð�0
c2 ! �c1�

0Þloop ¼ 0:06g21g
02
1 keV;

�ð�0
c2 ! �c2�

0Þloop ¼ 0:19g21g
02
1 keV;

(75)

with 
 ¼ 1:64 as determined previously. They are consis-
tent with those given by the NREFT in Eq. (67). In Fig. 13,

we present the ratios of the decay widths, Rloop
2112 and Rloop

2212,

as defined by Eq. (68), to compare with the solid and
dashed lines in Fig. 8. It is interesting to see the consistency
of these two methods here in both mass evolution and
magnitude, as expected.

D. Summary of the ELA results

As can be seen from Table V, the NREFT and ELA
results for all the transitions are in qualitative agreement.
For both the SS and PP transitions the results for the two
approaches are in quantitative agreement as long as the
decaying charmonium state is not sufficiently heavy to
allow the form factor singularities to matter numerically.
The observed level of agreement between these two ap-
proaches provides a further support for the power counting
of the NREFT. It demonstrates nicely two important as-
pects of this effective field theory, namely, the applicability
of the nonrelativistic treatment in these charmonia transi-
tions (note that the ELA formulations are relativistic), and
the dominance of the long-range pieces of the meson loops
which is driven by the unitary cuts for the SS and PP
transitions. At the same time, it provides additional con-
fidence for applying the ELA to reactions where the

NREFT is no longer applicable, such as in the case of
charmonium decays into final states.
The situation is different for the SP transitions. Most of

these transitions are expected to be dominated by ‘‘short-
range’’ physics, i.e. the tree-level contributions, in the
NREFT. From the effective field theory point of view,
the tree-level amplitudes serve two important duties: On
the one hand, they provide a way to include the short-
ranged quark dynamics. On the other hand, they may
absorb the ultraviolet behavior of the meson loops and, if
necessary, absorb their divergences. In the ELA, part of the
short-range physics, which is completely omitted so far in
the NREFT, is parameterized by the form factors. Thus, for
the SP transitions we expect, and indeed find, that there are
quantitative differences between these two approaches.
However, it is important to note that the qualitative role
of the loops is the same in both treatments.

VI. SUMMARY

In this paper, the effects of charmed meson loops in the
transitions between two charmonia with the emission of
one pion or eta have been systematically investigated. The
power counting for the loop amplitudes within the frame-
work of a nonrelativistic effective field theory is given.
The difference among the power counting estimates for
the ratios of tree-level and loop contributions for the
various transitions considered comes from the quantum
number difference of the involved charmonia. It is found
that the loops are enhanced in the transitions between two
S-wave charmonia by a factor of 1=v and in the transitions
between two P-wave charmonia by a factor of 1=v3. As a
result, even if the Xð3872Þ is a c �c charmonium with
JPC ¼ 1þþ, the dominant contribution to its decays into
�cJ�

0 is given by the intermediate charmed meson loops
rather than the tree-level ones. For the transitions between
one S-wave and one P-wave charmonia, because of the
competition between 1=v3 and q2=M2

D one should analyze
case by case. The loops are highly suppressed for the
decays c 0 ! hc�

0 and �0
c ! �c0�

0 which have a small
phase space, while the suppression for the decay �0

c0 !
�0
c�

0 is more moderate, and they are even enhanced in the
decay h0c ! c 0�0.
Among the loop dominated transitions, predictions for

the ratios among the decay widths are given. In these ratios,
the dependence of the unknown coupling constants is
canceled. A detailed calculation in the framework of an
effective Lagrangian approach is also given in comparison
with the NREFT results. We find that the results from these
two methods are qualitatively consistent with each other.
Significant deviations appeared only when the results be-
came sensitive to the particular form of the form factors
used in the ELA, pointing at possible improvements for
this approach, or when the considered transition is domi-
nated by short-range physics. Although the lack of con-
straints on the structure of the counterterms would lead to

FIG. 13 (color online). Ratios of the decay widths �0
c2 !

�c1�
0 and �0

c2 ! �c2�
0 to �ð�0

c1 ! �c2�
0Þ in the ELA.
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uncertainties with the absolute magnitudes of the partial
decay widths, the ratios between related channels are less
sensitive to such uncertainties, and model-independent
aspects of the meson-loop contributions can be high-
lighted. Those loop-dominant channels should be testable
experimentally in the future, for instance, with Belle,
PANDA, BES-III, LHC-b, and Super B factory.
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APPENDIX A: LOOP FUNCTIONS IN
DIMENSIONAL REGULARIZATION

Define the basic three-point scalar loop function in d
dimension as

IðqÞ � i
Z ddl

ð2�Þd
1

ðl2 �m2
1 þ i�Þ½ðP� lÞ2 �m2

2 þ i��½ðl� qÞ2 �m2
3 þ i�� : (A1)

Nonrelativistically, in the rest frame of the initial particle, i.e. P� ¼ fM; ~0g, it can be worked out analytically by
performing the contour integration over l0 and then integrating over the spatial components of the loop momentum using
dimensional regularization:

IðqÞ ¼ �i

8m1m2m3

Z ddl

ð2�Þd
1

ðl0 � ~l2

m1
þ i�Þðl0 þ b12 þ ~l2

m2
� i�Þ½l0 þ b12 � b23 � ð~l� ~qÞ2

m3
þ i��

¼ �12�23

2m1m2m3

Z dd�1l

ð2�Þd�1

1

ð~l2 þ c� i�Þð~l2 � 2�23

m3

~l � ~qþ c0 � i�Þ

¼ �12�23

2m1m2m3

Z 1

0
dx

Z dd�1l

ð2�Þd�1

1

½~l2 � ax2 þ ðc0 � cÞxþ c� i��2

¼ �12�23

16�m1m2m3

1ffiffiffi
a

p
�
tan�1

�
c0 � c

2
ffiffiffiffiffiffi
ac

p
�
þ tan�1

�
2aþ c� c0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðc0 � aÞp ��

; (A2)

where �ij ¼ mimj=ðmi þmjÞ are the reduced masses, b12 ¼ m1 þm2 �M, b23 ¼ m2 þm3 þ q0 �M, and

a ¼
�
�23

m3

�
2
~q2; c ¼ 2�12b12; c0 ¼ 2�23b23 þ�23

m3

~q2: (A3)

Since there is no pole for d ¼ 4, in the last step, we have taken d ¼ 4.
We also need the vector and tensor loop integrals which are defined as

qiIð1ÞðqÞ � i
Z ddl

ð2�Þd
li

ðl2 �m2
1 þ i�Þ½ðP� lÞ2 �m2

2 þ i��½ðl� qÞ2 �m2
3 þ i�� (A4)

and

qiqjIð2Þ0 ðqÞ þ �ij ~q2Ið2Þ1 ðqÞ � i
Z ddl

ð2�Þd
lilj

ðl2 �m2
1 þ i�Þ½ðP� lÞ2 �m2

2 þ i��½ðl� qÞ2 �m2
3 þ i�� : (A5)
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By using the technique of tensor reduction, we get

Ið1ÞðqÞ ¼ �23

am3

�
Bðc0 � aÞ � BðcÞ þ 1

2
ðc0 � cÞIðqÞ

�
;

(A6)

~q2Ið2Þ0 ðqÞ ¼ d� 3

d� 2
Bðc0 � aÞ þ c

d� 2
IðqÞ

þ d� 1

d� 2
ðc0 � cÞ m3

2�23

Ið1ÞðqÞ; (A7)

~q2Ið2Þ1 ðqÞ ¼ 1

d� 2
Bðc0 � aÞ � c

d� 2
IðqÞ

� 1

d� 2
ðc0 � cÞ m3

2�23

Ið1ÞðqÞ; (A8)

where the function BðcÞ is defined as

4m1m2m3

�12�23

BðcÞ �
Z dd�1l

ð2�Þd�1

1

~l2 þ c� i�

¼ ð4�Þð1�dÞ=2�
�
3� d

2

�
ðc� i�Þðd�3Þ=2

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� i�

p
4�

: (A9)

In the last step, the dimension d is taken to be 4.

APPENDIX B: AMPLITUDES FOR THE
CHARMONIUM TRANSITIONS

Here we give the amplitudes for the transitions between
charmonia with the emission of one pion or � discussed in
the paper. Notice that the expressions for the amplitudes
are only given for the charged charmed meson loops. The
expressions for the neutral or strange charmed meson loops
can be obtained easily by replacing the charged charmed
meson masses by the corresponding neutral or charmed
ones. To distinguish loops with different m1, m2, and
m3, we write the loop functions as, for instance,

Ið1Þðq;M1;M2;M3Þ with Mi denoting the meson with the
mass mi in the following.

1. Transitions between the S-wave charmonia

(i) c 0 ! J=c�0ð�Þ:
iMðc 0 ! J=c�Þ�

¼ i2
g

F
g2g

0
2�

ijkqi"jðc 0Þ"kðJ=c Þ ~q2½2Ið2Þ1 ðq;D�; D�; D��Þ þ 2Ið2Þ1 ðq;D��; D�; D�Þ þ 4Ið2Þ1 ðq;D�; D��; D��Þ
þ 2Ið2Þ0 ðq;D�; D��; D��Þ � Ið1Þðq;D�; D��; D��Þ þ 4Ið2Þ1 ðq;D��; D��; D�Þ þ 2Ið2Þ0 ðq;D��; D��; D�Þ
� Ið1Þðq;D��; D��; D�Þ � 2Ið2Þ1 ðq;D��; D�; D��Þ � 2Ið2Þ0 ðq;D��; D�; D��Þ þ Ið1Þðq;D��; D�; D��Þ
� 10Ið2Þ1 ðq;D��; D��; D��Þ � 2Ið2Þ0 ðq;D��; D��; D��Þ þ Ið1Þðq;D��; D��; D��Þ�: (B1)

2. Transitions between the S- and P-wave charmonia

(i) c 0 ! hc�
0:

iMðc 0 ! hc�
0Þ�

¼ �i2
g

F
g1g

0
2f ~q � ~"ðc 0Þ ~q � ~"ðhcÞ½Ið1Þðq;D�; D�; D��Þ � Ið1Þðq;D��; D�; D��Þ þ Ið1Þðq;D�; D��; D��Þ

� Ið1Þðq;D��; D��; D��Þ� þ ~q2 ~"ðc 0Þ � ~"ðhcÞ½Ið1Þðq;D��; D�; D��Þ þ Ið1Þðq;D��; D��; D�Þ
� Ið1Þðq;D�; D��; D��Þ � Ið1Þðq;D��; D��; D��Þ�g; (B2)

(ii) �0
c ! �c0�

0:

iMð�0
c ! �c0�

0Þ� ¼ �i
2ffiffiffi
3

p g

F
g1g

0
2 ~q

2½3Ið1Þðq;D��; D�; D�Þ � Ið1Þðq;D�; D��; D��Þ � 2Ið1Þðq;D��; D��; D��Þ�;

(B3)
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(iii) hc ! J=c�0:

iMðhc ! J=c�0Þ�
¼ i

g

F
g1g2f ~q � ~"ðhcÞ ~q � ~"ðJ=c Þ½2Ið1Þðq;D��; D�; D�Þ � Iðq;D��; D�; D�Þ � 2Ið1Þðq;D��; D�; D��Þ

þ Iðq;D��; D�; D��Þ þ 2Ið1Þðq;D��; D��; D�Þ � Iðq;D��; D��; D�Þ � 2Ið1Þðq;D��; D��; D��Þ
þ Iðq;D��; D��; D��Þ� þ ~q2 ~"ðc 0Þ � ~"ðhcÞ½2Ið1Þðq;D��; D�; D��Þ � Iðq;D��; D�; D��Þ
þ 2Ið1Þðq;D�; D��; D��Þ � Iðq;D�; D��; D��Þ � 2Ið1Þðq;D��; D��; D�Þ þ Iðq;D��; D��; D�Þ
� 2Ið1Þðq;D��; D��; D��Þ þ Iðq;D��; D��; D��Þ�g; (B4)

(iv) �c0 ! �c�
0:

iMð�c0 ! �c�
0Þ�

¼ � iffiffiffi
3

p g

F
g1g2 ~q

2½3Iðq;D�; D�; D��Þ � 6Ið1Þðq;D�; D�; D��Þ � Iðq;D��; D��; D�Þ

þ 2Ið1ÞIðq;D��; D��; D�Þ � 2Iðq;D��; D��; D��Þ þ 4Ið1Þðq;D��; D��; D��Þ�: (B5)

3. Transitions between the P-wave charmonia

(i) �0
c0 ! �c1�

0:

iMð�0
c0 ! �c1�

0Þ� ¼ �i
2ffiffiffi
6

p g

F
g1g

0
1 ~q � ~"ð�c1Þ½3Iðq;D�; D�; D��Þ þ Iðq;D��; D��; D�Þ�; (B6)

(ii) �0
c1 ! �c0�

0:

iMð�0
c1 ! �c0�

0Þ� ¼ i
2ffiffiffi
6

p g

F
g1g

0
1 ~q � ~"ð�0

c1Þ½3Iðq;D��; D�; D�Þ þ Iðq;D�; D��; D��Þ�; (B7)

(iii) �0
c1 ! �c1�

0:

iMð�0
c1 ! �c1�

0Þ� ¼ �i2
g

F
g1g

0
1�

ijkqi"jð�0
c1Þ"kð�c1ÞIðq;D��; D�; D��Þ; (B8)

(iv) �0
c1 ! �c2�

0:

iMð�0
c1 ! �c2�

0Þ� ¼ i2
ffiffiffi
2

p g

F
g1g

0
1"

ijð�c2Þqi"jð�0
c1ÞIðq;D�; D��; D��Þ; (B9)

where "ijð�c2Þ is the polarization tensor of the �c2, and it is traceless, i.e. "iið�c2Þ ¼ 0, and symmetric.
(v) �0

c2 ! �c1�
0:

iMð�0
c2 ! �c1�

0Þ� ¼ �i2
ffiffiffi
2

p g

F
g1g

0
1"

ijð�c2Þqi"jð�0
c1ÞIðq;D��; D��; D�Þ; (B10)

(vi) �0
c2 ! �c2�

0:

iMð�0
c2 ! �c2�

0Þ� ¼ �i4
g

F
g1g

0
1�

ijkqi"jlð�0
c2Þ"klð�c2ÞIðq;D��; D��; D��Þ; (B11)

(vii) h0c ! hc�
0:

iMðh0c ! hc�
0Þ� ¼ �i

g

F
g1g

0
1�

ijkqi"jðh0cÞ"kðhcÞ½Iðq;D��; D�; D��Þ þ Iðq;D�; D��; D��Þ
� Iðq;D��; D��; D�Þ þ Iðq;D��; D��; D��Þ�: (B12)
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APPENDIX C: THE EFFECTIVE LAGRANGIAN
APPROACH (ELA)

1. Effective Lagrangians

Based on the heavy quark symmetry [69,70], the rele-
vant effective Lagrangians used here are

L 1 ¼ i
g1
2

Tr½P�
c �c

�H2i	�
�H1i� þ H:c:; (C13)

L 2 ¼ i
g2
2

Tr½Rc �c
�H2i	

�@
$
�
�H1i� þ H:c:; (C14)

where the spin multiplets for these four P-wave and two
S-wave charmonium states are expressed as

P�
c �c ¼

�
1þ v

2

��
��

c2 	
 þ 1ffiffiffi

2
p ���
�v
	��c1�

þ 1ffiffiffi
3

p ð	� � v�Þ�c0 þ h�c 	5

��
1� v

2

�
; (C15)

Rc �c ¼
�
1þ v

2

�
ðc �	� � �c	5Þ

�
1� v

2

�
: (C16)

The charmed and anticharmed meson triplets read

H1i ¼
�
1þ v

2

�
½D��

i 	� �Di	5�; (C17)

H2i ¼ ½ �D��
i 	� � �Di	5�

�
1� v

2

�
; (C18)

where D and D� denote the pseudoscalar and vector

charmed meson fields, respectively, i.e. Dð�Þ ¼
ðD0ð�Þ; Dþð�Þ; Dþð�Þ

s Þ. These Lagrangians can be reduced
to the two-component ones used in the NREFT in Sec. III.

Consequently, the Lagrangian for S-wave J=c and �c is

LS ¼ igcD�D� ð�c �D��@
$
�D

�y
� þ c �D��@�D�y

�

� c �@�D
��D��yÞ þ igcDDc �ð@�DDy

�D@�DyÞ þ gcDD"
��
�@�c �ðD�


@
$
�D

y

�D@
$
�D

�y

 Þ þ g�cD

�DD
��ð@��cD� �c@�DÞ

þ ig�cD
�D�"��
�@�D

�
�D

�y

 @��c; (C19)

and the Lagrangian for P-wave hc and �cJ is

LP ¼ ig�c2D
�D��
�

c2 D
�

D

�y
� þ g�c1D

�D�c1�D
��D

þ ig�c0D
�D�D��D�y

� þ ig�c0DDDDþ ghcD�DD
��hc�

þ ighcD�D�"��
�D�
�@
hc�D

�
� þ H:c:; (C20)

where the couplings are

gcDD¼g2
ffiffiffiffiffiffiffiffi
mc

p
mD;

gcD�D� ¼�g2
ffiffiffiffiffiffiffiffi
mc

p
mD� ;

gcD�D¼g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcmD

mD�

s
;

g�cD
�D¼g2

ffiffiffiffiffiffiffiffiffi
m�c

p
mD;

g�cD
�D� ¼g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�c

mD�

mD�

s
;

ghcD�D¼�g1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mhcmDmD�

p
;

ghcD�D� ¼g1

ffiffiffiffiffiffiffiffiffi
m2

D�

mhc

vuut ;

g�c0DD¼� ffiffiffi
3

p
g1

ffiffiffiffiffiffiffiffiffiffi
m�c0

p
mD;

g�c0D
�D� ¼� 1ffiffiffi

3
p g1

ffiffiffiffiffiffiffiffiffiffi
m�c0

p
m�

D;

g�c1D
�D¼ ffiffiffi

2
p

g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mDm

�
Dm�c0

q
;

g�c2D
�D� ¼g1mD�

ffiffiffiffiffiffiffiffiffiffi
m�c2

p
;

gD�D��¼ gD�D�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mDmD�

p ¼
ffiffiffi
2

p
F

g: (C21)

In the following, we present the transition amplitudes
for the intermediate meson loops listed in Table III in the
framework of the ELA. Some conventions should be
clarified in advance. Notice that the expressions are simi-
lar for the charged, neutral, and charmed-strange mesons
except that different charmed meson masses are applied.
We thus only present the amplitudes for those charged
charmed meson loops. G1G2G3 is the product of vertex
couplings for each loop, and the explicit expression can be
found in Eq. (C21). F ¼ Q

iF iðmi; q
2
i Þ is the form factor.

[q1, q3, q2] are the four-vector momenta for the inter-
mediate mesons [M1, M3, M2], respectively. piðpfÞ,
"ið"fÞ, and �ið�fÞ are the initial (final) charmonium

four-vector momentum, polarization vector, and polariza-
tion tensor, respectively. p2 is the four-vector momentum
of �0 or �.
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2. Transitions between the S-wave charmonia

(i) c 0 ! J=c�0ð�Þ:
M½DDD�� ¼ �2G1G2G3"
���"i
p



f "

��
f p�

2

Z d4q2
ð2�Þ4

F
a1a2a3

q


1q

�
2 ;

M½DD�D� ¼ �2G1G2G3"
���p


i "

�
i "

�
f
p

�
2

Z d4q2
ð2�Þ4

F
a1a2a3

q�3 q


2 ;

M½DD�D�� ¼ G1G2G3"
���"
���"
0�0�0�0p

i "

�
i p



f"

��
f p

�0
2 g��

0
g��

0 Z d4q2
ð2�Þ4

F
a1a2a3

q
�
3 q

�
2q


0
2 ;

M½D�DD�� ¼ G1G2G3"
���p


i "

�
i p2


Z d4q2
ð2�Þ4

F
a1a2a3

q
�
1

�
�"��f q1�

�
�g
� þ q
2q

�
2

m2
D�

�

þ 2"�f�q
�
1

�
�g�
 þ q�2q



2

m2
D�

�
þ "�f�q

�
2

�
�g
� þ q
2q

�
2

m2
D�

��
;

M½D�D�D� ¼ G1G2G3"
���p


f "

��
f p2


Z d4q2
ð2�Þ4

F
a1a2a3

q
�
1

�
�"�i q1�

�
�g
� þ q�3 q



3

m2
D�

�

þ 2"i�q
�
1

�
�g�
 þ q�3q



3

m2
D�

�
þ "i�q

�
3

�
�g
� þ q
3q

�
3

m2
D�

��
;

M½D�D�D�� ¼ G1G2G3"
���

Z d4q2
ð2�Þ4

F
a1a2a3

q
3 q
�
2

�
2"�i p

�
i "

�
f � q1 � 2"i � q1"�f p�

i � p�
i "

�
f

�
�"i � q2 þ "i � q2q22

m2
D�

�

� 4"i � q1"f � q1g�� � 2"i � q1"�fq�2 þ "�i p
�
i

�
�"f � q3 þ

q1 � q3"f � q1
m2

D�

�
þ 2"�i "

�
f

�
�q2 � q3 þ q22q2 � q3

m2
D�

��
:

(C22)

3. Transitions between the S- and P-wave charmonia

(i) c 0 ! hc�
0:

M½DD�D� ¼ 2G1G2G3"i
"
�
f�p2�

Z d4q2
ð2�Þ4

F
a1a2a3

q
1

�
�g�� þ q�3 q

�
3

m2
D�

�
;

M½DD�D�� ¼ 2G1G2G3"
���"
���p


i "

�
i "

��
f g��p�

2

Z d4q2
ð2�Þ4

F
a1a2a3

q�3 q


2 ;

M½D�DD�� ¼ G1G2G3"
���"
���p


i "

�
i p



f"

��
f p2�ð�g��Þ

Z d4q2
ð2�Þ4

F
a1a2a3

q�1

�
�g�� þ q�2q

�
2

m2
D�

�
;

M½D�D�D� ¼ G1G2G3"
�
f�p2�"i


Z d4q2
ð2�Þ4

F
a1a2a3

�
q1�

�
�g
� þ q
1 q

�
1

m2
D�

��
�g�� þ q�3 q

�
3

m2
D�

�

� 2q
1

�
�g�� þ q�1 q

�
1

m2
D�

��
�g�� þ q3�q

�
3

m2
D�

�
� q3�

�
�g
� þ q
3 q

�
3

m2
D�

��
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4. Transitions between the P-wave charmonia
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