
Next-to-leading order corrections to timelike, spacelike,
and double deeply virtual Compton scattering

B. Pire,1 L. Szymanowski,2 and J. Wagner2
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We calculate the Oð�sÞ corrections to the timelike, spacelike, and double deeply virtual Compton

scattering amplitudes in the generalized Bjorken scaling region. Special attention is devoted to studies of

the difference between the next-to-leading order timelike and spacelike coefficient functions, which plays

for this process a role analogous to the large K factor which was much discussed in the analysis of

inclusive Drell-Yan cross sections. Also in the present studies the timelike nature of the hard scale gives

rise to a new absorptive part of the amplitude and to the presence of characteristic �2 terms, which can

potentially lead to sizable corrections.
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I. INTRODUCTION

Data on deeply virtual Compton scattering (DVCS) are
now available from various experimental settings [1], and
different strategies are proposed [2] to extract from them
the physical knowledge on nucleon structure encoded in
generalized parton distributions (GPDs) [3,4]. These at-
tempts are usually based on a leading order QCD analysis,
although the importance of next order terms has often been
emphasized, in particular, with respect to the dangerous
factorization scale choice dependence [5]. Historically, one
can note that the understanding of inclusive reactions
(Drell-Yan reactions, large pT hadron or jet production)
in the framework of collinear QCD factorization has
waited for an analysis including next-to-leading order
(NLO) (or even next-to-next-to-leading order) corrections.
Indeed, complete NLO calculations [6–9] are available for
the DVCS reaction, and there is no indication that they are
negligible in the kinematics relevant for current or near
future experiments. Deeply virtual Compton scattering is
only one case of the general double DVCS (DDVCS)
reaction

��ðqinÞN ! ��ðqoutÞN0; (1)

where the final photon is on shell, q2out ¼ 0. The converse
case where q2in ¼ 0, often called timelike Compton scat-

tering (TCS), has been theoretically discussed at medium
[10] and very large [11] energy, and first data are being
analyzed [12]. The double DVCS case has been discussed
in Ref. [13].

It has been shown that the understanding of DVCS data
needs higher order calculations for a reasonable extraction
of GPDs to be possible [14]. This is likely to be even more
the case for TCS. Indeed, TCS and DVCS amplitudes are
identical (up to a complex conjugation) at lowest order in
�S but differ at next-to-leading order, in particular, because
of the quite different analytic structure of these reactions.
Indeed, the production of a timelike photon enables the

production of intermediate states in some channels which
were kinematically forbidden in the DVCS case. This
opens the way to new absorptive parts of the amplitude.
Soon, experiments will be performed at JLab at 12 GeV
which will enable one to test the universality of GPDs
extracted from DVCS and from TCS, provided NLO
corrections are taken into account. Experiments at higher
energies, e.g. in ultraperipheral collisions at the
Brookhaven National Laboratory Relativistic Heavy Ion
Collider and the LHC, may even become sensitive to gluon
GPDs which enter the amplitude only at NLO level.
Former experience with inclusive deep reactions teaches

us that NLO corrections are likely to be more important in
timelike reactions than in corresponding spacelike ones.
The well-known example of the Drell-YanK factor teaches
us that NLO corrections are sizable in timelike processes,
because of i� factors coming from logð�Q2=�2

FÞ terms
which often exponentiate when soft gluon resummation is
taken care of [15,16].
The results for TCS should be indicative of other ex-

clusive reactions with a timelike scale, as �N ! lþl�N0
discussed in [17] which may be accessed in the Compass
experiment at CERN or at J-Parc, eþe� ! ��� discussed
in [18] to be compared to ��� ! �� analyzed in [19], or
��N ! N0� [20] to be compared to �NN0 ! ��� analyzed
in [21].
Our calculations are performed along the lines of

Ref. [6] (see also [7]). Those earlier results were obtained
in an unphysical region of parameter space and then by
analytical continuation (due to simple analytical structure
of hard DVCS amplitude) extrapolated to the physical
region of DVCS. Not restricting the parameters enables
us to get the full result for the general kinematics (includ-
ing TCS, DVCS, and DDVCS). In earlier analysis the
factorization scale �F was kept equal to the hard scale
Q2. In our calculation they are independent, so one can
check factorization scale dependence. We calculate only
the symmetric part of the amplitude which is dominant for
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the phenomenological analysis, as the main features of
scattering amplitudes of DDVCS, DVCS, and TCS are
already clearly seen. We simplify the kinematics by re-
stricting ourselves to the forward (t ¼ tmin) region. We
leave the phenomenological analysis of our results to a
future publication.

II. PRELIMINARIES

As in [6] we describe the kinematics of general Compton
scattering in a symmetric way, i.e. in the Bjorken limit, and
in the forward limit (q?out ¼ 0, P0

T ¼ 0) momenta are as-
signed as follows: incoming photon qin ¼ ðq� �pÞ,
outgoing photon ðqout ¼ qþ �pÞ, incoming proton P ¼
ð1þ �Þp, and outgoing proton P0 ¼ ð1� �Þp, where

p ¼ pþð1; 0; 0; 1Þ; n ¼ 1

2pþ ð1; 0; 0;�1Þ;

q ¼ �xBpþ Q2

2xB
n; (2)

so pn ¼ 1, s ¼ ðpþ qÞ2 ¼ 1�xB
xB

Q2, and xB ¼ Q2

sþQ2 . We

use the following vector decomposition: k� ¼
kþp� þ k�n� þ k�?. With above definitions we arrive at

the following equations for incoming and outgoing photon
virtualities:

q2in ¼ �Q2

�
1þ �

xB

�
; q2out ¼ �Q2

�
1� �

xB

�
: (3)

From this general kinematics we can get as a limit some
physically interesting cases. It is easy to check that, to get
incoming photon momentum spacelike and outgoing pho-
ton timelike, one has to choose Q2 > 0 for xB > 0 and
Q2 < 0 for xB < 0. Deeply virtual Compton scattering is
restored for xB ¼ � and Q2 > 0, timelike Compton scat-
tering for xB ¼ �� and Q2 ¼ �Q02 < 0, and double
deeply virtual Compton scattering for 0< xB < � and
Q2 > 0 or 0> xB >�� and Q2 < 0. This is illustrated
by Fig. 1, which shows incoming and outgoing photon
virtualities as a function of xB.

We perform our calculation in theMS scheme, withD ¼
4þ � regularizing infrared divergences, as all ultraviolet
divergences cancel out. In the following we shall study
only the symmetric part of the full Compton scattering
amplitude since it is phenomenologically the dominant
part. Its factorized form reads

A ��¼g��
T

Z 1

�1
dx

�XnF
q

~TqðxÞ ~FqðxÞþ ~TgðxÞ ~FgðxÞ
�
: (4)

Renormalized GPDs are defined as in [6], by

Fqðx;�Þ¼1

2

Z d	

2�
e�i	xhP0j �c q

�
	

2
n

�
��c q

�
�	

2
n

�
jPin�;

Fgðx;�Þ¼� 1

2x

Z d	

2�
e�i	x

�hP0jF��
a

�
	

2
n

�
F�
a�

�
�	

2
n

�
jPin�n�: (5)

The connection between the bare quantities ~Fq and ~Fg

and the renormalized ones in MS is given by

~FqðxÞ ¼ FqðxÞ �
�
1

�
þ 1

2
ln
e��2

F

4��2
R

�
Kqqðx; x0Þ � Fqðx0Þ

�
�
1

�
þ 1

2
ln
e��2

F

4��2
R

�
Kqgðx; x0Þ � Fgðx0Þ;

~FgðxÞ ¼ FgðxÞ �
�
1

�
þ 1

2
ln
e��2

F

4��2
R

�
Kggðx; x0Þ � Fgðx0Þ

�
�
1

�
þ 1

2
ln
e��2

F

4��2
R

�
Kgqðx; x0Þ � Fqðx0Þ; (6)

where evolution kernels Kqq, Kqg, Kgg, and Kgq may be
read from [4] and � stands for integration over the com-
mon variable from �1 to 1. At the NLO of the process
studied in this paper the parts with Kgg and Kgq do not
contribute, since the gluon contribution is of the Oð�SÞ.
In Eq. (4) unrenormalized coefficient functions contain

infrared divergencies and are given by

~Tq ¼ Cq
0 þ

�jQ2je�
4��2

R

�
�=2

�
1

�
Cq
coll þ Cq

1

�
;

~Tg ¼
�jQ2je�
4��2

R

�
�=2

�
1

�
Cg
coll þ Cg

1

�
: (7)

xB

2

2

qin
2 Q2

qout
2 Q2

Q2 0Q2 0

FIG. 1. Incoming and outgoing photon virtualities as a func-
tion of xB. To get the physically interesting case in which the
incoming photon (solid line) is spacelike and the outgoing
photon (dashed line) is timelike, one has to choose Q2 > 0 for
xB > 0 and Q2 < 0 for xB < 0. DVCS kinematics corresponds to
xB ¼ �, and TCS to xB ¼ ��.
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~Tq is calculated by using the following relation with
q� ! q� hard scattering amplitude M��, given by dia-
grams shown in Figs. 2–4 without attachment of external
spinors of the t-channel quarks:

~T q ¼ 2
g
��
T

D� 2
Tr

�
M��

p

4

�
: (8)

In (8) the factor
g
��
T

D�2 is a part of the projection operator in

Lorentz indices on the symmetric part of the full Compton
scattering amplitude in Eq. (4). Factor 2 is related to the
definition of quark Fq given by formula (5).

~Tg is calculated by using the following relation with
g� ! g� hard scattering amplitude M���
, given by
diagrams shown in Figs. 5 and 6 without attachment of
external polarization vectors of the t-channel gluons:

~T g ¼ 1

2

�2x

ðx� xB þ i"Þðxþ xB � i"Þ

� g��
T

ðD� 2ÞM���


g�
T
ðD� 2Þ : (9)

Similarly to the quark case, factors
g
��
T

D�2 and
g�
T

ðD�2Þ are parts
of the projector operators on symmetric two-photon and

two-gluon states, respectively. The factor 1
2 is the combi-

natorial factor which appears due to the condition that on
the gluonic target we reproduce the usual contribution of
six diagrams shown in Figs. 5 and 6. The factor

�2x
ðx�xBþi"ÞðxþxB�i"Þ requires more explanations. It appears

since in the axial gauge n � A ¼ 0 we have the relation

hP0jA�
a

�
	

2
n

�
A

a

�
�	

2
n

�
jPigT�


¼ �2x

ðx� xB þ i"Þðxþ xB � i"Þ
� hP0jF��

a

�
	

2
n

�
F�

a

�
�	

2
n

�
jPin�n�gT�
: (10)

The structure of denominators in (10) is not fixed by the
gauge condition n � A ¼ 0 alone. This arbitrariness is due
to the presence of the residual gauge. It is fixed by addi-
tional boundary conditions involved in the factorization
procedure of the whole scattering amplitude of the given
process. Here we fix it in agreement with the structure of
denominators in the quark Born coefficient function for
general double DVCS kinematics:

FIG. 3. Right vertex correction to q� ! q� scattering
amplitude.

FIG. 2. Self-energy correction to q� ! q� scattering
amplitude.

FIG. 4. Box diagram correction to q� ! q� scattering
amplitude.

FIG. 5. First group of diagrams describing �g ! �g
scattering.

FIG. 6. Second group of diagrams describing �g ! �g
scattering.
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Cq
0ðDDVCSÞ ¼ e2q

�
1

x� xB þ i�
þ 1

xþ xB � i�

�
: (11)

In particular, in the case of DVCS where xB ¼ �, we obtain
the standard expression ðx� �þ i"Þðxþ �� i"Þ (see
[4]). In the case of the TCS where xB ¼ ��, this product
becomes ðxþ �þ i"Þðx� �� i"Þ. A detailed calculation
of ~Tq and ~Tg will be presented in Sec. III.

If the following relations between Born coefficient func-
tion, infrared divergent terms, and evolution kernels hold:

Cq
collðx0Þ ¼ Cq

0ðxÞ � Kqqðx; x0Þ;
Cg
collðx0Þ ¼ Cq

0ðxÞ � Kqgðx; x0Þ; (12)

one can rewrite the full amplitude in the fully factorized
form:

A ��¼g
��
T

Z 1

�1
dx

�XnF
q

TqðxÞFqðxÞþTgðxÞFgðxÞ
�
; (13)

where renormalized coefficient functions are given by

Tq ¼ Cq
0 þ Cq

1 þ
1

2
ln

�jQ2j
�2

F

�
� Cq

coll;

Tg ¼ Cg
1 þ

1

2
ln

�jQ2j
�2

F

�
� Cg

coll: (14)

In the next section we will describe one-loop calculations
necessary to obtain the above coefficient functions in more
detail, as they can be useful in the calculations of similar
processes (for example, [17]).

III. INTEGRALS

A. Integrals with two propagators

We start with a detailed description of the diagram shown
in Fig. 2. Although this calculation is very simple, it reveals
some characteristic features of the full calculation and
some pattern of the analytical structure of the result.
The symmetric part of the amplitude is given by

Tr ½M��p� ¼ ie2g2CF

1

½ðqþ xpÞ2 þ i"�2
Z
ðdkÞTr½�

�ðqþ xpÞ��ðqþ xpþ kÞ��ðqþ xpÞ��p�
½ðkþ qþ xpÞ2 þ i"�½k2 þ i"� ; (15)

where ðdkÞ � �4�D dDk
ð2�ÞD and CF ¼ N2�1

2N . We have two
types of integrals to perform:

b0 �
Z
ðdkÞ 1

½ðkþ qþ xpÞ2 þ i"�½k2 þ i"� ;

b� �
Z
ðdkÞ k�

½ðkþ qþ xpÞ2 þ i"�½k2 þ i"�
¼ � 1

2
ðqþ xpÞ�b0:

(16)

b0 may be shown to be equal (pay attention to the differ-
ence between � and "):

b0 ¼ i

ð4�Þ2
1

ð4��2Þ�=2 �
�
� �

2

�
�ð1þ �

2Þ�ð1þ �
2Þ

�ð2þ �Þ
�

�
Q2 xB � x

xB
� i"

�
�=2

: (17)

When we add the diagram with external photon lines
crossed, which is given by the xB $ �xB substitution,
we get the following result for the sum of those two
diagrams with the self-energy corrections:

Tr½M��
�
p� ¼ �g

��
T

e2�sCF

4�

1

ð4��2Þ�=2
�
Q2

xB

1

½Q2 x�xB
xB

þ i"�
�
� 4

�
þ 2

��
Q2 xB � x

xB
� i"

�
�=2

�Q2

xB

1

½�Q2 xþxB
xB

þ i"�
�
� 4

�
þ 2

��
Q2 xB þ x

xB
� i"

�
�=2

�
; (18)

which in the DVCS and TCS limits results in

Tr½M��
�
p�DVCS ¼ �g��

T

e2�sCF

4�

�
Q2

4��2

�
�=2

2

�
1

½xþ �� i"�
�
� 2

�
þ 1� log

�
1þ x

�
� i"

��

þ 1

½x� �þ i"�
�
� 2

�
þ 1� log

�
1� x

�
� i"

���
;

Tr½M��
�
p�TCS ¼ �g��

T

e2�sCF

4�

�
Q02

4��2

�
�=2

2

�
1

½x� �� i"�
�
� 2

�
þ 1� log

�
�1þ x

�
� i"

��

þ 1

½xþ �þ i"�
�
� 2

�
þ 1� log

�
�1� x

�
� i"

���
: (19)
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We notice that in the TCS case we have �þ i" contrarily to
the �� i" present in the DVCS. There is also an overall
minus sign under the logarithm, coming from the different
sign of Q2.

B. Integrals with three propagators

In this section we will describe in a detailed way the
calculation of the diagram shown in Fig. 3, because all
other diagrams with three, and some of the diagrams with
four, propagators in the loop may be calculated in a similar
way. The symmetric part of the amplitude with the right
vertex correction is given by

Tr½M��
RVp�¼ ie2g2CF

1

ðqþxpÞ2þ i"

�
Z
ðdkÞ Tr½��ðk��pÞ��ðkþqÞ��ðqþxpÞ��p�

½ðkþqÞ2þ i"�½ðk��pÞ2þ i"�½ðk�xpÞ2þ i"� :

(20)

We start with the integration over k�. There are three poles
placed at

k�1 ¼ k2? � i"

2ðy� xÞ ; k�2 ¼ k2? � i"

2ðy� �Þ ;

k�3 ¼ k2? þQ2ð1� y
xB
Þ � i"

2ðy� xBÞ : (21)

For various values of y we close the contours of integration
in the upper or lower half plane, in such a way that we

avoid catching the k�3 pole. Irrespectively of the ordering

of x, xB, and �, we arrive at

gT�� Tr½M��
RVp� ¼ ie2g2CF

1

ðqþ xpÞ2 þ i"

�
�
�i

Z xB

x

dy

2�

Z
ðdk?ÞResk�

1
f� i

�
Z xB

�

dy

2�

Z
ðdk?ÞResk�

2
f

�
; (22)

where ðdk?Þ ¼ ��� dD�2k?
ð2�ÞD�2 and y � kþ. Residua of the first

and the second pole are given by

Res k�
1
f ¼ y� x

2ðx� xBÞðx� �Þ

� �1 þ 
1k
2
?

½k2?�½k2? �Q2 ðxB�yÞðy�xÞ
xBðx�xBÞ � i"� ;

Resk�
2
f ¼ y� �

2ð�� xBÞð�� xÞ

� �2 þ 
2k
2
?

½k2?�½k2? �Q2 ðxB�yÞðy��Þ
xBð��xBÞ � i"� ;

(23)

where �i and 
i are defined by the value of the numerator
at the correspondent pole:

�i þ 
ik
2
? � Tr½��ðk� �pÞ��ðkþ qÞ��ðqþ xpÞ��p�jk�i :

(24)

After we perform the integration over k� we arrive at

gT�� Tr½M��
RVp� ¼ e2g2CF

1

ðqþ xpÞ2 þ i"

�Z xB

x

dy

2�

Z
ðdk?Þ y� x

2ðx� xBÞðx� �Þ �
�1 þ 
1k

2
?

½k2?�½k2? �Q2 ðxB�yÞðy�xÞ
xBðx�xBÞ � i"�

þ
Z xB

�

dy

2�

Z
ðdk?Þ y� �

2ð�� xBÞð�� xÞ �
�2 þ 
2k

2
?

½k2?�½k2? �Q2 ðxB�yÞðy��Þ
xBð��xBÞ � i"�

�
: (25)

All integrals in k? we encounter during the calculation have the following form:

Z dD�2k?
ð2�ÞD�2

�þ 
k2?
½k2? � i"�½k2? �M2 � i"� ¼

�
�þ 
M2

M2

�
aðM2Þ;

Z dD�2k?
ð2�ÞD�2

�þ 
k2?
½k2? �M2

1 � i"�½k2? �M2
2 � i"� ¼

�
�þ 
M2

1

M2
1 �M2

2

�
aðM2

1Þ �
�
�þ 
M2

2

M2
1 �M2

2

�
aðM2

2Þ;

aðM2Þ ¼ 1

ð4�ÞðD�2Þ=2 ð�M2 � i"ÞðD�4Þ=2�
�
4�D

2

�
; (26)

so after k? integration we get the following result:

gT�� Tr½M��
RVp� ¼

e2�SCF

4�

�
1

4��2

�
�=2 1

ðqþ xpÞ2 þ i"
�

�
� �

2

�
1

x� �
�
�
�
�
Q2 xB � x

xB
� i"

�
�=2 Z xB

x
dy

�
y� x

xB � x

�
1þð�=2Þ

�
�
xB � y

xB � x

�
�=2

�
�1

M2
1

þ 
1

�
þ

�
Q2 xB � �

xB
� i"

�
�=2 Z xB

�
dy

�
y� �

xB � �

�
1þð�=2Þ �

�
xB � y

xB � �

�
�=2

�
�2

M2
2

þ 
2

��
:

(27)
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The last integration is performed by making use of the beta
function definition. The diagram with a left vertex correc-
tion is given by symmetry � ! ��, and the crossed
diagrams by xB ! �xB. When we include all four vertex
corrections,

Tr ½M��
V p� ¼ ðTr½M�


RVp� þ ð� ! ��ÞÞ þ ðxB ! �xBÞ;
(28)

we get a result with the following structure:

Tr½M��
V p�¼g

��
T

e2�SCF

4�

�
1

4��2

�
�=2

��
Q2xB�x

xB
� i"

�
�=2 1

Q2 x�xB
xB

þ i"
½f1ðxB;�;x;�;"Þþf1ðxB;��;x;�;"Þ�

þ
�
Q2xB��

xB
� i"

�
�=2

�
1

Q2 x�xB
xB

þ i"
f2ðxB;�;x;�;"Þþ 1

�Q2 xþxB
xB

þ i"
f2ð�xB;��;x;�;"Þ

�
þðxB$�xBÞ

�
;

(29)

where f1 and f2 are some complicated functions of xB, �,
x, �, and ".

C. Integrals with four propagators

All of the integrals with four propagators may be re-
duced to the three propagator case, although some of them

require some care. We will start this section with the
calculation of the symmetric part of the box diagram
shown in Fig. 4:

Tr ½M��
B p� ¼ ig2e2CF

Z
ðdkÞ Tr½��ðk� �pÞ��ðkþ qÞ��ðkþ �pÞ��p�

½ðk� �pÞ2 þ i"�½ðkþ �pÞ2 þ i"�½ðkþ qÞ2 þ i"�½ðk� xpÞ2 þ i"� : (30)

In this case we have four denominators in the integrated function, but one can easily check that

gT�� Tr½��ðkk� �pÞ��ðkþ qÞ��ðkþ �pÞ��p� � A � k2 þ B � 2kp; (31)

so, using the following relations:

k2 ¼ 1

2
ðkþ �pÞ2 þ ð� ! ��Þ; 2k � p ¼ 1

2�
ðkþ �pÞ2 þ ð� ! ��Þ; (32)

one can easily decompose the four denominator integral into two integrals with three denominators:

gT�� Tr½M��
B p� ¼ ig2e2CF

1

2

Z
ðdkÞ Aþ 1

� B

½ðk� xpÞ2 þ i"�½ðk� �pÞ2 þ i"�½ðkþ qÞ2 þ i"� þ ð� ! ��Þ;

which we calculate in the same way as the vertex corrections diagrams. The crossed diagram is given by the xB to �xB
replacement.

Let us now turn to the gluon coefficient functions. The symmetric part of the first diagram describing �g ! �g
scattering, shown in Fig. 5, is given by

g
��
T g�
T Mð1Þ���
 ¼ ie2g2TF

Z
ðdkÞ gT�
gT�� � Tr½��ðk� xpÞ�
ðk� �pÞ��ðkþ qÞ��ðkþ �pÞ�

½ðk� xpÞ2 þ i"�½ðk� �pÞ2 þ i"�½ðkþ qÞ2 þ i"�½ðkþ �pÞ2 þ i"� ; (33)

with TF ¼ 1
2 . The structure of the numerator is similar to

the one given by Eq. (31). So we can use the same decom-
position as in the case of the quark box diagram.
Diagrams (2), (3), and (4) from Fig. 5 are connected to
diagram (1) by simple symmetries. To get diagram (2) one
has to change xB $ �xB, diagram (3) x $ �x, and to get
diagram (4) one has to do both changes.

Diagrams shown in Fig. 6 have a different denominator
structure, so we will describe the way of dealing with them

more precisely. Momenta flowing in diagram (5) may be
chosen as

A ¼ kþ q� ðx� �Þp; B ¼ kþ q;

C ¼ kþ �p; D ¼ k� xp;
(34)

and Aq, Bq, Cq, Dq from diagram (6) are equal to A, B, C,

D with q $ �q. Both diagrams give the same result:
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g
��
T g�
T Mð5Þ���
¼ ie2g2TF

Z
ðdkÞ

� gT��gT�
Tr½��A�
B��C��D�
½A2þi"�½B2þi"�½C2þi"�½D2þi"�:

(35)

As previously, we notice that the numerator may be written
as Ak2 þB2k � p. To reduce our integral to the three
denominator case, we use other relations:

k2 ¼ x

xþ �
ðkþ �pÞ2 þ �

xþ �
ðk� xpÞ2;

2k � p ¼ 1

xþ �
ðkþ �pÞ2 � 1

xþ �
ðk� xpÞ2;

so we end up with

Ið5Þ ¼ 1

ðxþ �Þ
Z
ðdkÞ AxþB

½A2 þ i"�½B2 þ i"�½D2 þ i"� þ
1

ðxþ �Þ
Z
ðdkÞ A��B

½A2 þ i"�½B2 þ i"�½C2 þ i"� ¼ I1 þ I2: (36)

One could worry if the above decomposition is well defined for x ¼ ��, but it is easy to check that the expression (36) is
regular in that limit.

As previously, we start with integration over k�. We find four poles:

ðk� xpÞ2 þ i" ¼ 0 ) k�1 ¼ k2? � i"

2ðy� a1Þ ; ðkþ qÞ2 þ i" ¼ 0 ) k�2 ¼ k2? � i"þQ2ða2�y
xB

Þ
2ðy� a2Þ ;

ðkþ q� ðx� �ÞpÞ2 þ i" ¼ 0 ) k�3 ¼ k2? � i"þQ2ða3�y
xB

Þ
2ðy� a3Þ ; ðk� �pÞ2 þ i" ¼ 0 ) k�4 ¼ k2? � i"

2ðy� a4Þ ; (37)

where a1 ¼ x, a2 ¼ xB, a3 ¼ xB þ x� �, and a4 ¼ �� are values of y for which the poles’ imaginary parts change sign.
Again the appropriate choice of the integration contours allows us to write

I1 ¼ �i�D�4
Z a3

a1

dy

2�

Z dD�2k?
ð2�ÞD�2

Resk�
1
f1 � i�D�4

Z a3

a2

dy

2�

Z dD�2k?
ð2�ÞD�2

Resk�
2
f1;

I2 ¼ �i�D�4
Z a3

a4

dy

2�

Z dD�2k?
ð2�ÞD�2

Resk�
4
f2 � i�D�4

Z a3

a2

dy

2�

Z dD�2k?
ð2�ÞD�2

Resk�
2
f2:

(38)

The only difference with Eqs. (23) is that we now have additional mass term in the denominator:

Res k�
1
f1 ¼ 1

xþ �
� y� a1
2ða1 � a2Þða1 � a3Þ �

�1 þ 
1k
2
?

½k2? �M2
12 � i"�½k2? �M2

13 � i"� ;

Resk�
2
f1 ¼ 1

xþ �
� y� a2
2ða2 � a1Þða2 � a3Þ �

�2 þ 
2k
2
?

½k2? �M2
12 � i"�½k2? � i"� ;

Resk�
2
f2 ¼ 1

xþ �
� y� a2
2ða2 � a4Þða2 � a3Þ �

�3 þ 
3k
2
?

½k2? �M2
42 � i"�½k2? � i"� ;

Resk�
4
f2 ¼ 1

xþ �
� y� a4
2ða4 � a2Þða4 � a3Þ �

�4 þ 
4k
2
?

½k2? �M2
42 � i"�½k2? �M2

43 � i"� ;

(39)

where �i, 
i, and Mij are now defined by

�1;2 þ 
1;2k
2
? � AxþBjk�

1;2
; �3;4 þ 
3;4k

2
? � A��Bjk�

2;4
; Mij � Q2

ðy� aiÞðaj � yÞ
xBðai � ajÞ : (40)

Making use of Eq. (26) we arrive at

Ið5Þ ¼ � i

ð4�Þ2
�

1

4��2

�
�=2

�

�
� �

2

�
1

xþ �

�Z a3

a1

dy
y� a1

ða1 � a2Þða1 � a3Þ
�
�1 þ 
1M

2
12

M2
12 �M2

13

ð�M2
12 � i"Þ�=2

� �1 þ 
1M
2
13

M2
12 �M2

13

ð�M2
13 � i"Þ�=2

�
þ

Z a3

a2

dy
y� a2

ða2 � a1Þða2 � a3Þ
�
�2 þ 
2M

2
12

M2
12

ð�M2
12 � i"Þ�=2

�

þ
Z a3

a4

dy
y� a4

ða4 � a2Þða4 � a3Þ
�
�4 þ 
4M

2
42

M2
42 �M2

43

ð�M2
42 � i"Þ�=2 � �4 þ 
4M

2
43

M2
42 �M2

43

ð�M2
43 � i"Þ�=2

�

þ
Z a3

a2

dy
y� a2

ða2 � a4Þða2 � a3Þ
�
�3 þ 
3M

2
42

M2
42

ð�M2
42 � i"Þ�=2

��
: (41)
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We can check that the relations

y� a1
ða1 � a2Þða1 � a3Þ

1

M2
12 �M2

13

¼ xB
Q2

1

ða3 � a2Þðy� a1Þ ;
y� a2

ða2 � a1Þða2 � a3Þ
1

M2
12

¼ xB
Q2

1

ða2 � a3Þðy� a1Þ ;

(42)

�1 þ 
1M
2
12 ¼ �2 þ 
2M

2
12;

�4 þ 
4M
2
42 ¼ �3 þ 
3M

2
42 (43)

allow us to rearrange the integration limits, so we can
express our integrals in the form allowing us to per-
form integration over y again by using the beta function
definition:

Ið5Þ ¼ � i

ð4�Þ2
�

1

4��2

�
�=2

�

�
� �

2

�
1

x2 � �2

xB
Q2

�Z a2

a1

dy
1

y� a1
½ð�1 þ 
1M

2
12Þð�M2

12 � i"Þ�=2�

�
Z a3

a1

dy
1

y� a1
½ð�1 þ 
1M

2
13Þð�M2

13 � i"Þ�=2� þ
Z a2

a4

dy
1

y� a4
½ð�4 þ 
4M

2
42Þð�M2

42 � i"Þ�=2�

�
Z a3

a4

dy
1

y� a4
½ð�4 þ 
4M

2
43Þð�M2

43 � i"Þ�=2�
�
: (44)

In the next section we will write explicitly the final results of all of the above calculations.

IV. RESULTS

We see that hard scattering amplitudes for general kinematics have the following structure:

e2�sCF

4�

1

ð4��2Þ�=2
��
Q2 xB � x

xB
� i"

�
�=2 � fðx; �; xB; �; "Þ þ

�
Q2 xB � �

xB
� i"

�
�=2 � gðx; �; xB; �; "Þ

�

þ ðxB $ �xBÞ; (45)

which in the � ! 0 limit for q� ! q� amplitude gives

Tr½M��p� ¼ g��
T

e2�sCF

4�

� jQ2j
4��2

�
�=2

�
1

�

�
12

x� xB þ i" xB
Q2

þ
�

16ðxxB � �2Þ
ðx� xB þ i" xB

Q2Þðx2 � �2Þ þ
8ðx� xBÞ
x2 � �2

�

� log

�
sgnðQ2Þ xB � x

xB
� i"

�
þ

�
8ð�� xBÞ

ðx� xB þ i" xB
Q2Þðx� �Þ �

8ð�� xBÞ
ðxþ xB � i� xB

Q2Þðxþ �Þ þ
8xðxB � �Þ
�ðx2 � �2Þ

�

� log

�
sgnðQ2Þ xB � �

xB
� i"

��
� 18

x� xB þ i" xB
Q2

þ 6
x2 þ �2 � 2xxB

ðx� xB þ i" xB
Q2Þðx2 � �2Þ log

�
sgnðQ2Þ xB � x

xB
� i"

�

þ
�

4ðxxB � �2Þ
ðx� xB þ i" xB

Q2Þðx2 � �2Þ þ
2ðx� xBÞ
x2 � �2

�
log2

�
sgnðQ2Þ xB � x

xB
� i"

�

þ
�

6ð�� xBÞ
ðxþ xB � i� xB

Q2Þðxþ �Þ �
6ð�� xBÞ

ðx� xB þ i" xB
Q2Þðx� �Þ

�
log

�
sgnðQ2Þ xB � �

xB
� i"

�

þ
�

2ð�� xBÞ
ðx� xB þ i" xB

Q2Þðx� �Þ �
2ð�� xBÞ

ðxþ xB � i� xB
Q2Þðxþ �Þ þ

2xðxB � �Þ
�ðx2 � �2Þ

�
log2

�
sgnðQ2Þ xB � �

xB
� i"

��

þ ðxB $ �xBÞ; (46)

and for g� ! g�:

g��
T g�
T M���
 ¼ e2�sTF

4�

� jQ2j
4��2

�
�=2

�
1

�

�
� 32ðx2 � 2xBxþ 2x2B � �2Þ

x2 � �2
log

�
sgnðQ2Þ xB � x

xB
� i"

�

� 32ðxB � �Þðx2 � 2xB�� �2Þ
�ðx2 � �2Þ log

�
sgnðQ2Þ xB � �

xB
� i"

��
� 16 log

�
sgnðQ2Þ xB � x

xB
� i"

�

� 8ðx2 � 2xBxþ 2x2B � �2Þ
x2 � �2

log2
�
sgnðQ2Þ xB � x

xB
� i"

�
þ 16

�
1� xB

�

�
log

�
sgnðQ2Þ xB � �

xB
� i"

�

� 8ðxB � �Þðx2 � 2xB�� �2Þ
�ðx2 � �2Þ log2

�
sgnðQ2Þ xB � �

xB
� i"

��
þ ðxB $ �xBÞ: (47)
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From the above result one can easily read the coefficient
functions defined by Eq. (7), necessary for a calculation of
the DDVCS amplitude, by means of Eq. (14). However,
most experimental data are or will be available for either
DVCS or TCS, so we will elaborate more on those cases.

Below, we present the resulting coefficient functions for
the limiting cases of DVCS (Q2 > 0 and xB ¼ �) and TCS
(�Q2 ¼ Q02 > 0 and xB ¼ ��).

A. DVCS limit

We present the results explicitly showing i" terms that
uniquely determine all imaginary parts. Quark coefficient
functions read

Cq
0 ¼e2q

�
1

x��þ i"
þ 1

xþ�� i"

�
;

Cq
1 ¼

e2q�SCF

4�

�
1

x��þ i"

�
�9þ3log

�
1� x

�
� i"

�
�6

�

xþ�
log

�
1� x

�
� i"

�
þ6

�

xþ�
log2þ log2

�
1� x

�
� i"

�
� log22

�

þ 1

xþ�� i"

�
�9þ3log

�
1þ x

�
� i"

�
þ6

�

x��
log

�
1þ x

�
� i"

�
�6

�

x��
log2þ log2

�
1þ x

�
� i"

�
� log22

��
;

Cq
coll¼

e2q�SCF

4�

�
1

x��þ i"

�
6þ4log

�
1� x

�
� i"

�
�4log2

�
þ 1

xþ�� i"

�
6þ4log

�
1þ x

�
� i"

�
�4log2

��
: (48)

Gluon coefficient functions read

Cg
coll ¼

ðPq e
2
qÞ�STF

4�

8x

ðxþ �� i"Þðx� �þ i"Þ �
�
x� �

xþ �
log

�
1� x

�
� i"

�
þ xþ �

x� �
log

�
1þ x

�
� i"

�
� 2

x2 þ �2

x2 � �2
log2

�
;

Cg
1 ¼

ðPq e
2
qÞ�STF

4�

2x

ðxþ �� i"Þðx� �þ i"Þ �
�
�2

x� 3�

xþ �
log

�
1� x

�
� i"

�
þ x� �

xþ �
log2

�
1� x

�
� i"

�

� 2
xþ 3�

x� �
log

�
1þ x

�
� i"

�
þ xþ �

x� �
log2

�
1þ x

�
� i"

�
þ 4

x2 þ 3�2

x2 � �2
log2� 2

x2 þ �2

x2 � �2
log22

�
: (49)

Although the result for Cg
1 contains dangerous-looking

denominators inside the square parentheses, it is easy to
check that the expression inside those parentheses is
regular in the limits x ! ��.

The above results are in agreement with earlier results
[6,7] which were obtained in an unphysical region of
parameter space and then analytically continued to obtain
the DVCS case. We see that the simple prescription that all

imaginary parts can be obtained by substracting a small
imaginary part from �, i.e. � ! �� i", is confirmed by
our calculations.

B. TCS limit

Quark coefficient functions read

Cq
0 ¼ e2q

�
1

x� �� i"
þ 1

xþ �þ i"

�
;

Cq
1 ¼

e2q�SCF

4�

�
1

x� �� i"

�
�9þ 3 log

�
�1þ x

�
� i"

�
� 6

�

xþ �
log

�
�1þ x

�
� i"

�
þ 6

�

xþ �
logð�2� i"Þ

þ log2
�
�1þ x

�
� i"

�
� log2ð�2� i"Þ

�
þ 1

xþ �þ i"

�
�9þ 3 log

�
�1� x

�
� i"

�

þ 6
�

x� �
log

�
�1� x

�
� i"

�
� 6

�

x� �
logð�2� i"Þ þ log2

�
�1� x

�
� i"

�
� log2ð�2� i"Þ

��
;

Cq
coll ¼

e2q�SCF

4�

�
1

x� �� i"

�
6þ 4 log

�
�1þ x

�
� i"

�
� 4 logð�2� i"Þ

�

þ 1

xþ �þ i"

�
6þ 4 log

�
�1� x

�
� i"

�
� 4 logð�2� i"Þ

��
: (50)

Gluon coefficient functions read
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Cg
coll ¼

ðPq e
2
qÞ�STF

4�

8x

ðxþ �þ i"Þðx� �� i"Þ �
�
x� �

xþ �
log

�
�1þ x

�
� i"

�

þ xþ �

x� �
log

�
�1� x

�
� i"

�
� 2

x2 þ �2

x2 � �2
logð�2� i"Þ

�
;

Cg
1 ¼

ðPq e
2
qÞ�STF

4�

2x

ðxþ �þ i"Þðx� �� i"Þ �
�
�2

x� 3�

xþ �
log

�
�1þ x

�
� i"

�
þ x� �

xþ �
log2

�
�1þ x

�
� i"

�

� 2
xþ 3�

x� �
log

�
�1� x

�
� i"

�
þ xþ �

x� �
log2

�
�1� x

�
� i"

�
þ 4

x2 þ 3�2

x2 � �2
logð�2� i"Þ

� 2
x2 þ �2

x2 � �2
log2ð�2� i"Þ

�
: (51)

As in the DVCS case, terms inside the square parentheses
of Cg

1 are regular in the limits x ! ��.
There are some important differences between

Eqs. (50) and (51) describing the TCS case and Eqs.
(48) and (49) describing the DVCS. First we notice that
we have to add a small imaginary part to �, i.e. � !
�þ i", rather than substract as in the DVCS case. The
second difference is the minus sign under the logarithms,
which produces additional terms. Particularly, log2ð�2�
i"Þ present in the TCS result may produce a correction
much bigger than the log2ð2Þ in the DVCS case. Another
important difference between the DVCS and TCS ampli-
tudes concerns their imaginary parts, which in the DVCS
case is present only in the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) region where x > �, while in

the TCS case, it is present in both the DGLAP region and
the Efremov-Radyushkin-Brodsky-Lepage (ERBL) region
where x < �.

V. CONCLUSIONS

It is well known that at the Born level TCS and DVCS
hard scattering amplitudes are related:

Cq
0ðDVCSÞ ¼ Cq

0ðTCSÞ
�: (52)

The same relation holds for the collinear terms:

Cq
collðDVCSÞ ¼ Cq

collðTCSÞ
�; (53)

as they are equal to the convolution of the same evolution
kernel with Born level amplitudes. Indeed, this equality is

FIG. 7. Real (solid line) and imaginary (dashed line) parts of the ratio Rq of the NLO quark coefficient function to the Born term in
timelike Compton scattering (up) and deeply virtual Compton scattering (down) as a function of x in the ERBL (left) and DGLAP
(right) regions for � ¼ 0:3, for �2

F ¼ jQ2j.
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crucial for factorization to hold. But in the NLO this
relation no longer holds. For the quark part, we have

Cq
1ðTCSÞ

� � Cq
1ðDVCSÞ

e2�SCF

4�

¼ 1

x� �þ i"

��
3� 2 log2þ 2 log

��������1� x

�

��������
�
ði�Þ

þ �2ð1þ �ðx� �Þ � �ð�xþ �ÞÞ
�

þ 1

xþ �� i"

��
3� 2 log2þ 2 log

��������1þ
x

�

��������
�

� ði�Þ þ �2ð1þ �ð�x� �Þ � �ðxþ �ÞÞ
�
: (54)

To discuss this difference and present the magnitude of
corrections we define the following ratio:

Rq ¼
Cq
1 þ 1

2 logðjQ
2j

�2
F

Þ � Cq
coll

Cq
0

(55)

of the NLO quark correction to the coefficient function, to
the Born level. In Fig. 7, we show for �2

F ¼ jQ2j the real
and imaginary parts of the ratio Rq in timelike and space-
like Compton scattering as a function of x in the ERBL
(left) and DGLAP (right) regions for � ¼ 0:3. We fix �s ¼
0:25 and restrict the plots to the positive x region, as the
coefficient functions are antisymmetric in that variable. We
see that in the TCS case, the imaginary part of the ampli-
tude is present in both the ERBL and DGLAP regions,
contrarily to the DVCS case, where it exists only in the
DGLAP region. The magnitude of these NLO coefficient
functions is not negligible. We see that the importance of
these NLO coefficient functions is magnified when we
consider the difference of the coefficient functions
Cq
1ðTCSÞ

� � Cq
1ðDVCSÞ. The conclusion is that extracting the

universal GPDs from both the TCS and DVCS reactions
requires much care.

As is well known in inclusive reactions, one may choose
a renormalization scheme (named the deep inelastic scat-
tering scheme [15]) defined by the fact that NLO correc-
tions to some observables vanish. This of course does not
preclude the importance of next-to-next-to-leading order
corrections. In the exclusive case, we thus may propose
that NLO corrections vanish in the DVCS amplitude. This
DVCS factorization scheme then transfers all NLO correc-
tions calculated here to the TCS coefficient functions,
which become very sizable. We illustrate this fact by
showing in Fig. 8 the ratio Rq

T�S of the difference of

NLO quark coefficient functions to the LO coefficient
function

Rq
T�S ¼

Cq
1ðTCSÞ � Cq�

1ðDVCSÞ
Cq
0

: (56)

A final word is needed with respect to the presence of the
�2 terms in the difference of the NLO coefficient func-
tions. Quite a rich literature [15,16] exists on the impor-
tance of such factors in inclusive coefficient functions and
their relation to soft gluon exchange. One may verify that,
in the exclusive case that we study here, a soft gluon
approximation gives some of the �2 terms that one may
read from Eq. (54). One can suppose that these corrections
exponentiate when all order corrections are summed up. A
particular feature is worth pointing out: These �2 terms
exist only in the DGLAP regions. We confess that we do
not understand why this is the case.
Let us now briefly comment on the gluon coefficient

functions. As in the case of quark corrections, the collinear
parts are complex conjugated to each other:

Cg
collðDVCSÞ ¼ Cg

collðTCSÞ
�: (57)

Moreover, the real parts of the gluon contribution are equal
for the DVCS and TCS in the ERBL region. The differ-
ences between the TCS and DVCS emerge in the ERBL
region through the imaginary part of the coefficient func-
tion which is nonzero only for the TCS case and is of the

FIG. 8. Real (solid line) and imaginary (dashed line) parts of
the ratio Rq

T�S of the difference of NLO quark coefficient

functions to the LO coefficient functions in the TCS and
DVCS as a function of x in the DGLAP region for � ¼ 0:3.

FIG. 9. Ratio of the real (solid line) and imaginary (dashed
line) parts of the NLO gluon coefficient function in TCS to the
same quantity in DVCS as a function of x in the DGLAP region
for � ¼ 0:05 for �2

F ¼ jQ2j.
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order of the real part. In the DGLAP region, the difference
reads

Cg
1ðTCSÞ � Cg

1ðDVCSÞ
ðP

q
e2qÞ�STF

4�

¼x>� 2x

x2 � �2

�
2
x� �

xþ �
�2

þ
�
�4

x� 3�

xþ �
þ 2

x� �

xþ �
log

��������1�
x

�

���������2
xþ �

x� �

� log

��������1þ x

�

��������þ4
x2 þ �2

x2 � �2
log2

�
ð�i�Þ

�
; (58)

showing a sizable difference of the contributions to both
the real and imaginary parts of the amplitude. In Fig. 9, we
illustrate the ratio of the NLO gluon correction to the hard
scattering amplitude in the TCS to the same quantity in the
DVCS in the DGLAP region for � ¼ 0:05 for �2

F ¼ jQ2j.
The discussion of NLO corrections to a hard scattering

amplitude necessarily brings up the question of the facto-
rization scale dependence. In Fig. 10, we show the real and
imaginary parts of the ratio Rq of NLO quark correction to
hard scattering amplitudes to the Born level coefficient
function of the timelike Compton scattering as a function
of x in the DGLAP region for � ¼ 0:05. The figures are

plotted for various values of jQ2j
�2

F

, and present a strong

factorization scale dependence.
In Fig. 11, we show the ratios of the real (left) and

imaginary (right) parts of the NLO gluon coefficient func-

tion for jQ2j ¼ �2
F

2 (solid line) and jQ2j ¼ 2�2
F (dashed

line) to the same quantities with jQ2j ¼ �2
F. Those quan-

tities are calculated for the timelike Compton scattering
and plotted as a function of x in the DGLAP region for
� ¼ 0:05. Also in this case we notice a strong factorization
scale dependence.
Many phenomenological studies need now to be per-

formed, by convoluting the coefficient functions to realistic
GPDs and calculating the relevant observables. We plan to
progress on these points in the near future.
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FIG. 10. Factorization scale dependence of the real (left) and imaginary (right) parts of ratio Rq of the NLO quark correction to hard
scattering amplitudes to the Born level coefficient function of the timelike Compton scattering as a function of x in the DGLAP region

for � ¼ 0:05. The ratios are plotted for the values of jQ2j
�2

F

equal to 0.5 (dashed line), 1 (solid line), and 2 (dash-dotted line).

FIG. 11. Ratios of the real (left) and imaginary (right) parts of the NLO gluon coefficient function for jQ2j ¼ 1=2�2
F (solid line) and

jQ2j ¼ 2�2
F (dashed line) to the same quantities with jQ2j ¼ �2

F. Those quantities are calculated for the timelike Compton scattering
and plotted as a function of x in the DGLAP region for � ¼ 0:05.
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