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Two-body charmless hadronic B decays involving a tensor meson in the final state are studied within the
framework of QCD factorization (QCDF). Because of the G-parity of the tensor meson, both the chiral-
even and chiral-odd two-parton light-cone distribution amplitudes of the tensor meson are antisymmetric
under the interchange of momentum fractions of the quark and antiquark in the SU(3) limit. Our main
results are: (i) In the naive factorization approach, the decays such as B~ — K37~ and B — K3«
with a tensor meson emitted are prohibited because a tensor meson cannot be created from the local V — A
or tensor current. Nevertheless, the decays receive nonfactorizable contributions in QCDF from vertex,
penguin and hard spectator corrections. The experimental observation of B~ — 133077" indicates the
importance of nonfactorizable effects. (ii) For penguin-dominated B — TP and TV decays, the predicted
rates in naive factorization are usually too small by 1 to 2 orders of magnitude. In QCDEF, they are
enhanced by power corrections from penguin annihilation and nonfactorizable contributions. (iii) The
dominant penguin contributions to B — K3 n") arise from the processes: (a) b — ss5 — s7, and
() b— sqg — qK; with n, = (uii + dd)/\J2 and n, = s5. The interference, constructive for Kjn’
and destructive for K3 n, explains why I'(B — K57') > I'(B — K; 7). (iv) We use the measured rates of
B — K;(w, ¢) to extract the penguin-annihilation parameters p%" and p)” and the observed longitudinal
polarization fractions f;(K;w) and f;(K5¢) to fix the phases ¢} and ¢TV. (v) The experimental
observation that f;/f; < 1for B — K3(1430)¢, whereas fr/f; ~ 1 for B— K;(1430)w with f; being
the transverse polarization fraction, can be accommodated in QCDF, but it cannot be dynamically
explained at first place. For penguin-dominated B — TV decays, we find f; (K;p) ~ f1(K5w) ~ 0.65,
whereas f;(K*f,) ~ 0.93. It will be of great interest to measure f; for these modes to test QCDF.
Theoretically, transverse polarization is expected to be small in tree-dominated B — TV decays except for
the a, p°, ay p”, K;‘OK*_ and K;OI?*O modes. (vi) For tree-dominated decays, their rates are usually very
small except for the a(7~, p~), af (7, p~) and fo(7~, p~) modes with branching fractions of order
1079 or even larger.
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I. INTRODUCTION

In the past few years, BABAR and Belle [1-14] have
begun to measure several charmless B decay modes in-
volving a light tensor meson 7 in the final states, with the
results summarized in Table I. From the theoretical point of
view, the hadronic decays B— TM with M = P, V, A are
of great interest for two reasons: rate deficit and polariza-
tion puzzles. First, these decays have been studied in the
naive factorization approach [15-23]. The predicted rates
are in general too small by 1 to 2 orders of magnitude. This
implies the importance of 1/m; power corrections. Since
the nonfactorizable amplitudes such as vertex and penguin
corrections, spectator interactions cannot be tackled in
naive factorization, it is necessary to go beyond the naive
factorization framework. The theoretical frameworks suit-
able for this purpose include QCD factorization (QCDF)
[24], perturbative QCD (pQCD) [25] and soft collinear
effective theory (SCET) [26].
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Second, it is known that an unexpectedly large fraction
of transverse polarization has been observed in the
penguin-dominated B — VV channels, such as B —
dK*, pK*, contrary to the naive expectation of the longi-
tudinal polarization dominance. (For a review, see [27].)
However, while the polarization measurement in B —
wK3(1430) indicates a large fraction of transverse polar-
ization f; (see Table I), the measurement in B —
¢ K5(1430) is consistent with the longitudinal polarization
dominance. Therefore, it is important to understand why
fr/fL < 1 for B— ¢K;(1430), whereas f7/f; ~ 1 for
B — wK;(1430), even though both are penguin-
dominated. The polarization studies for B— TV, TA, TT
will further shed light on the underlying helicity structure
of the decay mechanism.

In the present work we shall study charmless B — TM
decays within the framework of QCD factorization. One
unique feature of the tensor meson is that it cannot be
created from the V — A or tensor current. Hence, the decay
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TABLE 1.
states containing a tensor meson. Data are taken from [1-14].
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Experimental branching fractions (in units of 107°) and the longitudinal polarization fractions f; for B decays to final

Mode B fL
B(B* — K;(1430)* w) 21543 0.56 = 0.11
B(B™ — K;(1430)" ¢) 8.4 +21 0.80 = 0.10
B(B* — K;(1430) " ) 9.1 +3.0

B(B* — K;(1430)" ') 28.0733

B(B* — K;(1430)°7") 5.67%3

B(B* — K;5(1430)°K™) <11

B(B* — £,(1270)K*) 1.067038

B(B* — £,(1270)7™") 1.5710%

B(B* — f4(1525)K™) <7.7*

B(B*T — a,(1320)°K™) <45

Mode B fL
B(B® — K;(1430)°w) 10.1 =2.3 0.45 = 0.12
B(B® — K;(1430)°¢) 7.5+ 1.0 0.901*4:0%3
B(B® — K3(1430)°n) 9.6 = 2.1
B(B® — K;(1430)°7’) 13.7132
B(B® — K5(1430) " 7) <6.3
B(B® — K;(1430)°7°) <4.0
B(B° — £,(1270)K°) 27413

*From the measurement of B(B™ — f}(1525)°K* — KTKTK~) < 3.4 X 107° [6].

with a tensor meson emitted, for example, B~ — K ;077_,
is prohibited in naive factorization. The experimental ob-
servation of this penguin-dominated mode with a sizable
rate implies the importance of nonfactorizable effects
which will be addressed in QCDF.

The layout of this work is as follows. We study the
physical properties of tensor mesons such as decay con-
stants, form factors, light-cone distribution amplitudes and
helicity projection operators in Sec. II and specify various
input parameters. Then we work out in detail the next-to-
leading order corrections to B — TP, TV decays in Sec. I1I
and present numerical results and discussions in Sec. I'V.
Conclusions are given in Sec. V. Appendix A is devoted to
a recapitulation of the ISGW model. Decay amplitudes and
explicit expressions of helicity-dependent annihilation am-
plitudes are shown in Appendixes B and C, respectively. A
minireview of the 7 — n’ mixing is given in Appendix D.

II. PHYSICAL PROPERTIES OF TENSOR MESONS

A. Tensor mesons

The observed JP =2" tensor mesons f,(1270),
£5(1525), a,(1320) and K;(1430) form an SU(3) 1°P,
nonet. The gg content for isodoublet and isovector tensor
resonances is obvious. Just like the n-n’ mixing in the
pseudoscalar case, the isoscalar tensor states f,(1270) and
f5(1525) also have a mixing, and their wave functions are

defined by
1 u d S o
\/_§(f2 + fz)cos¢9f2 + f3sinf;,,

1 .
15(1525) = \/—z(fg + f4)sinf;, — f5cosb,

f>(1270) =
(1)

with £4 = uii and likewise for f&*. Since 7 is the domi-
nant decay mode of f,(1270) whereas f%(1525) decays
predominantly into KK (see Ref. [28]), it is obvious that
this mixing angle should be small. More precisely, it is
found that 6, = 7.8° [29] and (9 = 1)° [28]. Therefore,
£,(1270) is primarily a (uii + dd)/2 state, while
f5(1525) is dominantly s3.

For a tensor meson, the polarization tensors 66\1)/ with
helicity A can be constructed in terms of the polarization
vectors of a massive vector state moving along the z-axis
[30]

e(=1)** = (0,71, +i,0)/v2,
()

€(0)** =(P;,0,0,E)/my,

and are given by

6&”2) = e(x1)*e(=1), 3)
€y = \g[em)ﬂe(oy +e(O)re(x1)"] ()

6(6;} = \/%[6(“‘1)’“6(—1)” + e(—1)H e(+1)"]

+ \/26(0)“ €(0)”. (5)

The polarization eﬁﬁ can be decomposed in the frame

formed by the two lightlike vectors, z, and p, =
P, — z,m%/(2pz), with P, and m; being the momentum
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and mass of the tensor meson, respectively, and their
orthogonal plane [31,32]. The transverse component that
we use thus reads

_ e

E(aV)z“z” _mi
€2 ———\ Py —

Pz 2pz “u ) ©

(A )

The polarization tensor €, ; satisfies the relations

€ty = v,
6(A)M =0,
uy
Puely) = P,e(y; =0, (7

eN(eWmryr =5,

The completeness relation reads

) (W 1 1 _1
; ( ) _EM MV(7+§M/.L0MVP gM,U,VMplT’
®)
where M, = g,, — P,P,/m}.
B. Decay constants
Decay constants of the vector meson are defined as
(V(P, )| g2y ,9110) = —ifymye, ©

<V(P’ 6)|6_120-,u,1/q1 |0> = _ffj/_(EZPV - GT/P,u)
Contrary to the vector meson case, a > P, tensor meson with

JP€ =27+ cannot be produced through the local V — A
and tensor currents. To see this, we notice that

(T(P, VIV, 10) = aei) P + be;V"P, =0, (10)

(T(P, VIALI0) = &,,,,P el =0, (11)

nrpal™ €y

where use of Eq. (7) has been made. Nevertheless, a tensor
meson can be created from these local currents involving
covariant derivatives:

(T(P, M, (0)[0) = frm2ey, .
(T(P, ML, (0)10) = —ifFmp(eia'P, — €' P,), (12
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where
1 =3 - SR
J/.LI/(O) = E(QI(O)F}/;L[DVQZ(O) + QI(O)’YVID;LqZ(O))r
/,LVa(O) ql(o)o-,uviban(o); (13)
and 5# = 5M - BM with 5# = 5# +ig,A%A%/2 and
D, =09, — igA%A/2.

The decay constant f; of the tensor meson has been
estimated using QCD sum rules for the tensor mesons
f>(1270) [33] and K;(1430) [34] and the tensor-meson
dominance hypothesis for f,(1270) [33,35,36]. The pre-
vious sum rule predictions are [33,34]"

=1 GCV) = 0.08mf2(1270) = 102 MeV,
= (143 = 14) MeV.

ff2(1270)(,u
fK;(1430)(,U«

Recently, we have derived a sum rule for f7(u)f7 (u) and
revisited the sum rule analysis for f7(u). Our results of fr
and f# for various tensor mesons are shown in Table IV
below [40]. Our sum rule results are in good agreement
with [33] for f,(1270), but smaller than the results of [34]
for fx:(1a30. The decay constants for f,(1270) and
f5(1525) can also be extracted based on the hypothesis
of tensor-meson dominance together with the data of
['(f, — 7m) and T'(f, — KK). We found that [40]

(15)

S r0270) =
fra509)

They are in accordance with the sum rule predictions
shown in Table IV.

C. Form factors

Form factors for B — P, V, T transitions are defined by
[42-44]

"The dimensionless decay constant f; defined in [33,34]
differs from ours by a factor_of 2my. The factor of 2 comes
from a different definition of D there.
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ms —m m% — m2
PPNV,IB () = Py + (P - %qﬂ)wﬁf’(gz) + MM FBR(),
2
V(P, VIV, |B(pg)) = —i———— " paPAVEY (g2),
< ( )l p,l (pB)> lmB + my g,lLVa,Be()L)pB (q )
eV - pg BV(,2 (M) eM* - pp BV(,2
(V(P, VIA,|B(pp)) = 2my 9,4 (q°) + (mp + my)| e’ — ?qu ATV (q7)
(A . 2 _ 2
€ g _mp—m
. 2
(TP, DIV, IB(py)) = —i——— ,mﬁewaPBVBT(qZ)
B T
W . Ps BT/ 2 W W . DB BT/ 2
(T(P, MIA,|B(pp)) = 2my q,A5" (q%) + (mg + mp)| e’ — TQ/.L AT (q7)
(W . 2 2
e _mp—m
Lo py+ (pa) — EEg, JagT) (16)

where w=(pp—P), and ef/(ﬁ = ef}(ﬁ"pgy/mg.
Throughout the paper we have adopted the convention
£0123 —

In the Isgur Scora-Grinstein-Wise (ISGW) model [45],
the general expression for the B — T transition is parame-
trized as

(T(P, VIV = A),|B(pg))
= ih(g*)€ 41po € Palpp + P)Pq7 —
— b (gD 5psrh(ps + Py — b_(qV)€, 5 PEPE
(17)

k(g€ p5

where the form factor & is dimensionless, and the canonical
dimension of &, by and b_ is —2. The relations between
these two different sets of form factors are

VP (q?) = mp(mg + mp)h(g?),

ABT(q?) = k(q?),

AT (q?) = —mB(mB + mp)by(q?),

AT (%) = [kz(qz) + (my — m7)b.(q*) + ¢*b_(q%)]

mp
mpg + mr

(18)

The B — T transition form factors have been evaluated in
the ISGW model [45] and its improved version, ISGW?2
[46], the covariant light-front quark model (CLFQ) [47],
the light-cone sum rule (LCSR) approach [48], the large
energy effective theory (LEET) [49-51] and the pQCD
approach [44]. In LEET, form factors are evaluated at large

recoil and all the form factors in the LEET limit to be
specified below can be parametrized in terms of two inde-
pendent universal form factors /; and ) [43]:

VET (g = ] (1 + )é’i(qz)
BT(,2)— M1 2 2
Ay’ (q )— 7 |[<1 )Zu(q )+—41(q )]
m 2E (19)
AP (¢ = »T ( - )ﬁ(qz),
|prI\mp +myp
my m
A7) = (12 20~ e |
|pr Er
where E7 is the energy of the tensor meson
2 _ 2
ET——B<1+mT zq) (20)
g
In the LEET limit,
Ep, mg > mp, Agep. (21)

Using the recent analysis of tensor meson distribution
amplitudes [40], one of us (KCY) has calculated the form
factors of B decays into tensor mesons using the LCSR
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TABLE II.
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B — T transition form factors at q2 = 0 evaluated in the ISGW2, CLFQ, LCSR, LEET and pQCD models. The CLFQ

results are obtained by first calculating the form factors h(g?), b (¢*) and b_(g?) using the covariant light-front approach and k(g?)
from the heavy quark symmetry relation Eq. (22) and then converting them into the form-factor set V(¢?) and Aoyl_z(qz). To compute
the form factors in LEET, we have applied £ (0) = 0.28 £ 0.04 and ¢;;(0) = 0.22 = 0.03. LCSR and pQCD results are taken from

[44,48], respectively.

F  ISGW2 CLFQ  LCSR LEET  pQCD F ISGW2 CLFQ  LCSR LEET  pQCD
vBe 032 028 0.08%+002 0.18=003 0.1872% | A: 020 024 021+004 0.14*002 0.1870%
A% 016 021 0.14%£0.02 013002 0117098 | A% 014 019 0.09%0.02 0.13=0.02 0.0670%
VB 032 028 0.18+002 0.18+002 012798 | AZ* 020 025 020*0.04 0.13+0.02 01300
AP 016 021 014+002 012+002 008792 | AY* 014 019 010+002 0.13+002 0.047%0
VBK: 038 029 0.16+002 021+003 02179% | a2 027 023 025+0.04 015+002 018749
AP 024 022 014+002 014+002 01379% | AP 022 021 005+002 0.14+002 008799

approach [48]. The LCSR results are close to LEET and
pQCD calculations.

The B — ay(1320), fo, = (uii + dd)/v2, K3(1430)
transition form factors calculated in various models at the
maximal recoil g = 0 are summarized in Table II. The
ISGW model [45] is based on the nonrelativistic constitu-
ent quark picture. In general, the form factors evaluated in
the ISGW model are reliable only at ¢> = g2, = (mp —
mT)z, the maximum momentum transfer. The reason is that
the form-factor ¢> dependence in the ISGW model is
proportional to exp[— (g2, — ¢°)], and hence the form fac-
tor decreases exponentially as a function of (g2, — ¢°).
(See Appendix A for details.) This has been improved in
the ISGW2 model [46], in which the form factor has a more
realistic behavior at large (¢2, — ¢*) which is expressed in
terms of a certain polynomial term. As noticed in [20],
form factors are increased in the ISGW2 model so that the
branching fractions of B — TM decays are enhanced by
about an order of magnitude compared to the estimates
based on the ISGW model.

The CLFQ model is a relativistic quark model in which a
consistent and fully relativistic treatment of quark spins
and the center-of-mass motion is carried out. This model is
very suitable to study hadronic form factors. Especially as
the recoil momentum increases (corresponding to a de-
creasing g2), we need to start considering relativistic ef-
fects seriously. In particular, at the maximum recoil point
g*> = 0 where the final-state meson could be highly rela-
tivistic, it is expected that the corrections to the nonrela-
tivistic quark model will be sizable in this case.

The CLFQ and ISGW2 model predictions for B — T
transition form factors differ mainly in two aspects:
(i) When ¢ increases, h(g?), b, (g?) and b_(g?) increase
more rapidly in the former and (ii) The form factor k
obtained in both models is quite different. For example,
kPX:(0) = 0.015 in the former and 0.293 in the latter.
Indeed, it has been noticed [47] that among the four
B — T transition form factors, the one k(g?) is particularly

sensitive to Br, a parameter describing the tensor-meson
wave function, and that k(g?) at zero recoil shows a large
deviation from the heavy quark symmetry relation. It is not
clear to us if the very complicated analytic expression for
k(g?) in Eq. (3.29) of [47] is complete. To overcome this
difficulty, it was pointed out in [47] that one may apply the
heavy quark symmetry relation to obtain k(g*) for
B — T transition

m% + m% - qz)

k(g*) = mBmT<1 +
2mBmT

x| i) - Shi(g?) + %bf(qz)]. 22)

In Table II the CLFQ results were obtained by first calcu-
lating the form factors i(g?), b (¢*) and b_(g?) using the
covariant light-front approach [47] and k(g?) from the
heavy quark symmetry relation Eq. (22) and then convert-
ing them into the form-factor set V(¢?) and Ag; 5(¢?).

Form factors in the CLFQ model are first calculated in
the spacelike region and their momentum dependence is
fitted to a 3-parameter form:

F(0)
1= alg?/m}) + b(g*m)

F(g*) = (23)

The parameters a, b and F(0) are first determined in the
spacelike region. This parametrization is then analytically
continued to the timelike region to determine the physical
form factors at ¢®> = 0. The results are exhibited in
Table III. The momentum dependence of the form factors
in the LCSR approach can be found in [48], while a slightly
different parametrization,
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) F(0) TABLE III. B — T transition form factors obtained in the
F(g*) = , (24) covariant light-front model and fitted to the 3-parameter form
(- qz/m%)[l - aqz/m% + bq“/’"%] Eq. (23).
is used in the pQCD approach for the calculations of the il FO) a b F FO) a b
form-factor ¢* dependence [44]. vBa: 028 219 222 A 024 128 084
For the calculation in LEET, we have followed [52] to ABe 021 138 047 AB2 019 193 1.69
use £ (0) = 0.28 = 0.04 and £;;(0) = 0.22 = 0.03. For the 5 Bf,
24 d hall VBfa 028 219 222 Ay 025 137 095
q- dependence, we shall use B, B,
2 1(0) A 021 139 046 Ay 019 193 1.69
() =—2— 25  VEKS 020 217 222 | AP 023 123 074
' (1= q"/mp) A% 022 142 050 | A% 021 196 179
For the ISGW2 model, the ¢*> dependence of the form
factors is governed by Eq. (Al).
D. Light-cone distribution amplitudes
The light-cone distribution amplitudes (LCDAs) of the
tensor meson are defined as [40]°
(A) A% _o W*_B_a
1 , i z €na 77z
= - 2 Py+iiP ap pa Ba
(TP, V31 ()7,4:(0)10) = wmw/de>”ﬂpu—@7r-<)+( o PW7;?—yxm
(A) a. B
1 2%z _
-3 (‘;ipm%gxu) + @(zz)}, (26)
_ . 1 j . * 1
<T(P; A)|¢I1()’)')’;ﬂ’5‘12(x)|0> = _lme%‘/o duel(uPerMPX)Syuaﬂzypae(ﬁgzé 2—Pzga(u)’ (27)
* * o 1
(T(P, D11 ()0,,:(x)10) = —nmﬁ[mmWWﬂﬁN> %zpuﬁ¢ﬂm+wﬂfﬁmp
N _a B
mTea Z T~ 1 * %
#h,(u) + 3 Wrzoz, — e’z ZM] Pz )2 hs(u) + CO(Z2)} (28)
(A)* B
5 22
TP, VI3 (0g2(010) = = [ duetrs=ir 8 2, 29)

= g3+ Of —2g,, h, =h —5(P] + hy),
hy = hy — @l,andz—y—x Here ®7 (I)72 are twist-2
LCDASs,” g,. g4, h, b twist-3 ones, ancl g3, l’l'; twist-4. In
the SU(3) limit, due to the G-parity of the tensor meson,
(I)”, &7, g, g4» hy, hy, g3 and h3 are antisymmetric under
the replacement u — 1 — u [40].

Using the QCD equations of motion [31,32], the two-
parton distribution amplitudes g,,, g,, h;, and h; can be

where  g;

>The LCDAs of the tensor meson were first studied in [53].

*Since in the transversity basis, one denotes the corresponding
parallel and perpendicular states by A and A , a better notation
for the longitudinal and transverse LCDAs will be ®; and ®,
respectively, rather than @) and ®,. Indeed, the transverse
polarization includes both parallel and perpendicular polariza-
tions. In the present work we follow the conventional notation
for LCDAs.

|
represented in terms of CI)ﬂ | and three-parton distribution

amplitudes. Neglecting the three-parton distribution am-
plitudes containing gluons and terms proportional to light
quark masses, twist-3 LCDAs g, g,, /i, and A, are related
to twist-2 ones through the Wandzura-Wilczek relations:

v D) 1 D)
WW (1)) = , I L21@
e T ey
T‘U T‘U
ga" () :2ftfudvq)”_()+2u/1 aw 1Y)
0 v u v
h,WW(u)=%(2u— 1)(’/(‘:511,@7&_}(“)_'[: dv(Iﬂl;)(v))’

WY (u) = 3(1; [) ! dvq)iﬁ(v) +u f " v qﬂl;)(v)) (30)
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These Wandzura-Wilczek relations further give us

%g{,(u) " %g”(u) - /ul @dv = &1 (u),
Rl (u) = —3[[0” ‘I’iﬁ(v) —
fou dv(cpi(v) - %h (v)) _ [/O (DTU(U)
f dv(d)T(v) gv(v)> _ %[ f <I>”v(u)

The LCDAs (Dﬂj_(u, ) and ®,(u, w) can be expanded as

Cl)ﬁl(u, ) = 6u(l — u)%aﬁ”’“’T(M)C‘;/Z(Zu - 1),
O, (u, p) =3 Y ai T (WP (2u = 1), (32)

=0

where the Gegenbauer moments aﬁ”’L)’T with / being even

vanish in the SU(3) limit, u is the normalization scale and
P,(x) are the Legendre polynomials. In the present study
the distribution amplitudes are normalized to be

[ du(2u — D] () = j du(2u — DO () = 1,
/ dud, (1) = 0, (33)

ConsequentlEI the first Gegenbauer moments are fixed to
be al = a;"' = 3. Moreover, we have

3];) duQu — 1)g,(u) = j: duQu — 1)g,(u) = 1,
| 1 (34)
2 jo du(2u — 1)h,(u) = ﬂ) duu — 1)) = 1,

which hold even if the complete leading twist distribution
amplitudes and corrections from the three-parton distribu-
tion amplitudes containing gluons are included. The
asymptotic wave function is therefore

@ (u) = 30u(l — uw)Qu — 1), 35)

and the corresponding expressions for the twist-3 distribu-
tions are

g%(u) = 5Qu — 1)3,

g% (u) = 10u(l — u)2u — 1),

735 (u) = 1—25(2u — 1)1 = 6u + 6u), (36)
h(u) = 15u(1 — u)Qu — 1),

1
é_lgi’(u) -

PHYSICAL REVIEW D 83, 034001 (2011)

uq)T v
%gv(u) = —jo —”l_}( )dv = —dL(w),

[ul q)iv(v)dv] = —30,(u),

ﬁ 1 ‘I’iv(v) dv] — wi®,(u), o
_ uj: q)ﬁ;f”) dv] — %(gcpi(u) )
[
and
O3(u) = 5(1 — 6u + 6u?). 37

Note that, contrary to the twist-2 LCDA CI)T 1 (u), the twist-
3 one ®,(u) is even under the replacement u—1—uin
the SU(3) limit.

For vector mesons, the general expressions of LCDAs
are

Dy (x, ) = 6x(1 — x)[l + Z alV(w)cy*(2x - 1)], (38)
n=1
and
D, (x, pu) = 3[2x —1+ i arV(w)P, s (2x — 1)]. (39)
n=1
Likewise, for pseudoscalar mesons,
®p(x, 1) = 6x(1 — x)[l + 3 () Cx 1)]

n=1

40
(5, ) = 1 o

E. Helicity projection operators

In the QCDF calculation, we need to know the helicity
projection operators in the momentum space. To do this,
using the identity

2 0)830 = {17 g1+ (7' 0)ysa(0)]
+ L0 () 7,6* D] = ¥s[3 )y, v54> (0]
307 ), 2], 41)

and Egs. (26)—(29), we obtain
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#(A) _u *(/\)

1 ()2 — LY quetwryraro ol p €0 gy L Enr o o €uv 2
(TP Mak)3010 =~ [ auetrrrirolp] pOTEE o) - S¢S mha + (25

,,(,?)z P

1 N 1 i ¥
— P,u W)V“gu(u) + 5 Euvpayﬂe(:)ﬁZﬁPpZU'YS _ga(u)] - EfYJ:mTI:O—MV(E.(l:\g ZBPV

e miepp 22 ! e
PP )—fl)f_(u) + o (P,z, — P,,Z#)Wh,(u) + EO"“V(EMB #z,

A
— € ﬁ)*zﬁzﬂ)

)+ e B ]+ Ol ]

(42)

Since any four momentum can be split into light-cone ~ En*, where we have defined two lightlike vectors n’

and transverse components as k* = k* + k% + k“ , with n#* = (1,0,0, —1) and ny = (1,0, 0, 1) and assumed
shall assign the momenta that the meson moves along the n# direction. To obtain the
e light-cone projection operator of the meson in the momen-
kY = uEn® + —Lnf + kY, tum space, we take the Fourier transformation of Eq. (42)
4uk 43) and apply the following substitution in the calculation:
k2
kY = aEn# +ﬁn’i — K s i 0 =_i(nﬁa 9 ) )
aky, 2E ou  dky,

to the quark and antiquark, respectively, in an energetic
light final-state meson with the momentum P* and mass ~ where terms of order k3 have been omitted. The longitu-
m, satisfying the relation P* = En* + m’n’ /(4E) =~  dinal projector reads

=0 = T2 ] et (2) oo + T et (2]

<[ = g nntnt ) — i [ 0@ @) ~ h(@)o, e h{‘;")]
J]ZTT —LiEq,,n” e(”)*””‘c‘i;\o— f dv®7 (v) + (9( )}
- —i%E[e%*n n® (ZE) ]{/1 (I)T( ) + ];TT Mr I:—%U#Vn‘inih,(u) - %E'/Z dv(d)i(v) — %h,(v))
X oy nt akaly + hééu)] + @(ng)} (45)

and the transverse projectors have the form

ML= =1) = —i%E[eT;‘)an+<?E)]{ b T () + 1T I:y“gv(u) L " T () — g, ()i

fT akl,u
ga(u) ga(u) 9 m?
— 18,0y N’ ys(n+ ) —E > akhr):l + (Q(E_ZT)} (46)
and
T f% mr m%
MT(A = +2) = —ITE{ & T (v) + (9(?)} @7

The exactly longitudinal and transverse polarization tensors of the tensor meson, which are independent of the
coordinate variable z = y — x, have the expressions
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22F? m2 ma
#(0) v — T _ T
ey = \[5 " [(1 4E2)” 4E2”ﬁ]’

PHYSICAL REVIEW D 83, 034001 (2011)

* mqy\2 2
e,f,f)n+n+(2ET) :\/;5/\,0,

#*(ANva ,,+ (49)
e L € Na . m I,
J_ (6 e 7 nt GJ-(i\L)Vn (2;> ‘/;EM(il)(S)L’+].
*(A)Van
—T}Lr)n 6A+l! (48)
The projector on the transverse polarization states in the
which in turn imply that helicity basis reads
|
fT { 1 fr mr[ ( gu(u)) _
ML = E{€(FDA_ DT (u) + = = —| (¥ D1 — + + E(F1)(1 +
%1(u) ;i (1) ) 2 E DA = ys)| g,(w) 225 (FD( + vs)
_ 8a(u) _ 8a(u)
< (g0 = E9) — -1 = o) [ avC](w) ~ gu0) FEL e F ) S~ B 1+ y)

< ([ aveefe) - g = 4 )

ok,

o)

After applying the Wandzura-Wilczek relations Eq. (31), the transverse helicity projector (50) can be simplified to

7 ) = =L el 0o + L 22 00T (370 = 39+ a1 355

T

" ei(il)d)?(u)( V(1 % y5) — GEA_(1  v5)

to be compared with

Y i E{é( DA-DY () + 1V V[ :‘<:1><1>K<u>( Y(1F ys) + uEA_(1 7 y5)
5 E

+ e*;(:ncbz(u)( V(1% ys) — GEA_(1 % vs)

for the vector meson. The longitudinal projector for the
tensor meson can be recast as

Mﬁ()\ =0)
_ I T 3 fr mr
- 4‘f3{n<b(>+2f ", (w)
X [—%O'Wn’in_’i(u —it) — iEuiio ,,n* ki,, - 1]
2
+ (9(%)} (53)
to be compared with
M (A = 0)
= —i%E{ I u )+§V — D, (u)

] d
X [— %o-w,n’in_’i(u —it) — iEuiio ,,n* —— T - 1]
14

2
-of)

for the vector meson.

o)

i)
)] o) &

F. A summary of input parameters

kly)] !

It is useful to summarize all the input parameters we
have used in this work. Some of the input quantities are
collected in Table IV.

The Wilson coefficients ¢;(u) at various scales, u =
4.4 GeV, 2.1 GeV, 1.45 GeV and 1 GeV, are taken from
[54]. For the renormalization scale of the decay amplitude,
we choose u = m,(m,). However, as will be discussed
below, the hard spectator and annihilation contributions

will be evaluated at the hard-collinear scale u), = JuA,
with A, = 500 MeV.

III. B— TP, TV DECAYS
Within the framework of QCD factorization [24], the
effective Hamiltonian matrix elements are written in the
form

(M M| H 5| By ="E 3" APM M| T 27"+ T 57" B),

Gr
\/§p=u,c
(55)
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TABLE 1IV. Input parameters. The values of the scale-dependent quantities £t (u) and af’zv(,u,) are given for u = 1 GeV. The values
of Gegenbauer moments are taken from [37] and Wolfenstein parameters from [38].

Light vector mesons [37,39]

v fv (MeV) f¥ (MeV) al’ alV at’ ay’

o 216 =3 165+ 9 0 0.15 = 0.07 0 0.14 = 0.06
) 187 £5 1519 0 0.15 = 0.07 0 0.14 = 0.06
b 2155 186 =9 0 0.18 = 0.08 0 0.14 = 0.07
K* 220+ 5 185 + 10 0.03 = 0.02 0.11 = 0.09 0.04 = 0.03 0.10 = 0.08
Light tensor mesons [40]

T fr (MeV) fE MeV) al?, at”
f>(1270) 102 £ 6 117 £ 25 %
£5(1525) 126 = 4 65+ 12 2
a,(1320) 107 =6 105 =21 %
K5(1430) 118 =5 77 + 14 2

B mesons

B mg (GeV) 75 (pS) s MeV) A MeV)
B, 5.279 1.638 210 = 20 300 = 100
By 5.279 1.525 210 = 20 300 = 100
Form factors at g> = 0 [37,41]

FEX(0) ABK(0) ABK(0) ABK(0) VEK (0)
0.35 = 0.04 0.374 = 0.033 0.292 + 0.028 0.259 + 0.027 0.411 £ 0.033
FB7(0) AP (0) A7 (0) A5"(0) Vy?(0)
O.gS +0.03 0.303 = 0.029 0.242 + 0.023 0.221 £ 0.023 0.323 = 0.030
Fy1(0) A§“(0) AF¢(0) A52(0) Vi (0)
0.296 * 0.028 0.281 = 0.030 0.219 £ 0.024 0.198 = 0.023 0.293 = 0.029
Quark masses

my,(my)/GeV m,(my)/GeV mP%'® /mbo'e m, (2.1 GeV)/GeV
4.2 0.91 03 0.095 = 0.020
Wolfenstein parameters [38]

A A p 7 Y
0.812 0.22543 0.144 0.342 (67.2 = 3.9)°

where Aqu) = V,,,,V};q with ¢ = s, d, and the superscript
h denotes the helicity of the final-state meson. For decays
involving a pseudoscalar in the final state, / is equivalent to
zero. T 47" describes contributions from naive factoriza-
tion, vertex corrections, penguin contractions and spectator
scattering expressed in terms of the flavor operators a” h
while T z”" contains annihilation topology amplitudes

’

characterized by the annihilation operators b? " In general,
T 47" can be expressed in terms of caf"h(Mle)X
XBMM) for My =T or cal"(M;My)XBMM2)  for
M, =T, where ¢ contains factors arising from flavor

structures of final-state mesons, «; are functions of the
Wilson coefficients (see Egs. (B1) and (B2)), and we have
defined the notations

XETP) = (PlJ#|0XT1,, | B)

. Mmr ..,
= —i2fpAYT (mp) = € (O)ppupp  (56)
B

XBPT) = —2ifrmpp FEP(m3), (57)

for the decays B — TP, and
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XEIBT,V) = <V|JM|O><T|J;L|B> =
2VET (m3)

+i Vet 'B—]
l€uvap€y €r poT +my

X% V,T) _

for the decays B — TV, where XBPT) and X\"V'") are
expressed in the B rest frame. Note that in the factorization
limit, the factorizable amplitude XBM:T) = (T|J#|0) X
(M|J),|B) vanishes as the tensor meson cannot be produced
through the V — A or tensor current. Nevertheless, beyond
the factorization approximation, contributions proportional
to the decay constant f7 of the tensor meson defined in
Eq. (12) can be produced from vertex, penguin and
spectator-scattering corrections.

To evaluate the helicity amplitudes of B — TV, we work
in the rest frame of the B meson and assume that the tensor
(vector) meson moves along the —z (z) axis. The momenta
are thus given by

= (mBy Oy O) O))
p;"' = (ET) 0) 0) _pc)) (60)
py = (Ev,0,0, p,).

The polarization tensor €(,} of the massive tensor meson

with helicity A can be constructed in terms of the polar-
ization vectors of a massive vector state

€/(0) = (p., 0,0, —E)/my,

e (+) = (0,71, —i,0)/v/2. 6D

For the vector meson moving along the z direction, its
polarization vectors are

*#(0) = (p.. 0,0, Ev)/mv,

() = (0, 71,1,0)/v2, (62)

where we have followed the Jackson convention, namely,
in the B rest frame, one of the vector or tensor mesons is
moving along the z axis of the coordinate system and the
other along the —z axis, while the x axes of both daughter
particles are parallel [55]. The longitudinal (2 = 0) and
transverse (h = *=1) components of factorization ampli-

XELBT, V)

tudes then have the expressions

_ {é{,}\/[(m% —m} — m3)(mg + my)ABY (m2.) —

—imeBmT[<l + %)A?V(m%) +

PHYSICAL REVIEW D 83, 034001 (2011)

. . o \ 2457 (m3)
_lfvmv[(er : fv)(mB + mT)Al (mv) - (eT ’ PB)(GV ) PB)—
mB + mT
(58)
Smype ABV(mZ)] for h =0
mg+my 2 T ’
(59)
2Vt | for h =
[
Bryv) _ ifv 2
Xé ) — Z—m%pc\/;[(m% — m} — m?)(mg + my)
4m?3 p?
X AT () — Bl AFTn) |
X(fT’V) = _lfVmBmV\/— [(1 + —)ABT( )
mT mpg
— 2p. BT(, 2

Likewise, the factorizable B — TP amplitude can be sim-
plified to

_ ~ 2 m
X(BT,P) — _ZZJ;me_ipgAgT(m%), (64)

The flavor operators a? ! are basically the Wilson coef-
ficients in conjunction with short-distance nonfactorizable
corrections such as vertex corrections and hard spectator
interactions. In general, they have the expressions [24,56]

ci=1 Crag
N. 4w

a‘lp'h(Mle) = (Ci + cli/:l)Nf'(Mz) ——[ViM,)

477 2 h p.h
+ o (MIMZ)] + PP, (65)
where i = 1, - - -, 10, the upper (lower) signs apply when i
is odd (even), ¢; are the Wilson coefficients, Cy = (N? —
1)/(2N,) with N, = 3, M, is the emitted meson and M,
shares the same spectator quark with the B meson. The
quantities V"(M,) account for vertex corrections,
H(M,M,) for hard spectator interactions with a hard
gluon exchange between the emitted meson and the spec-
tator quark of the B meson and P;(M,) for penguin con-
tractions. The expression of the quantities N(M,), which
are relevant to the factorization amplitudes, reads

0 i=68

v =1 NIT) =0, NAP)=1.

(66)

A. Vertex corrections

The vertex corrections are given by
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c,) [ dxcbf”zu)[lzmmb — 18+ g(x)]

PHYSICAL REVIEW D 83, 034001 (2011)

(i=1-4,910),

VI =1 e g dxcpﬂfzu)[—lzm% 16— g(1— x)] (i=57). 67
C(#Mz) Jodx®,, (x)[—6 + h(x)] (i=6,8),
D(M,) [} dxcpﬁfzu)[nln% — 18 + gT(x)] (i=1-4,0910),
VH(M,) = 68
- (M) D(M,) [} dxCIDMZ(x)[—IZIn +6—g(1—-x]| (i=57), (08)
0 (i=16,38),
with
glx) = 3<11—_2x Inx — i7T> + [2Li2(x) Inx + 121nx B+2im)nx — (x—1-— x)],
* | (69)
h(x) = 2Liy(x) —In’x — (1 + 2im)Inx — (x & 1 — x), gr(x) = g(x) + E
and _ foleM2 mp
HO(M M) = X(()BM A —2c(my)
CP)=CV)=DWV) =1, CT) =42 1 O (1) D (1)
3 X j dudv[C(Ml)u
1 (70) 0 v
D(T)=—,  DP)=0, ®,, (W)@ (v)
v N o) e
where x = 1 — x, CDf” is a twist-2 light-cone distribution

amplitude of the meson M, ®,, (for the longitudinal com-
ponent), and ®. (for transverse components) are twist-3
ones. Specifically, ®,, = ®,, ®,, &, for M =T, V, P,
respectively. The expressions of C(T) and D(T) are ob-
tained by comparing Eqgs. (51)—(54).

B. Hard spectator terms

H lh (M, M,) arise from hard spectator interactions with a
hard gluon exchange between the emitted meson and the
spectator quark of the B meson. H?(MM,) have the ex-
pressions:

foM sz mp

0
H)(M\M,) = X(()BM ) BC(Mz)

! @)1 (u)®)" (v)
X /0 d”dU[C(Ml)T
" <1>m,<u)c1>ﬁ42(v>]

XM, v b

fori = 1-4, 9, 10,

for i =5, 7, and HY(M,M,) = 0 for i = 6, 8, where the
upper signs are for 7V modes and the lower ones for TP
modes. The transverse hard spectator terms H; (M, M,)
read

\/zifoA%IlszmMz mpg

mBX(,BM"MZ) )l_B

j‘d v (DM‘(M)(I)MZ(U)

Hf(Mle) =

———, (73)

\/zifoMl szli My, mg

H (M,M,) = — L
i m%XiFMI’MZ) /\B

_ M, M,
X _[1 dudv @~ )P, (WP, (v)’ (74)
0

202
fori =14, 9, 10, and
V2ifpfii fa,Mas, my

mBX(BM"MZ) )‘_B

H (M\M,) = —

M, M,
fd . @7 (u)CI) (v)’ (75)
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\/EifoleMzli My, g

H(M,M,) = — B
i ( 1 2) m%X(f?Mth) Ap
| (u = v)PY (WP (v)
X j; dudv o) » (76)
fori =5, 7, and

_ 1f gfm, s, Mp, mpmy, mp

H - (M\M,) = — T TYRYN W

i ( 1 2) ﬁmBXg?Ml,Mz) m%h /\B

P (u)®M2(v)

fd dv Vi v 77
H} (M, M) = 0, (78)

for i = 6, 8. Since we consider only 7P and TV modes in
the present work, it is obvious that MM, = TV or VT for
the transverse components.

C. Penguin terms

At order a;, corrections from penguin contractions are

present only for i = 4, 6. For i = 4 we obtain
Crag
h _ F&s
Pyt = el [Gl () + )

+¢3[Gly, (s,) + Gy, (1) + 2g4,, ]

+ (¢4 + cg) Z[GMZ(S )+ g1 - 2c§f;G§}

i=u

(79)

where s; = m7/mj, and the function G}, (s) is given by
1 1
Gf{,,z(s) = 4[ du(IDMZ’h(u)[ dxxxIn[s — iixx — i€,
0 0
1
gh = (i ﬂ—kg)[ OMh(x)dx,
2
(80)
o =3 ln— [ OV (x)dx,

with  ®¥20 = C(M) @2, DM* = D(M,) P>, For
i = 6, the result for the penguin contribution is
CFCY

18 deiGli(5,) + alGh (s) + Gl (1]

c

Pg’h(Mz) =

b
+ (e + 0 3 Gl o) (81)

i=u

In analogy with (80), the function GMz (s) is defined as

~ 4 1 1
G?Vlz(s) = er) ]0 duCsz(u)/O dxxxIn[s — iixx — i€,

Gz, (s) = 0. (82)

PHYSICAL REVIEW D 83, 034001 (2011)

Therefore, the transverse penguin contractions vanish for
i=06,8: Pé & = 0. Note that we have factored out the ri”z
term in Eq. (81) so that when the vertex correction Vg is
neglected, a6 will contribute to the decay amplitude in the
product rX2a2 ~ r)(zP0

For i = 8, 10 we find

D, ¢4 ~h
PLM (M) = g (€1 F Nee)Glr(s,),  (83)

Pl (My) = ;m {(c1 + NGl (s,) +2g0,1— 3¢5 G-

(34)
Fori=17,9,
- .« off MpMp | 20
P, (M) = ﬁcnm—g%"‘ 77 :_n(cl + Neca)
m?2 V2
><|:8C1n—°+5u1n—+1:|, (85)
P2 pu 2

for My = p°, w, ¢, a3, f2(1270), f4(1525), and vanish
otherwise. Here the first term is an electromagnetic pen-
guin contribution to the transverse helicity amplitude en-
hanced by a factor of mzm,;/ m%,,2, as first pointed out in
[57]. Note that the quark loop contains an ultraviolet
divergence for both transverse and longitudinal compo-
nents which must be subtracted in accordance with the
scheme used to define the Wilson coefficients. The scale
and scheme dependence after subtraction is required to
cancel the scale and scheme dependence of the electro-
weak penguin coefficients. Therefore, the scale w in the
above equation is the same as the one appearing in the
expressions for the penguin corrections, e.g., Eq. (80). On
the other hand, the scale v is referred to the scale of the
decay constant f), (v) as the operator §y*¢ has a non-
vanishing anomalous dimension in the presence of elec-
tromagnetic interactions [56]. The » dependence of
Eq. (85) is compensated by that of £, ().

The relevant integrals for the dipole operators O, , are

GY = C(M, )[ du——"" ”Z(M)

d
G; = o) || T”[quﬂz(u) — ud(u)  (86)
k o @
1
— a0 w) 3 @) + uCDAfZ(u))].
Using Eq. (31), G; can be further reduced to

1
£ = D0y [ aul @) — ()] =0, .

G; =0.

Hence, th in Eq. (87) are actually equal to zero. It was first
pointed out by Kagan [58] that the dipole operators Qg,
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and (7, do not contribute to the transverse penguin am- , 2m My
I, —
plitudes at O(a,) due to angular momentum conservation. Ay (M M) = —7a mzl -
B
1
D. Annihilation topologies X f dudv{CI)"fl(u)fl)"ﬁ(v)

_ 0

The weak annihilation contributions to the decay B — i+ 1

MM, (with MM, = VT or TV) can be described in terms [ 5+ -7 )2]} oD
— Qv

of the building blocks b?" and bYjh:

G _
\/_E 2, ApMMIT 5715 AT (M M,) = _#as_\/imlemMz
p=u,c mpg
1
- 35 S Aofafun fu b + . (89) < [ audul @t )@t w)
p=u,c

x [% G —vﬁv)z G = uv)]}’ ©2)

The building blocks have the expressions

Cr .
= i . 2 1
by N2 c14}, AS(M M) = \/%77015[ dudv{d)ﬂ/[' (u)d)ﬂlz(v)
¢ 0
C . .
by = N—Z[C3A’l + es(AL + AD) + N ceAl], y [ L] ]
c o(1 —iv)  u’v
by = SF oA -3
il =2, W, 0 L 03)
Cri . ; (89)
by = F[C4AII + CéA'zl
b3,EW = NC [C9A1 + C7(A + Af) + N C8A ] Agi(Mle) - —7a, \/imlemMz
m
Cr , . B
b = —[c1pA} + c3A}], 1
0
u+v n 1 o4
where for simplicity we have omitted the superscripts p [ w?or o (1 - ﬁv)z]}’ ©4)

and & in the above expressions. The subscripts 1, 2, 3

of Af,’f denote the annihilation amplitudes induced from
(V—-A)(V—-A),(V—-A)(V+A)and (S — P)(S + P) op-

erators, respectively, and the superscripts i and f refer to AT (MM, = —7ra, V2my 1,
gluon emission from the initial and final-state quarks, 2 ’ m%
respectively. Following [56] we choose the convention 1 u u
that M, contains an antiquark from the weak vertex with X [0 dudy{(l)g(u)Q)J(v)
longitudinal fraction ©, while M contains a quark from the 2 P P
weak vertex with momentum fraction u. The explicit ex- X I:T - — - ]} (95)
pressions of weak annihilation amplitudes are: v (I—av) w1 —av)
A M) = e, [ dudv]@ (0@ () AO(M, M) = ' auan SR gy (@)
1 1442 3 K 0 [ I 3 1M TA 0 uav C(M) Iy m, U I v
2t c(M,) Mo M
X|—————+—= X + O ()P
[ (1 — av) uﬁz] uv(l —iav) C(M,) "x (W, (v)
3 M, M 2 2v }
=y 'y’ — X ———1 96
A, W, 0 =L o0 g 96)
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A (M M) = =74 d dv{ e A () D )

el M,

2 My M, « M M
+ 1 2@ 1 @ 2
uv(l —av)  my, r O P ()

2
it o7
Ag’O(MlMZ) = 7T, f(: dudv{gggjg rM m](u)(l) 2(v)
2(1+9) CM)) Mo g,
X Gy e 0@, )

1
AL (M M) = —”j; fo dudv{ZMz P M (1) (1)
M,

2 2
X e + ryz(l)ﬁf‘ (u)(I)Ifz(v) —_2}
M, uv
99)
and AJ" = A}" = ALT = ALT = 0. Here in the helicity

amplitudes with 4 = 0, the upper signs correspond to
(M, M,) = (T,V), (V,T), and (V, P) and the lower ones
to (M, M,) = (P, V). When (M, M,) = (V, P), one has to
add an overall minus sign to Ago. For (M, M,) = (P, V),
one has to change the sign of the second term of A' Note
that in this paper, we adopt the notations A(l DO = A(’ D for
the 7P modes.

Since the annihilation contributions A’lg are suppressed
by a factor of m;m,/m% relative to other terms, in the
numerical analysis we will consider only the annihilation
contributions due to A~§’°, Ag’f, A’fg,3 and A~

Finally, two remarks are in order: (i) Although the
parameters a;(i # 6, 8) and aggr, are formally renormal-
ization scale and ys-scheme independent, in practice there
exists some residual scale dependence in a,;(u) to finite
order. To be specific, we shall evaluate the vertex correc-
tions to the decay amplitude at the scale wu = my,.
In contrast, as stressed in [24], the hard spectator and
annihilation contributions should be evaluated at the

hard-collinear scale u, = /A, with A, = 500 MeV.
(i1) Power corrections in QCDF always involve trouble-
some endpoint divergences. For example, the annihilation
amplitude has endpoint divergences even at twist-2 level
and the hard spectator scattering diagram at twist-3 order is
power suppressed and possesses soft and collinear diver-
gences arising from the soft spectator quark. Since the
treatment of endpoint divergences is model dependent,
subleading power corrections generally can be studied
only in a phenomenological way. We shall follow [24]

PHYSICAL REVIEW D 83, 034001 (2011)

to model the endpoint divergence X = f(l) dx/% in the
annihilation and hard spectator scattering diagrams as

X, —ln< )(1 + paeitn),

Ay
et + idy
(Ah>(1 pue'’r),

with the unknown real parameters p,y and ¢, y.
For simplicity, we shall assume that X’ and X}, are

(100)
XH = 111

helicity independent; that is, X, = X; = X{ and
Xy =X}, =X},
IV. NUMERICAL RESULTS

Let the general amplitude of B — TP be

G _ _
App = J—g(a}((BT’P) + aX(BPT), (101)

Its decay rate is given by

| A s_rpl> (102)

Vgrp = 877'7;1%,
It follows from Eqgs. (57) and (64) that

G2 f3p} \F fr my FPP(m}) |2

< | aAB” + [2glr i T )

6 m% (mp) 2 fp pe ABT(mP)
(103)

Lgrp=

where p. is the center-of-mass momentum of the final-
state particle T or P. Note that the coefficient @ vanishes in
naive factorization.

The decay amplitude of B — TV can be decomposed
into three components, one for each helicity of the final
state: A, A ,, A _. The transverse amplitudes defined in
the transversity basis are related to the helicity ones via

ﬂ+_.ﬂ,
V2

The decay rate can be expressed in terms of these ampli-
tudes as

A, = (104)

Pe (1AL + 1A P +1A ]

Tgrv=9g—>
8mmy

= 877-1;1129 [P+ 1A+ 1ALP.  105)
Writing the general helicity amplitudes as
- G
A (B — TV) = ZL@OXETY + BOXEVD) - (106)
s GF + v(BT,V) i+ v (BV,T)
A.(B—TV)= —2(bei T+ bEXTTY), (107)

where X(()iT’V) and XES/’T) are given in Eqgs. (63) and (59),
respectively, and it is understood that the relevant CKM
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factors should be put back by the end of calculations, the
decay rate has the following explicit expression

G2
5y v (ap]

Uy = M md (108)

+ Bpl + ypi + Ap)),

with
a=28 mp |bOABTP2,
(mB )2
m%,m% +12(vBT)2 —12(VBT)2
B = mdb IP(VED)? + 167 [2(VET)?)
B T
— A(m}y — m — m3) LU ABTALT,
m2m>
y = 6= (b7 PATLVET — [T PATL VAT,
mp + m
A= ( Bzm T) [3(|b+| (AB )2 |b |(ABT z)m%,m%-
B

+ 1P, — iy — (AT | (109)

where we have adopted the shorthand notations,
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b I3 fr my my mp+ m
AT = AT} + 2 \ﬁ—T—T—TMA?Wm%),
2fy my p. mg+ my

(110)
+m
ABT = ABT(m2) + _flﬂﬁw ABY (m2),
: : 2fy my p. mg+ my
(111)
Afﬂ EAI]B’T( )+_\/‘fT myp mr
o Sv my p.
J’_
x 2B T ABY (2, (112)
mpg + myp
VT = BTGy ¢ L g e iy
- b T fymy p. mg +my s
(113)

Note that Egs. (103) and (108) are in agreement with [16]
for the special case that a = b° = b™ =l and a = b° =
bh* =0. As stressed in [16], the p> dependence in
Eq. (103) indicates that only the L = 2 wave is allowed

TABLE V. CP-averaged branching fractions (in units of 107®) and direct CP asymmetries (%) for B — PT decays with AS = 1.
The parameters p, and ¢, are taken from Eq. (114). The theoretical errors correspond to the uncertainties due to the variation of
Gegenbauer moments, decay constants, quark masses, form factors, the Az parameter for the B meson wave function and the power-
correction parameters p, y, ¢4 4. Then they are added in quadrature. The experimental data are taken from [60], and the model

predictions of [20] are for 1/Nff = 0.3.

Decay QCDF Kim-Lim-Oh [20] BMunoz—Quintero [21] Experiment Acp
B~ — K35(1430)°7~ 3.1783 5.61%2 1.6732
B~ — K3(1430) " 7° 2.2H41 0.090 0.15 0.2+178
BY — K5(1430) " 7" 3.3%83 <6.3 17443
B® — K35(1430)°7° 1.2743 0.084 0.13 <4.0 717333
B™ — a,(1320)°K ™ 497843 0.311 0.39 <45 271733
B~ — a,(1320)" K° 8.41151 0.011 0.015 —0.6704
B® — a,(1320)" K~ 9.7+472 0.584 0.73 —21.57289
B° — a,(1320)°K° 42783 0.005 0.014 6.7783
B~ — f,(1270)K~ 3.8478 0.344 1.0670.28 —39.57524
BY — £,(1270)K° 3.4%83 0.005 2.7+13 —7.3%84
B~ — f,(1525)K~ 4.0%7¢ 0.004 <77 —0.6%¢3
B — £1(1525)K° 3.8473 7% 1073 0.8%03
B~ — K;(1430) "7 6.871%° 0.031 1.19 9.1 £3.0 15478
B~ — K3(1430) " 7/ 12.15397 1.405 2.70 28.0133 —1.7%32
B’ — K3(1430)"n 6.671%° 0.029 1.09 9.6 + 2.1 3.20)8°
B° — K;(1430)°7’ 12.41313 1.304 2.46 137432 —-2.2133
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FIG. 1. Three different penguin contributions to B — 12317(/). Figure 1(a) is induced by the penguin operators O3 s79.

for the TP system, while in the 7V modes the L = 1,2 and
3 waves are simultaneously allowed, as expected.

A. B — PT decays

As noticed in [59], since the penguin-annihilation effects
are different for B — VP and B — PV decays, the penguin-
annihilation parameters X}* and XV are not necessarily
the same. Indeed, a fit to the B — VP, PV decays yields
pif = 1.07, ¥ = —70° and pt¥ =~ 0.87, LV =~ —30°
[59]. Likewise, for B, ; — TP decays we find that the data
of B, ; — TP can be described by the penguin-annihilation
parameters

plf =0.83,
pﬁT = 0.75,

"= 707,

(114)
T = —30°.

For B — T transition form factors, the LEET or pQCD
predictions are favored by the experimental data of B —
f>(1270)K and B — f,(1270)7r, while the CLFQ or
ISGW?2 model results are preferred by the measurements
of B— K;(1430)n"), K;(1430)w, K;(1430)¢p. For ex-
ample, the branching fractions (in units of 107°; only the
central values are quoted here) for the f,7, f,K° and
f>K~ modes are found to be 8.1 (2.7), 5.0 (3.4) and
6.4 (3.8), respectively, using the CLFQ (LEET) model for
B — f, transition form factors. The corresponding experi-
mental values are 1.5770%, 2.7713, and 1.067035.
Therefore, it is evident that the data favor LEET over the
CLFQ model for decays involving B — f, transitions.
Likewise, the branching fractions for the modes K3~ ¢,
K5~ m and K/ are calculated to be 7.4 (4.7), 6.8 (4.7) and
12.4 (8.4), respectively, using the CLFQ (LEET) model for
B — K; transition form factors. The corresponding experi-
mental values are 8.4 * 2.1, 9.1 = 3.0, and 13.773%. It is
clear that the CLFQ model works better for decays involv-
ing B — K transitions. In this work we shall use the B —
K3(1430) form factors obtained in the CLFQ model and
B — a,(1270) and B — f, ones from LEET (see Table II).

Branching fractions and CP asymmetries for B — TP
decays are shown in Tables Vand VI. The theoretical errors
correspond to the uncertainties due to the variation of
(i) the Gegenbauer moments, the decay constants, (ii) the
heavy-to-light form factors and the strange quark mass,
(iii) the wave function of the B meson characterized by the
parameter Ag, and (iv) the power corrections due to weak

annihilation and hard spectator interactions described by
the parameters p4 g, ¢4 y. We allow the variation of p,
and ¢, to be £0.4 and =50°, respectively, and put py and
¢y in the respective ranges 0 = py =1 and 0 = ¢y =
24r. To obtain the errors shown in these tables, we first scan
randomly the points in the allowed ranges of the above-
mentioned parameters and then add errors in quadrature.
Power corrections beyond the heavy quark limit generally
give the major theoretical uncertainties.

For B — K3n") decays, there exist three different pen-
guin contributions as depicted in Fig. 1: (i) b—
5qq — smy, (i) b— ss5 — sm,, and (iii) b — sqq —
gK, corresponding to Figs. 1(a)-1(c), respectively. The
dominant contributions come from Figs. 1(b) and 1(c).
Since the relative sign of the 7, state with respect to the
7, is negative for the n and positive for the n' [see
Eq. (D1)], it is evident that the interference between
Figs. 1(b) and 1(c) is destructive for K51 and constructive
for K3m'. This explains why K37’ has a rate larger than
K3 m. It was known that the predicted rates in naive facto-
rization are too small by 1 order of magnitude, of order
1.0X107% for B(B*— K3’n) and 2.5X107° for
B(B® — K3'n’) [21,61].* One reason is that the factoriz-
able contribution to Fig. 1(c) vanishes in the naive facto-
rization approach. The rates of K37 are greatly enhanced
in QCDF owing to the large power corrections from pen-
guin annihilation and the sizable nonfactorizable contribu-
tions to Fig. 1(c).

From Tables Vand VI we see that the predicted branching
fractions for penguin-dominated B — TP decays in QCDF
are larger than those of [20,21] by 1 to 2 orders of magnitude
through the aforementioned two mechanisms for enhance-
ment, while the predicted rates in QCDF are consistent with
[20] for the leading tree-dominated modes such as 0(2)777,
ay w~, fom~ . Note that the branching fractions of B~ —
K7~ and B® — K3~ #" vanish in naive factorization,
while experimentally it is (5.6733) X 107 for the former.
The QCDF calculation indicates that the nonfactorizable
contributions arising from vertex, penguin and spectator
corrections are sizable to account for the data.

*The rate of B® — K307 was predicted to be very suppressed
in [20], (see Table V) due to the use of a wrong matrix element
for (n")|5y5s]0) [61].

034001-17



HAI-YANG CHENG AND KWEI-CHOU YANG

PHYSICAL REVIEW D 83, 034001 (2011)

TABLE VI. Same as Table V except for B — PT decays with AS = 0.
Decay QCDF Kim-Lim-Oh [20] ? Munoz-Quintero [21] Experiment Acp
B~ — a,(1320)° 7~ 3.0014 2.602 438 9.67472
B~ — ay(1320)” 7" 0.24703 0.001 0015 —24.3+1243
BY — a,(1320)* 7~ 52718 4.882 8.19 3731339
B® — a,(1320)" 7+ 0.215943 —26.67410
B® — a,(1320)07° 0.247942 0.0003 0.007 —86.211289
B~ — a,(1320)" 7 0.117938 0.294 45.8 27.67734¢
B~ — a,(1320)" 7' 0.1175] 1.310 713 31.3%9L0,
BY — a,(1320)°y 0.06754¢ 0.138 252 —76.7719
BY — a,(1320)07/ 0.05+022 0,615 433 —66.0" ;34"
B~ — f,(1270) 7~ 27714 2.874 1.5770% 60.27271
B® — £,(1270)7° 0.155942 0.0003 —37.211938
B° — £,(1270)n 0.1719%3 0.152 69.72]
B° — £,(1270) 7' 0.137922 0.680 82.37222
B~ — f5(1525) 7 0.009+0:-034 0.037 0
B — £,(1525)7° 0.005+0042 4% 107° 0
B% — f1(1525)n 0.002+2-00¢ 0.002 0
B — f,(1525)n/ 0.008+0-008 0.009 0
B~ — K;(1430) K° 0.447071 4 %1073 7.8 X 1074 30.3%312
B~ — K5(1430)°K~ 0.127932 —-0.26%933
B® — K3(1430) K+ 0.03+907 —-15.07227
B — K;(1430) K~ 0.13+21¢ 18.61373
B° — K3(1430)°K° 0.541088 3x107° 7.2 %1074 —2.17%}
B’ — K;(1430)°K° 0.22+933 —14.07137

Just as B — aym with ay = ay(980) or ay(1450) and
B — b,(1235)7 decays, we see from Table VI that for
B — a,(1320)7 decays, the a; =" and a; 7 modes are
highly suppressed relative to a; 7~ and a7, respec-
tively. Since (see Appendix B)

ﬂBO_)a;ﬂ+ o z Vpr;d[Spual + af]X(B”'“Z),
p=u,

Aprsin = 3 VosVid Bt + af 07,

p=u,c

(115)

it is tempting to argue that I'(B° — af 77) > I'(B* —
ay m") is a natural consequence of naive factorization as
the tensor meson cannot be created from the V — A cur-
rent. However, the suppression of a; 7™ relative to a3 7~
in QCDF stems from a different reasoning. The amplitude
XBm) does not vanish in QCDF owing to the nonfactor-
izable corrections. Indeed, X(B™@) = (0,80 and X427 =
0.69 are numerically comparable. Therefore, one may

wonder how to view the aforementioned suppression?
The key is the quantity N;(M,) appearing in the expression
for the effective parameter a; [see Eq. (65)]. This quantity
vanishes for the tensor meson [cf. Eq. (66)]. As a result, the
parameter a,(ma,) is not of order unity as it receives
contributions only from vertex corrections and hard spec-
tator interactions, both suppressed by factors of a,/(4).
Numerically, we have a,(wa,) = —0.035 + i0.014. By
contrast, a,(a, ) is of order unity. This explains why B® —
ay 7~ has arate greater than a; 7" and why B~ — a; 7°
is suppressed relative to ay7~.> The same pattern also
occurs in B — a,p decays; see Table VIII.

The branching fractions of B — a,n") of order 1077 in
QCDF are in sharp contrast to the predictions of [21],
ranging from 25 X 107% to 70 X 1076 (see Table VI). It

The same argument also explains the suppression of B’ —
by 7™ relative to by 7~ in QCDF [62].

034001-18



CHARMLESS HADRONIC B DECAYS INTO A TENSOR MESON

TABLE VII.

PHYSICAL REVIEW D 83, 034001 (2011)

CP-averaged branching fractions (in units of 107°), direct CP asymmetries (%) and the longitudinal polarization

fractions f; for B— VT decays with AS = 1. The parameters p, and ¢, are taken from Eq. (124).

Decay QCDF Kim-Lim-Oh ﬁunoz—Quintero Experiment QCDF fLExperiment Acp
[20] [21]
B~ — K3(1430)°p~  18.6739) 0.63+019 —L0%Yg
B~ — K3(1430) p°  10.4%18¢ 0.253 0.74 0.66 05 21555
B — K3(1430) p*  19.8+329 0.647047 — 15738
B® — K3(1430)°p° 9.5+334 0.235 0.68 0.647013 —4.01153
B~ — K;(1430)" @ 7.571%7 0.112 0.06 21,5543 0.6470%8  0.56 = 0.11 2.07122
B° — K3(1430)°w 811217 0.104 0.053 10.1 =23 0.6670{}  0.45=x0.12 447108
B~ — K;(1430)" ¢ 7472558 2.180 9.24 8.4 +2.1 0.857216  0.80 £ 0.10 0.17)2
B° — K3(1430)°¢ 7.772%6° 2.024 8.51 7510 086101 0.90190% 0.0975%2
B~ — a,)(1320°K*~  2.9*1L7 1.852 2.80 0.73%9% —15.013%9
B~ — ay(1320) K 6.1*38 4.495 8.62 0.79*0:2 —0.1%53
BY— ay(1320)7 K"~ 61243 3477 7.25 0.77:33 —13.355%
BY — a,(1320)°K*0 347124 2.109 4.03 0.82+0 14 1279,
B~ — f,(1270)K*~  8.3*173 2,032 0.93732 =817
B° — £,(1270)K*° 9.1+188 2314 0.941+0.9¢ —0.08743
B~ — f1525)K*  12.67249 0.025 0.65+03% 0.633
B® — £,(1525)K*° 13.5%234 0.029 0.667921 0.2%33
seems to us that it is extremely unlikely that the rate of  gj, e Xégw"?i) /X(()B’??d’) —0.56, it is expected that

a, 1) can be greater than a; 7° by 4 orders of magnitude
as claimed in [21]. It appears that the former should be
slightly smaller than the latter in rates. This can be tested in
the future. It is also interesting to notice that, while B —
K3K decays are quite suppressed in naive factorization,
their branching fractions are a few X107 in QCDF
Finally, it is worth remarking that B° — K3" K~ and B —
K3~ K™ can only proceed through weak annihilation.

B. B — TV decays

Branching fractions, direct CP asymmetries and the
longitudinal polarization fractions for B — TV decays
are shown in Tables VII and VIII. Thus far only four of
the B— TV decays have been measured: B~ —
K5 (¢, w) and B® — K3°(¢, ). They can be used to fix
the penguin-annihilation parameters. From Eqgs. (B38) and
(B40) we have

V2 Ay, =V2 A

B—Rw

~{af" + B + 208,

A —x o= Abry (116)
“[ag’h +af’h +B§),h +:8§,’];slw]ngk;¢)‘

_ . _ . _(Bw.K?) , (BR®, &)
B(B~— K3~ w)/ BB~ — K3~ ) = X, " /x" "/
2 = 0.15, provided that the penguin-annihilation parame-

oy K; K;
ters are the same for K and K¢, i.e., p,>" = pf > and

likewise for ¢,. However, it is the other way around
experimentally: the rate of K;w is larger than that of
K5¢. Since, in the B—VV sector, B(B™ —
K~ w)/B(B~ — K*~¢) = 0.3 [60], it is thus puzzling
as to why K3 behaves so differently from K*w in terms
of branching fractions. It is clear from Eq. (116) that the
B — K¢ decay receives penguin annihilation via p%" and

TV, while B— K;w is governed by pi’ and ¢}’.
Therefore, we should have p%” > pV in order to account
for their rates (see Eq. (124) below).

The branching fractions of the tree-dominated modes
a,p, frd, fhep are very small, of order 107° (see
Table VIII), as they proceed only through QCD and elec-
troweak penguins.

For charmless B — TV decays, it is naively expected
that the helicity amplitudes A, (helicities & = 0, —, +)
for both tree- and penguin-dominated B — TV decays
respect the hierarchy pattern

ApA_ A, - 1<AL)(AQ_)

my, my

(117)
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TABLE VIII.  Predicted branching fractions (in units of 10°), direct CP asymmetries (%) and the longitudinal polarization fractions
f1 for B— VT decays with AS = 0.

Decay QCDF ij—Lim—th[;20] Munoz-Quintero [21] fL Acp
B~ — a,(1320)°p~ 8.4747 7.342 19.34 0.8879% 31.07189
B~ — a,(1320)" p° 0.82+239 0.007 0.071 0.567939 —13.74743
BY — a,(1320)* p~ 11.3%33 14.686 36.18 0.91+0.03 7.67192
B® — a,(1320)"p* 1.2728 0.641040 49.01249
B° — a,(1320)°p° 0397433 0.003 0.03 0.91+007 55.24319.
B~ — a,(1320)" @ 0.387 )8 0.010 0.14 0.73759 —36.211278
B~ — a,(1320)" ¢ 0.00375:913 0.004 0.019 0.9310.34 0.0610.07
BY — 4,(1320)°w 0.257 313 0.005 0.07 0.7810.9 60.57%7,
BY — a,(1320)°¢ 0.001+9:99 0.002 0.009 0.9375% 0.06%597
B~ — £,(1270)p~ 7.7448 8.061 0.90759¢ —18.244L4
B® — £,(1270)p" 042743 0.004 0.82*0 44 38.15105
B — £,(1270)w 0.6970%7 0.005 0.9170% —73.3H10%!
B° — £,(1270)¢ 0.001*5:997 0.002 0.92+5:% 0.07+578
B~ — f4(1525)p" 0.07:93 0.103 0.9699 —0.02+008
B% — f1(1525)p° 0.0370:0 5X107° 0.9670.93 —0.0219:98
B — f1(1525)w 0.03790 6 X 1073 0.95%0%4 —0.0379%
B° — f1(1525)¢ 0.0067 5934 2X 1073 1 0

B~ — K;(1430) K™ 0.567 3% 0.014 0.59 0.8570.% —14.671%3
B~ — K3(1430)°K*~ 21442 0.54+000 10.17150
BY — K;(1430)" K** 0.0670:03 1 —583713%!
B — K3(1430)*K*~ 0.431034 1 15.07493
B® — K3(1430)°K*° 0.441088 0.026 0.55 0.907598 —2.1+49,
B® — K;(1430)°K*° 11722 0.6070:14 —2.3%01

Hence, they are dominated by the longitudinal polarization
states and satisfy the scaling law, namely [58],

fr=1-fL= (O(mzvf), JL_iy (9<M) (118)

my fi mp

with f;, f1, f)] and f being the longitudinal, perpendicu-
lar, parallel and transverse polarization fractions, respec-
tively, defined as

r, E:
I AP+ AP+ AL

fa= (119)
witha =1L, |, L.

The so-called polarization puzzle in B — V'V decays is
the enigma of why the transverse polarization fraction fr
in the penguin-dominated channels such as B — ¢K*,
pK* is comparable to f;, namely, fr/f; ~ 1. This poses
an interesting challenge for any theoretical interpretation.

For B — TV decays, the experimental measurement indi-
cates that f7/f; <1 for B— ¢K;(1430), whereas
fr/fr ~ 1 for B— wK3(1430), even though both are
penguin-dominated.

Consider the ratio of negative- and longitudinal-helicity
amplitudes:

A_ N (ag» + ,83‘) (X;K;)
Ay | =50 ag® + By ok \ X k)
A_ _ (aff + /3;) (XK;¢) (120)
ﬂo B —K: ¢ aZ»O + Bg Ki¢ X%;d) '

The longitudinal polarization fraction can be approxi-
mated as
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2

g™ + B PIX

S lag” + BiPIXY I
h=0,—

fr(wK3) =1

o+ gy, )
fL(K;d)) ~]1 - = - 2h -
2 o+ BPIXG,
We have
|X2)K* :X;K*l: XJKJ = 1:0.51:0.04,
2 2 5
(122)
X9 11X 11X 4| = 1:0.38:0.06.

In the absence of penguin annihilation, we find f; (wK3) =
fL(K5¢) = 0.72. As we have stressed in [63], in the
presence of next-to-leading-order nonfactorizable correc-
tions, e.g., vertex, penguin and hard spectator scattering
contributions, the parameters a are helicity dependent.
Although the factorizable helicity amplitudes X°, X~ and
X' or X°, X7, X* respect the scaling law (117) with
Aqcp/my, replaced by 2my, y/my for the tensor and vector
meson productions, one needs to consider the effects of
helicity-dependent Wilson coefficients: A /A, =
fla; )X /[f(a%)X"]. The constructive (destructive) inter-
ference in the negative-helicity (longitudinal-helicity) am-
plitude of the penguin-dominated B — TV decay will
render f(a;) > f(a?) so that A _ is comparable to A,
and the transverse polarization is enhanced. Indeed, we
find fr(wK3) = fr(K;¢) = 0.28. Therefore, when next-
to-leading-order effects are turned on, their corrections on
a; will render the negative-helicity amplitude A _(B —
K3¢) comparable to the longitudinal one A (B — K3¢)
so that even at the short-distance level, f; for B® — K} is
reduced to the level of 70% and likewise for B — K;o.

As noticed in passing, penguin annihilation is needed in
order to account for the observed rates. This is because, in
the absence of power corrections, QCDF predicts too small
rates for penguin-dominated B — TV and V'V, VA decays.
For example, the calculated B — K’ ¢ rate is too small by a
factor of 2.5 and B — K’ by 2 orders of magnitude. We
shall rely on power corrections from penguin annihilation
to enhance the rates. A nice feature of the (S — P)(S + P)
penguin annihilation is that it contributes to A, and A _
with the same order of magnitude [64]:

AR APA: ARA

- (oo Y (Roco iyt (oo
my Ay my, Ay my,

The logarithmic divergences are associated with the limit
in which both the s and 5 quarks originating from the gluon
are soft [64]. As for the power counting, the annihilation
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topology is of order 1/m; and each remaining factor of
1/my, is associated with a quark helicity flip. The fact that
APA and AFA have the same power counting explains
why penguin annihilation is helpful to resolve the polar-
ization puzzle. The relative size of AP and AF? depends
mainly on the phase ¢,4. It turns out that the longitudinal
polarization fraction for B — K3 ¢ is quite sensitive to the
phase ¢1", while f; (wK) is not so sensitive to ¢4’. For
example, f;(K;¢)=0.88, 0.72, 0.48, respectively,
for ¢tV = —30°, —45°, —60° and f;(wK3) = 0.68,
0.66, 0.64, respectively, for g7 = —30°, —45°, —60°.
Hence, we can use the experimental measurements of f; to
fix the phases ¢! and ¢*" and branching fractions to pin
down the parameters p,(VT) and p4(TV):

pV =0.65,
pXT = 1.20,

V= 33,

YT = —60°.

(124)

It should be stressed that, although the experimental ob-
servation of the longitudinal polarization in B — K ¢ and
B — Kjw decays can be accommodated in the QCDF
approach, no dynamical explanation is offered for the
smallness of f7(K3¢) and the sizable f7(wK3).

For penguin-dominated B — TV decays, we find
fL(K5p) ~ fL(K;w) ~ 0.65, whereas f(f,K*) ~ 0.93
(cf. Table VII). It will be very interesting to measure f;
for these modes to test the approach of QCDEF.
Theoretically, transverse polarization is expected to be
small in tree-dominated B — TV decays except for the
a, p°, a5 p*, K3°K*™ and K3°K** modes.

V. CONCLUSIONS

We have studied in this work the charmless hadronic B
decays with a tensor meson in the final state within the
framework of QCD factorization. Because of the G-parity
of the tensor meson, both the chiral-even and chiral-odd
two-parton LCDAs of the tensor meson are antisymmetric
under the interchange of momentum fractions of the quark
and antiquark in the SU(3) limit. The main results of this
work are as follows:

(1) We have worked out the longitudinal and transverse

helicity projection operators for the tensor meson.
They are very similar to the projectors for the vector
meson. Consequently, the nonfactorizable contribu-
tions such as vertex, penguin and hard spectator
corrections to B — T(P, V) decays can be directly
obtained from B — VP, VV ones by making some
suitable replacement.

(2) The factorizable amplitude with a tensor meson
emitted vanishes under the factorization hypothesis
owing to the fact that a tensor meson cannot be
created from the local V — A and tensor currents.
Asaresult, B~ — K37~ and B — K5~ 7" vanish
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in naive factorization. The experimental observation
of the former implies the importance of nonfactor-
izable effects.

(3) Five different models for B — T transition form
factors were considered. While the predictions of
B — f,(1270) form factors based on large energy
effective theory or pQCD are favored by experi-
ment, the covariant light-front quark model or the
ISGW2 model for B — K;(1430) ones is preferred
by the data.

(4) For penguin-dominated B — TP and TV decays,
the predicted rates in naive factorization are nor-
mally too small by 1 to 2 orders of magnitude. In
QCDYF, they are enhanced by the power corrections
from penguin annihilation and nonfactorizable
contributions.

(5) Three distinct types of penguin contributions to
B— Kin" exist: (i) b— sqg— sm,. (i) b—
555 — sm,, and (iii) b — sqq — qK; with 7, =
(uit + dd)/~/2 and 5, = s5. The dominant effects
arise from the last two penguin contributions. The
interference, constructive for K37’ and destructive
for K3 n between type (ii) and type (iii) diagrams,
explains why I'(B — K3 71') > I'(B — K3 7).

(6) We use the measured rates of K;w and K3 ¢ modes
to extract the penguin-annihilation parameters p’"
and pY7 and the observed longitudinal polarization
fractions f7(K5w) and f;(K5¢) to fix the phases
4" and ¢1V. The unexpectedly large rate of B —
K w relative to B — K5 ¢ implies that p}7 > p}T.
However, it may be hard to offer more intuitive
understanding for the large disparity in magnitude
between p’V and p)T.

(7) The experimental observation that f;/f;, < 1 for
B — ¢K;(1430), whereas fr/f, ~1 for B—
wK3(1430), can be accommodated in QCDEF, but
cannot be dynamically explained at first place. For
penguin-dominated B — TV decays, we find
fL(K5p) ~ fL(K5w) ~ 0.65 and f; (K" f,) ~ 0.93.
It will be of great interest to measure f; for these
modes to test QCDF. Theoretically, transverse po-
larization is expected to be small in tree-dominated
B— TV decays except for the a;p° a5p",
K;°K*~ and K5°K*° modes.

(8) For tree-dominated decays, their rates are usually
very small except for the ad(7~, p7), a3 (7=, p")
and f,(7~, p~) modes with branching fractions of
order 10’6 or even bigger.
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APPENDIX A: FORM FACTORS IN THE ISGW2
QUARK MODEL

Consider the transition B— T in the ISGW2 quark
model [46], where the tensor meson 7 has the quark
content ¢g, with g, being the spectator quark. We begin
with the definition [46]

F = (Z—;)I/Z<Bg§)n/2[l T

where

(1, —r)] . (A

2
r2:3+3m2+1(16)

4mhm1 ZﬁleTB%T n_’lBl’;lT 33 — 2”171

o (,U«QM):I (A2)

X 1n|:37 ,
ax(ml)

m is the sum of the meson’s constituent quarks’ masses, m
is the hyperfine-averaged mass (for example, mp =
3 = (mg — my)? is the maximum momen-

szB* + zl;mB)a tm
Gt )
pe=—F—)
- myp o my,

tum transfer, and
with m; and m, being the masses of the quarks ¢; and g,
respectively. In Eq. (A1), the values of the parameters Bg
and By are available in [46] and 3%, = (BB + B2).

The form factors defined by Eq. (17) have the following
expressions in the ISGW?2 model:

(A3)

h— ny [ 1 m,B% ]F(h)
oD Balmy 2m_mr Bl 5
2\/_mBﬁB ny 2/.L,mTBBT
k=—2-(1+&)F¥,
\/— Bs 5
b, +b_ :m—%~:3_2%<1 _m B_Z%")ng++b)’
4\/§mthm3,33 Bsr 2mp Byr
n; mymy, ,8%
by—b-=- . YN
\/_mmeﬁB 2/'L+mB ﬁBT
+ﬂﬁ<1_ iy BT)]Fgm_b_), (Ad)
4m, By 2 Byr
where
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e\ —3/2(1-\—1/2
=n(() ()"
mp mr

ng) _r (@)—1/2($)1/2’

np mr
pbb) _ (;)5/2(@)1/2, (AS)

mpg my

ng*_b*) F(@)—m(@)—uz,
mp mr
and

w—1= t"_’ _t (A6)

2mBmT

In the original version of the ISGW model [45], the
function F, has a different expression in its (z,, — ¢) de-
pendence:

F, = (@)1/2<ﬁ8ﬂ7.)n/2 exp{— ~mz~ tm—_zt} A7)

mpg :8%3T dmpmr KZBBT

a(M\M,) = a;(M,M,),
ay)(M\M,) = a,(M,M,),

ol (M\M,) = { )
ol (M, M) = {a“(M M) i
oy gy (M M) = {

aly(M M) —
azgw(Mle) = ¢

for B — TP decays, and

a?(Mle) = a}f(Mle),
a(MM,) = ahi(M\M,),
ol "M\M,) = al
al’ "(M M) = al "(M M) — rﬁfzaé”“(Mle),
ag,’gw(Mle) = al" (M M) + af" (M, M),
aly (M My) — ri?al" (M M),

(M Mz) + a5 (M Mz)
(B2)

,h
aZ’Ew(M1M2) =

for B— TV decays with (M,M,) = (TV) or (VT). It
should be noted that the order of the arguments of
af(MM,) and af (M| M,) is relevant. The chiral factor
i is given by

al(M\M,) + r)( ag
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where k = 0.7 is the relativistic correction factor. The
form factors are then given by

p—_ M [ 1 my, B :IFS’

2\/§th,33 nm 2mTM BBT
k=2 F
2B, 5
by — — m, [ __mamy Bt (A8)
ZﬁmmeﬂB 2piiip By
4 My 3%(1 ny BT)]F
4ipp— ,8129T 2ip IBBT >

Note that the expressions in Eq. (A4) in the ISGW2 model
allow one to determine the form factor b_, which vanishes
in the ISGW model.

APPENDIX B: DECAY AMPLITUDES

The coefficients of the flavor operators a” "

p.(h) -

can be

expressed in terms of a; " in the following:

al(M\M,) — a’(M\M,) for M\M, = TP,
al(M\M,) + a’(M\M,) for M\M, = PT,
al(M\M,) for M\M, = TP
P(MyM,) for M\M, = PT,
al(M\M,) — al(M\M,) for M\M, = TP,
P(M\My) + a2 (M\M,) for M\M, = PT,
PLal (M My)  for MM, = TP,
’ aly(MM,) + r)/a8

(BI)

(Mle) for M1M2 = PT,

2
2m7r,,(

my(u)(m, +m, ) ()
h (B3)

q,s

ref(w) =

P () =

f(/) mb(ILL)mq s(/u’)
for the pseudoscalar mesons,

2my f\% (M)

rX(,u) - my(u)  fy

(B4)

for the vector meson, and
2my f % ()
mb(M) Sr

for the tensor meson. See Appendlx D for further discus-
sions on the parameters /&, ; and fq 5.

() =

(B5)

034001-23



HAI-YANG CHENG AND KWEI-CHOU YANG PHYSICAL REVIEW D 83, 034001 (2011)

In the following decay amplitudes, the order of the P i (TV) = ifpfrfv o
arguments of al’-’(’h)(Mle) and ,Bf(’h)(l_wlM2) is consistent ! X(BTv vy ot
with the order of the arguments of X((f)M L) XE%M LM o ifsfrfv . ] (B7)
where Br(vVT) = X(BV D ———=Db! for TV modes.
p lfoTfP p
(B6) ~
BY(PT) = ’f Bf rfp _YUBJTIP pp or TP modes The decay amplitudes for B — TP, TV are summarized as
- xBrT) T ’ .
follows:
J
1. B — TP decays
A. Decay amplitudes with AS = 0
N _Gr (@) » 1 1 r B
2‘/,2137—'f2777 ——2 Z )l 5pu(a2+,82)+2a3 +C¥4+2C¥3EW 2a4EW+ﬁ3 +B
p=u,c
1
+ \/f[af 5% ]X(Bwfz) + [8pular + Bo) + @ + allpy + BY + Bhpy X 77)} (B8)

G 1 1 1 3 iy
—for’ \/g Z )‘(d){l:5ptt(“2 Bi) +2af + af + 2“3 EW ZaiEW + 85— Eﬁg,EW - EIBZEW:IX(Bﬁ’fg)
p=u,c

DA
V2 XB7f) 4+ | 8 p_3 » L » p_Lap
+ 2| of —fagE XETE 1 8pu(—ar = Br) + ay — S agpy ~ s aupw + By~ 5 Bipw

-3 BZEW]XW!“)}, (BY)

1 1 1 5
B~ =5 = > )‘(d){l:5pu(a2 + B1) +2ak +af + 2a3 Ew 2a4 ew + BL 20 — Bg,EW n zﬁf,Ew]X(Bfg’n")
p=u,c
5 1
! z[aé’ ~ 5% Ew ]X(Bf 21+ V2[8 ey + @ IX B — 2ifo§f‘%[bff - 2”5,Ew]f.s
S5 Ms

1 1 1 1 — A

+ [57’"(“2 + B+ 25 tay Eag,EW - iaZEW + By + 2B — Eﬁg,Ew + EBZEW]X(BWJZ)
1
+ \/'I:ozg — 5k ]X(B"q 13 —2szf2fS[bP 2b4EW] } (B10)
nsf5

and the amplitudes for B — f,7’ can be obtained from B — f,7 with the replacement (f5, 1) — (f», 1'):
\/_szt (d) 3 1 14 v (Bm,a,)

2Ap _ﬁ Z A | Bpulay — Bo) — @) + 2“3Ew + 20‘4Ew BL — Biew [XOT

p=u,c

+[0pula + 2) + af + alpy + B+ By X7 B11)

Gr

3 1 5
V2 Ay = 7 > /\ﬁfl){[‘spu(az — Bo) — eyt Sakey TS arny — By - Bg,Ew]X(B”Z’”)
p=u,c

+[6,ula; + Bo) + af + afpy + B5 + EQEW]X<B”v“2>}, (B12)
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G d 1 1 g
leéo_%—f = T; Z /\5,){[51;:4“1 + af + aZEW + BL+ Bl - Eﬁng — EBZEW]X(BW,@)
p=u,c
+[6,,81 + By + BZEw]X(B“Z'”)}, (B13)
1 _
d
ﬂgo_;a;w \/_ Z A( ){[5pua1 + a4 + a4EW + 33 + ,84 BgEW — 5l:;fCEW:IX(Baz,w)
p=u,c

+[8,.8: + B + B} EW]X@W”}, (B14)

Gr 3 1 _
~2A ot = T Z ’\(d){[apu(% —B) —ay Eag,EW + EaiEw — By =28y +5 Bz EW ﬁiEw]X(B”'GZ)
3 1 .
+ [5W(a2 - B) —af + EagiEW + EaiEw By — 285 + = 33 W~ ﬁiEw]X@am}, (B15)

Gr

1 1 0
\/EJZ\B—_,“;TI(/) = ﬁ Z /\E)d){l:épu(az + B,) + 2(1(3 + a4 + 2a3EW 2a4EW + B% + B3E ]X(Bao Mg)
p=u,c

= p. () 1 2] )
+ [8pular + Bo) + aff + afpy + B + B gy X Ee) + \/E[ag - Eang:IX(Baz'ng))

+V2[6 ey + af]xBex v(”>} (B16)

Gy )} | | | .
2 A g g0 = 2 > A;){[(spu(aZ = Bi) +2af +af + 2a3EW ZaZEW + By - 5 SEw ,3415 ]X(B »a)
p=u,c

3 1 1 0
+ [5pu(_012 - B1) +af — Eag,Ew - EaZEW + 85— Eﬁg,Ew ﬁuawiIX(B77 /)
+2 [ag — 5w ]X(B“2 N+ 28 eay + ag’]x@az’ni’))}, (B17)
1 5 o
ﬂB—_,K;-Ko = ﬁ Z A(d)[ oubBa + all — EaZEW + BL + BQEW]X(BKZ,K)’ (B18)
p=u,c
A _Gr (d) P _ 1 XBKK; ),
ki = > A 8By + aff — 2a4EW + By + Blew (B19)
p=u,c
Gr (d) P p (BK:,K) . p 1 p
A B'—K: Kt T T Z Ap [51m,81 + 54 + ,34,Ew]X = lchfK;fK b4 - _b4,Ew N (B20)
- \/§p=u,c 2 KK
Gr (d) P P (B K,K?) . P 1 P
Apkrk = D A8,y + BY + BlewlXEEE) — icfpfi;fx| by — 5b4pw : (B21)
\/E,,:u,c 2 KK

Gy ; 1 i N 1
ﬂgo—'kioko = ﬁ Z A;){[af - EaZEw + B85+ By — 5 SEW B4E ]X(BKZ’K)’ _’CfoKE‘fKI:b‘I‘) - zbiEW] K*}’

p=u.c 2

(B22)
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Gr < @ {[ 1 1 1 ] N 1
Ao op = A Pl 4Pyl gl P |RBRK) _ . I:bp——bp :I }
Bk = > A e aypw T B3 + By 253,Ew 254,Ew 2, —icf sl fi| b 2 VAEW [

p=u,c 2
(B23)
with ¢ = 1.
B. Decay amplitudes with AS = 1
\/_ﬂg - _Or Z /\(S){I:5 a, +2af + lap ]X(Bk’fg)
f2K \/zp:uyc p pu 3 2 3, EW
1 1 o
+ \/5[5[%32 +af +af - Eag,EW - EaZEW + B85+ BZI;,EW]X(BKJPZ)
+[8pular + Bo) + af + afpy + B + By X PR, (B24)
V2 A g g0 = Gr Z )\(‘Y){[B a, +2af + lcyp ]X(Bk'fg)
f2 ﬁp:u‘c P pu 37 5 T3EW
1 1 1 (B E
+ \/E[ag’ +oay - §a§,Ew - EaZEW + By - Eﬁg,Ew]X(BK'JG)
1 1 5ot o
+ [ai’ ~ 5 %ew T B - EBQEW]X‘BJ‘?K% (B25)

Q'
2
:
I
I
\I M

, S K 3 3R
A(”{[apu(al + Ba) + ol + alpy + BE + By IX BB 4 [6Wa2 + Eang:IX(BK'“Z)},

(B26)
A _ Gr (s) P 1 P P P (BayK)
T by > AP 8,8, + aff — 5 @hpw T BY + By (X, (B27)
p=u,c
a _Gr A (Bay,K)
B~ - T Z Spud + af + alpy + B - B w [XPeh, (B28)
\/Eﬂ _ — Gr /\(S) +1 p _ pPb _’_1 P X(BaZ,K) +18 +§ p X(Bk,az) B29
B—dr® = 5 z 5 Y4EW B3 2183,EW pu®2 T 5 X3EW ’ (B29)
p=u,.c
V2 A — O 5 0[5, + 202 + Laty, JxERAD
B —K; 7" _E Z P pu®2 aj 5“3,Ew 2
p=u,c
1 1
+ \/E[b‘puﬁz + “g + 0‘4’1] - zag,EW 2a4EW + ﬁz + Bs EW]X(BK’ )
+ V28 ey + AP IXBRD £ [5, (@) + By) + af + alpy + BL + BY Ew]x@niﬁvké)}, (B30)
SA _Gr ol s vl + Lar xR
BO_,R;O,,](/) = ﬁ Z )tp 1ma2 + as + §a3,EW X\h2 M
p=u.c

1 1 1 oe (0
+ \/E[ag +ag - Eag,EW - EaZEW +B5 Eﬂg,Ew]X(BKz’"p)

P N 1 ,
+ VS ey + alIXERBR) 4 [af; — 5w+ B - —BgE ] X (B K >} (B31)

and the amplitudes for B — K3 can be obtained from B — Ka, with the replacement (K, a,) — (K3, 7).
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2. B — TV decays
A. Decay amplitudes with AS = 0
The amplitudes for B — f,p can be obtained from B — f, 7 with the replacement (f,, 77') (fa, p):

G 1 1 1 5
Zﬂéo—nfzw_\/g Z ’\(d){[ u(ah +Bh)+2agh+a£h+2a§gw 2“4Ew+,3 +2,3 3EW+ ’34Ewi|x(3f;’,w)
p=u.c
1 1 1 _a

[ pulath +.Bh)+2a§h +ap” +2a§7élw 5%, Tiw +BY 280" — ﬁs EW Eﬂz’gw]x(l?w»f;’)

+ \/5[ a{;’h ——all ]X<Bw f3) } (B32)

Gr (d) Ry 5r0 . h h
2Ap_pg = \/z pzw)‘ﬂ {\/5[ ay’ - B ag,EW ]X(B'f2’¢) + 2lf3f5f¢|:b2117 7 bew ]f%qb

+ 2if3f5f¢[bff‘h bfféw]w}, (B33)
2

and the amplitudes for B — a,p can be obtained from B — a, 7 with the replacement (a,, 7) — (a,, p):

1 1 h Ba,,
V2 AL —ay 0 \/— 3 Aw){l:&pu( b+ B +2al" + al" + §a§’gw 2a4EW + By + IB%EW]X;,B )
p=u,c
+[8,u(ah + BY) + ol + all, + UM+ poh IXEe “2)} (B34)
1 2 sew T B3 %Ew
—2.AN G— Z )\(d) 8, (al — B + 227" + Pt + laep’h ! —all + Bph — 1,8 X(Ba2 @)
B'—adw \/— 2 pully 1 3 4 7 ®3EW T 5 4EW 5 3EW 4EW
h 3 p.h 1 ph p.h (Bw az)
5,7“( 0‘2 B + CV Za%EW 2“4Ew + B3 ,83 EW 4EW (B35)
G d 1 h Ba,,$)
Al ey =7 Z Ay ){[ ~3 é’,Ew]X;E 2t } (B36)
_ \/_ﬂ = & Z )\(d) ap»h 1 X(Blla ¢) (B37)
B'—a)¢ \/QF:“ P 3 2 3EW

and the amplitudes for B — K3 K* can be obtained from B — K;K with the replacement (K3, K) — (K3, K*) and ¢ = —1.

B. Decay amplitudes with AS = 1

_ The amplitudes for B — f,K* can be obtained from B — f,K with the replacement (f5, K) — (f>, K*), and the ones for
B — K;p and B — K"a, can be obtained from B — Ka, with the replacement (K, a,) — (K3, p) and (K, a,) — (K", a,),
respectively:

G h (Bw,K})
\/_5213 —K \/—g Z /\(S){[apu(al + B5) + aph + az’:]f:lw + :817} %Ew]X
p=u,c

(B@’”)}, (B38)

1
+ [8 Lah + 2aph + 2a§gwi|Xh

A;;Y){I:af: "

p=u,

V2AR =

B =K w

|
t\.)|>—*
-h‘w
m:

(BwK) 1 (BK3,w)
+ Bt — = 33EW] [5 woy + 208" + ol ]Xh "’},

Sl

(B39)
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‘Ah

B —K; ¢
puc

APPENDIX C: EXPLICIT EXPRESSIONS OF
ANNIHILATION AMPLITUDES

The general expressions of the helicity-dependent anni-
hilation amplitudes are given in Egs. (90)-(99). They can
be further simplified by considering the asymptotic distri-
bution amplitudes for @y, ®,, & and P,

q)l‘l/,l(”) = 6uil
®,(u) =3Q2u — 1),
@ﬁl(u) = 30uiCu — 1),
®,(u) = 5(1 — 6u + 6u?), (C1)
() = ["av (”),
M () = [ dv (v).
We find
10 2
ALVT) = —30\[§7ms|:(6xg2 — 239 + 22)r"
+ %(2){2 — DK - 3)r§:|, ()

- 10 m
e ~ - - T
AT (VT) = —ﬁms[(@g2 - 23X, + 17)m—vr§
+902X; - 3)(X; — z)ﬂrﬂ, (C3)
mr
AL(Tv) = —AL°(vr), AL (TV) = AL (vD),
(C4)

Z )J‘)[ oL+ ol + al -

N[ =
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1 1 BKs )
zaggw 2a4EW + Bph + By EW:I , (B40)
, 1 y B> )
aggw ) a4EW + :3 :82 EW] (B41)
: 2
AP(VT) = 30\[57701‘?[—3()(93 —4X§ -4+ 7))
3 2
+ E(ng —2X) -6+ %)rﬂ, (C5)
P 30 mr
AL (VT) = ——wa?[— X2 —-2X; —2)—rY
3 (VT) N (X, 4 )mv Y
m
+ (3X 2 — 12X, + 2w2)m—:r§], (C6)
AR(TV) = A°(VT), AyT(TV) = AL (VT), (C7)
i,0 — 2 0 2
A7 (VT) = 30. 37 3X, +4—m
3
+305 — ] - 2)r;r§], )
i,0 2 0 2
AP(TV) = =30 37%s X3 +29 - 37
3
+30 =G~ Dy r§], (C9)
AS(VT) = =AY(TY),  ASN(TV) = —AY(VT),
(C10)

for TV modes, and
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2
AL(PT) = \/;77as[IOXA(6XA — 1)k

+452X, — (X, = 3)rf],  (Cl1)
. 2 5 ™\ p
AL(PT) = 30. §7TaS|:<XA —4X, +4 + ?)r)(
3 ?
+ E(Xi —2X, — 6+ ?);ﬁ], (C12)
. 2 )
AL(PT) = 10\[?%[3(3)@\ 44— )
+ %XA(XA - 3)r’;r§:|, (C13)
AI(TP) = —10\[37701 |:3(XA 129 - 372)
3
—+ EXA(XA - 3)r§r§], (C14)
AL(PT) = AL(TP),  AL(TP) = AL(PT),  (Cl15)
ALTP) = Ai(PT),  AL(PT) = Ail(TP),  (C16)

for TP modes. As pointed out in [63], since the annihila-
tion contributions A’j are suppressed by a factor of
mym,/m% relative to other terms, in numerical analysis
we will consider only the annihilation contributions due to
AL°, AL AL S and A%

The logarithmic divergences that occurred in weak an-
nihilation in the above equations are described by the
variable X 4:

1d 1
e A N
0o U

Following [24], these variables are parameterized in
Eq. (100) in terms of the unknown real parameters p, and

(C17)
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¢ 4. For simplicity, we shall assume in practical calculations
that X" are helicity independent, X, = XI = X§.
APPENDIX D: THE 5 — ' SYSTEM

For the 7 and 7’ particles, it is more convenient to work
with the flavor states ¢g = (uii + dd)/~/2, s5 and c¢
labeled by the 7n,, 1, and 1Y, respectively. Neglecting
the small mixing with 7%, we write

( Im) ) _ (COS¢ —sing )(Inq>)
In") sing  cos¢p \[ny) /)
where ¢ = (39.3 = 1.0)° [65] is the n — 7’ mixing angle
in the n, and 7, flavor basis.® Decay constants f‘;(,), f; 0

and f' ;(,)

(DD

are defined by

_ N
017y, vsqlm?) = zjzfz(,)pﬂ,

015y, v55I0) = if Py (D2)

Oleyuyseln) = if ¢ pp,

while the widely studied decay constants f, and f, are
defined as [65]

i
©lgy*ysqlm,) = —=rf,p*
V27
(D3)
O[5y*ysslmg) = ifsp*.

The ansatz made by Feldmann, Kroll and Stech [65] is that
the decay constants in the quark flavor basis follow the
same pattern of n — 7’ mixing given in Eq. (D1):

(J]:;j J]:i]/)ZC?;i _Sin¢)<fq O). (D4)

cos¢ 0 f,
Empirically, this ansatz works very well [65].
Theoretically, it has been shown recently that this assump-
tion can be justified in the large-N,. approach [67].
Itis useful to consider the matrix elements of pseudoscalar

densities [68]

_ ) i
2m,(0l7ysqlm") = \/—thm,
(D5)

2mOlsyssln®) = in! ,,

and define the parameters /1, and h, in analogue to f, and f

2m0lgysqlm,) =

7

st<0|§755|77s> = lhs’

(D6)

A different mixing angle ¢ = (35.9 + 3.4)° was obtained
recently in the analysis of [66] based on vector meson radiative
decays.
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and relate them to h‘jl’xn, by the similar Feldmann, Kroll and

Stech ansatz as in Eq. (D4).
In this work, we shall follow [56] to use

h? = 0.0013 GeV?,
h?, = 0.0011 GeV?,

h3 = —0.0555 GeV?,
h‘;l, = 0.068 GeV?,

f1 =109 MeV, 3= —111 MeV,
! ! (D7)
f;’], = 89 MeV, fj7, = 136 MeV,
f5 = =23 MeV, f;, = —5.8 MeV,
m, = 741 MeV, m, = 802 MeV,
q §
where we have used the perturbative result [69]
m?, f,
¢ o 7]( ) ,,]( )
y == . D8
7 7" 12m? 2 D8)
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The form factors for B — 1) transitions obtained in
QCD sum rules are [70]

FET(0) = 0.229 + 0.024 = 0,011, o)

FS7(0) = 0.188 = 0.002B5 = 0.019 = 0.009,

where the flavor-singlet contribution to the B — 1) form
factors is characterized by the parameter BS, a gluonic
Gegenbauer moment. It appears that the singlet contribu-
tion to the form factor is small unless B3 assumes extreme
values ~40 [70]. Using the relation

Fg’f = Fg?" cosa, Fg?' = g;"’ sing,  (D10)
we obtain F, g 7" (0) = 0.296 * 0.028 as shown in Table IV.

The momentum dependence of the form factor can be
found in [70].
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