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Parametrization of fermion mixing matrices in Kobayashi-Maskawa form
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Recent works show that the original Kobayashi-Maskawa (KM) form of fermion mixing matrix exhibits
some advantages, especially when discussing problems such as unitarity boomerangs and maximal CP
violation hypothesis. Therefore, the KM form of fermion mixing matrix is systematically studied in this
paper. Starting with a general triminimal expansion of the KM matrix, we discuss the triminimal and
Wolfenstein-like parametrizations with different basis matrices in detail. The quark-lepton complemen-
tarity relations play an important role in our discussions on describing quark mixing and lepton mixing in

a unified way.
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L. INTRODUCTION

As it is well known, the mixing between different gen-
erations of fermions is one of the most interesting issues in
particle physics. For quarks, the mixing matrix is described
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VCKM = Vcd Vcs Vcb ’
th Vtx Vzb

PACS numbers: 12.15.Ff, 14.60.—z, 14.60.Pq, 14.65.—q

by the Cabibbo [1]-Kobayashi-Maskawa [2] (CKM) matrix
Vekms and in the lepton sector, it is described by the
Pontecorvo-Maki-Nakawaga-Sakata [3,4] (PMNS) matrix
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Before more underlying theory of the origin of the mixing is found, parametrizing the mixing matrices properly is helpful
to understanding the mixing pattern and search for deviations from the standard model both theoretically and experi-
mentally. A commonly used form of the fermion mixing matrix is the standard parametrization proposed by Chau and

Keung (CK) [5]
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where s;; = sinf;; and ¢;; = cos;; (i, j = 1,2, 3) are the

rotation angles, and ¢k is the CP-violating phase in the
CK parametrization.

Recently, it has been pointed out in many works [6-8]
that the original Kobayashi-Maskawa (KM) [2] matrix is
convenient when discussing problems such as unitarity
boomerangs [6] and maximal CP violation hypothesis
[9]. The original KM mixing matrix is given by
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in which s; = sinf;, ¢; = cosf; (i =1, 2, 3) are Euler
angles, and 6ky is the CP-violating phase in the KM
parametrization.
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If neutrinos are of the Majorana type, there should be
an additional diagonal matrix with two Majorana phases
P = diag(e'®1/2, ¢i*2/2 1) multiplied to Egs. (1) and (2)
from the right. In this paper, we consider the neutrinos as
Dirac neutrinos, and the presentation of formalisms for
Majorana neutrinos can be derived straightforwardly by
including the additional phases. In the following, we omit
the subscript CK and KM since we deal with only the KM
form. We also denote parameters in the quark sector with
superscript Q and in the lepton sector with superscript L if
necessary (except for the CP-violating phases in expres-
sions with the consideration of concinnity, and bearing in
mind that 8¢ appears in Vg while 8% appears in Upyns)-

The magnitudes of the CKM matrix elements have been
well determined with [10]

0.97428 =0.00015 0.2253+0.0007 0.00347+090016
0.225220.0007 0.9734570pans  0.0410%000;
0.00862*000026  0.04030.0001 0.999152(000030

3)

With |V, 4|, [V, [V,4l, and |V, | as input parameters, one
can easily get the ranges for the angle parameters as

0 _ .
67 = 0.2273*5501L

09 = 0.015473.9008,

62 = 0.0383+40011
8¢ = 90.33° 1285

The last equation apparently implies that the KM phase
convention is consistent with the maximal CP violation
hypothesis.

For lepton mixing, the ranges for the PMNS matrix
elements have been also constrained by (at 3o level) [11]

0.77 - 0.86 0.50 —0.63 0.00 — 0.22
(0.22 — 056 0.44-0.73 057 — 0.80). (5)

0.21 —0.55 040-0.71 0.59 —0.82

Since the data are not accurate enough here, we do not
calculate the parameters for leptons as what we do for
quarks. Instead, the numerical results are presented in
Secs. IIT and I'V where unified description of quark mixing
and lepton mixing are discussed.

When studying mixing, it is useful to parametrize the
matrix according to the hierarchical structure of the mixing
to reveal more physical information about the underlying
theory. The Wolfenstein parametrization for quarks is a
famous example of this type, where Vi is parametrized
as [12]

1-1x2 A AN (p — in)
Verm = —A 1 - %)‘2 A2
AN —p—in) —AN 1
+ O(A%). (6)

The up-to-date fit for the Wolfenstein parameters
gives [10]
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A =0.2253+0.0007, A =0.8081092
p(1 = A2/2 + ++ ) = 0.13270.022 (7)
n(l — A%2/2+--+) =0.341 = 0.013.

The Wolfenstein parametrization is actually an expan-
sion of Vi around the unit matrix basis with A as the
expanding parameter. In this type of parametrization, the
choice of the parameters and where to put them are arbi-
trary, making the meaning of the parameters subtle to
some extent. For example, the CP-violating phase 6 is
not independent, i.e., it is determined by two parameters
1 and p with tand = n/p. Therefore, it would be better to
expand the mixing matrix using small parameters with
explicit physical meaning. A good choice is the idea of
triminimal parametrization [13] with an approximation as
the basis matrix to the lowest order. The triminimal expan-
sion of the quark and lepton mixing pointed out a new way
to parametrize the mixing matrix with all angle parameters
small, and with the CP-violating phase parameter free
from others. The parameters are completely determined
when the basis matrix is chosen.

For quark mixing, the unit matrix is very simple while
the matrix suggested in Ref. [14] given by

\/§+1 \/E*l 0
:76 :76
Vo= =221 L11 (8)
I

is more close to experimental data so that they are both
good choices.

In the lepton sector, it has been common to choose the
bimaximal matrix [15] and/or the tri-bimaximal matrix
[16] as the basis matrices

1/vV2 1/42 0
Ui=\|-1/2 1/2 1/42}
1/2 —1/2 1/42

2/V6 1/43 0

—1/6 1/3 1/42 ]
1/\6 —1/3/3 1/4/2

)
Utri =

Although the former one is not favored by present experi-
mental data as the later one, it looks more symmetric, and
there is a possible connection with the unit basis in quark
mixing [17]. The tri-bimaximal basis is very close to
experimental data and can serve as a good approximation
for lepton mixing.

Although it seems that the mixing of quarks and leptons
are unrelated with each other, there indeed exist phenome-
nological relations between mixing angles called quark-
lepton complementarity (QLC) [18]. For KM parameters,
the QLC relations still stand [7,19],
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~ 6L ~ 0.
(10)

It has been discussed that the quark mixing matrix and the
lepton mixing matrix can be parametrized in a unified way
with the QLC relations [20]. However, the discussions in
Ref. [20] are based on the CK phase convention. Since the
KM form of mixing matrices is promoted in many works, a
detailed study of it is necessary, and unified parametriza-
tions in KM phase convention may be helpful in both
theoretical and phenomenological studies.

The outline of this paper is as follows. In Sec. II, the
general expressions of triminimal expansion of the KM
matrix are presented. In Sec. III, we study the triminimal
parametrization with unit matrix and bimaximal matrix as
the basis for quarks and leptons, respectively. Wolfenstein-
like parametrizations are also discussed and numerical
results of the parameters are presented. In Sec. IV, trimi-
nimal and Wolfenstein-like parametrizations are discussed
in tri-bimaximal pattern. We show that the expansions
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where s = sin#? and ¢ = cos#?.
The rephasmg 1nva.r1ant quantity J [21] given by

Im(Vl 1 V22 V12 VZI)
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converge much faster in both quark sector and lepton
sector. In both Secs. III and IV, QLC relations play an
important role in our discussions of parametrizing Vcgm
and Upyns in a unified way. Finally, we present our con-
clusions in Sec. V.

II. THE GENERAL RESULTS OF TRIMINIMAL
EXPANSION OF KM MATRIX

The idea of the triminimal parametrization [13] is to
express a mixing angle in the mixing matrices as the sum of
a zeroth order angle #° and a small perturbation angle € as

01=0(1)+€1, 02=08+€2, 03=02+€3.

an

With the deviations €;, one can expand the mixing
matrices in powers of €; while different choices of 69
lead to different matrices as the zeroth order of the expan-
sion. Generally, to the second order of €;, the mixing
matrix is expanded as

0 0.0 0.0

8 TOa €183
clcg —cgcgs? —cgs(l)sg
sy —cOsVsY —5959s9
0 sosg —cgso
+e] 0 —cocgsg - cgs(z) 9 cocgcg - sgsg i
0 —c9s9s% + 9che’®  VcYsY + 9s9et®
0 0
-l czc3 + sgsg i —c?cgsg — cgsgela
=959 — 9s9e®  —c0s959 + cIcfel®
0 0 0
+ €16 c?sg cgs?sg s?sgsg
R R P J
0 Ay =AY
+ee3] 0 AsYsY =9t | + O(e)), (12)
0 sosgsg —cgs?sg
s$15283¢1 503 8Ind (13)

is independent of phase convention, making it important when discussing CP violation. Expanding J with €; to the second

order gives

J = Jo(1 + €,(3cot26? + csc269) + 2€, cot269 + 2e3 cot269

+ 2€,€,(3cos26) +

0.0

in which Jy = (s9)25959¢9¢9¢9 sin$.

1) cot269 csc26Y + 4e, €3 cot269 cot269 + 2€, €3(3 cos26! +

1
+ Ze%(9 082609 — 5)csc?0) — 2€3 — 263

1) cot269 csc269) + O(e}),  (14)
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The general form of Eqs. (12) and (14) look quite complicated since they are simple expansions in mathematics.
We can simplify the general expansion by taking 0(3) = 0 because 0(3) is small in both quark and lepton sectors. In this case,

the result is

=S 0 -5 = 0 0 0 0 0 0 —s9
V=1 5% 9§ s9e® |+ e V) =959 0]+ e —s¥sd —clsd e |+ el 0 —sYe®  9¢h
s9s9 059 —cel® sy sYS0 s VY %€ 0 e s
—cf 59 0 0 0 0 0 s 0
boal —esh —ehey 0|41 e~ —se? |28 0 —ehey —shet
=599 =Y 0 —s9s5 =959 cfel® 0 —c¥s9 Y
0 0 0 0 0 0 00 —c
+ee| =) ) 0|+ ee|0 —Be® =S | +ee] 0 0 =30 |+ O, (15)
QY =AY 0 0 —s%e® ¢ 0 0 —s%9

and the Jarlskog parameter reduces to

— o 0,0(40)20 0(40)2 0
J = s1n8(e3c1c2(s1) 55 + €,€3¢((s7)* cos26;

- %61 €3sin2609(s) — 3 sin30?)). (16)
These expressions for mixing matrix and Jarlskog parame-
ter are still complicated, making it difficult to capture
physical meanings from them. A good choice of the zeroth
order matrix V,, will simplify the parametrization greatly,
lead to fast convergency of the expansion, reflect the
physical insight of a parametrization, and provide hints
for underlying theory producing the mixing. Therefore, in
the following two sections, different basis matrices will be
applied to make the expansions simpler and useful for both
theoretical and experimental analysis.

III. PARAMETRIZATION OF KM MATRIX WITH
UNIT AND BIMAXIMAL BASIS MATRICES

A. The triminimal expansion

Since Vg is close to the unit matrix shown by Eq. (3),
we can naturally set

01 = 03° = 03¢ =0, (17)
and consequently have
€2 = 0f = 0.227375300,
€ = 02 = 0.0383+0011 (18)

€5 = 09 = 0.01547535%%,

which show that (€2)2 ~ €f ~ €2. In most cases the
approximation to the second order of €; is enough.

However, in order to keep the consistency of magnitudes
in the expansion, we display all terms of (9((6?)3) in our
parametrization, which is given by

s G
Vekm = @ — ¢ 1 - @ €2 + e710€d
EIQEZQ —62Q - ei5e3Q 1
+ O((e?)), (19)
where the rephasing of quark fields
c— ce'm, 5§ — se'”, b — beil™+d) (20)

is implied to make the lowest order be unit matrix.
Before moving on to lepton sector, we need to talk about
the QLC relations in Eq. (10) here. In terms of triminimal
parameters, it is natural to rewrite Eq. (10) as
00 L gor T
0, + 0" = R

ks

00+ 08 =7, 650 =68 =0

2

and recognize all el-Q and €’ as small deviations. Therefore,
corresponding to the choice in quark sector Eq. (17),
we have

w

HOL — HOL — ,
| 2 4

6% =0, (22)

in lepton sector. Similar redefinition of lepton fields

ph — phel™, pT — pTelmte) (23)

uw— :U“eiﬂ-’

is also implied to adjust the phases. To the second order of
€%, lepton mixing matrix is expanded as
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As we expect, the zeroth order is the bimaximal hA3 = |V,,|, and |f + eﬂéQM A2 = IV.,| with the latest

matrix Uy;.

B. Wolfenstein-like parametrization

We now compare the triminimal parametrization with
the Wolfenstein parametrization in quark sector. Since the
original Wolfenstein parametrization takes the same phase
convention as the standard CK form [20], which implies
different choice of parameters, especially the CP-violating
phase 0, it is complicated to arrive at the Wolfenstein
parametrization from the triminimal expansion of KM
matrix by adjusting the phases of the fields. Therefore,
we only keep the original Wolfenstein expanding parame-

ter A, which satisfies A = sinﬂlg ~ elQ ey )

duce two new parameters with

, and intro-

fA2=singf ~ €,  hA?=singd =~ €. (25)

The CP-violating phase 6 has clear physical meaning so
we naturally keep it. Finally, by substituting them into
Eq. (19), we obtain a new Wolfenstein-like parametriza-
tion, given by

1-& A e PhA}
Veem = | —A 1 - "72 (f + e A% |
B —(f + et 1

(26)

which is a new simple form of quark mixing matrix given
in our recent work [22]. Direct calculation of fA3 = |V,

data (3) and (7) gives

A = 0.2253 =+ 0.0007,
f=0.75410022

h = 0.3039914

82 = 90.97° 277 @7
- L ad0s

which are slightly different from the results in Ref. [22]
where previous data are used. This new form of quark
mixing matrix preserves the hierarchical structure of the
mixing. More importantly, it is convenient for numerical
analysis, especially for constraint of the CP-violating
phase. Along with unitarity boomerangs, it may be useful
to study the presence of new physics.

To get unified Wolfenstein-like parametrizations for
quark and lepton mixing, we need to use the QLC relations
Eq. (10), of which the first two equations lead to the choice
of the parameters in the lepton sector as

0% = /4 — arcsinA, 05 = /4 — arcsinf A%, (28)

i.e., parameters A and f, which we introduce in quark
sector are also employed in lepton sector. The other two
parameters are one angle parameter related to 6% and a
CP-violating phase &% Since the experimental data for the
small angle 6% is not accurate enough, we can either set
0% = nA or HL 1’ A% depending on the value of |U,;].
We now dlscuss these two cases separately.

Case 1: 05 = nA

The lepton mixing matrix can be expanded in order
of A as
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1 1 0 A _ 1 ey
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_1 1 1 id .
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1 _1 1 s .
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_ 1 _m 1 _ey
2V2 22 22 V2
ol 1_f W f_1 _ w1 ,-is,_ f
T a7 TETrTr T te T
_f_1 i f1 _ 1,08 f
\“iod il melen g
(0 ,'72 _ 671.57]3 _ e*iﬁn/
22 62 22
3 o 2oy el L ,—i8 1,-i8 ) 4
+ 2] L EWUZ-—"TvLT—"};"—f-% —He Py —te Pyt ie P fn | + O (29)
N T L o N | 1 ,—i6.,3 L 1,—i 1 —id
Ki 6\/§+T \/E—i_i ﬁe’n+ze’n+§e’fn

With the modulus of the element U5 in Eq. (5) and the results for A and f in Eq. (27), the new parameter is constrained
by 0 < 7 < 1.923.

Case 2: 65 = n/A?

In this case the expansion looks simpler since 7’ only starts to appear in O(A?) terms:

1 1 0 1 1 _ 1 _ 1 e ' m
NN 5 50 22 22 N
1 i8.! .
Ums=|~"3 2 J|+A| 1 1 o]+x] -5 L-F-1 jeony— 4%
e -1 =10 _f_1 [ 1 1,08
2 2 22 1T gt e
o efié,,]/
00 =5
3 _i 4
+ AL L Loy |+ O(1*). (30)
55 —xey
However, we have a larger range in this case with 0 < 5’ <7.912.
To the lowest order the Jarlskog parameter in both quark and lepton sectors is given by
JC =1Im(V,, V., V5, Vi) = fhA®sind?,
1
L — e ) — sk
J Im(UermUd Mz) 4\/5 7]/\ sind*, (31)

1

JE=Im(U,,U U U, = 'A% sinét.
( 2Y u3%Ye3 2) 4\/577

o

The last two equations correspond to the two cases, respectively.

IV. PARAMETRIZATION OF THE KM MATRIX IN TRI-BIMAXIMAL PATTERN

A. The triminimal expansion

Present data of the PMNS matrix indicate that the mixing in the lepton sector is closer to the tri-bimaximal mixing.
One would have a much faster convergent expansion if it starts with a tri-bimaximal mixing form as the basis, which
implies again the rephasing of lepton fields in Eq. (23) and the choice of 6% as

, 6% = 0. (32)

INF

1
69 = arcsin—, oL =

A

Under such conditions, the lepton mixing matrix expanded to the second order of €F is given by
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2 L . i 2 O O (37’.‘s
5 NG 0 75 5 O 0 0 0 \ N
U, = 1 1 1 + €L 1 L ol|+ L1 1 +ello — 't e 0
NS TN TR B BTN TR TS il B 751) E i
1 _ 1 1 1 1 - - _ e et
5 A S 7 % 0 ECNNCINE 0 -7F 7
— 1
2 _‘/% _% 0 L2 0 0 0 Ly2 & 3 0
(6 ) () L _—1 _1|, (&) I I
L2 lL-L o of+2 +=22 00 —& -
) 7 NG B 6 3 2 2 Na 2
1 1 - k= o X -5
T NN RN \ 7
0 0 0 0 0 0 0 0 (e
1 1 el it B
+eedl 5 & 01+ ebek 0 N B teedlo 0o - 976.5 + O((eh)?). (33)
1 1 0 € P o—id
NG Na N 0 0 NG
With Eq. (21) as our guide, we get the zeroth order of mixing angles in the quark sector as
q g g g ang q
2—1
00Q = arcsm\/— , GgQ =0, 02Q =0 (34)
V6
In this case the deviations are
el = 0.0574+5:3019, 62 = 0.0383* 5011, 63 = 0.0154+5:9008, (35)

according to Eq. (4). Thus e ~ O(107?), and we have a faster convergent expansion for quark mixing as

V241 -1 _ -1 2+l V21 —is
0 0 1 0 0 0 V6 V6 0 —eid 0
_ 21 i 1
( Q)z ( e Ve 0 ( Q)2 0 0 ( Q)z 0 N 0 \
FRAIRAN V. Sl oo |+ QU [ g | RS 0 —¥2:xl
2 | % T E 2 | % o 2 -
\ 0 0 0 o0~ o o0 -1
[ 0 0 o0 0 0 0 0 0 \/521 —id
+61Q62Q 0 0 O +52QG3Q 0 —ei® 0 +61Q63Q 0 0 —2=1,-is +@((EiQ)3). (36)
\\/Eﬂ V21 0 0 0 — 21 ,-is NG
N 5 0 0 0 )

Consistent with the results in Ref. [14], the QLC relations relate the tri-bimaximal matrix in the lepton sector with V{ in

the quark sector, noting that they are both more close to experimental data compared with the bimaximal matrix and
unit matrix.

B. Wolfenstein-like parametrization

Similarly with Sec. III, we now discuss the corresponding Wolfenstein-like parametrizations in both quark sector and
lepton sector in a unified way with the help of QLC relations. For quark mixing, we can employ p = elQ as expanding
parameter and introduce two coefficients with sp = €2Q ,tp = eg, ie.,

21
09 = arcsin*/_ G + p, 02 = sp, 69 = 1p. (37)

Since the expansion around basis V}, converges faster than the case in Sec. I11, it is accurate enough to calculate to O(p?),
given by
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B _ 21 V241 (2—1)e 10t
L g G 3 N
= _ _ 241 _\2-1 (2+1)e "t
VCKM _ \/561 \/E‘gl O + p T T S + T
(2-Ds  _ (2+Ds _ Lis
0 0 1 7 7 et 0
_A2+1 _ (2-)(P+)) (2+1)e"i%;
26 26 NG
— 2 2 2 . _ —ié
+p2| &2 213% ) <ﬁ+1)2<sﬁ+t 1) _ iy _ 2 1: t + 0(pY). (38)
(2+1)s (2-1)s _W2HDe s 2 2
J6 6 J6 2 2
By using the data for elements V4, V,;,, V.4, and V., in Eq. (3), we get the ranges for the parameters with
p = 0.0574130008 5 =0.667T5%9 = 0.26875%3, 82 = 90.30° 285 (39)

As we can see here, the expanding parameter is p ~ @(10~2), making the expansion converge fast as we mentioned before,
and indicating that V} is indeed a good choice of basis matrix.
For the corresponding Wolfenstein-like matrix in lepton sector, by using the QLC relations in Eq. (10), we have

2—-1
6F = g - (arcsin\/_T + p), 65 = g — sp. (40)
We still need to retain the CP-violating phase 8% and to introduce a new parameter 7 (or 7'). Here similar discussions as in
Sec. III are needed depending on the value of |U,;].
Case 1: 65 = 7p
To good accuracy, we expand the PMNS matrix to O(p?) and obtain

2 1 0 1 S ) e 7
3 Ve Vg 3 N&}
= _ 1 1 1 1 _ s s __ elor 1 e i0r _ s
Upnins % A G|l v BTRYE TS
ne S U O s 1 s _eP¥r _ 1 s _ eor
J6 B2 6 B3 B &2 b L2 B
_ 1 _ 1 2 —id
NG 23 23 E
2 2 1 o 2 i8 o 2 o 1 o 2 —i8 _ 2 —i8 3
T SRt Etae TmtEtYRE s w TR it [ TOP) @D
_ 2 s 1 2 _ elrs + 54 T2 + 1 _ s + e ¥rs 2 eTir
26 B 26 2B V2 Ve 2B 23 22 B 22 b
The upper bound of |U ;| gives 0 < 7 < 7.493.
Case 2: 65 = 7/p?
The expansion to O(p?) is given by
B 1 1 _ 2
s 5 0 NG ;5 0
— | _1 | 1 1 T
Upuins G ATl 5w BtE G
1 _ 1 1 s _ 1 s 1 s
J6 N 6 B3 B b 2
o L o L 3*157./
NG 23 3
) N TR ST S LT S L) AN BN Ll AR il 3
P BT AT AR AT R T 5 as | TOW) (42)
s2 s 1 52 s elor! 1 2 e g/

WY WtV Tw T
A larger range for the parameter is obtained as 0 < 7/ < 125.987. If we would like to control the parameters to be @(1071),

the former case is a better choice. However, further neutrino oscillation experiments are needed to determine |U 3| and the
parameters we adopt here.
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The Jarlskog parameters in tri-bimaximal pattern are

given by
1 ).
= 8(3 — 22)stp? sind2,

7p sind*
36
_ 7/p*sinst

3.6

JC =1m(V,, Ve Vi, V2

JE=1m(U U ,5U;5U,,)

(43)

V. DISCUSSIONS AND CONCLUSIONS

In this paper, by using triminimal and Wolfenstein-like
expansion techniques, we study in more detail the
Kobayashi-Maskawa matrix in both quark and lepton sec-
tors. Our motivation is based on the consideration of the
convenience the KM form exhibits when discussing some
problems such as unitarity boomerang and maximal CP
violation.

In the previous two sections, we choose the unit matrix
and V| as basis matrices for quark mixing, while bimax-
imal and tri-bimaximal matrices for lepton mixing.
Naturally, a question arises here: which pattern is better,
bimaximal, or tri-bimaximal? On one hand, the bimaximal
matrix is related with the unit matrix through QLC rela-
tions. The corresponding triminimal and Wolfenstein-like
expansions are both comparatively simple and symmetric.
On the other hand, compared with bimaximal matrix, the
tri-bimaximal matrix is closer to the experimental data;
thus, the expansion based on it converges much faster. This
can be reflected from the smallness of the triminimal
angles and the Wolfenstein-like expanding parameter.
Therefore, if we are interested only in the leading order
contribution, then the tri-bimaximal matrix should be
chosen. Theoretically, there have been some attempts at
understanding both bimaximal and tri-bimaximal matrices
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with the introduction of new symmetries to the standard
model fermions. However, we still need a more fundamen-
tal theory to decide which pattern should be used, to reveal
the origin of the mixing matrices.

The Wolfenstein-like parametrizations presented in
this paper are simpler than the results in Ref. [20] and
can be transformed to triminimal expansions with relations
among parameters. Here by using two sets of the
Wolfenstein-like parameters, i.e., A, f, h, 7 (or 1), 82,
and 6% in Sec. Il and p, s, t, 7(or 7/), 62, and 8 in Sec. IV,
we unify the parametrization of the KM matrix in quark
and lepton sectors. The parameters in the quark sector
can be well determined with current experimental data.
However, the experimental results in the lepton sector,
especially for |U,| and the CP-violating phase 8%, are
far from enough.

The unified description of fermion mixing we get here
results from the QLC relations in the KM form, and these
relations are only approximately valid; thus, one may
doubt the validity of the results. Actually, we can discuss
this in a reversed way. By regarding these parameters for
quarks and leptons as independent from each other, we can
determine the parameters with data from quark experi-
ments and lepton oscillations separately, and check the
QLC relations. Even if the QLC relations violate, these
parametrizations still stand separately in the quark sector
and lepton sector. Thus, our study is helpful in understand-
ing the mixing phenomenologically and may provide use-
ful tools in searching for a profound theory on the fermion
masses and mixing.
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