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QCD string is formed at distances larger than the confinement scale and can be described by the

Polchinski–Strominger effective string theory with a nonpolynomial action, which has nevertheless a

well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the

Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion

parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we

obtain the Regge behavior with a linear trajectory of the intercept ðd� 2Þ=24 in d dimensions, which is

computed semiclassically as a momentum-space Lüscher term, and discuss an application to meson

scattering amplitudes in QCD.
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I. INTRODUCTION

Recently there has renewed interest in the long-standing
problem of the relation between strings and QCD. On the
one hand, some properties of Wilson loops have been
understood via the AdS/CFT correspondence [1], where
the Wilson loop in the N ¼ 4 super Yang–Mills at large
coupling constant is described by the supergravity approxi-
mation to an open superstring of type IIB on AdS5 � S5

background, whose worldsheet is a minimal surface ex-
tended to the 5th dimension. This approach has resulted in
numerous applications of holographic duals to QCD. On
the other hand, the lattice QCD simulations indicate (see
the review [2], references therein and the subsequent paper
[3]) that the Nambu–Goto string very well approximates
the QCD string for a wide range of distances.

An old result [4] is that the Nambu–Goto string is not an
exact solution to the loop equation of large-N QCD, but
rather its asymptote—the area law—is a self-consistent
solution for asymptotically large loops. Extra degrees of
freedom, populating the string worldsheet, are required to
reproduce a factorized structure on the right-hand side of
the loop equation at intermediate distances and/or a proper
behavior of Wilson loops for the case of self-intersections.
These degrees become frozen for large loops ¼ long
strings (in the units of the QCD confinement scale), that
makes it possible to perform an expansion in the inverse
area of the minimal surface, spanned by the loop, which
has the meaning of a semiclassical expansion. This leads us
to an ideology of an effective QCD string, formed by fluxes
of the Yang–Mills field, which is consistent [5] at large
distances.

A beautiful example of how such an effective string
theory works is a closed string winding along a compact

direction of a large radius R. It is described by a non-
polynomial action [6]

Seff ¼2K
Z
d2z@X � �@Xþd�26

24�

Z
d2z

@2X � �@2X
@X � �@X þ . . . ;

(1)

where the conformal anomaly is expressed (modulo total
derivatives and the constraints) via an induced metric

e’ind ¼ 2@X � �@X (2)

in the conformal gauge, which is not treated independently
as distinct from the Polyakov formulation. This effective
string theory has been analyzed using the conformal field
theory technique order by order in 1=R [6,7], revealing the
spectrum [8] of the Nambu–Goto string in d dimensions.
The goal of this Paper is to expand the effective string

theory approach to calculations of QCD meson scattering
amplitudes in the Regge kinematical regime, where a
semiclassical expansion is applicable as will be momen-
tarily explained. These scattering amplitudes are
represented in the large-N limit (or in the quenched ap-
proximation) as sums over paths of the Wilson loops.
Remarkably, large loops dominate the sum over paths in
the Regge kinematical regimewhenMandelstam’s variable
s is large and t is fixed, as it has been shown in Ref. [9], so
an effective string theory ideology is then applicable.
In obtaining this result, it was crucial to use the mani-

festly reparametrization-invariant representation [10] of
large Wilson loops in the form of the path integral over
reparametrizations of the boundary contour x�ðtÞ:

W½xð�Þ� ¼
Z

DdifftðsÞe�KS½xðtÞ�; (3)

where K ¼ 1=2��0 is the string tension and

S½xðtÞ� ¼ 1

4�

Z þ1

�1
ds1ds2

ðs1 � s2Þ2
½xðtðs1ÞÞ � xðtðs2ÞÞ�2: (4)
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We have used the notationW½xð�Þ� on the left-hand side of
Eq. (3) to emphasize its reparametrization invariance.

The functional (4) is known in mathematics as the
Douglas integral [11], whose minimum with respect to
reparametrizing functions tðsÞ coincides with the minimal
area. The path integral in Eq. (3) is thus dominated for
large loops by a saddle point, giving the area law. This
remarkably holds for loops of an arbitrary shape, even not
necessarily planar. The area-law behavior of the repara-
metrization path integral is of course associated with a
classical string. As is shown in Ref. [12], quantum fluctua-
tions around the saddle point reproduce in the quadratic
approximation the Lüscher term in d ¼ 26 dimensions,
which is usually associated with quantum fluctuations
around the minimal surface in the semiclassical approxi-
mation. This is perhaps not surprising because the ansatz
(3) emerges as the Dirichlet disk amplitude for the
Polyakov string in the critical dimension d ¼ 26.

The fact that S½xðtÞ� in Eq. (3) is quadratic in x�ðtÞ
makes it possible to perform its Fourier transformation
by doing the Gaussian path integral over x�ðtÞ, which
results in the scattering amplitude again of the type of
the right-hand side of Eq. (3) with x�ðtÞ substituted by
the function p�ðtÞ=K, where p�ðtÞ is a step function,
whose discontinuities are momenta of colliding particles.
Thus all nonlinearities are hidden in the reparametrization
path integral which can be partially done, while the rest is
represented as an integral over the Koba–Nielsen variables
known from dual resonance models. This path integral over
reparametrizations goes over subordinated functions (i.e.
those having dtðsÞ=ds � 0) with a certain measure which
respects reparametrization invariance and whose properties
are considered in some detail in Refs. [9,13]. What is most
important is that the resulting scattering amplitudes [9,14]
possess projective invariance and are consistent off shell.
Once again, this is intimately related to the presence of the
reparametrization path integral in Eq. (3), which factorizes
in the on-shell scattering amplitudes of the fundamental
string (i.e. for tachyonic scalars, massless vectors etc.),
reproducing the usual Koba–Nielsen amplitude, and cor-
respondingly plays no role then. On the contrary, excita-
tions of QCD string should reproduce the meson spectrum,
i.e. the vector state is a massive � meson, which explains
why scattering amplitudes are required off shell. Off-shell
amplitudes of this kind were previously obtained [15] (see
the review [16] and the subsequent papers [17]) for the
Polyakov quantization of the critical string, using the
Lovelace choice [18] of the N-Reggeon vertex instead of
the usual vertex operator. However, their extension to
d ¼ 4 dimensions is still missing to my knowledge.

In the present paper, we derive scattering amplitudes for
a noncritical effective open string theory with the action (1)
in the semiclassical approximation justified by the Regge
kinematical regime, where the expansion parameter
1= lnðs=tÞ is small. The technique used is pretty much in

the spirit of the Wilson-loop/scattering-amplitude duality
recently elaborated [19,20] (for a review see Ref. [21]) for
N ¼ 4 super Yang–Mills. The calculation is analogous to
that of the Lüscher term for a rectangle, except it is
performed in momentum space. As a result, we obtain
the Regge behavior of scattering amplitudes with a linear
trajectory

�ðtÞ ¼ d� 2

24
þ �0t: (5)

We then discuss an application of this result to large-N
QCD, where meson scattering amplitudes are represented
as sums over paths of theWilson loop.We demonstrate that
large loops dominate the sum over paths in the Regge
kinematical regime of large s and fixed�t, so the effective
string theory representation of the Wilson loop is expected
to work. Alternatively, perturbative QCD is expected to
work when both s and�t are large. We also discuss how a
linear Regge trajectory of the type in Eq. (5) appears for
spinor quarks.

II. THE CLASSICAL LIMIT

A. Review of Douglas’ minimization

Let us consider Eq. (3) as a representation of the disk
amplitude for bosonic string with the Dirichlet boundary
condition in d ¼ 26 dimensions. As is already mentioned
in the Introduction, this representation can be derived in the
Polyakov formulation by integrating over X�ðx; yÞ in the
bulk with the boundary condition

X�ðs; 0Þ ¼ x�ðtðsÞÞ: (6)

The form of the boundary action (4) depends on the choice
of coordinates parametrizing the world sheet, as the Green
function of the Laplace operator does. Equation (4) is
written for the upper half-plane (UHP): z ¼ xþ iy 2
UHP, bounded by the real axis. While the Polyakov action
is invariant under conformal transformations, they change,
in general, the shape of the boundary, so the Douglas
integral (4) changes accordingly. The only conformal
transformation that maps UHP onto itself is SLð2;RÞ,
which results in the projective transformation at the
boundary:

s ���! asþ b

csþ d
; ad� bc ¼ 1: (7)

The Douglas integral (4) is invariant under it.
It is instructive to compare the UHP parametrization

with a more physical parametrization through worldsheet
coordinates, which take values in a rectangle and are
usually associated with propagation of an open string of
the length R during the time T. These two coordinate
choices are related by the Schwarz–Christoffel mapping,
which will be extensively used below when calculating a
semiclassical correction. For the purposes of the present
paper, the former parametrization has some advantages
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over the latter. First, the Green function in Eq. (4) looks
simpler for UHP than for a rectangle.1 Second, after the
decomposition

X� ¼ X
�
cl þ Y

�
q ; (8)

where X�
cl obeys the Laplace equation and the boundary

condition, so that Y�
q ¼ 0 at the boundary, the path integral

over Y�
q does not depend on the boundary contour x� for

the UHP parametrization. This is the reason why the
boundary path integral in Eq. (3) captures fluctuations of
the critical string around the minimal surface, as was
explicitly demonstrated in Ref. [12]. This is in contrast to
the parametrization by a rectangle, when semiclassical
stringy fluctuations reside in a determinant coming from
the path integral over Y

�
q as is well-known. We shall return

to this issue in Sect. III.
The minimum of the Douglas integral is reached for the

function tðsÞ obeying
Z
dt1

_xðtÞ � _xðt1Þ
½sðtÞ � sðt1Þ� ¼ 0; (9)

where sðtÞ denotes inverse to tðsÞ. The minimal surface can
then be reconstructed in UHP from its boundary value
x�ðtðsÞÞ by the Poisson formula

X�ðx; yÞ ¼
Z þ1

�1
ds

�

x�ðtðsÞÞy
ðx� sÞ2 þ y2

¼
Z þ1

�1
dt

�
_x�ðtÞ arctanx� sðtÞ

y
: (10)

This function is obviously harmonic in UHP and satisfies
Eq. (6). The presence of the reparametrizing function tðsÞ
guarantees that (10) obeys the conformal gauge if tðsÞ ¼
t�ðsÞ with t�ðsÞ being inverse to the minimizing function
s�ðtÞ. This is demonstrated in Appendix A. While Douglas’
theorem was originally proven for Euclidean space, the
consideration of Appendix A shows that it applies for a
spacelike surface in Minkowski space as well. The neces-
sity of a reparametrization of the boundary for consistency
with the conformal gauge in the Polyakov formulation of
an open string was pointed out in Ref. [22].

B. Polygonal loop with ðxiþ1 � xiÞ ¼ �pi=K

Since the boundary action (4) is quadratic in x�ðtÞ, the
functional Fourier transformation of Eq. (3) to momentum
space equals [9]

A½pð�Þ� �
Z

Dx�ei
R

dtp� _xW½xð�Þ� ¼ W½pð�Þ=K�; (11)

which looks exactly like the right-hand side of Eq. (3) with
x�ðtÞ substituted by the trajectory

x�ðtÞ ¼ 1

K
p�ðtÞ: (12)

For piecewise constant p�ðtÞ this disk amplitude is pro-
portional to the scattering amplitude. We shall make use of
this remarkable fact applying the technique, developed for
a noncritical string with Dirichlet boundary conditions, to
semiclassical calculations of the scattering amplitudes.
Substituting in Eq. (11) the smeared stepwise

p�ðtÞ ¼ 1

�

X
i

�p�
i arctan

ðt� tiÞ
�i

! 1

2

X
i

�p�
i signðt� tiÞ

(13)

for ðti � ti�1Þ � �i; �i�1, that results in polygonal x�ðtÞ,
we have for the amplitude explicitly

Aðf�pigÞ ¼ W½pð�Þ=K� (14)

with p�ðtÞ given by Eq. (13). The discontinuities �p�
i of

p�ðtÞ are the particle momenta.
Let us calculate the minimal area for such nonplanar

contours. Since we are interested in the Regge limit of
s � �t � ��p2

i , we can set �p2
i ¼ 0 to have lightlike

edges as in Refs. [19,20]. The case of �p2
i � 0 will be

considered in Sect. IV.
The Douglas integral then reads

KS ¼ ��0 Z dtdt0 _pðtÞ � _pðt0Þ lnjsðtÞ � sðt0Þj

¼ ��0 X
i;j�i

�pi ��pj lnjsi � sjj (15)

with si ¼ sðtiÞ. Here the values ti’s, at which p�ðtÞ has
(smeared) discontinuities, are fixed by the initial parame-
trization, while the Douglas minimization is to be per-
formed with respect to si. Nothing depends on sðtÞ at the
intermediate points t 2 ðti�1; tiÞ, which is a zero mode as is
explained in Ref. [9].
The Douglas minimization Eq. (9) is trivially satisfied

for the given polygonal x�ðtÞ at the intermediate points,
when t is not close to ti’s, because then _x�ðtÞ ¼ 0. For
t ¼ ti we rewrite Eq. (9) asX

j�i

�pi ��pj

si � sj
¼ 0: (16)

OnlyM� 3 of theseM equations are independent because
of the invariance under the projective transformation of
si’s. Thus the Douglas minimization determines only
M� 3 values of si’s, while three of them remain arbitrary.
The minimal surface does not depend on these three values.
For M ¼ 4 we obtain from Eq. (16)

s2� ¼ s1 þ ss41s31
ss41 þ ts43

¼ s3 � ts43s31
ss41 þ ts43

(17)

with arbitrary s1, s3 and s4. In the usual way we can set
s1 ¼ 0, s3 ¼ 1, s4 ¼ 1, after which the solution (17)
simplifies to

1The Dirichlet Green functions for UHP and a rectangle are
displayed below in Sect. III C (see Eqs. (56) and (57)).
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s2� ¼ s

sþ t
: (18)

This is nothing but the well-known saddle point of the
Veneziano amplitude at large �s and �t.

At the minimum we shall get the minimal area

KSmin ¼ �0s ln
s

sþ t
þ �0t ln

t

sþ t
!s�t � �0t ln

s

t
(19)

whose exponential reproduces the classical Regge behav-
ior of the scattering amplitude:

Aðs; tÞ ¼ e�KSmin / s�
0t: (20)

C. Reconstruction of the minimal surface

For polygonal x�ðtÞ given by Eqs. (12) and (13), we can
reconstruct the harmonic function in UHP by the Poisson
formula (10) which satisfies the boundary condition (6).

From Eqs. (10) and (13), we have

X�ðx; yÞ ¼ 1

�K

X
i

�p�
i arctan

ðx� siÞ
yþ "i

: (21)

It is instructive to see how the boundary contour (13) is
reproduced by this formula for y ¼ 0. For t 	 ti we have

sðtÞ � sðtiÞ
"i

! s0ðtiÞðt� tiÞ
"i

¼ ðt� tiÞ
�i

; (22)

where "i ¼ s0ðtiÞ�i in accordance with the reparametriza-
tion covariance. As �i ! 0 we reproduce the step function
(13) which results in the harmonic function (21) with
"i ¼ 0. It is used below in this Subsection because there
are no divergences in the "i ! 0 limit at the classical level.

The domain of both s < 0 and t < 0 corresponds to
scattering in the u channel:

�p�
1 ¼ ðE;p; 0; 0Þ;

�p
�
2 ¼ ð�E;�p cos�;�p sin�; 0Þ;

�p�
3 ¼ ðE;�p; 0; 0Þ;

�p
�
4 ¼ ð�E; p cos�; p sin�; 0Þ;

(23)

where

cos� ¼ t

sþ t
; ð1� cos�Þ ¼ s

sþ t
: (24)

From Eq. (17) we then have

cos� ¼ s32s41
s42s31

; ð1� cos�Þ ¼ s21s43
s42s31

: (25)

The minimal surface spanned by the contour (13) with
�pi’s given by Eq. (23) is depicted in Fig. 1 for � ¼ 1:0
and � ¼ 0:2. With decreasing the scattering angle �, we
move from the one in the left figure to the one in the right
figure with decreasing the minimal area which tends to 0 as
� ! 0. It is a spacelike surface embedded in Minkowski
space. One-loop divergences, associated with its transverse

fluctuations, will be regularized by setting "i � 0, as is
described below.
The induced metric gab ¼ @aX � @bX of the minimal

surface, spanned the polygon given by Eq. (13), reads

g12 ¼ g21 ¼ � 1

�2K2

X
i;j�i

�pi ��pjðx� siÞy
½ðx� siÞ2 þ y2�½ðx� sjÞ2 þ y2�

(26)

and

g11 ¼ 1

�2K2

X
i;j�i

�pi ��pjy
2

½ðx� siÞ2 þ y2�½ðx� sjÞ2 þ y2� ; (27)

g22 ¼ 1

�2K2

X
i;j�i

�pi ��pjðx� siÞðx� sjÞ
½ðx� siÞ2 þ y2�½ðx� sjÞ2 þ y2� : (28)

Using the identities of Appendix A, it can be shown that
g12, given by Eq. (26), vanishes and g11, given by Eq. (27),

FIG. 1 (color online). Minimal surface spanned by the contour
(13) for � ¼ 1:0 (left) and � ¼ 0:2 (right).
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coincides with g22, given by Eq. (28), if Eq. (16) is sat-
isfied. Then the induced metric is conformal:

gab ¼ e’�ab (29)

with

e’ðx;yÞ ¼ 1

�2K2

X
i;j�i

�pi ��pjy
2

½ðx� siÞ2 þ y2�½ðx� sjÞ2 þ y2� :

(30)

When y ! 0, this function vanishes except in the vicinities
of si’s. This implies that the boundary metric vanishes in
the corners of the polygon and may nonvanish only along
the edges.

When M ¼ 4 and the projective symmetry is not fixed,
Eq. (17) holds and Eq. (18) changes to

s21s43
s31s42

¼ s

sþ t
: (31)

We then get for the induced metric

e’ðx;yÞ ¼ � sts242s
2
31y

2

�2K2ðsþ tÞQ4
i¼1½ðx� siÞ2 þ y2� (32)

with s2 given by Eq. (17). We see from Eq. (32) that the
boundary metric vanishes except for s ¼ si’s, where we
have explicitly

e’ðs1;0Þ=2 ¼ 1

�K

ffiffiffiffiffiffiffiffiffiffiffi�st

sþ t

r
s42

s21s41
; (33a)

e’ðs2;0Þ=2 ¼ 1

�K

ffiffiffiffiffiffiffiffiffiffiffi�st

sþ t

r
s31

s32s21
; (33b)

e’ðs3;0Þ=2 ¼ 1

�K

ffiffiffiffiffiffiffiffiffiffiffi�st

sþ t

r
s42

s43s32
; (33c)

e’ðs4;0Þ=2 ¼ 1

�K

ffiffiffiffiffiffiffiffiffiffiffi�st

sþ t

r
s31

s43s41
: (33d)

Calculating the integral with ’ given by Eq. (32) using
the formula

Z
dy

Z þ1

�1
dx

y2

½ðx� siÞ2 þ y2�½ðx� sjÞ2 þ y2�
¼ �

4
ln½ðsi � sjÞ2 þ 4y2�; (34)

we obtain

K
Z 1

0
dy

Z þ1

�1
dxe’ðx;yÞ ¼ �0

�
s ln

s43s21
s42s31

þ t ln
s32s41
s42s31

�

¼ �0
�
s ln

s

sþ t
þ t ln

t

sþ t

�
(35)

which reproduces Eq. (19).

Analogously, the length of the boundary contour equals

Z þ1

�1
dxe’ðx;y¼0Þ=2 ¼ 0 (36)

as it should for a polygon with lightlike edges.

III. SEMICLASSICAL LÜSCHER TERM FOR THE
LIGHT-LIKE POLYGON

A. Semiclassical stringy fluctuations as the
Lüscher term

The Regge behavior (20) with a linear trajectory
�ðtÞ ¼ �0t of zero intercept is associated with a classical
string. Quantum fluctuations shift the intercept of the
critical bosonic string to �ð0Þ ¼ 1. We shall perform in
this Section the computation of the Regge trajectory for
a noncritical string in d < 26 in the semiclassical
approximation.
For a long string, quantum fluctuations can be taken into

account by a semiclassical expansion whose leading order
is given by the minimal area and the semiclassical correc-
tion is known as the Lüscher term [23,24]. Its form is
explicitly written for a plane contour via the conformal
anomaly:

WðCÞplane C/ e�KSminðCÞþððd�2Þ=96�Þ
R

d2wð@a lnjðdz=dwÞjÞ2 ; (37)

where an analytic function wðzÞ maps UHP onto a piece of
the plane bounded by the contour C. For a R� T rectangle
with T � R, Eq. (37) simplifies to

WðCÞrectangle/ e�KRTþððd�2Þ�=24ÞðT=RÞ; (38)

which is more familiar. How the Lüscher term emerges for
noncritical strings is demonstrated in Refs. [25–28]. We
shall generalize this technique, applying it for the (non-
plane) momentum-space polygonal loop (13).

B. Mapping onto rectangle

Let us map the upper half plane onto a rectangle for
arbitrary s1, s2, s3, s4. By the Schwarz–Christoffel formula
we get (see [29], Eq. (3.147.4))

!ðzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
s42s31

p Z z

s2

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs4 � xÞðs3 � xÞðx� s2Þðx� s1Þ
p

¼ 2F

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s31ðz� s2Þ
s32ðz� s1Þ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffi
s32s41
s42s31

s 1
A; (39)

where F is the incomplete elliptic integral of the first kind
and the normalization factor is introduced for the projec-
tive symmetry. The new variable ! takes values inside a
rectangle, which has the meaning, as is already said, of the
worldsheet parametrization.
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Using the relations in [29], Eq. (3.147), we find

R ¼ 2CKð ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

p Þ; T ¼ 2CKð ffiffiffi
r

p Þ; (40)

where K is the complete elliptic integral of the first kind, C
is a constant and

r ¼ s43s21
s42s31

(41)

is the projective-invariant ratio. Therefore,

T

R
¼ Kð ffiffiffi

r
p Þ

Kð ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

p Þ (42)

is projective invariant.
To reproduce the mapping of [12], that corresponds to

the choice s1 ¼ �1=
ffiffiffiffi
�

p
, s2 ¼ � ffiffiffiffi

�
p

, s3 ¼ þ ffiffiffiffi
�

p
, s4 ¼

þ1=
ffiffiffiffi
�

p
, we note that

ffiffiffi
r

p ¼ 1��

1þ�
;

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

p ¼ 2
ffiffiffiffi
�

p
1þ�

: (43)

Using the formulas in [29], Eqs. (8.126.1) and (8.126.3):

K

�
1��

1þ�

�
¼ 1þ�

2
K

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q �
;

K

�
2

ffiffiffiffi
�

p
1þ�

�
¼ ð1þ�ÞKð�Þ;

(44)

we then reproduce Eq. (20) of [12].
To calculate the Lüscher term, we decompose

X�ð!1; !2Þ ¼ X�
cl ð!1; !2Þ þ Y�

q ð!1; !2Þ; (45)

where X
�
cl is harmonic with the boundary value (13), so Y

�
q

has the mode expansion

Y
�
q ð!1; !2Þ ¼

X
m;n

�
�
mn sin

�m!1

R
sin

�n!2

T
: (46)

Now the Lüscher term results from the determinant coming
from the path integral over Y

�
q .

Using the asymptotes

Kð ffiffiffi
r

p Þ!r!1 1

2
ln

16

1� r
; Kð ffiffiffiffiffiffiffiffiffiffiffiffi

1� r
p Þ!r!1�

2
; (47)

it is now clear that each set of modes results in the Lüscher
term

�T

24R
¼ 1

24
ln
16s

t
(48)

for T � R and r ¼ r� ¼ s=ðsþ tÞ. There are (d� 2) such
sets, so their contribution to the intercept of the Regge
trajectory is

�ð0Þ ¼ d� 2

24
: (49)

It is described in the next section how to get the same result
within the framework of the effective string theory with the
action (1).

C. The effective string theory calculation

As was already mentioned in Sect. II A, the way the
Lüscher term emerges for the UHP parametrization differs
from the one for the worldsheet parametrization, described
in the previous Subsection. It comes now from the classical
part X�

cl in the decomposition (8), rather than from the

quantum part Y�
q . How this happens for plane contours is

described in the original paper [23], where the determinant
of the Laplace operator in a domain given by the conformal
mapwðzÞwas represented by the integral in the exponent in
Eq. (37). For this reason the consideration of this Section is
similar to that of Ref. [28] for the contribution of the
Liouville field in the Polyakov formulation. This is because
the Liouville field can be simply substituted to the given
order of the semiclassical expansion by its value given by
the induced metric (2).
The conformal symmetry that is maintained in noncrit-

ical dimension is

�X� ¼ 	ð!Þ@X� � 
a2

2
@2	ð!Þ �@X�

@X � �@X
: (50)

It transforms X� nonlinearly—the same as for the closed
string—and the corresponding energy-momentum tensor is

Tzz ¼ � 1

2a2
@X � @Xþ 


2

@3X � �@X

@X � �@X (51)

with K ¼ 1=4�a2, so that 2a2 ¼ �0. Expanding around
the classical solution

X1
cl ¼ !1

ffiffiffiffiffiffiffi
RT

p
; X2

cl ¼ !2

ffiffiffiffiffiffiffi
RT

p
; X0

cl ¼ X3
cl ¼ 0

(52)

or

X
�
cl ¼ ðe�!þ �e� �!Þ ffiffiffiffiffiffiffi

RT
p

(53)

with

e� ¼
�
0;
1

2
;� i

2
; 0

�
; (54)

where ! takes values inside a
ffiffiffiffiffiffiffiffiffiffi
R=T

p � ffiffiffiffiffiffiffiffiffiffi
T=R

p
rectangle,

we obtain

Tzz ¼ �
ffiffiffiffiffiffiffi
RT

p
a2

e � @Yq � 1

2a2
@Yq � @Yq þ 
ffiffiffiffiffiffiffi

RT
p �e � @3Yq:

(55)

Using the Dirichlet Green function for UHP

Gðz; �Þ ¼ � 1

2�K
ln

��������z� �

z� ��

��������; (56)

we get for the rectangle by the (inverse) conformal
mapping (39):

Gð!;�Þ ¼ � 1

2�K
ln

��������sn2 !
2 � sn2 �

2

sn2 !
2 � sn2 �

2

�������� (57)
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with sn� � snð�; ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

p Þ being the Jacobi elliptic
function.

Equations (53) and (55) look like those of Ref. [6] for a

winding closed string with R replaced by
ffiffiffiffiffiffiffi
RT

p
, so we

repeat the computation of the central charge generated by
the conformal transformation (50) to obtain analogously

hTzzð!ÞTzzð�ÞiY ¼ dþ 12


2ð!��Þ4 þOðð!��Þ�2Þ; (58)

where the averaging over the fluctuating field Y�
q is given

by the Green function (57). This fixes


 ¼ 26� d

12
(59)

in our case of an open string as well.
Similar formulas can be obtained for the UHP parame-

trization, when !ðzÞ in Eq. (53) is given by mapping (39).
Now it should be noted that the induced metric

e’ � 2@Xcl � �@Xcl ¼ 2RT
s42s31Q

4
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx� siÞ2 þ y2
p (60)

is not constant, as it is for the worldsheet parametrization.
For a general choice of s1, s2, s3, s4 we have

@2Xcl � �@2Xcl

@Xcl � �@Xcl

¼ @’ �@’þ @ �@’ (61)

and

Z 1

0
dy

Z þ1

�1
dxð@a’Þ2 ¼ ��

2

X4
i;j¼1

ln½ðsi � sjÞ2

þ ð"i þ "jÞ2�: (62)

For ðsi � si�1Þ � "i; "i�1 this gives

ðd� 26Þ
96�

Z 1

0
dy

Z þ1

�1
dxð@a’Þ2

¼ �ðd� 26Þ
96

ln½16s243s242s241s232s231s221"1"2"3"4�

¼ � ðd� 26Þ
24

ln½2s43s32s21s41"� (63)

provided

"i ¼ ðsiþ1 � siÞðsi � si�1Þ
ðsiþ1 � si�1Þ " (64)

as is prescribed by the covariance, where " is an invariant
cutoff of the dimension of length. Equation (63) now
reproduces the Lüscher term as r ! 1:

ðd� 26Þ
96�

Z 1

0
dy

Z þ1

�1
dxð@a’Þ2

! �ðd� 26Þ
24

ln½2ð1� rÞ"�; (65)

in view of Eqs. (42) and (47).

Actually, this calculation repeats the one of Ref. [28] for
the Polyakov string because there is apparently no differ-
ence between the induced and intrinsic metrics through this
order of the semiclassical expansion. Alternatively, in the
worldsheet parametrization the Lüscher term comes from
the determinant resulting from the path integration over
Y�
q . As was originally pointed out in Ref. [23], this deter-

minant equals precisely the left-hand side of Eq. (65). We
have thus illustrated the statement already made in
Sect. II A concerning the difference between the UHP
and worldsheet parametrizations.
We are now in a position to compute a semiclassical

correction to the Regge trajectory of the effective string
theory in d < 26. Using Eq. (48) and substituting �ð0Þ ¼ 1
for the intercept of the critical string, we obtain

�ð0Þ ¼ 1þ d� 26

24
¼ d� 2

24
; (66)

reproducing Eq. (49). It is worth emphasizing that the
expansion of the effective string theory goes for the scat-
tering amplitude in the parameter

�
ln

1

1� r

��1 ¼
�
ln
s

t

��1
; (67)

like it was R�1 in Ref. [6]. Therefore, the expansion is
justified by the Regge kinematical regime and we assume
that the semiclassical Regge trajectory (5) may turn out to
be exact.

IV. GENERALIZATION TO �p2
i � 0

If �p2
i � 0, we have to keep the term with j ¼ i in the

above equations. Then Eq. (16) is replaced by

�X
j�i

2�pi � �pj

si � sj
þ �

X
j

�p2
j

�
@Gðsj; sjÞ

@si

�
¼ 0; (68)

where

hGðsj; sjÞi ¼
R
DdiffsGðsj; sjÞR

Ddiffs
(69)

with the reparametrization path integral going over func-
tions obeying sðtiÞ ¼ si which are zero modes of the
Douglas minimization.
Substituting

hGðsj; sjÞi ¼ 1

�
ln

ðsjþ1 � sj�1Þ
ðsjþ1 � sjÞðsj � sj�1Þ" ; (70)

that corresponds to the Lovelace choice as is discussed in
Refs. [14,15], we get
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�X
j�i

2�pi � �pj

si � sj
þ�p2

i�1

�
1

ðsi � si�2Þ �
1

ðsi � si�1Þ
	

��p2
i

�
1

ðsi � si�1Þ �
1

ðsiþ1 � siÞ
	

þ�p2
iþ1

�
1

ðsiþ1 � siÞ �
1

ðsiþ2 � siÞ
	
¼ 0: (71)

For M ¼ 4 this results in the same formula (17) with �p2
i

included in the definition of the Mandelstam variables.
For �p2

i � 0 the term

1

�2K2

X
i

�p2
i y

2

½ðx� siÞ2 þ y2�2 (72)

appears additionally in the induced metric. It is more
singular at the boundary than (33), resulting in

e’ðs;0Þ=2 ¼ X
i

ffiffiffiffiffiffiffiffiffi
�p2

i

q
�K

"i
½ðs� siÞ2 þ "2i �

! X
i

ffiffiffiffiffiffiffiffiffi
�p2

i

q
K

�ðs� siÞ: (73)

This reproduces
ffiffiffiffiffiffiffiffiffi
�p2

i

q
=K for the lengths of the polygon

edges.
It still has to be verified, however, whether or not the

conformal gauge is maintained by this construction for
�p2

i � 0.

V. APPLICATION TO QCD

As is already mentioned, the QCD string is stretched
between quarks, when they are separated by large dis-
tances. The results of Refs. [9,14], which state that large
loops dominate the sum-over-path representation of QCD
scattering amplitudes in the Regge kinematical regime,
assume therefore an applicability of the effective string
theory ideology in this case.

To illustrate this issue, we start from the representation
of M-particle scattering amplitudes in large-N QCD
through the Wilson loops:

Að�p1; . . . ;�pMÞ /
Z 1

0
dTT M�1e�mT

�
Z þ1

�1
dtM�1

1þ t2M�1

YM�2

i¼1

Z tiþ1

�1
dti

1þ t2i

�
Z
x�ð�1Þ¼x�ðþ1Þ¼0

Dx�ðtÞei
R

d� _xðtÞ�pðtÞJ½xðtÞ�W½xðtÞ�;

(74)

where p�ðtÞ is the piecewise constant momentum-space
loop (13). For spinor quarks and scalar operators, the
weight for the path integration in Eq. (74) is

J½xðtÞ� ¼
Z

Dk�ðtÞspPei
R

dt½ _xðtÞ�kðtÞ�T ��kðtÞ=ð1þt2Þ�; (75)

where sp and the path ordering refer to � matrices. In
Eq. (74) W½xðtÞ� is the Wilson loop in pure Yang–Mills
theory at largeN (or quenched),m is the quark mass andT
is the proper time. For finite N, correlators of several
Wilson loops would have to be taken into account.
For the critical string, when Eqs. (3) and (4) are expected

to hold for large contours, the path integral over x�ðtÞ in
Eq. (74) is Gaussian and can be done as is outlined in
Refs. [9,14]. It is saturated in that case by the classical
trajectory

x
�
clðtÞ ¼ i�0 Z þ1

�1
dt0 _p�ðt0Þ ln½sðtÞ � sðt0Þ�2

¼ i�0X
j

�p�
j ln½sðtÞ � sj�2; (76)

which is T-dual in the sense of Ref. [19] to that given by
Eq. (13), giving the same magnitude of the minimal area. It
is purely imaginary as this often happens for a saddle point
of integrals with an oscillating integrand. Doing the inte-
gral over x�ðtÞ, we finally obtain

Að�p1; . . . ;�pMÞ /
Z 1

0
dTT M�1e�mT

�
Z þ1

�1
dtM�1

1þ t2M�1

YM�2

i¼1

Z tiþ1

�1
dti

1þ t2i

�
Z

Dk�ðtÞspPe�iT
R

dt��kðtÞ=ð1þt2Þ

�W½x�ðtÞ ¼ 1

K
ðpðtÞ þ kðtÞÞ�: (77)

For d 
 26 we substitute the Wilson loop in the form of
the disk amplitude for the effective string theory with the
action (1):

W½xð�Þ� ¼
Z

DdifftðsÞ
Z
X�ðx¼s;0Þ¼x�ðtðsÞÞ

DX�ðx; yÞe�KSeff ;

(78)

which reproduces Eqs. (3) and (4) in d ¼ 26, when Seff is
quadratic in X�. The path integral over x�ðtÞ in Eq. (74)
can also be done for d < 26 within the semiclassical ex-
pansion. Equation (76) is then modified in the semiclassi-
cal approximation as

x�ðtÞ ¼ x�clðtÞþ�0Z þ1

�1
dt0 ln½sðtÞ� sðt0Þ�2 �Sð2Þeff

�x�ðt0Þ ; (79)

where Sð2Þeff stands for the second term on the right-hand side

of Eq. (1). Equation (77) remains unchanged with this
accuracy. Details of the derivation are described in
Appendix B.
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As distinct from its stringy counterpart (14), the right-
hand side of Eq. (77) has the additional path integration
over k�ðtÞ, which emerges from Feynman’s disentangling
of the � matrices. For small m and/or very large M, the
integral over T in Eq. (74) is dominated by large T �
ðM� 1Þ=m. Then typical values of k� 1=T are essential
for large T in the path integral over k�ðtÞ, and we can
disregard kðtÞ in the argument ofW in Eq. (77), so the path
integral over k�ðtÞ factorizes. We finally obtain [9] from
Eq. (74) the product of the string scattering amplitude
A½pðtÞ� times factors which do not depend on p. The
substitution of the effective string theory representation
(78) into Eq. (74) for d < 26 results in a more complicated
path integral over x�ðtÞwhich is, however, Gaussian within
the semiclassical expansion, reproducing again Eq. (77).

Thus, the scattering amplitude Aðf�pigÞ coincides for
the ansatz (78) with W½x�ðtÞ�, where x

�
� ðtÞ is given by

Eq. (13) and the reparametrization path integral goes
over the functions sðtÞ, obeying sðtiÞ ¼ ti. Therefore,
Eq. (77) reproduces for piecewise constant p�ðtÞ the
Regge behavior of (off-shell) scattering amplitudes in the
effective string theory as m ! 0 and/or M ! 1. Since we
are dealing with the disk amplitude, associated with planar
diagrams, we identify this Regge trajectory with the quark-
antiquark Regge trajectory2 in large N QCD and thus
conclude that it is linear in the semiclassical approxima-
tion, while the actual intercept can be larger than the value
given by Eq. (5) owing to the breaking of the chiral
symmetry, as is pointed out in Ref. [14]. The linear trajec-
tory seems to disagree with the old results [26,30], where
the path integral over the Liouville field was Gaussian with
either Neumann or Dirichlet boundary conditions, so zero
modes associated with reparametrizations were not taken
into account, as is done now. To my understanding, this
emphasizes the very important role played by the repara-
metrization path integral.

VI. CONCLUSION

We have shown in this paper that the Regge asymptote
of scattering amplitudes can be obtained within the ideol-
ogy of an effective string theory and is not affected by short
distances. For this reason, these results are also applicable
to QCD string which is generically not the Nambu–Goto
one, but behaves like it at large distances. The expansion
goes around a long-string configuration and has the mean-
ing of a semiclassical expansion, whose parameter
1= lnðs=tÞ is small in the Regge kinematical regime of
s � �t.

A linear Regge trajectory (5) of a noncritical string
had been vastly discussed in the literature.3 The intercept

ðd� 2Þ=24 is precisely the value which follows from the
spectrum [8]. This result is most probably consistent be-
cause the anomaly emerging in the Virasoro quantization
vanishes for long strings, as was pointed out in Ref. [5,8].
It is interesting to discuss the relation between our

results on the Regge behavior of QCD scattering ampli-
tudes in the framework of the effective string theory and
similar known results on the Pomeron [32,33] and the
Reggeon [34] (the one we consider) trajectories in the
framework of the AdS/CFT correspondence in a confining
background. While the minimal surfaces describing the
classical part are constructed in both cases for a flat metric,
they are apparently different because Refs. [32–34] use an
impact-parameter representation of the scattering process
and this paper deals with polygonal loops in momentum
space. An advantage of our approach is the existence of a
systematic expansion in the parameter (67). The way we
have calculated the intercept in Sect. III B via semiclassical
fluctuations of the minimal surface (given by the Lüscher
term) is pretty much similar to the one in Refs. [33,34]
except for the difference in the number of fluctuating
transverse degrees of freedom, that equals 2 in our case
for d ¼ 4 from the consistency of the effective string
theory in hand, which is also favored by the lattice simu-
lations [2,3] as was already mentioned in the Introduction.
This issue can be further clarified by extending our calcu-
lations to an annulus amplitude which is to be associated
with the Pomeron exchange.
It is also worth mentioning that a semiclassical calcu-

lation of the intercept in the framework of the effective
string theory, which is close spiritually to our calculation,
was performed in Ref. [35] from the spectrum of a rotating
string. We emphasize once again that the consideration of
this paper refers to the scattering domain of t < 0 and deals
with the scattering amplitudes.
As distinct from the Polyakov formulation, where the

intrinsic metric is treated as an independent variable, in the
effective string theory theworldsheetmetric is induced. The
path integration now goes only over the embedding-space
coordinate X� and reparametrizations of the boundary con-
tour. The former path integral turns out to be Gaussian
within the semiclassical expansion, while the latter one
has a well-defined measure and has been recently studied
both analytically [9] and numerically [13]. Therefore, the
issue of integrating over the Liouville field in the bulk,
which was the subject of Ref. [36], does not emerge. It
would be very interesting to calculate [37] the string sus-
ceptibility �str for large areas within the effective string
theory approach and to compare with the existing results.
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APPENDIX A: PROOF OF THE CONFORMAL
GAUGE FOR DOUGLAS’ MINIMIZATION

Let us show that X�ðx; yÞ obeys the conformal gauge

@xX � @yX ¼ 0; (A1a)

@xX � @xX ¼ @yX � @yX; (A1b)

if the Douglas minimization (9) is imposed on sðtÞ for the
given boundary contour x�ðtÞ.
We substitute

@y
y

ðx� sÞ2 þ y2
¼ �@x

ðx� sÞ
ðx� sÞ2 þ y2

; (A2)

integrate by parts and use the following two identities

1

ðs1 � s2Þ



1

½ðx� s1Þ2 þ y2� �
1

½ðx� s2Þ2 þ y2�
�
¼ ð2x� s1 � s2Þ

½ðx� s1Þ2 þ y2�½ðx� s2Þ2 þ y2� ; (A3a)

1

ðs1 � s2Þ

 ðx� s2Þ
½ðx� s1Þ2 þ y2� �

ðx� s1Þ
½ðx� s2Þ2 þ y2�

�
¼ y2 þ ðx� s1Þ2 þ ðx� s2Þ2 þ ðx� s1Þðx� s2Þ

½ðx� s1Þ2 þ y2�½ðx� s2Þ2 þ y2� (A3b)

for Eqs. (A1a) and (A1b), respectively. They are then satisfied if the minimization Eq. (9) is fulfilled.
For Eq. (A1a) we have

@xX � @yX ¼�
Z dt1

�

dt2
�

ðx� sðt1ÞÞy
½ðx� sðt1ÞÞ2 þ y2�½ðx� sðt2ÞÞ2 þ y2� ¼ �

Z dt1
�

dt2
�

ð2x� sðt1Þ � sðt2ÞÞy
2½ðx� sðt1ÞÞ2 þ y2�½ðx� sðt2ÞÞ2 þ y2� ¼ 0

(A4)

in view of Eq. (A3a) and (9).
For Eq. (A1b) we have

@xX � @xX � @yX � @yX ¼
Z dt1

�

dt2
�

ðx� sðt1ÞÞðx� sðt2ÞÞ � y2

½ðx� sðt1ÞÞ2 þ y2�½ðx� sðt2ÞÞ2 þ y2�
¼

Z dt1
�

dt2
�

ðx� sðt1ÞÞðx� sðt2ÞÞ þ y2 þ ðx� sðt1ÞÞ2 þ ðx� sðt2ÞÞ2
½ðx� sðt1ÞÞ2 þ y2�½ðx� sðt2ÞÞ2 þ y2� ¼ 0 (A5)

in view of Eq. (A3b) and (9).

APPENDIX B: DERIVATION OF EQ. (77)

We collect in this Appendix some formulas which are
used in the derivation of Eq. (77).

First of all, let us explain how to understand the varia-

tional derivative in Eq. (79). The point is that Sð2Þeff is a

functional of the bulk variable X�ðx; yÞ, while x�ðtðsÞÞ is
its boundary value. At the classical level, Eq. (10) holds
and we have

�X�
cl ðx; yÞ

�xðtÞ ¼ �
�

_sðtÞ
�

y

ðx� sðtÞÞ2 þ y2
; (B1)

which reproduces the standard delta function as y ! 0.
To derive Eq. (77), it is convenient to use the short-hand

notation

G � fðtÞ �
Z

dt0GðsðtÞ � sðt0ÞÞfðt0Þ: (B2)

Then, for example, Eq. (76) takes the form

x
�
clðtÞ ¼ � i

K
G � _p�ðtÞ (B3)

with

GðsÞ ¼ � 1

�
lnjsj: (B4)

For the exponent in the path integral we have

ip� � _x� � Seff½X� (B5)

whose Euler–Lagrange equation including a semiclassical
correction reads

� i _p� � KG�1 � x� � �Sð2Þeff

�x�
¼ 0; (B6)

where the inverse to G is

G�1ðsðtÞ � sðt0ÞÞ ¼ d

dt

d

dt0
GðsðtÞ � sðt0ÞÞ: (B7)

An iterative solution to Eq. (B6) is given by Eq. (79).
Substituting this into the exponent (B5), we finally obtain
the given order of the semiclassical expansion

ðB5Þ ¼ � 1

2K
_p� �G � _p� � Sð2Þeff½Xcl�; (B8)

where X�
cl is reconstructed from (76) by Eq. (10).
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The last step in proving Eq. (77) is to note that
X
�
cl , reconstructed from the boundary value (76), can

be replaced by (21), reconstructed from the boundary

value (13). The point is that ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx� siÞ2 þ y2

p
and

arctan½ðx� siÞ=y� are real and imaginary parts of an

analytic function lnðz� siÞ and obey the Cauchy–
Riemann equations. Therefore, Seff does not change under
such a replacement. This is similar to the T duality trans-
formation in Ref. [19].
We have thus proved Eq. (77).
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