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A two-flavor color-superconducting Nambu–Jona-Lasinio model is introduced at finite temperature T,

chemical potential �, and in the presence of a constant magnetic field ~eB. The effect of ðT;�; ~eBÞ on the

formation of chiral- and color-symmetry-breaking condensates is studied. The complete phase portrait

of the model in T ��, �� ~eB, and T � ~eB phase spaces for various fixed ~eB, T, and � is explored.

A threshold magnetic field ~eBt ’ 0:5 GeV2 is found, above which the dynamics of the system are solely

dominated by the lowest Landau level, and the effects of T and � are partly compensated by ~eB.
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I. INTRODUCTION

Recently, the study of the properties of quark matter in
the presence of strong uniform magnetic fields has at-
tracted much attention. Possible effects caused by strong
magnetic fields include magnetic catalysis [1,2], modifica-
tion of the nature of electroweak phase transition [3],
spontaneous creation of axial currents [4], formation of
�0 domain walls [5] and chiral density waves [6], chiral
magnetic effect [7,8], and last but not least the influence
on possible color-superconducting phases [9–16]. In this
paper, we will focus on the magnetic catalysis and its
possible effects on the phase diagram of a magnetized
two-flavor color-superconducting (2SC) Nambu–Jona-
Lasinio (NJL) model at finite temperature and chemical
potential.1 In particular, the dependence of the included
meson and diquark masses on thermodynamic parameters,
and possible interplay between these parameters on the
formation of meson and diquark condensates and on the
nature of phase transition, will be scrutinized.

At zero temperature, it is known that strong magnetic
fields enhance the production of chiral and diquark con-
densates, albeit through different mechanisms, as it is
described in [11]. Whereas magnetic catalysis of chiral
symmetry breaking [1] is mainly responsible for dynamical
mass generation and enhances the production of chiral
condensates by increasing the particle-antiparticle interac-
tion strength, a certain modification in the density of states
of charged quarks near the Fermi surface, depending on the
external magnetic field, reinforces the pairing of charged
quarks and is made responsible for the enhancement of
diquark production by a penetrating strong magnetic field
[11]. In other words, in contrast to the effect of magnetic
catalysis of chiral symmetry breaking, which is essentially
based on a dimensional reduction of the dynamics of
fermions from D ¼ 3þ 1 to D ¼ 1þ 1 dimensions to

the regime of lowest Landau level (LLL) dominance [1],
the pairing mechanism by color superconductivity, involv-
ing the charged quarks near the Fermi surface, is already
D ¼ 1þ 1-dimensional, and, therefore, the external mag-
netic field does not lead to any further dimensional reduc-
tion [11]. It is the goal of the present paper to explore the
possible effects of finite T and� on the above mechanisms
of chiral and diquark production in the presence of strong
magnetic fields. We will show that, in our setup, a certain
threshold magnetic field exists, above which the dynamics
of the system are solely dominated by the lowest Landau
level, and the effects of T and � are partly compensated
by very large ~eB. The largest observed magnetic field
in nature is �1012–1013 Gau� in pulsars and up to
�1014–1015 Gau� on the surface of somemagnetars, where
the inner field is estimated to be of order�1018–1020 Gau�
[22]. In the early Universe, magnetic fields of order
�1047 Gau� may have been produced at the beginning of
inflation [23]. Superconductive cosmic strings, if they
exist, may have magnetic fields up to �1047–1048 Gau�
in their vicinities [24]. In [25], it is shown that ‘‘the
maximum value of magnetic field that delimits the range
of values admitted without revising QED’’ is of order
�1042 Gau�. There is also evidence for strong magnetic-
field creation in noncentral heavy-ion experiments [26].
The early estimate of the magnetic field for the RHIC
energy was made in [27], where it was shown that the
magnitude of the magnetic field for an earlier stage of
noncentral Au-Au collision at energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV

and impact parameter �4 fm is about eB ’ 1:3m2
� ’

0:025 GeV2, which corresponds to B ’ 4:3� 1018 Gau�.2

Using a microscopic transport model, the authors in [28]
estimate the lowest bound of the maximal magnetic-field
strength at the LHC energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 4:5 TeV, with the

same impact parameter, to be eB ’ 15m2
� ’ 0:3 GeV2,

which is equivalent to B ’ 5� 1019 Gau�. Numerically,
it is not a priori clear whether these amounts of magnetic
fields are large enough to justify the LLL approximation,*fayyazbaksh@physics.sharif.ir
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1Magnetic catalysis has various applications in cosmology

[17], condensed matter physics [18], and particle physics
[19–21].

2Here, m� ¼ 140 MeV. Moreover, eB ¼ 1 GeV2 corresponds
to B ¼ 1:69� 1020 Gau�.
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as it is done in [1] to demonstrate the magnetic catalysis of
chiral symmetry breaking and in [11] to demonstrate the
effect of strong magnetic fields on color superconductivity.

We have tried to answer this question, among others, in
[16], where a color-neutral and dense 2SC-NJL model has
been introduced in a (rotated) constant magnetic field at
zero temperature. To do this, first the dependence of chiral-
and color-symmetry-breaking condensates on the chemical
potential� and the rotated magnetic field ~eB is determined
analytically in a LLL approximation. Then, the meson and
diquark masses are computed numerically for arbitrary
magnetic fields. Comparing these analytical and numerical
data, we have found a certain threshold magnetic field
~eBt ’ 0:45–0:5 GeV2, corresponding to B ’ 8–8:5�
1019 Gau�, above which the system turns out to be domi-
nated by LLL. Below ~eBt, the chiral and diquark mass gaps
oscillate with the external magnetic field. These oscilla-
tions are the results of the well-known van Alphen-de Haas
effect [29], which occurs whenever Landau levels pass the
quark Fermi surface. They are also observed in [21,30],
where the dependence of chiral-symmetry-breaking mass
gaps on constant magnetic fields is explored. Similar os-
cillations are also perceived in [14], where the diquark
mass gap and the magnetization corresponding to the
superconducting magnetized color-flavor locked (CFL)
phase are determined as a function of external magnetic
fields. For ~eB > ~eBt, the system enters a ‘‘linear regime,’’
where the mass gaps and the magnetization depend linearly
on the external magnetic field. In this regime, where the
system is believed to be solely affected by the dynamics of
the fermions in the LLL, the numerical data coincide with
the analytical results (see [16] for more detail). As con-
cerns the phase diagram of the model introduced in [16],
it is shown that a first-order phase transition occurs
between the chiral symmetry breaking (�SB) and the
color symmetry breaking (CSC) phases at T ¼ 0 and
�� 350–450 MeV. This transition is, then, followed by
a second-order phase transition between the CSC phase
into the normal quark matter.3

In the present paper, the same magnetized 2SC model
will be considered at finite temperature. We are, in par-
ticular, interested in the additional effects of finite tem-
perature, and will focus on the possible interplay between
T, �, and ~eB on the formation of chiral- and color-
symmetry-breaking condensates and on the nature of
phase transitions. Our results may be relevant for the
physics of heavy-ion collisions where, recently, the ques-

tion of the accessibility of color-superconducting quark
matter phases is pointed out [32]. The authors of [32] use
a Polyakov-NJL model at finite temperature and density
and present the corresponding QCD-phase diagram includ-
ing, among others, mixed-phase regions of the first-order
transition of 2SC-CFL quark matter and the second-order
2SC-normal phase transition. From this phase diagram,
they conclude that the color-superconductor phase is
already accessible at the present nuclotron-M energies
4<E< 8 AGeV, and that the possible transition from
2SC to normal quark matter becomes attainable in the
planned FAIR-CBM and NICA-MPD experiments at
2<E< 40 AGeV. In this paper, the additional effect of
constant magnetic fields that is believed to be created in
noncentral heavy-ion collisions will be explored from a
purely theoretical point of view. A complete phenomeno-
logical answer to the question of the accessibility of color-
superconducting phases in heavy-ion collisions is out of
the scope of this paper and will be postponed to future
publications.
The organization of the paper is as follows: In Sec. II, we

introduce our model for the hot magnetized two-flavor
color-superconducting quark matter and determine the
corresponding thermodynamic potential. In Sec. III, our
numerical results on the dependence of the meson and
diquark gaps on chemical potential, magnetic field, and
temperature will be presented in Secs. III A 1–III A 3. In
Sec. III B, the complete T ��, T � ~eB, and�� ~eB phase
portraits of the system at various fixed ~eB,�, and T will be
illustrated. The above-mentioned threshold magnetic field,
~eBt, will be determined by comparing the analytical and
the numerical results, corresponding to the second-order
critical lines of the transition from the �SB and CSC
phases to the normal phase, in a T �� plane for ~eB ¼
0:5; 0:7 GeV2 (Sec. III B 1) and in a T � ~eB plane for
� ¼ 0 MeV (Sec. III B 2). The details of the analytical
computations, which lead to second-order critical surfaces
of these transitions in a ðT;�; ~eBÞ phase space, will be
presented in the Appendix. Section IV is devoted to con-
cluding remarks.

II. MAGNETIZED 2SC QUARK MATTER
AT FINITE T AND �

In Sec. II A, we briefly review our results from [16] and
introduce a two-flavor NJL model, including the meson
and diquark condensates at finite temperature and density
and in the presence of a constant and uniform (rotated)
magnetic field. In Sec. II B, the corresponding one-loop
thermodynamic potential will be determined in a mean-
field approximation.

A. The model

The Lagrangian density of a two-flavor gauged NJL
model is given by

3As it is known from [31], in the regime of low temperature
and large chemical potential, the 2SC phase goes over into the
three-flavor CFL phase. In a two-flavor model, however, where
no CFL phase can be built, only a simple transition from the 2SC
to the normal phase is assumed to exist. The same assumption is
also made in [16]. As we will note in Sec. III, our numerical
results for low temperature and large chemical potential will be
only of theoretical nature.
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Lf ¼ �c ðxÞ½i��ð@� � ieQA� � igT8G8
�Þ þ��0�c ðxÞ

þGSf½ �c ðxÞc ðxÞ�2 þ ½ �c ðxÞi�5 ~�c ðxÞ�2g
þGDf½i �c CðxÞ"f�3c�5c ðxÞ�½i �c ðxÞ"f�3c�5c

CðxÞ�g:
(2.1)

Here, c C ¼ C �c T and �c C ¼ c TC are charge-conjugate
spinors, C ¼ i�2�0 is the conjugation matrix,
and ~� ¼ ð�1; �2; �3Þ are Pauli matrices. Moreover, ð"fÞij
and ð�3cÞab � ð�cÞab3 are antisymmetric matrices in color
and flavor spaces, respectively. For a theory with two
quark flavors and three color degrees of freedom, the
flavor indices i; j ¼ ð1; 2Þ ¼ ðu; dÞ, and the color indices
a; b ¼ ð1; 2; 3Þ ¼ ðr; g; bÞ. The quarks are taken to be
massless mu ¼ md ¼ 0. The quark chemical potential
that is responsible for the nonzero baryonic density of

quark matter is denoted by �. Here, T8 ¼ �8

2 , where �8 ¼
1ffiffi
3

p diagð1; 1;�2Þ, the 8th Gell-Mann � matrix. The scalar

and diquark couplings are denoted by GS and GD, respec-
tively. The charge matrix Q � Qf � 1c, where Qf �
diagð2=3;�1=3Þ is the fermionic charge matrix coupled
to the Uð1Þ gauge field A�. The same setup, with an addi-

tional color-chemical potential �8 imposing the color neu-
trality of the theory, is also used in [16] to study the effect
of a magnetic field on quark matter under extreme con-
ditions. Following the same steps as in [16] to determine
the Lagrangian density containing the chiral and diquark
condensates in an appropriate Nambu-Gorkov form (NG),
we define first the mesonic fields

� ¼ �2GSð �c c Þ and ~� ¼ �2GSð �c i�5 ~�c Þ; (2.2)

as well as the diquark fields

� ¼ �2GDði �c C"f�
3
c�5c Þ and

�� ¼ �2GDði �c "f�
3
c�5c

CÞ: (2.3)

Combining, then, the gauge fields A� and G8
� using the

‘‘rotated’’ charge operator ~Q ¼ Qf � 1c � 1f � ð �8

2
ffiffi
3

p Þc, the
rotated massless Uemð1Þ field ~A� ¼ A� cos	�G8

� sin	,

as well as the massive in-medium 8th gluon field ~G8
� ¼

A� sin	þG8
� cos	, can be derived (see [16] for more

details). Replacing ~A� with an external gauge field ~Aext
� ¼

ð0; 0; Bx; 0Þ in the Landau gauge, a constant rotated back-
ground Uð1Þ magnetic field directed in the third

direction ~B ¼ Be3 is induced. Neglecting, then, the mas-

sive gauge boson ~G8
�, the total modified bosonized

Lagrangian density, ~L ¼ ~Lk þ ~Lf, in the presence of a

uniform magnetic field, arises. It consists of a kinetic
term

~L k � �
�
�2

4GS

þ j�j2
4GD

þ B2

2

�
(2.4)

and an interaction term

~Lf ¼ �c ðxÞ½i��ð@� � i~e ~Q ~Aext
� Þ þ��0 � ��c ðxÞ

� 1
2f��½i �c CðxÞ"f�3c�5c ðxÞ�

þ�½i �c ðxÞ"f�3c�5c
CðxÞ�g: (2.5)

Assuming that the vacuum of the system is characterized
by h�i � 0 and h ~�i ¼ 0, we have neglected the ~� mesons.
Moreover, using the definition of the rotated charge opera-

tor ~Q in a six-dimensional flavor-color representation
ður; ug; ub; dr; dg; dbÞ, the rotated ~q charges of different

quarks, in units of ~e ¼ e cos	, are given by

quarks ur ug ub dr dg db

~q þ 1
2 þ 1

2 1 � 1
2 � 1

2 0

To bring the above Lagrangian density ~Lf in a more
appropriate Nambu-Gorkov form, we introduce, at this
stage, the rotated charge projectors �~q,

�0 ¼ diagð0; 0; 0; 0; 0; 1Þ;
�1 ¼ diagð0; 0; 1; 0; 0; 0Þ;
�þð1=2Þ ¼ diagð1; 1; 0; 0; 0; 0Þ;
��ð1=2Þ ¼ diagð0; 0; 0; 1; 1; 0Þ;

(2.6)

that satisfy ~Q�~q ¼ ~q�~q. The Nambu-Gorkov bispinors
are, then, defined by

�~q ¼ c ~q

c C�~q

 !
;

where c ~qðxÞ � �~qc ðxÞ. In terms of ��~q and �~q, the
Lagrangian density ~Lf from (2.5) in the Nambu-Gorkov
form reads (for more details see [16]):

~L f ¼ 1

2

X
~q2f0;1;�ð1=2Þg

��~qðxÞS~q�~qðxÞ: (2.7)

For ~q 2 f0; 1g, S~q is given by

S ~q2f0;1g �
½Gþ

ð~qÞ��1 0

0 ½G�
ð~qÞ��1

 !
; (2.8)

and for ~q 2 f� 1
2 ;þ 1

2g, it reads

S ~q2f�ð1=2Þ;þð1=2Þg �
½Gþ

ð~qÞ��1 �
��~q

�
0�~q ½G�
ð~qÞ��1

 !
: (2.9)

Here,

½G�
ð~qÞ��1 � ��ði@� þ ~e ~q ~A� � �����0Þ; (2.10)

and 
ij;ab
�
 � i��ij2 �

ab
2 �5

�
, as well as 
0 � �0

y�0 ¼

i���2�2�
5. In the next section, the Lagrangian density

~L, with ~Lk in (2.4) and ~Lf in (2.7)–(2.10), will be used
to determine the thermodynamic potential of this model in
the mean-field approximation.
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B. Thermodynamic potential

The quantum effective action of the theory, �eff , is
defined by integrating out the fermionic degrees of free-
dom using the path integral

ei�eff ½�;�;��� ¼
Z

DcD �c exp

�
i
Z

d4x ~L
�
: (2.11)

At the one-loop level, it consists of two parts: the tree-level

and the one-loop effective action, �ð0Þ
eff and �ð1Þ

eff . In the

mean-field approximation, where the order parameters
� � h�ðxÞi, � � h�ðxÞi, and �� � h��ðxÞi are constant,
the tree-level part of �eff is given by

�ð0Þ
eff½�;�;��;B� ¼ �V

�
�2

4GS

þ j�j2
4GD

þ B2

2

�
: (2.12)

Here, V is a four-dimensional space-time volume, and
j�j2 ¼ ���. The one-loop effective action is given by

�ð1Þ
eff½�;�;��;B� ¼ � i

2

X
~q

TrNGcfsx ln½S�1
~q �; (2.13)

where S~q is defined in (2.8)–(2.10). In (2.13), the trace

operation includes, apart from a two-dimensional trace in
the NG space , a trace over color (c), flavor (f), and
spinor (s) degrees of freedom, as well as a trace over
a four-dimensional space-time coordinate (x). After per-
forming the trace operation over the NG, c, f, and s using
the method described in [16], we arrive at

~�
ð1Þ
effð �pÞ ¼

X

2fr;g;bg

~�ð1Þ=

eff ð �pÞ; (2.14)

which includes the contribution of the blue (b), red (r), and
green (g) quarks

~�ð1Þ=b
eff ð �pÞ
¼�i

X
~q2f0;1g

lndetx½fðE~qþ�Þ2�p2
0gfðE~q��Þ2�p2

0g�;
X

c2fr;gg
~�ð1Þ=c
eff ð �pÞ

¼�2i
X

~q2fþð1=2Þ;�ð1=2Þg
lndetx½ðEðþ1Þ2

~q �p2
0ÞðEð�1Þ2

~q �p2
0Þ�:

(2.15)

Here, �p is a modified four-momentum defined by [8]

�p
�
~q�0¼

�
p0;0;

~q

j~qj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j~q~eBjn

q
;p3

�
for ~q¼ 1;�1

2
;

�p
�
~q¼0¼ðp0;pÞ for ~q¼ 0;

(2.16)

with p � ðp1; p2; p3Þ. In (2.15), E~q are given by the dis-

persion relations corresponding to the neutral and charged
particles [16]

E~q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j~q ~eBjnþ p2

3 þ �2
q

for ~q ¼ 1;� 1

2
;

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ �2

q
for ~q ¼ 0:

(2.17)

Moreover, we have Eð�1Þ
~q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE~q ��Þ þ j�j2

q
.

Performing the remaining determinant in the coordinate
space, a space-time volume factor V arises. Combining,
then, the resulting expression with the tree-level part of the
effective action from (2.12), the effective action of the
theory can be given in terms of the effective thermody-
namic (mean-field) potential �eff as �eff ¼ �V�eff .
Introducing, now, discrete Matsubara frequencies by
replacing p0 with p0 ¼ i!‘, where !‘ ¼ �


 ð2‘þ 1Þ,
and 
 � T�1, the one-loop effective potential �ð1Þ

eff �
� 1

V

~�ð1Þ
eff is first given by4

�ð1Þ
effð~eB; T;�Þ

¼ � 1

V


X
p

X1
‘¼�1

X

¼�1

� X
~q2f0;1g

ln½!2
‘ þ ðE~q þ 
�Þ2�

þ 2
X

~q2fþð1=2Þ;�ð1=2Þg
ln½!2

‘ þ Eð
Þ2
~q �

�
: (2.18)

Converting, then, the logarithms into proper-time integrals
over the dimensionful variable s and using the Poisson
resummation formula

X1
‘¼�1

e�s½ð2�‘=
Þþx�2

¼ 


2
ffiffiffiffiffiffi
�s

p
�
1þ 2

X1
‘¼1

cosðx
‘Þe�ð
2‘2=4sÞ
�

(2.19)

to separate the resulting expression into temperature-
dependent and temperature-independent parts, we arrive
at the one-loop effective potential of our model:

�ð1Þ
effð~eB;T;�Þ ¼ 1

2
ffiffiffiffi
�

p
V

X
p

X

¼�1

� X
~q2f0;1g

Z 1

0

ds

s3=2
e�sðE~qþ
�Þ2

þ 2
X

~q2fþð1=2Þ;�ð1=2Þg

Z 1

0

ds

s3=2
e�sEð
Þ2

~q

�

�
�
1þ 2

X1
‘¼1

ð�1Þ‘e�ð
2‘2=4sÞ
�
; (2.20)

where E~q are defined in (2.17). Replacing, at this stage, the

discrete sum over momenta with continuous integrations
over momenta by making use of

4In imaginary-time formulation, the four-dimensional space-
time volume V is replaced by V ! V
, where V is the three-
dimensional space volume, and 
 ¼ 1=T the compactification
radius of the imaginary-time coordinate.
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1

V

X
p

fð �p~q¼0Þ !
Z d3p

ð2�Þ3 fðpÞ (2.21)

for neutral, and

1

V

X
p

fð �p~q�0Þ ! j~q ~eBjXþ1

n¼0

�n

Z þ1

�1
dp3

8�2
fðn; p3Þ (2.22)

for charged particles,5 and eventually adding the tree-level
part of the effective potential to the resulting expression,
the full mean-field effective potential at the one-loop level
is given by6

�effð~eB;T;�Þ ¼ �2

4GS

þ j�j2
4GD

þB2

2

þ 1

2
ffiffiffiffi
�

p X

¼�1

�Z d3p

ð2�Þ3
Z 1

0

ds

s3=2
e�sðE0þ
�Þ2

þ ~eB
X1
n¼0

�n

Z 1

0

ds

s3=2

Z 1

0

dp3

4�2

�ðe�sðEþ1þ
�Þ2 þ 2e
�sEð
Þ2

j�1=2j Þ
�

�
�
1þ 2

X1
‘¼1

ð�1Þ‘e�ð
2‘2=4sÞ
�
: (2.23)

Note that, in (2.22), as well as (2.23), n denotes the discrete
Landau levels, and �n ¼ 2� �n0 is introduced to consider
the fact that Landau levels with n > 0 are doubly degen-
erate [12,14]. Moreover, we have used Eþ1=2 ¼ E�1=2.

In the next section, we will use (2.23) to determine
numerically the chiral and diquark gaps and to present
the complete phase structure of the magnetized two-flavor
superconducting NJL model at finite T and �.

III. NUMERICAL RESULTS

In the previous section, we have determined the effective
potential (2.23) of the two-flavor NJL model, including
meson and diquark condensates at finite temperature,
chemical potential, and in the presence of constant mag-
netic fields in the mean-field approximation at one-loop
level. It is the purpose of this paper to have a complete
understanding of the effect of these external parameters on
the quark matter in the 2SC phase. This will complete our
analysis in [16], where only the effects of � and ~eB were
considered at T ¼ 0. We start this section with presenting
the numerical results on the �, T, and ~eB dependence
of the chiral and diquark condensates. We, then, continue
with exploring the T ��, T � ~eB, and �� ~eB phase
diagrams for fixed values of ~eB, �, and T, respectively.

Before presenting our results, we will fix, in the subsequent
paragraphs, our notations and describe our numerical
method.
To determine the chiral and diquark gaps, the thermody-

namic potential �eff from (2.23) is to be minimized. To
solve the corresponding gap equations

@�effð�;�;T;�; ~eBÞ
@�

���������B;�B

¼ 0 and

@�effð�;�;T;�; ~eBÞ
@�

���������B;�B

¼ 0 (3.1)

numerically, we have to fix the free parameters of the
model. Our specific choice of the parameters is [16,33]

� ¼ 0:6533 GeV;

GS ¼ 5:0163 GeV�2; and GD ¼ 3
4GS;

(3.2)

where � is the momentum cutoff, and GS and GD are the
chiral and diquark couplings. Using this special set of
parameters, we have shown in [16] that, at T ¼ 0, no mixed
phase, characterized with ð�B � 0;�B � 0Þ, will appear.
The same feature persists at finite T. Moreover, for vanish-
ing magnetic field ~eB ¼ 0 and at zero temperature, the
parameters in (3.2) yield the meson mass �0 ’ 323:8 MeV
at � ¼ 250 MeV and the diquark mass �0 ’ 126 MeV at
� ¼ 460 MeV [16].7 To perform the momentum integra-
tion over p and p3 in (2.23) numerically, we have intro-
duced, as in [16], smooth cutoff functions (form factors)

f� ¼ 1

1þ expðjpj��
A Þ and

fn�;B ¼ 1

1þ expð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3
þ2j~q ~eBjn

p
��

A Þ
; (3.3)

which correspond to neutral and charged particles, respec-
tively.8 In (3.3), A is a free parameter and is chosen to be
A ¼ 0:05�. A similar smooth cutoff function (form factor)
is also used in [13]. Here, as in [13], the free parameter A
determines the sharpness of the cutoff scheme. At this
stage, let us notice that the solutions of (3.1) are, in general,
‘‘local’’ minima of the theory. Keeping ð�;�Þ � ð0; 0Þ and
looking for ‘‘global’’ minima of the system described by
complete�effð�;�;T;�; ~eBÞ from (2.23), it turns out that,
in the regime � 2 ½0; 800� MeV, T 2 ½0; 250� MeV,
and ~eB 2 ½0; 0:8� GeV2, the system exhibits two global

5Only charged particles interact with the external magnetic
field.

6In [16], the same effective potential (2.23) was determined
using a different method {see (3.19)–(3.22) in [16]}.

7Although our free parameters �, GD, and GS coincide with
the parameters used in [33], the numerical value of �0 is differ-
ent from what is reported in [33]. The reason for this difference
is apparent in the choice of the cutoff function. Whereas, in [33],
a sharp momentum cutoff is used, we have used a smooth cut-
off function (3.3) to perform the momentum integrations
numerically.

8In (2.23), the integrals proportional to ~eB and including a
summation over Landau levels n arise from charged quarks with
charges ~q ¼ � 1

2 ;þ1.
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minima. They are given by ð�B � 0;�B ¼ 0Þ and
ð�B � 0;�B ¼ 0Þ. We will denote the regime character-
ized by these two global minima by the �SB and the CSC
phases, respectively. According to the above descriptions,
in order to determine the chiral and diquark condensates,
we will use, instead of the gap equations (3.1),

@�effð�;�B ¼ 0;T;�; ~eBÞ
@�

���������B

¼ 0 (3.4)

in the �SB phase and

@�effð�B ¼ 0;�;T;�; ~eBÞ
@�

���������B

¼ 0 (3.5)

in the CSC phase to simplify our computations. As it turns
out, apart from the �SB and the CSC phases, there is
also a normal phase characterized by ð�B ¼ 0;�B ¼ 0Þ.
Following the method presented in [20], we will determine
the critical lines of first-order transition between the �SB
phase and the normal phase using

@�effð�;�B ¼ 0Þ
@�

���������B

¼ 0 and

�effð�B;�B ¼ 0Þ ¼ �effð�B ¼ 0;�B ¼ 0Þ: (3.6)

Similarly, the first-order phase transition between the �SB
and the CSC phases is determined by solving

@�effð�;�B ¼ 0Þ
@�

���������B

¼ 0;

@�effð�B ¼ 0;�Þ
@�

���������B

¼ 0;

(3.7)

and

�effð�B ¼ 0;�BÞ ¼ �effð�B;�B ¼ 0Þ; (3.8)

simultaneously [20]. The second-order critical lines be-
tween the �SB and CSC phases and the normal phase
will be also determined by the method described in [20]
(see Eq. (2.35) in [20]): To determine the second-order
critical line between the �SB and the normal phase,
we solve

lim
�2!0

@�effð�;� ¼ 0Þ
@�2

¼ 0: (3.9)

The second-order critical line between the CSC and the
normal phase is, then, determined by solving

lim
�2!0

@�effð� ¼ 0;�Þ
@�2

¼ 0: (3.10)

The same method is also used in [21] to find the second-
order phase transition between the �SB and the normal
phase (see page 9 in [21]). To make sure that, after the
second-order phase transition, the global minima of the
effective potential are shifted to � ¼ 0 in (3.9) and to
� ¼ 0 in (3.10), and in order to avoid instabilities, an
analysis similar to [9] is also performed. The same method
is also used in [16] to determine the second-order critical
line between the CSC and the normal phase.

A. The ð�;T; ~eBÞ dependence of chiral
and diquark condensates

1. The � dependence of �B and �B

The � dependence of both gaps at different tem-
peratures, T ¼ 0; 20; 70; 150MeV, and magnetic fields,
~eB ¼ 0; 0:3; 0:5 GeV2, is demonstrated in Figs. 1–4, pan-
els (a)–(c), respectively. The green dashed and solid lines
denote the �B mass gaps. The red solid lines determine the
normal phase with�B ¼ �B ¼ 0. The diquark gaps�B are
demonstrated with blue solid lines. Dashed (solid) lines
denote the first- (second-) order phase transitions.
The plots in Figs. 1(a)–1(c) show that, at

T ¼ 0 MeV, the magnetic field enhances the formation
of the chiral condensate �B. The value of �B is constant
in�, with�<�c and�c ’ 320–350 MeV, and increases
with ~eB. On the other hand, for small values of
~eB < 0:5 GeV2, �B increases with � in the regime �c <
�< 600 MeV [Figs. 1(a) and 1(b)]. A similar observation
is also made in [16], where the same model as in the
present paper is studied, and, additionally, the color-
chemical potential �8 is assumed to be nonzero.
Comparing the diagrams in Fig. 1 with the corresponding
diagrams in Fig. 7 of [16], it turns out that �8 has no
significant effect on the � dependence of �B and �B at
T ¼ 0 MeV.9 For ~eB ¼ 0 GeV2, the � dependence of the
diquark mass gap in Fig. 1(a) can be compared with the
analytical result

�2
0 ¼ C2ð�2 ��2Þ exp

�
��2

�2

�
1

ĝd
� 1

��
(3.11)

from [16]. In (3.11), C2 ¼ 4e�3 ’ 0:2, and ĝd � 4GD�
2

�2 .

Plugging the numerical values of� and GD from (3.2) into
(3.11) and plotting the resulting expression in a �0 vs �
diagram, the result is in close agreement with the �
dependence of the diquark mass gap in Fig. 1(a) in the
regime 320<�< 600 MeV. In the same regime of �,
the � dependence of �0 from (3.11) agrees also with the
well-known result from [36]. In contrast, as it can be seen
in Fig. 1(c), for ~eB ¼ 0:5 GeV2, �B decreases with � 2
½350; 600� GeV. This behavior is expected from the ana-
lytical expression

�2
B ¼ 4ð�2

B ��2Þ exp
�
��2

�2
B

1

gd

�
; (3.12)

which is also computed in [16] using an appropriate LLL

approximation.10 In (3.12), �B � ffiffiffiffiffiffi
~eB

p
and gd � GD�

2

�2 .

Plugging the numerical values of� and GD from (3.2) into

9In [34], in the ~eB ¼ 0 case, the color-chemical potential�8 is
shown to be small, and its effect is, therefore, neglected. See also
[35], where two-flavor magnetized color-superconducting quark
matter with �8 ¼ 0 is studied.
10Later, we will see that ~eB ’ 0:5 GeV2 is strong enough to
justify a LLL approximation.
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(3.12) and plotting the resulting expression in a �B vs �
diagram for ~eB ¼ 0:5 GeV2, it turns out that �B decreases
with � in the regime 350<�< 600 MeV, as it is shown
in Fig. 1(c). A similar expression to (3.12) is also derived in
[11] for the diquark mass gap in a three-flavor CFL model
in the presence of a strong magnetic field, using the LLL
approximation.

In Figs. 2(a)–2(c), the � dependence of �B and �B is
plotted at T ¼ 20 MeV and for ~eB ¼ 0; 0:3; 0:5 GeV2.
Comparing with the results from Figs. 1(a)–1(c), it turns
out that increasing temperature up to T ¼ 20 MeV has
no significant effects on the results of T ¼ 0 MeV.
This is in contrast with the situation at T ¼ 70 MeV. In
Figs. 3(a)–3(c), the � dependence of �B and �B is plotted
at T ¼ 70 MeV and for ~eB ¼ 0; 0:3; 0:5 GeV2. As it turns
out, in the regime �<�c, the chiral condensate �B in-
creases with the magnetic field. The diquark condensate
appears in the regime � 2 ½480; 600� MeV for ~eB ¼
0; 0:3 GeV2 [Figs. 3(a) and 3(b)]. For ~eB ¼ 0:5 GeV2,
in Fig. 3(c), however, no diquark condensate appears in
the relevant regime �< 600 MeV. Moreover, comparing
Figs. 2 and 3, we notice that at T ¼ 70 MeV, in Fig. 3, in
contrast to the situation at T ¼ 20 MeV, in Fig. 2, the first-
order transition from the �SB to the normal phase does not
occur over the CSC phase. In Fig. 3, for ~eB < 0:5 GeV2,
there is a first-order phase transition from the �SB to the
normal phase; then, a second-order phase transition occurs
from the normal to the CSC phase. For ~eB ¼ 0:5 GeV2,
the phase transition from the �SB to the normal phase is

of first order, but no CSC phase appears in the regime
�< 600 MeV.
At higher temperature, as it is demonstrated for T ¼

150 MeV in Fig. 4, no diquark condensate appears at all in
the relevant regime �< 600 MeV [Figs. 4(a)–4(c)].
Moreover, whereas for ~eB ¼ 0; 0:3 GeV2, the transitions
from the �SB to the normal phase are of second order, for
~eB ¼ 0:5 GeV2, the �SB-normal phase transition turns
out to be of first order. The above observations suggest
that, while the magnetic field catalyzes the formation of
the chiral condensate �B, the diquark condensate �B is
suppressed in the presence of a constant magnetic field.
However, as it turns out, the latter feature depends on the
strength of the magnetic field. This will be shown explicitly
in the next section, where the effect of arbitrary magnetic
fields on the formation of �B and �B for a wide range of
~eB 2 ½0; 0:8�GeV2 will be explored.

2. The ~eB dependence of �B and �B

The effect of external magnetic fields on the formation
of chiral condensates is studied intensively in the literature
(see, e.g., [1,17–19]). As it is shown in [1], in the presence
of strong magnetic fields, the dynamics of the system
are fully described by its dynamics in the LLL. However,
there is, to the best of our knowledge, no evidence in the
literature that fixes quantitatively the strength of a mag-
netic field that is enough to justify a LLL approximation.
In [16], we have answered this question numerically. First,
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FIG. 1 (color online). The � dependence of �B (dashed green lines) and �B (solid blue lines) is demonstrated for T ¼ 0 MeV and
~eB ¼ 0; 0:3; 0:5 GeV2 in (a), (b), and (c), respectively. The transitions from the �SB, characterized by ð�B � 0;�B ¼ 0Þ, to the CSC
phase, characterized by ð�B ¼ 0;�B � 0Þ, are of first order.
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FIG. 2 (color online). The � dependence of �B (dashed green lines) and �B (solid blue lines) is demonstrated for T ¼ 20 MeV and
~eB ¼ 0; 0:3; 0:5 GeV2 in (a), (b), and (c), respectively. The transitions from the �SB phase, characterized by ð�B � 0;�B ¼ 0Þ, to the
CSC phase, characterized by ð�B ¼ 0;�B � 0Þ, are of first order.
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FIG. 3 (color online). The � dependence of �B (dashed green curved lines) and �B (solid blue curved lines) is demonstrated for
T ¼ 70 MeV and ~eB ¼ 0; 0:3 GeV2 in (a) and (b), respectively. While the transitions from the �SB to the normal phase (solid straight
red line) are of first order, the transitions from the normal to the CSC phase are of second order. Note that the �SB, CSC, and normal
phases are characterized by ð�B � 0;�B ¼ 0Þ, ð�B ¼ 0;�B � 0Þ, and ð�B ¼ 0;�B ¼ 0Þ, respectively. (c) The� dependence of �B is
demonstrated for T ¼ 70 MeV and ~eB ¼ 0:5 GeV2. The transition from the �SB to the normal phase is of first order. No CSC phase
appears at �> 330 MeV.
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we have determined the ~eB dependence of the gaps in a
LLL approximation and, then, compared the analytical
results with the numerical ones, including the effect of all
Landau levels. It turned out that, by increasing the mag-
netic field from ~eB ¼ 0 GeV2 to ~eB ¼ 0:8 GeV2, first in
the regime ~eB < 0:45 GeV2, the mass gaps underlie small
van Alphen-de Haas oscillations. Above a certain threshold
magnetic field ~eBt ’ 0:45–0:50 GeV2, the dependence of
the condensates of ~eB was linear. In this linear regime, our
numerical results were comparable with the analytical
results arising from the solution of the corresponding gap
equations in the LLL approximation.

In Fig. 5, the ~eB dependence of meson and diquark
mass gaps, �B and �B, is plotted at T ¼ 0 and � ¼
250 MeV [Fig. 5(a)] and � ¼ 460 MeV [Fig. 5(b)]. A
comparison with similar plots from Fig. 2 of [16] shows
that a color-neutrality condition has no significant

effect on the above-mentioned threshold magnetic field
~eBt ’ 0:5 GeV2or on the behavior of the �B and �B below
and above ~eBt, consisting of van Alphen-de Haas oscilla-
tions in ~eB < ~eBt and the linear rise in ~eB > ~eBt

regimes.11 A similar strong van Alphen-de Haas oscil-
lation of the 2SC mass gap �B in the regime ~eB 2
½0:4; 0:6� GeV2 in Fig. 5(b) is also observed in [13,14] in

the three-flavor CFL phase in the presence of magnetic

fields, albeit in another regime of ~eB=�2.
In Fig. 6(a), the ~eB dependence of �B is demonstrated

for fixed � ¼ 250 MeV and at various fixed temperatures
T ¼ 20; 60; 70MeV; after small oscillations in the regime

below the threshold magnetic field ~eBt, the system enters
the linear regime, where only the contribution of the
LLL affects the dynamics of the system. For ~eB < ~eBt,

�B decreases by increasing the temperature. In the linear
regime ~eB > ~eBt, however, the effect of temperature
is minimized. In Fig. 6(b), the dependence of the

diquark gap �B is demonstrated for fixed � ¼ 460 MeV
and at various temperatures T ¼ 20; 60; 70MeV. At T ¼
20 MeV, small oscillations occur in ~eB < ~eBt. In contrast,

�B monotonically increases with ~eB in the linear regime
~eB > ~eBt. The behavior of �B at T ¼ 20 MeV is not
too much different than its behavior at T ¼ 0 MeV [see

Fig. 5(b)]. This confirms our previous observation from the
comparison of Figs. 1 and 2. By increasing the temperature
to T ¼ 60 MeV, �B decreases. It vanishes in the range
~eB 2 ½0:4; 0:6� GeV2. Comparing to the T ¼ 0 MeV
plot from Fig. 5(b), it turns out that the value of �B at
T ¼ 0 MeV in this regime of ~eB 2 ½0:4; 0:6� GeV2 is in

the same order of magnitude as 60 MeV. This is related
with the well-known BCS ratio of the critical-temperature
to zero-temperature gap in the zero magnetic field case
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FIG. 4 (color online). The � dependence of �B (dashed and solid green curved lines) is demonstrated for T ¼ 150 MeV and ~eB ¼
0; 0:3; 0:5 GeV2 in (a)–(c). While, for ~eB ¼ 0; 0:3 GeV2, the transition from �SB to the normal phase (solid straight red line) is of
second order (solid green curved line), for ~eB ¼ 0:5 GeV2, this transition is of first order (dashed green curved line). No CSC phase
appears at T ¼ 150 MeV. Note that the �SB, CSC, and normal phases are characterized by ð�B � 0;�B ¼ 0Þ, ð�B ¼ 0;�B � 0Þ, and
ð�B ¼ 0;�B ¼ 0Þ, respectively.

11See footnote 9.
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[37] (see the discussion below). For ~eB > 0:6 GeV2, �B

increases again with ~eB. The situation demonstrated in

Fig. 6(b) at T ¼ 60 MeV can be interpreted as a second-

order phase transition from the CSC to the normal phase

at T ¼ 60 MeV, � ¼ 460 MeV, and ~eB ’ 0:4 GeV2, fol-

lowed up with a second-order phase transition from the

normal to the CSC phase at T ¼ 60 MeV, � ¼ 460 MeV,
and ~eB ’ 0:6 GeV2. We believe that this CSC-Normal-

CSC phase transition is caused by strong van Alphen-

de Haas oscillations in the regime ~eB 2 ½0:4; 0:6� GeV2.

A comparison between the T ¼ 60 MeV plot of Fig. 6(b)

and the � ¼ 460 MeV plot of Fig. 14(i) confirms these

statements.12 Let us notice that van Alphen-de Haas oscil-

lations, which are also observed in metals [29], are the
consequence of oscillatory structure in the density of states
of quarks and occur whenever the Landau level passes the
quark Fermi surface [14,21].
In Fig. 6(b), at T ¼ 70 MeV and in the regime for

~eB & ~eBt, the diquark condensate is not built at all, i.e.,
�B ¼ 0. This result indicates that a normal phase exists
at T 	 70 MeV, � ¼ 460 MeV, and in the regime
~eB & 0:65 GeV2, and that a second-order phase transition
from the normal to the CSC phase occurs at ðT;�Þ �
ð70; 460Þ MeV and the critical magnetic field ~eB ’
0:65 GeV2. These results coincide with the observations
in the complete T � ~eB phase diagram from Fig. 14(i) for
� ¼ 460 MeV. Indeed, our numerical computations show
that, for � ¼ 460 MeV, the critical temperatures in the
whole range of ~eB 2 ½0; 0:6� GeV2 are smaller than
70 MeV. In ~eB ¼ 0 GeV2 and � ¼ 460 MeV, it is Tc ’
68:5 MeV and decreases with ~eB & 0:5 GeV2 [see also
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12See also the explanations in Sec. III B 2, where a more
detailed comparison will be presented between the results of
Fig. 14 and Fig. 6.
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Fig. 14(i)]. Using this value of Tc in the zero magnetic field
and the numerical value of the diquark gap at zero tem-
perature and zero magnetic field from Fig. 5(b), i.e.,
�BðT ¼ 0Þ ’ 127:5 MeV, the above-mentioned BCS ratio
can be computed. It is given by

Tc

�BðT ¼ 0Þ ’ 68:5

127:5
’ 0:54;

which is in good agreement with the BCS ratio Tc

�BðT¼0Þ ¼
e���1 þOðgÞ ’ 0:567þOðgÞ of critical temperature
to the zero-temperature 2SC mass gap of QCD in the
zero magnetic field [37]. Here, � ’ 0:577 is the Euler-
Mascheroni constant. As for the regime of strong magnetic
fields, for ~eB > 0:6 GeV2 and fixed T ¼ 70 MeV, �B

increases monotonically with ~eB, as expected from (3.12)
for � ¼ 460 MeV, and for � and GD from (3.2).

In Fig. 7, the dependence of chiral and diquark gaps on
the external magnetic field for constant T is demonstrated
for various �. As it is shown in Fig. 7(a), the chiral mass
gap �B decreases by increasing �. Small van Alphen-
de Haas oscillations occur in the regime below the thresh-
old magnetic field ~eBt ’ 0:5 GeV2 and die out in the linear
regime above ~eBt. In this regime, �B monotonically rises
with ~eB, and the effect of � is minimized. In the regime
below ~eBt, for � ¼ 300 MeV, the chiral mass gap �B

vanishes. This indicates a first-order phase transition
from the normal into the �SB phase at fixed T ¼
100 MeV, � ¼ 300 MeV, and for ~eB ’ 0:5 GeV2. This
result agrees with our findings from the complete T � ~eB
phase diagram plotted in Fig. 14(c) for fixed � ¼
300 MeV. As it can be checked in Fig. 14(c), at fixed
T ¼ 100 MeV, the �SB phase appears first for ~eB >
0:5 GeV2. As concerns the ~eB dependence of the diquark
mass gap in Fig. 7(b), it increases with � in the regime
below the threshold magnetic field ~eBt. In the regime
above ~eBt, however, �B decreases by increasing �. The
same phenomenon was also demonstrated in Fig. 2(c) at
the low temperature T ¼ 20 MeV and for ~eB ¼ 0:5 near
~eBt, and was shown to be in full agreement with the
analytical result (3.12) [16]. Note that strong van Alphen-
de Haas oscillations are responsible for vanishing�B in the
regime ~eB 2 ½0:4; 0:6� GeV2. They induce CSC-Normal-
CSC second-order phase transitions, as it can be seen in the
same regime of ~eB in Fig. 14(i). The plots in Fig. 7(b) show
also that the critical magnetic fields for the transition from
the normal into the CSC phase increase by increasing the
chemical potential [see Fig. 7(b)].13

3. The T dependence of �B and �B

In Fig. 8, the temperature dependence of the chiral
condensate is presented for fixed � ¼ 250 MeV
[panel (a)], � ¼ 300 MeV [panel (b)], and various

magnetic fields ~eB ¼ 0; 0:3; 0:5 GeV2. Whereas the tran-
sition from the �SB into the normal phase for � ¼
250 MeV is of second order [continuous decreasing
of �B to �B ¼ 0 in Fig. 8(a)], it is of first order for
� ¼ 300 MeV [discontinuous transition from �B � 0 to
�B ¼ 0 in Fig. 8(b)]. As it is also expected from our
previous results, the magnetic field enhances the produc-
tion of�B, so that it increases by increasing the value of the
magnetic field.
The temperature dependence of�B is presented in Fig. 9

for fixed � ¼ 480 MeV and ~eB ¼ 0; 0:4; 0:5 GeV2

[panel (a)] below the threshold magnetic field ~eBt ’
0:45–0:50 GeV2, as well as for fixed � ¼ 480 MeV and
~eB ¼ 0:6; 0:7; 0:8 GeV2 above the threshold magnetic
field. As it turns out, magnetic fields below the threshold
magnetic field suppress the production of �B, whereas
magnetic fields stronger than the threshold magnetic field
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FIG. 7 (color online). (a) The dependence of the chiral gap �B

on ~eB for fixed T ¼ 100 MeV, at various chemical potentials �.
(b) The dependence of the diquark gap �B on ~eB for fixed T ¼
50 MeV, at various chemical potentials.

13Detailed analysis on the dependence of critical ~eB on � and
vice versa will be performed in Sec. III B.
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enhance its production [see also Fig. 6(b)]. Similarly, for
~eB < ~eBt, the value of critical temperature decreases by
increasing the magnetic field, whereas for ~eB > ~eBt, the
critical temperatures increase by increasing the magnetic
field.14

The same effect is also observed in Fig. 10. In Fig. 10(a),
the T dependence of �B is plotted for constant ~eB ¼
0:3 GeV3 and various � ¼ 100; 200; 300MeV. At the
low temperature T < 50 MeV, �B remains constant and
decreases by increasing the temperature. Increasing the
chemical potential only accelerates this decrease, i.e., the
critical temperature decreases by increasing �. Whereas
the transition at � ¼ 100; 200MeV is of second order
(blue bullets/rectangles), a first-order phase transition oc-
curs at � ¼ 300 MeV (red diamonds). The T dependence
of the diquark condensate �B is demonstrated for ~eB ¼
0:3 GeV2 below the threshold magnetic field [Fig. 10(b)]
and for ~eB ¼ 0:7 GeV2 above the threshold magnetic field
[Fig. 10(c)]. As it turns out, whereas the diquark conden-
sate increases by increasing � for fixed T, and ~eB < ~eBt

[Fig. 10(b)], it decreases by increasing � for ~eB > ~eBt

[Fig. 10(c)]. This result coincides with our results from
Fig. 7(b). Moreover, as we can see in Figs. 10(b) and 10(c),
the diquark condensates decrease by increasing the tem-
perature. Similar to what is observed in Fig. 9, for ~eB ¼
0:3 GeV2, below ~eBt, the critical temperature increases by
increasing � [Fig. 10(b)], while for ~eB ¼ 0:7 GeV2 above
~eBt, the critical temperature decreases by increasing �.
Later, we will see that this result is also in full agreement to
our result from Fig. 14(i).

B. Phase diagrams of hot magnetized 2SC quark matter

To complete our study on the effect of ðT;�; ~eBÞ on
the quark matter, including mesons and diquarks in the
presence of a constant magnetic field, we will present, in
this section, the phase structure of the model in a T ��
plane for various fixed ~eB in Fig. 11. The T � ~eB phase
diagram of the model for various fixed � will be presented
in Fig. 14, and, finally, in Figs. 16 and 17, the �� ~eB
phase diagram will be explored for various fixed T. As in
the previous section, green dashed lines denote the first-
order phase transitions, and the blue solid lines the second-
order transitions.

1. T �� phase diagram for various fixed ~eB

In Fig. 11, the T �� phase diagram of the model is
demonstrated for various fixed ~eB. As we have argued at
the beginning of this section, three different phases appear
in this system: the �SB phase, the CSC phase, and the
normal phase. To study the effects of constant magnetic
fields on the phase transition in the T �� plane, let
us compare the plots from Fig. 11 with the plots from
Figs. 2–4. As we have observed in Figs. 2(a)–2(c), at a
fixed and low temperature T < T1, first-order transitions
occur between the �SB and the CSC phase. By increasing
the temperature to T1 < T < T2, after a first-order phase
transition between the �SB to the normal phase, the nor-
mal phase goes over into the CSC phase in a second-order
phase transition [see 2(a) and 2(b)]. At higher temperatures
T > T2, no CSC phase exists. Here, depending on the
strength of the external magnetic fields, only second- or
first-order transitions occur between the �SB and the
normal phase [Figs. 4(a)–4(c)]. As it turns out, the values
of T1 and T2 depend on the external magnetic field, as it can
be seen also in the plots from Fig. 11.
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FIG. 8 (color online). The T dependence of �B for fixed � ¼ 250 MeV [panel (a)] and � ¼ 300 MeV [panel (b)] for various
~eB ¼ 0; 0:3; 0:5 GeV2. Whereas for � ¼ 250 MeV, the transition from the chiral to the normal phase is of second order [continuous
decreasing of �B to �B ¼ 0 in panel (a)], for � ¼ 300 MeV, this transition is of first order [discontinuous transition from �B � 0 to
�B ¼ 0 in panel (b)].

14The ~eB dependence of critical temperatures will be discussed
in detail in III B.
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The phase transition from the �SB to the CSC phase and
from the CSC to the normal phase are always of first and
second order, respectively. The order of phase transition
between the �SB and the normal phase depends, however,
on the value of the external magnetic field ~eB. To describe
this effect, let us consider the blue solid lines in Fig. 11 that
demonstrate the second-order phase transitions between
the �SB and the normal phases. Starting from a high
temperature and zero chemical potential, they all end at
the critical points denoted by C (black bullets). They are,

then, followed by first-order critical lines (green dashed
lines) between the �SB and the normal phase. The latter
start at the critical points C and end up at the tricritical
points T (red bullets), where three phases coexist. In
Table I, the values of the temperature and chemical poten-
tials corresponding to the critical points ðTcr; �crÞ and the
tricritical points ðTtr; �trÞ are presented.
As we can see in Fig. 11, by increasing the external

magnetic field, the black bullets are shifted more and more
to higher values of temperature and chemical potential (see
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FIG. 9 (color online). The T dependence of �B for fixed � ¼ 480 MeV for various ~eB ¼ 0; 0:3; 0:5 GeV2 below the threshold
magnetic field [panel (a)] and for ~eB ¼ 0:6; 0:7; 0:8 GeV2 above the threshold magnetic field [panel (b)]. Below (above) the threshold
magnetic field, the production of diquarks is suppressed (enhanced).
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also the second column in Table I), so that the distance
between the black and red bullets increases by increasing
the strength of the external magnetic field. This is another
effect of the external magnetic field; increasing the
magnetic-field strength changes the type of the �SB-to-
normal phase transition from second to first order. This can
also be observed in Figs. 4(a)–4(c), where at high enough
temperature, the �SB phase transition to the normal phase

is initially of second order and, then, for larger magnetic
fields, changes to a first-order phase transition.
Increasing the magnetic-field strength leads also to an

increase in the values of ð�tr; TtrÞ corresponding to the
tricritical point (see the third column of Table I). This
confirms the conclusion at the end of Sec. III A 3, where
it was stated that the magnetic field above a certain thresh-
old magnetic field enhances the production of the diquark
condensate �B, and the CSC phase can, therefore, exist up
to T ’ 100 MeV. In what follows, wewill show that, above
a certain threshold magnetic field, ~eBt, the analytical
results arising in a LLL approximation are comparable
with the numerical results, including the contributions of
all Landau levels. To do this, we will compare the analyti-
cal expression for the second-order critical lines of a
transition between the �SB and the normal phase with
the corresponding numerical data to determine the thresh-
old magnetic field for the LLL approximation. A similar
comparison will be, then, performed for the second-order
critical line of the transition between the CSC and the
normal phase.
The second-order critical surface of the transition be-

tween the �SB and the normal phase is determined explic-
itly in the first section of the Appendix. Here, we will
present only the final results. Following the method pre-
sented in [20], in the phase space of the thermodynamical
parameters ðT;�; ~eBÞ, the second-order critical surface is
determined by solving [20,21]
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FIG. 11 (color online). The T �� phase diagram of hot magnetized 2SC quark matter is presented for various ~eB. Blue solid lines
denote the second-order phase transitions, and the green dashed lines the first-order transitions. The critical and tricritical points are
denoted by C and T, respectively.

TABLE I. Critical and tricritical points in the T �� phase
diagrams of Fig. 11, denoted by ð�cr; TcrÞ and ð�tr; TtrÞ, respec-
tively. Here, ~eB is in GeV2; T and � are in MeV.

T �� phase diagram (Fig. 11)

~eB ð�cr; TcrÞ ð�tr; TtrÞ
0 (292, 76) (316, 45)

0.01 (280, 84) (309, 43)

0.05 (281, 87) (315, 44)

0.10 (273, 94) (307, 41)

0.20 (267, 87) (290, 28)

0.30 (275, 109) (305, 41)

0.40 (274, 141) (320, 46)

0.50 (278, 156) (331, 52)

0.60 (314, 189) (377, 68)

0.70 (347, 245) (429, 87)

0.80 (398, 271) (479, 104)

0.90 (444, 304) (566, 111)

1.00 (485, 345) (581, 132)

SH. FAYAZBAKHSH AND N. SADOOGHI PHYSICAL REVIEW D 83, 025026 (2011)

025026-14



lim
�2!0

@�effð�;� ¼ 0Þ
@�2

¼ 0: (3.13)

Setting n ¼ 0 in �eff from (2.23) and plugging the result-
ing expression in (3.13) leads to the second-order critical
surface in the phase space of these parameters [see (A10)
in the Appendix]

1

4GS

� 1

4�2

Z �

0
dz

�
2zþ 3~eB

z

�
F½z;T;�� ¼ 0; (3.14)

with

F½z;T;�� � sinhð
zÞ
coshð
zÞ þ coshð
�Þ : (3.15)

Expanding the integral in (3.14) in the orders of 
 � �
� and

keeping only terms of the order Oð
3Þ, we arrive, after a
straightforward computation, at [see also (A17) in the
Appendix]

�2ðT; ~eB; �Þ 
 1

�

�
��2

GS

þ 4T2

�
�2 � Li2ð�e�2�Þ

þ 2� lnð1þ e�2�Þ � �2

12

�

þ 3~eB
Z �

0
dz

tanhz

z

�
; (3.16)

where � � �
2T , and � is defined by

�ðT; ~eB; �Þ � ðtanh�þ �tanh2�� �Þ þ 3~eB

8T2

tanh2�

�

þ 3~eB

8T2

Z �

0
dz

tanh2z

z2
: (3.17)

Moreover, Li2ðzÞ in (3.16) is the dilogarithm function
defined by

Li 2ðzÞ � �
Z z

0
dz

lnð1� zÞ
z

: (3.18)

To determine the second-order critical line between the
�SB and the normal phase in the T �� plane, we have to
fix ~eB. The analytical results arising from the LLL ap-
proximation are demonstrated in Fig. 12 by red dots. Blue
solid lines denote numerical results for second-order criti-
cal lines, including the contributions of all Landau levels.
In Fig. 12, the analytical and the numerical results for
~eB ¼ 0:5 GeV2, approximately at the threshold, and for
~eB ¼ 0:7 GeV2, above the threshold magnetic field, are
compared. The qualitative behavior of two curves coin-
cides above the threshold magnetic field ~eBt ’ 0:5 GeV2,
where the system is in the regime of LLL dominance.
Similarly, the second-order critical surface between the

CSC and the normal phase is determined from [20,21]

lim
�2!0

@�effð� ¼ 0;�Þ
@�2

¼ 0: (3.19)

Setting n ¼ 0 in �eff from (2.23) and plugging the result-
ing expression in (3.19), we arrive at [see (A21) in the
Appendix]

~eB�1ðT;�; �Þ ¼ GD

�2

�
H

�
�þ�

2T

�
þH

�
���

2T

��
;

(3.20)

where HðzÞ is

HðzÞ � X1
n¼1

ð�1Þn�122nð22n � 1Þz2n�1

ð2n� 1Þð2nÞ! Bn: (3.21)

Here, Bn are the Bernoulli’s numbers. Equation (3.20)
leads to a relation between the phase-space parameters
ðT;�; ~eBÞ. In Fig. 13, we have fixed ~eB to be ~eB ¼
0:5; 0:7 GeV2 and compared the analytical data of the
second-order critical line (red dots), arising from (3.20)
and (3.21) with the numerical data (blue solid line). For
~eB > ~eBt ’ 0:5 GeV2, the analytical and numerical data
exactly coincide (see the plot of ~eB ¼ 0:7 GeV2 in
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FIG. 12 (color online). The second-order critical lines of transition between the �SB and the normal phase. The red dots denote the
analytical data that arise in a LLL approximation, and the blue solid line the numerical data, including the contributions of all Landau
levels. For ~eB ¼ 0:7 GeV2 stronger than ~eBt, the analytical and numerical data exactly coincide.
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Fig. 13). We conclude, therefore, that for ~eB > ~eBt, the
higher Landau levels are decoupled, and the properties of
the phase transitions are essentially affected by the contri-
bution from the LLL.

2. T � ~eB phase diagram for various fixed �

In Fig. 14, the T � ~eB phase diagram of hot 2SC quark
matter is presented for various �. Blue solid lines denote
the second-order phase transitions, and the green dashed
lines the first-order transitions. The critical points are
denoted by C, and the tricritical points by T. The exact
numerical values of the critical and tricritical points are
presented in Table II.

In Figs. 14(a) and 14(b), the critical lines are plotted for
� ¼ 0; 200; 250MeV and � ¼ 270; 280MeV, respec-
tively. For relatively small values of � & 270 MeV, the
transition between the �SB and the normal phase is of
second order for the whole range of the magnetic field
~eB 2 ½0; 0:8� GeV2. When we increase the chemical
potential to � ¼ 270; 280MeV in Fig. 14(b), the type of
phase transition changes from second to first order in the
regime ~eB 2 ½0:1; 0:5� GeV2 below the threshold mag-
netic field. By increasing the magnetic field and entering
the regime of LLL dominance, the first-order phase tran-
sition goes over into a second-order transition (see Table II
for the exact values of the critical points). The same effect
has been previously observed in [21] {see Fig. 4(b) in [21]
and compare it with Figs. 14(a) and 14(b) of the present
paper}. In Fig. 14(c), the chemical potential is increased to
� ¼ 300 MeV. Here, a small region of the CSC phase
appears in the regime ~eB 2 ½0:1; 0:3� GeV2, between two
regions of the �SB phase. The critical points appearing in
Fig. 14(a) are shifted to higher ðT; ~eBÞ (see also Table II).
The small CSC ‘‘island’’ enlarges by increasing the chemi-
cal potential to � ¼ 310 MeV in Fig. 14(d) and totally
removing the �SB phase appearing at ~eB & 0:15 GeV2

at � ¼ 325 MeV [Fig. 14(e)]. This is expected from
Figs. 2(a)–2(c), where the critical chemical potential
from the transition of the �SB to the CSC phase is ap-
proximately � ’ 325 MeV. The �SB phase appearing
only for strong magnetic fields survives, but it is pushed
away to the regime of LLL dominance by increasing the
chemical potential to � ¼ 340 and � ¼ 370 MeV in
Figs. 14(f) and 14(g). We notice that the transition from
the �SB to the CSC phase is always of first order, whereas
the type of phase transition from the �SB to the normal
phase depends on the external magnetic field. This con-
firms our conclusion from the previous section (see Fig. 11
and the discussion in Sec. III B 1). Increasing the chemical
potential to � 	 400 MeV, the �SB region is completely
removed from the interval ~eB 2 ½0; 0:8� GeV2, and a
second-order phase transition appears between the
CSC and the normal phase in Fig. 14(h). In Fig. 14(i),
the second-order phase transition is plotted for
� ¼ 460; 500MeV.15 Above the threshold magnetic field,
the critical temperature increases by increasing the mag-
netic field. This may open the possibility to observe the
2SC phase in future heavy-ion experiments.
Let us also emphasize that the plots in Fig. 14 are in very

good agreement with plots from previous sections. As an
example, let us consider Fig. 6(b), the ~eB dependence of
�B at fixed � ¼ 460 MeV, and compare it with the curve
� ¼ 460 MeV in Fig. 14(i). Let us, then, focus on the
range of ~eB 2 ½0:4; 0:6� GeV2 in both figures. As it turns
out from Fig. 6(b), at the low temperature T ¼ 20 MeV,
�B ’ 70–80 MeV in the interval ~eB 2 ½0:4; 0:6� GeV2,
while at higher temperatures T ¼ 60; 70MeV, �B
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FIG. 13 (color online). The second-order critical lines of transition between the CSC and the normal phase. The red dots denote the
analytical data that arise in a LLL approximation, and the blue solid line the numerical data, including the contributions of all Landau
levels. For ~eB ¼ 0:7 GeV2 stronger than ~eBt, the analytical and numerical data exactly coincide.

15In Fig. 14(i), we have changed the scale of the plot from T 2
½0; 360� MeV to T 2 ½35; 125� MeV, in order to magnify the
van Alphen-de Haas oscillations that appear in the regime below
the threshold magnetic field ~eBt ’ 0:5 GeV2.

SH. FAYAZBAKHSH AND N. SADOOGHI PHYSICAL REVIEW D 83, 025026 (2011)

025026-16



vanishes and, apparently, a normal phase appears in this
regime of ~eB. The appearance of a normal phase can be
checked in Fig. 14(i). For fixed T ¼ 20 MeV, there is a
CSC phase in the regime ~eB 2 ½0:4; 0:6� GeV2, while
at higher temperatures T ¼ 60 MeV and T ¼ 70 MeV, a
normal phase appears in the same regime of ~eB. This
phenomenon is because of van Alphen-de Haas oscillations
that occur in this regime of ~eB 2 ½0:4; 0:6� GeV2 in Fig. 6
as well as in the phase diagram of Fig. 14(i).16 Moreover,
the fact that �B increases for ~eB stronger than a certain
threshold magnetic field ~eBt shows the important interplay
between the effects of temperature and the external mag-
netic field on the formation of bound states, which could be
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FIG. 14 (color online). The T � ~eB phase diagram of hot magnetized 2SC quark matter is presented for various �. Blue solid lines
denote the second-order phase transitions, and the green dashed lines the first-order transitions. The critical points are denoted by C,
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TABLE II. Critical and tricritical points in the ~eB� T phase
diagrams of Fig. 14, denoted by ð~eBcr; TcrÞ1;2 and ð~eBtr; TtrÞ1;2,
respectively. Here, ~eB is in GeV2; T and � are in MeV.

T � ~eB phase diagram (Fig. 14)

� ð~eBcr; TcrÞ1 ð~eBcr; TcrÞ2 ð~eBtr; TtrÞ1 ð~eBtr; TtrÞ2
& 250 - - - -

270 (0.16, 97) (0.310, 128) - -

280 (0.10, 83) (0.510, 159) - -

300 - (0.578, 190) (0.165, 32) (0.290, 39)

310 - (0.595, 190) (0.095, 43) (0.310, 44)

325 - (0.635, 209) - (0.485, 50)

340 - (0.668, 221) - (0.520, 54)

370 - (0.740, 250) - (0.585, 64)

* 400 - - - -

16Similar van Alphen-de Haas oscillations occur in the ‘‘gap vs
eB=�2 graphs’’ of a magnetized CFL model studied in [13,14].
In [16], where the effect of magnetic fields on the 2SC gap is
studied at T ¼ 0, the same oscillations occur in the same regime
of ~eB for � ¼ 460 MeV {see Fig. 3(a) in [16]}.
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potentially relevant in connection with the question of
accessibility of the 2SC phase in experiments. Whereas
below the threshold magnetic field, by increasing the tem-
perature, the diquark condensate is destroyed, and a normal
phase is built up, the production of �B is enhanced by
magnetic fields stronger than ~eBt in a corresponding CSC
phase. According to our previous studies in [16], we be-
lieve that, above ~eBt, the system enters the LLL dominant
regime, where the effect of magnetic catalysis enhances the
formation of mass gaps.17

To show how the numerical results, including the con-
tributions of all Landau levels, coincide with the analytical
results, consisting only of the contribution of the LLL
above the above-mentioned threshold magnetic field, we
consider, as in the previous section, Eq. (3.14), expressing
the second-order critical surface between the �SB and the
normal phase. Setting, for instance, � ¼ 0, we get, as it is
shown in the first section of the Appendix, the second-
order critical line in the T � ~eB phase [see (A12)]:

~eBðT;� ¼ 0;�Þ

¼ 4�2

3Hð�Þ
�

1

4GS

� �2

4�2
þ T2

12
þ T2

�2
½Li2ð�e�2�Þ

� 2� lnð1þ e�2�Þ�
�
; (3.22)

where � � �=2T. Moreover, the dilogarithm function
Li2ðzÞ and HðzÞ are defined in (3.18) and (3.21), respec-
tively. In Fig. 15, the analytical and numerical data are

compared. Red dots denote the analytical data, and the blue
solid line the numerical data. Whereas, at the threshold
magnetic field ~eBt ’ 0:5 GeV2 the qualitative behavior of
both data are similar, for ~eB > ~eBt the analytical and
numerical data exactly coincide.

3. �� ~eB phase diagram for various fixed T

In Figs. 16 and 17, the �� ~eB phase diagram of hot
magnetized 2SC quark matter is illustrated for various
fixed temperatures T ¼ 20; � � � 200 MeV. Green dashed
lines denote the first-order phase transitions, and blue solid
lines the second-order phase transitions. The critical points
are denoted by C (black bullets), and the tricritical points
by T (red bullets).
Let us consider the first plot in Fig. 16, the�� ~eB phase

diagram at T ¼ 20 MeV. This plot is similar to the phase
diagram, which was found in [16] at T ¼ 0. It includes a
first-order phase transition between the �SB and the CSC
phase. The latter goes over into the normal phase in a
second-order phase transition.18 This plot confirms our
findings in Figs. 2(a)–2(c) and 11. At T ’ 50 MeV, the
CSC phase is broken into two separated islands by the
normal phase, and a tricritical point (red bullet) appears at
ð~eB;�Þ ¼ ð0:490 GeV2; 333 MeVÞ. The normal phase be-
tween two CSC islands appears at ~eB 2 ½0:4; 0:6� GeV2.
This confirms our results from Fig. 7(b), where in the same
regime of ~eB, the CSC condensate �B vanishes, and a
normal phase occurs. By increasing the temperature, both
CSC islands shrink, so that at T ¼ 70 MeV, only three
separated CSC islands remain in the regime below the
threshold magnetic field ~eB � 0:5 GeV2. They are, then,
totally destroyed at T 	 100 MeV and in the relevant
interval ~eB 2 ½0; 0:8� GeV2. Moreover, by increasing the
temperature from T ’ 50 MeV to T ’ 100 MeV, the CSC
island and the corresponding tricritical point that exist in
the regime above the threshold magnetic field are shifted
away to higher values of � and ~eB (for the exact values of
the tricritical points, see Table III).
At T 	 100 MeV, the�� ~eB phase space consists only

of the �SB phase and the normal phase. The critical points
that appear at T ¼ 100 MeV at ð0:14 GeV2; 267:3 MeVÞ
are shifted to higher values of ~eB and�, as it can be seen in
Fig. 17 and Table III. A high temperature suppresses the
production of the chiral condensate in the regime of small
magnetic fields (compare the curves in Fig. 17 in the
regime ~eB 2 ½0; 0:4� GeV2). This effect is compensated
by increasing the magnetic field to above the threshold
magnetic field.

Normal

SB

0.4 0.5 0.6 0.7 0.8
150

200

250

300

350

400

450
T

c 
(M

eV
)

eB (GeV2)~

µ = 0 MeV

FIG. 15 (color online). The second-order critical lines of tran-
sition between the �SB and the normal phase. Red dots denote
the analytical data that arise in a LLL approximation, and the
blue solid line denotes the numerical data, including the con-
tributions of all Landau levels. The threshold magnetic field is at
~eB ’ 0:5 GeV2. For ~eB > ~eBt, the analytical and numerical data
exactly coincide.

17See the explanation in Sec. I for different mechanisms being
responsible for the production enhancement of meson and di-
quark mass gaps by strong magnetic fields.

18As we have explained in footnote 2, in a three-flavor NJL
model at low temperature and �> 500 MeV, the CSC phase
goes over into a CFL color-superconducting phase. In our model,
where no CFL phase can be built, the second-order transition
between the CSC and the normal phase at low temperature and
�> 500 MeV is only assumed to exist. The same assumption is
also made in [16].
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IV. CONCLUDING REMARKS

In this paper, we have introduced a two-flavor super-
conducting NJL-type model, including mesons and di-
quarks at finite temperature T, chemical potential �, and
in the presence of a constant (rotated) magnetic field ~eB.
We were, in particular, interested in the effect of ðT;�; ~eBÞ
on the formation of chiral- and color-symmetry-breaking
bound states and on the nature of phase transitions. One of

the most important effects of the magnetic field is its
competition with T and� in the formation of bound states.
This effect is demonstrated in Figs. 6 and 7. As it is
illustrated in Fig. 6, although it is expected that increasing
T suppresses the formation of chiral and color condensates,
it turns out that this specific effect of T is minimized
in the regime of a strong magnetic field for ~eB larger
than a certain threshold magnetic field ~eBt ’ 0:5 GeV2.
However, whereas the chiral condensate �B increases by
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FIG. 16 (color online). The �� ~eB phase diagram of hot magnetized 2SC quark matter is presented for various T. Blue solid lines
denote second-order phase transitions, and the green dashed lines first-order transitions. The critical points are denoted by C, and the
tricritical points by T. The shaded regions denote the CSC phases. A small CSC phase appears at T ¼ 100 MeV on the right side of the
last plot. The tricritical point (red bullet) is shifted to the regime ~eB > 0:8 GeV2 (see Table III). The black bullet denotes the critical
point.

SB
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0.0 0.2 0.4 0.6 0.8
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c 
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FIG. 17 (color online). The �� ~eB phase diagram for T ¼
120; 150; 180; 200MeV (from top to bottom).

TABLE III. Critical and tricritical points in the ~eB�� phase
diagrams of Figs. 16 and 17, denoted by ð~eBcr; �crÞ and
ð~eBtr; �trÞ, respectively. Here, ~eB is in GeV2; T and � are in
MeV.

�� ~eB phase diagrams (Figs. 16 and 17)

T ð~eBcr; �crÞ ð~eBtr; �trÞ
& 20 - -

50 - (0.490, 333)

60 - (0.554, 356)

65 - (0.580, 365)

70 - (0.610, 387)

100 (0.140, 267) (0.774, 467)

120 (0.240, 245) -

150 (0.458, 269) -

180 (0.520, 273) -

200 (0.610, 314) -
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increasing ~eB in the whole range of ~eB 2 ½0; 0:8� GeV2

[Fig. 6(a)], there are regions below ~eBt where the color
condensate�B vanishes [Fig. 6(b)]. The same phenomenon
is also observed in Fig. 7, where, at fixed temperature and
various chemical potentials, the dependence of �B and �B

on the magnetic field is plotted. Here, as in the previous
case, the effect of � in suppressing the production of the
chiral and (2SC) color condensates is compensated by ~eB
in the regime above the threshold magnetic field.

According to our results from [16], we believe that in the
regime above ~eBt, the dynamics of the system are solely
dominated by the lowest Landau level. In [16], a magne-
tized 2SC model at zero temperature is considered, and the
numerical value of the threshold magnetic field is deter-
mined by comparing the analytical ~eB dependence of �B

and �B, arising in a LLL approximation, with the corre-
sponding numerical data, including the contribution of all
Landau levels. According to this comparison, the threshold
magnetic field at T ¼ 0 turned out to be ~eBt ’ 0:5 GeV2.
In the present paper, the same model is considered at finite
temperature. Comparing the analytical expression of the
second-order critical line of the transitions from the �SB to
the normal phase, arising from a LLL approximation, with
the corresponding numerical data, including the contribu-
tion of all Landau levels in Fig. 15, we arrive at the same
threshold magnetic field as in the T ¼ 0 case. Note that, in
[16], the color-neutrality condition was imposed on the
magnetized 2SC quark matter. A comparison between the
presented results in this paper, where no color neutrality is
imposed, and the results from [16], shows that color neu-
trality, being very small [34], has no significant effect on
the value of the above-mentioned threshold magnetic
field.19

The nature of the phase transition is also affected by the
external magnetic field. The most significant effect, in this
regard, is illustrated in Fig. 11, where the T �� phase
space is plotted for various ~eB. As it is demonstrated in this
figure, the phase space of the system includes three differ-
ent phases. We observe that the distance between the black
and red bullets, denoting the critical (C) and the tricritical
(T) points, increases by increasing the strength of the
external magnetic field. This implies that, by increasing
~eB and keeping ðT;�Þ fixed, the second-order transition
from the �SB phase to the normal quark matter changes
into a first-order transition. This can also be observed, e.g.,
in Fig. 17; on each isothermal critical curve, a second-order
phase transition changes into a first-order one by increasing
the strength of the magnetic field. Implying external mag-
netic and hypermagnetic fields causes similar effects on
type I QED superconductivity, as well as electroweak
phase transition [3], respectively. Whereas the type of the
phase transition from the �SB to the normal phase changes
by increasing the strength of ~eB, the latter has no effect on

the nature of the phase transition between the �SB and the
CSC phase (first order) and between the CSC and the
normal phase (second order) (see the phase diagrams in
Figs. 11, 14, and 16). The only crucial effect of ~eB
concerning the CSC phase is the observed CSC-Normal-
CSC second-order phase transition induced by strong
van Alphen-de Haas oscillations in the regime ~eB 2
½0:4; 0:6� GeV2 [see, e.g., Figs. 6(b) and 14(i) at fixed T ¼
60 MeV] and an increase of the tricritical temperature and
chemical potential by increasing the magnetic field. The
latter can be observed in Table I for ~eB > ~eBt ’ 0:5 GeV2.
This could be relevant in relation to the question address-
ing the accessibility of the 2SC phase in present or future
heavy-ion experiments, which is recently posed in [32]. We
have extended the setup of the model used in [32] by
considering the effect of constant magnetic fields, which
are supposed to be created in the noncentral heavy-ion
collisions [28] and are estimated to be of order ~eB ’
0:03 GeV2 at RHIC energies and ~eB ’ 0:3 GeV2 at LHC
energies. These amounts of magnetic fields are, according
to our observation in this extended model, far below the
range of magnetic fields that could have significant effects
on the CSC phase transition by partly compensating the
effects of ðT;�Þ, as described above. However, we believe
that more realistic models are to be examined to find a
satisfactory answer to this interesting question.
The model which is used in this paper can be extended

in many ways, e.g, by considering the 2SC-CFL phase,
including color neutrality. A similar computation can
also be performed within a color-neutral Polyakov-NJL
model. It is also intriguing to explore the effect of the axial
anomaly in the same context.
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APPENDIX: SECOND-ORDER CRITICAL LINES
IN THE LLL APPROXIMATION

In this Appendix, we will determine the main equations
leading to the second-order critical lines corresponding to
the transition between the �SB and the normal phase, as
well as the transition between the �SB and the CSC phase,
in the limit of a very strong magnetic field in the LLL
approximation.

1. Transition between the �SB and the normal phase

In the phase space spanned by the intensive thermody-
namical parameters ðT;�; ~eBÞ, the second-order critical
surface between the �SB and the normal phase is deter-
mined by [20,21]19See footnote 9.
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lim
�2!0

@�effð�;� ¼ 0Þ
@�2

¼ 0: (A1)

Using�eff from (2.23) and setting n ¼ 0, to consider only
the contribution of the lowest Landau level, we get first

1

4GS

� 1

2
ffiffiffiffi
�

p X

¼�1

�Z d3p

ð2�Þ3
Z 1

0

dsffiffiffi
s

p pþ 
�

p
e�sðpþ
�Þ2

þ 3~eB
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dsffiffiffi
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p
Z 1
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dp3

4�2

p3 þ 
�

p3

e�sðp3þ
�Þ2
�

�
�
1þ 2

X1
‘¼1

ð�1Þ‘e�ð
2‘2=4sÞ
�
¼ 0: (A2)

Denoting the temperature-independent part of (A2) with
IT¼0, and using

1

2
ffiffiffiffi
�

p X

¼�1

Z 1

0

dsffiffiffi
s

p x� 
�

x
e�sðx�
�Þ2 ¼ 	ðx��Þ

x
(A3)

from [38], we get

IT¼0 ¼ 1

4GS

�
Z 1

0

pdp

2�2
	ðp��Þ

� 3~eB
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dp3

4�2

	ðp3 ��Þ
p3

¼ 1

4GS

� ð�2 ��2Þ
4�2

� 3~eB

4�2
ln

�
�

�

�
: (A4)

To evaluate the momentum integration, we have introduced
the ultraviolet cutoff �. Note that (A4) is comparable with
our results from [16]. The temperature-dependent part
of (A2), which is denoted by IT�0, can be evaluated using

X

¼�1

Z 1

0

dsffiffiffi
s

p z� 
�

z
e�sðz�
�Þ2e�ð
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ffiffiffiffi
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and is given by

IT�0 ¼
X1
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ð�1Þ‘
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; (A6)

where z is a generic integration variable replacing p ¼ jpj
or p3 in the one-dimensional integrations of (A2). To
perform the summation over ‘, we use

X
‘¼1

ð�1Þ‘ sinhð‘
zÞe�‘
� ¼ 1

2
F½z;T;��;

X1
‘¼1

ð�1Þ‘ coshð‘
�Þe�‘
z ¼ 1

2
ðF½z;T;�� � 1Þ;

(A7)

where

F½z;T;�� � sinhð
zÞ
coshð
zÞ þ coshð
�Þ : (A8)

Plugging (A7) into (A6) and performing the integration
over z as far as possible, the temperature-dependent part
IT�0 is given by

IT�0 ¼ � 1

4�2

Z �

0
dz

�
2zþ 3~eB

z

�
F½z;T;��

þ ð�2 ��2Þ
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4�2
ln

�
�

�

�
: (A9)

The second-order critical surface of the transition between
the �SB and the normal phase as a function of the phase-
space variables ðT;�; ~eBÞ is, then, given by adding (A4)
and (A9) and reads

1

4GS

� 1

4�2

Z �

0
dz

�
2zþ 3~eB

z

�
F½z;T;�� ¼ 0; (A10)

where F½z;T;�� is defined in (A8). Note that (A10) is only
valid in the limit of a strong magnetic field, where a LLL
approximation is justified. Choosing � ¼ 0, (A10) reads

1

4GS

¼ 1

4�2

Z �

0
dz

�
2zþ 3~eB

z

�
tanh


z

2
: (A11)

This leads to the following relation between T and ~eB:

~eBðT;�¼ 0;�Þ ¼ 4�2

3Hð�Þ
�

1

4GS

� �2

4�2
þT2

12

þ T2

�2

�
Li2ð�e�2�Þ�2� lnð1þe�2�Þ

��
;

(A12)

where � � �=2T,

HðzÞ � X1
n¼1

ð�1Þn�122nð22n � 1Þz2n�1

ð2n� 1Þð2nÞ! Bn; (A13)

Li2ðzÞ is the dilogarithm function defined by

Li 2ðzÞ � �
Z z

0
dy

lnð1� yÞ
y

; (A14)

and Bn are the Bernoulli’s numbers. This result will be
used in Sec. III B to determine the threshold magnetic field
for the LLL approximation at � ¼ 0. For arbitrary values
of the chemical potential, we expand (A10) in the orders of
�
� , keep terms up to O½ð��Þ3�, and arrive at the explicit

ðT;�Þ dependence of ~eB,

~eBðT;�; �Þ 
 1

3�

�
��2

GS

þ 4T2

�
�2 � Li2ð�e�2�Þ

þ 2� lnð1þ e�2�Þ � �2

12

�

��2ðtanh�þ �tanh2�� �Þ
�
; (A15)
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where � is defined by
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Similarly, the ðT; ~eBÞ dependence of � is given by
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where � is defined by

�ðT; ~eB; �Þ � ðtanh�þ �tanh2�� �Þ þ 3~eB

8T2

tanh2�

�

þ 3~eB

8T2

Z �

0
dz

tanh2z

z2
: (A18)

Relations (A17) will be evaluated numerically in Sec. III B
to determine the threshold magnetic field for the LLL
approximation.

2. Transition between the CSC and the normal phase

For the transition between the CSC and the normal
phase, we use the equation [20,21]

lim
�2!0

@�effð� ¼ 0;�Þ
@�2

¼ 0: (A19)

Setting n ¼ 0 in �eff from (2.23) and plugging the result-
ing expression in (A19), we get
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ð�1Þ‘e�ð
2‘2=4sÞ
�
¼ 0: (A20)

Evaluating the T-dependent and independent parts of the
expression in the right-hand side of (A20) using (A3) and
(A5), respectively, we arrive, after some straightforward
manipulations, at the relation between the phase-space
parameters ðT;�; ~eBÞ,

~eB�1ðT;�; �Þ ¼ GD

�2

Z ð�þ�Þ=2T

0
dz

tanhz

z

þGD
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�
þH

�
���

2T

��
; (A21)

where HðzÞ is defined in (A13). Fixing one of these
parameters in (A21), the second-order critical lines for
the transition from the CSC to the normal phase arises in
the phase space of two other parameters.
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