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In certain scenarios of deformed relativistic symmetries relevant for noncommutative field theories

particles exhibit a momentum space described by a non-Abelian group manifold. Starting with a

formulation of phase space for such particles which allows for a generalization to include group-valued

momenta we discuss quantization of the corresponding field theory. Focusing on the particular case of

�-deformed phase space we construct the one-particle Hilbert space and show how curvature in

momentum space leads to an ambiguity in the quantization procedure reminiscent of the ambiguities

one finds when quantizing fields in curved space-times. The tools gathered in the discussion on

quantization allow for a clear definition of the basic deformed field mode operators and two-point

function for �-quantum fields.
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I. INTRODUCTION

A characteristic feature of quantum field theory in curved
space-time is that different observers, in general, do not
agree on the particle content of the same quantum state of
the field, i.e. a ‘‘natural’’ definition of particle does not exist
[1]. This is ultimately due to the lack of a unique choice of
the notion of time which guides the distinction between
positive and negative frequency/energy modes and thus of
particle and antiparticle at the quantum level. Such ambi-
guity is already present when the space is a maximally
symmetric one even though in these cases the symmetries
available offer some criteria to pick up a particular choice
of vacuum state. The familiar Poincaré invariant vacuum
in Minkowski space and the Bunch-Davies vacuum in
de Sitter space are well known examples of such states.

The main motivation for the present work was the
observation that, perhaps not surprisingly, similar issues
regarding ambiguities in the definition of frequency/energy
arise in a quite different setting, namely, for certain classes
of ‘‘noncommutative’’ field theories in which usual com-
muting space-time coordinates are replaced by generators
of a Lie algebra. In such theories, as discussed in detail in
the rest of the paper, momentum space will turn into a non-
Abelian Lie group and thus into a curved manifold. A
natural question is why should one be interested in study-
ing field theories defined on a curved momentum space.
One motivation comes from lower dimensional physics. As
first pointed out by ’t Hooft [2], the momentum of a particle
coupled to three-dimensional gravity as a conical defect is
given by an angle leading to Lie algebra valued particle
coordinates (see [3] and references therein for an extended
discussion). In higher dimension we encounter two more
contexts in which field theories with curved momentum
space play a major role. On one side field theories defined
on group manifolds are very useful tools in nonperturbative

quantum gravity where they provide a way of generating
amplitudes for spin-foam models (see e.g. [4]). On the
other hand certain models of noncommutative field theo-
ries are associated with momentum spaces given by homo-
geneous spaces other than the usual R3;1. In these cases the
curvature in momentum space introduces an energy scale
which is invariant under the action of deformed relativistic
symmetry generators [5–14].
Since the operational interpretation of noncommuting

space-time coordinates is not immediate the starting point
of our discussion will be a ‘‘symmetry based’’ description
of the phase space of a relativistic particle alternative to the
usual formulation in terms of cotangent bundle of a con-
figuration space. We will describe how this picture of a
classical phase space naturally leads to the definition of a
quantum one-particle Hilbert space. However the crucial
step that permits the distinction between particle and anti-
particle states, i.e. positive and negative energy states,
requires the introduction of a complex structure ‘‘by
hand.’’ This will be discussed in detail in Sec. III where
we also recall how the arbitrariness of this choice is at the
root of the ambiguity one encounters in the choice of
vacuum state in curved space-times. In Sec. IV we intro-
duce the notion of ‘‘curved’’ momentum space at the level
of phase space focusing on a four-dimensional model
based on the �-deformed Poincaré algebra where momen-
tum space is embedded in a Lie group described by a
submanifold of de Sitter space. The structure of the mo-
mentum space group manifold is described in more detail
in the beginning of Sec. Vas a preparation for the following
discussion on the one-particle quantization from the de-
formed phase space and the related ambiguities. In Sec. VI
we provide a practical construction of the one-particle
Hilbert space and field operators obtaining an explicit
form of the two-point function and discussing the behavior
of quantum fluctuations of deformed field modes. We
conclude, in Sec. VII, with a summary of the results and
a brief discussion.*m.arzano@uu.nl
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II. FROM PARTICLES TO FIELDS

A. Classical relativistic particle:
Phase space and symmetries

In classical mechanics one has two equivalent ways of
describing the phase space of a free relativistic particle.
The usual approach is simply to take as the configuration
space the range space of the coordinates of a particle
(Minkowski space, R3;1) and define the (unreduced) phase
space as the cotangent bundle of this configuration
space. The physical phase space will be given by a six-
dimensional submanifold of the unreduced phase space
whose coordinates parametrize geodesics in Minkowski
space. From an abstract mathematical point of view such
phase space consists of a symplectic manifold ðM;�Þ,
with M the cotangent bundle of the configuration space
equipped with a closed nondegenerate two-form � (for
more details see e.g. [15]).

For a classical mechanical system which admits a con-
tinuous group of symmetries G the phase space can be
alternatively described by a group theoretic construction
known as the coadjoint orbit method [16] which empha-
sizes the deep relation between M and G. In this case the
phase space can be constructed starting from the algebra g�
dual to the Lie algebra g of the symmetry group G. Since
the symmetry group G has a natural coadjoint action on g�
the phase space manifoldM will be given by the orbit OY

of the coadjoint action of G on an element Y 2 g�. The
symplectic structure on OY will be induced by the natural
symplectic structure on the dual algebra g�. The latter is
defined as follows. Take an element Y 2 g�, since g� is a
vector space the tangent space TYg

� ’ g�. If we take a
smooth function on the dual algebra f 2 C1ðg�Þ then the
differential ðdfÞY : TYg

� ! R, i.e. ðdfÞY , can be seen as an
element of the Lie algebra g since ðdfÞY 2 ðg�Þ� ’ g.
The Poisson bracket on C1ðg�Þ is then given in terms of
the commutators of g by

ff; ggðYÞ � hY; ½ðdfÞY; ðdgÞY�i; (1)

where we used the natural pairing hY; �i of g and g� as
vector spaces. The orbits OY of the coadjoint action of G
on an element Y 2 g� equipped with the symplectic struc-
ture above become symplectic manifolds which describe
the phase spaces of G-symmetric mechanical systems.

In our specific context we are interested in the phase
space of a relativistic point particle and thus we take the
symmetry group G to be the Poincaré group ISOð3; 1Þ ¼
SOð3; 1Þ2R3;1. In this case g� ¼ iso�ð3; 1Þ � so�ð3; 1Þ �
ðR3;1Þ� and the coadjoint orbits Om;s are given by level

hypersurfaces of the two Casimir functions C1ðpÞ and
C2ðwÞ on iso�ð3; 1Þ. More specifically if we fix a set
of coordinates ðp0; pi; ji; kiÞ on iso�ð3; 1Þ then we take
p ¼ ðp0; piÞ and define the Pauli-Lubanski four vector
w ¼ ðw0; wiÞ by

w0 ¼ p � j; ~w ¼ p� kþ p0j: (2)

The mass and spin labels of the coadjoint orbitm and swill
be related to the fixed values of the functions C1 ¼ p � p
and C2 ¼ w � w. Writing explicitly the Poisson structure on
Om;s for a specific choice of coordinate functions it can be

seen [17] thatOm;s ’ R6 � S2 as a Poisson manifold, i.e. a

symplectic manifold describing the phase space of a rela-
tivistic spinning particle. Notice here that the main advan-
tage of the coadjoint method approach is that it offers the
most general formulation of a relativistic particle phase
space because it encompasses the case of spinning particle
which is normally not straightforward to describe in terms
of the cotangent bundle on a configuration space [18].
From here on we will focus on the phase space of a

spinless relativistic particle. In this case the Pauli-Lubanski
vector vanishes identically and we denote the coadjoint
orbit by Om;0. As mentioned above the dual algebra g� ¼
iso�ð3; 1Þ carries a natural Poincaré invariant Poisson
structure directly related to the commutators of the Lie
algebra g ¼ isoð3; 1Þ. Indeed every � 2 g defines a linear
coordinate function on g� given by f� such that f�ðYÞ ¼
hY; �i. As we pointed out above for any function f on g�
the one-form df can be seen as an element of the Lie
algebra g. In particular if we consider coordinate functions
on g� associated with the generators of the Lie algebra �i

then df�i
� �i. Denoting hi � f�i

it is easy to see that the

Poisson brackets induced by the commutators of the Lie
algebra g will be given by

fhi; hjg ¼ ckijhk; (3)

where ckij are the structure constants of g. Starting from

the coordinate functions ðp0; pi; ji; kiÞ on iso�ð3; 1Þ one
can define a set of canonical coordinates onOm;0 using the

spatial momentum coordinates pi and defining the position
coordinates

qi ¼ ki

p0
; (4)

with the coordinates satisfying the constraints wi ¼
w0 ¼ 0 and ðp0Þ2 � p2 ¼ m2. Using the general formulas
above it is easy to check that the canonical ‘‘phase space’’
coordinates fqi; pig close the usual Poisson brackets

fqi; qjg ¼ fpi; pjg ¼ 0; fqi; pjg ¼ �ij; (5)

and thus Om;0 ’ R6 as expected. Describing the phase

space in terms of the coadjoint orbit is in some way
equivalent to consider a symplectic manifold whose natu-
ral coordinates are ‘‘Poincaré momenta.’’ Using coadjoint
orbits to describe phase space we have a straightforward
connection with the irreducible representations of isoð3; 1Þ
since the latter are also labeled by the eigenvalues of the
two invariant functions C1 and C2. We devote the rest of this
section to this connection.
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B. Phase space of a classical field

As a preparation for the discussion below it will be useful
to make a short digression on the meaning of ‘‘positions’’
and ‘‘momenta’’ when describing the phase space and
symmetries of a relativistic particle. Let us denote with T
the group of space-time translation. For ordinary relativistic
symmetries this is just R3;1 seen as a group under addition.
The Lie algebra t of translation generators, as a tangent
space to the identity element, can be identified with R3;1 as
vector spaces. The (trivial) Lie bracket on t is induced by
the addition law of the group T � R3;1. The dual group T�
is, by definition, given by equivalence classes of unitary
irreducible representations of T and in the case T � R3;1

elements of T� � ðR3;1Þ� are given by one-dimensional
characters or in physics language ‘‘plane waves.’’ When
we write a plane wave like ep 2 ðR3;1Þ� we are simply

saying that this element of the dual group ðR3;1Þ� has
coordinates given by the four-vector p.

One usually refers to ‘‘positions’’ (as elements of the
ambient space on which we build the [unreduced] configu-
ration space) as given by coordinates on Minkowski space,
i.e. the translation group T � R3;1. Indeed, in the usual
description, the unreduced phase space of a nonspinning
relativistic particle is given by the cotangent bundle of the
group of translations T which is isomorphic [15] to T � t�.
From this point of view ‘‘momenta’’ are just coordinates on
the dual Lie algebra t�. Let us point out that one also speaks
of momenta when referring to the space-time translation
generators, i.e. a basis of the Lie algebra t. In this case
space-time coordinates correspond to the basis of gener-
ators the dual algebra t�. In ordinary relativistic theories
we can refer to coordinates and momenta without specify-
ing the objects we are referring to because T and t can be
identified and so can their duals T� and t�. Notice how,
instead, from the more general point of view of the coad-
joint orbit description of phase space it is only correct to
say that the dual algebra iso�ð3; 1Þ provides the ambient
space on which both position and momenta are defined. As
we will see in Sec. IV the distinction between T, T� and
their respective Lie algebras will be crucial when momen-
tum space becomes curved. In that context a description of
phase space in terms of coadjoint orbits will provide a very
clear characterization of the structures that lie at the basis
of symmetry deformation.

Going back to our spinless relativistic particle, in the
language of coadjoint orbits its ‘‘momentum space’’ will
be given by the subspace Mm � Om;0 (the ‘‘mass-shell’’)

obtained by considering the restriction to the coadjoint
orbits of the Abelian subalgebra t� � ðR3;1Þ� of g� ¼
iso�ð3; 1Þ dual to the algebra of translation generators.
Since for an ordinary relativistic particle in Minkowski
space we can identify t� with T� the momentum space
Mm can be characterized in a coordinate independent way
as an orbit of a character (plane wave) under the action of
the group SOð3; 1Þ (see [19]), i.e.

Mm � f�ep: ep 2 ðR3;1Þ�; � 2 SOð3; 1Þg; (6)

which, keeping in mind the discussion above, can be
described in terms of the coordinate functions on the
dual algebra t� � ðR3;1Þ� by the two-sheeted hyperboloid
ðp0Þ2 � p2 ¼ m2. From its definition as an orbit of a
symmetry group Mm has a natural structure of a homoge-
neous space, indeed

Mm ’ SOð3; 1Þ=SOð3Þ; (7)

with SOð3Þ the ‘‘isotropy’’ subgroup of SOð3; 1Þ which
leaves invariant the point ðm; 0; 0; 0Þ. Like any homoge-
neous space (under some additional assumptions, see Barut
[19]), Mm admits an invariant measure on its space of
functions. On the space of complex valued functions on
the mass-shell C1ðMmÞ we can define the invariant mea-
sure d�m using the following trick [20]: one looks for the
volume three-form which satisfies

dV ¼ dðC1ðpÞÞ ^ d�m; (8)

where dV is the ordinary volume four-form on R3;1. The
invariant measure on C1ðMmÞ can be usefully written as a
‘‘�-measure’’

d�m ¼ dV�ðC1ðpÞÞ: (9)

In the same spirit we can think of elements of C1ðMmÞ as
distributions on ðR3;1Þ� given by

~�ðpÞ ¼ �ðC1ðpÞÞ~fðpÞ; (10)

with ~fðpÞ 2 C1ððR3;1Þ�Þ. A necessary and sufficient con-
dition for a distribution to be of the form above is that

ðC1ðpÞ �m2Þ ~�ðpÞ ¼ 0: (11)

On the space of functions C1ððR3;1Þ�Þ we can introduce a
notion of Fourier transform which is just a special (trivial)
case of the general Fourier transform of functions on a
group (which will be useful later on)

fð�Þ ¼ ðd�Þ�1
Z
G
d�ðgÞ~fðgÞn̂gð�Þ; (12)

where � is an index of an irreducible representation of G,
d� its dimension, and n̂gð�Þ the character of such repre-

sentation. In our particular case for ~fðpÞ 2 C1ððR3;1Þ�Þ
and ~�ðpÞ 2 C1ðMmÞ one has the familiar expressions

fðxÞ ¼
Z
ðR3;1Þ�

d�ðpÞ~fðpÞepðxÞ;

�ðxÞ ¼
Z
ðR3;1Þ�

d�ðpÞ�ðC1ðpÞÞ~fðpÞepðxÞ;
(13)

where d�ðpÞ ¼ d4p

ð2�Þ3=2 and epðxÞ ¼ expð�ipxÞ. Finally

noting that under Fourier transform @i�ðxÞ ! ipi
~�ðpÞ

we have that

ðC1ðpÞ �m2Þ ~�ðpÞ ¼ 0 , ðhþm2Þ�ðxÞ ¼ 0; (14)
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the Fourier transform maps functions on the mass-shell
hyperboloid into the space of solutions of the Klein-

Gordon equation S. Notice that we also have�@i�
�ðxÞ !

�ipi
~��ðpÞ and due to the quadratic nature of the equations

above we make the identification ~��ðpÞ ¼ ~�ð�pÞ and
��ðxÞ ¼ �ðxÞ, i.e. the solutions of the Klein-Gordon equa-
tion are real valued functions. The phase space of a clas-
sical field is then given by the symplectic manifold ðS; !Þ
with symplectic structure provided by the antisymmetric
bilinear form ! given by the Wronskian1 associated to the
Klein-Gordon equation

!ð�1; �2Þ ¼
Z
�
ð�2r��1 ��1r��2Þd��: (15)

This exhibits nicely the connection between the phase
space of a relativistic spinless point particle and the phase
space of a classical scalar field. Let us remark here that in
Minkowski space (and in general on any globally hyper-
bolic space) the field’s phase space is given by an equiva-
lent description in terms of the space of initial data f’;�g
on a given Cauchy surface �� with the symplectic form
given by the restriction of ! above to such space. In the
next section wewill discuss how a natural structure of inner
product can be defined on the field’s phase space and how
this can be used to construct the one-particle Hilbert space
of the corresponding quantum field theory.

III. COMPLEX NUMBERS AND FIELD
QUANTIZATION

As we discussed above classical fields are real fields. In
classical field theory complex variables are often used as a
computational tool with no physical meaning. When we
turn to the quantum setting however complex numbers
become fundamental. From the point of view of quantum
observables the imaginary unit i is introduced in order to
turn differential operators into self-adjoint operators (e.g.
momenta as generators of translations). From the point of
view of quantum states these are now rays of a complex
Hilbert space. Indeed, from a modern perspective, the very
concept of quantization of a classical field amounts to the
introduction of an appropriate complex structure J on the
classical phase space of the theory [21–24].

In the section above we discussed how the phase space
of a classical field can be described by the space of solu-
tions of the classical equations of motions S. This charac-
terization of phase space will give an intuitive physical
interpretation of the role of the complex structure because,
as we will see in more detail below, J provides a direct

sum decomposition of the complexification of S, SC into

‘‘positive and negative energy’’ subspaces which will
represent, respectively, the one-particle Hilbert space of

the theoryH and its complex conjugate �H once they are
equipped with an appropriate inner product. Of course the
choice of J is not unique but in certain specific cases it will
be dictated by further physical inputs. For example for a
real scalar field in Minkowski space there exists a unique
Poincaré invariant complex structure and it corresponds to
the familiar textbook decomposition of the field in positive
and negative frequency modes. In more general space-
times there will be no unique choice of J and this is at
the basis of the well-known phenomenon of particle crea-
tion. In this case different observers will decompose the
field according to a different notion of positive and nega-
tive energy and will define different vacuum states for their
quantum field. From a more fundamental point of view
such observers are just choosing different complex struc-
tures in representing the Hilbert space of their quantum
field theory.
Let us try to be more concrete. To introduce a complex

structure on S amounts to defining an automorphism
J: S ! S such that J2 ¼ �1. As we mentioned above,
the introduction of J corresponds to a choice of decom-

position of SC in positive and negative energy subspaces.

Recall that the complexification SC of S is defined by

S C � S 	 C: (16)

The complex linear extension of J to SC is given by

Jð� 	 zÞ � Jð�Þ 	 z: (17)

The introduction of J gives rise to a natural decomposition

of SC into two subspaces, SCþ and SC� spanned,
respectively, by the eigenvectors of J with eigenvalues

i, i.e. Jð�
Þ ¼ 
ið�
Þ. We can define projectors

P
: S ! SC


P
 � 1

2
ð1� iJÞ; (18)

with

S C ¼ SCþ � SC�: (19)

The connection with positive and negative energy decom-
position is now easily seen. If the background space-time
admits a timelike and hypersurface orthogonal Killing
vector field Lt, i.e. it is static, one can decompose any
real solution � 2 S in normal modes (e.g. plane waves)
of positive and negative energy components with respect
to Lt

� ¼ �þ þ��: (20)

Then the map J ¼ �ð�LtLtÞ�1=2Lt is such that

J� ¼ i�þ þ ð�iÞ��; P
� ¼ �
; (21)

i.e. J is a complex structure on S and it provides a decom-

position of SC in positive and negative energy subspaces.

1In Minkowski space the integral is taken over a Cauchy
surface �t at fixed time t

!ð�1; �2Þ ¼
Z
�t

ð�2
_�1 ��1

_�2Þd3 ~x:

MICHELE ARZANO PHYSICAL REVIEW D 83, 025025 (2011)

025025-4



Put the other way around a decomposition of SC in positive
and negative energy subspaces singles out a preferred
complex structure J. Of course in order to obtain the

one-particle Hilbert space H from SCþ we need to equip
the latter with a positive definite inner product. This can be
constructed using J itself and the natural symplectic struc-
ture (15) of the classical phase space under the further
requirement that the complex structure be compatible
with the symplectic structure !, namely

!ðJ�1; J�2Þ ¼ !ð�1; �2Þ: (22)

The positive definite inner product on the positive energy

subspace SCþ will be given by

ð�þ
1 ; �

þ
2 Þ ¼ �i!ðPþ�1; P

þ�2Þ

¼ 1

2
ð!ðJ�1; �2Þ � i!ð�1; �2ÞÞ: (23)

It is easily checked that this product is positive definite on

SCþ and thus the one-particle Hilbert space H of the

theory is obtained by taking the completion of SCþ with
respect to the above inner product. The complex conjugate

space �H can be thus identified with the subspace SC� and
corresponds to the ‘‘one-antiparticle’’ space. The point that
should be stressed (for a detailed discussion, see [25]) is
that to each choice of complex structure will correspond an
inner product (and a corresponding Hilbert space construc-
tion) and vice versa.

It would be good at this point to make contact with the
usual textbook formalism to see concrete realizations of
these rather abstract constructions. The Fourier transform
of an element � 2 S can be recast as a normal mode
expansion

�ðx; tÞ ¼
Z

d�ðkÞ½�þðkÞek þ��ðkÞ �ek�; (24)

where ek is a positive energy plane wave solution

ek � 1

ð2�Þ3=2 expðikx� i!ktÞ; (25)

with !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, d�ðkÞ ¼ dk

2!k
, and the following

relation between the modes (24) and the Fourier coeffi-

cients: �þðkÞ ¼ ~�ð�!k;�kÞ, ��ðkÞ ¼ ~�ð!k;kÞ.
Positive and negative energy modes are defined with re-
spect to the inertial time translation Killing vector @t and

thus according to the discussion above J ¼ �@t
ð�@t@tÞ1=2 and in

terms of the time translation generator P0 ¼ i@t

iJ ¼ � P0

jP0j ; P
 ¼ 1

2

�
1
 P0

jP0j
�
: (26)

Using the expression for the projector above we have

�þðxÞ ¼ 1

ð2�Þ3=2
Z

dk�ðk2 �m2Þ�ðk0Þ ~�ðkÞ expð�ipxÞ

¼ 1

ð2�Þ3=2
Z dk

2!k

�þðkÞ expðikx� i!ktÞ; (27)

with ��ðxÞ � �þðxÞ and from (15)

ð�þ
1 ; �

þ
2 Þ � �i!ðPþ�1; P

þ�2Þ ¼
Z dk

2!k

��
1 ðkÞ�þ

2 ðkÞ:
(28)

This shows how an equivalent description of the one-
particle Hilbert space is given by H ¼ ðMþ

m ;d�ðkÞÞ, the
space of functions on the positive mass-shell square inte-
grable with respect to the Lorentz invariant measure
d�ðkÞ ¼ dk

2!k
. The inner product defined above extends

to a natural inner product on the whole mass-shell Mm ¼
Mþ

m [M�
m given by

!ð ��1; �2Þ ¼ i
Z

d4k�ðk2 �m2Þ �~�1ðkÞ ~�2ðkÞ; (29)

from which it is easy to write the covariant version of (28)

ð�þ
1 ; �

þ
2 Þ ¼

Z
d4k�ðk2 �m2Þ�ðk0Þ �~�1ðkÞ ~�2ðkÞ: (30)

Notice how the �-measure d4k�ðk2 �m2Þ is exactly the
invariant measure on the space of functions on the homo-
genous space Mm ’ SOð3; 1Þ=SOð3Þ we introduced in the
previous section and that the complex structure, through
the projection operator Pþ, singles out a subspace of it, that
of functions on the positive energy mass-shell. A basis of
one-particle states will be given by monochromatic plane
wave solutions ek which we denote by kets jki 2 H .
From (27) we see that the modes associated with such
solutions are

eþk ðpÞ � 2!k�
3ðp� kÞ: (31)

It is easily checked that the normalized plane wave solu-
tions above provide an orthogonal basis for H , indeed

hk1jk2i � ðeþk1
; eþk2

Þ ¼
Z dk

2!k

e�k1
ðkÞeþk2

ðkÞ

¼ 2!k1
�3ðk1 � k2Þ; (32)

as expected. In the rest of the paper we will show how the
construction above can be extended to the quantization of a
classical relativistic particle with a deformed phase space
and group-valued momenta.

IV. BENDING PHASE SPACE

The main point of this and the following section will be
to show that when the space Mm is embedded in a group
there will be quite dramatic consequences for field
quantization. In particular the introduction of curvature
in momentum space leads to an ambiguity in the definition
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of the energy of one-particle states in terms of field modes.
This is somewhat analogous to what happens for quantum
fields in curved space where one does not have a preferred
notion of vacuum due to the lack of a unique way of
measuring time and energy for different observers. In our
case, to each choice of coordinates on (curved) momentum
space will correspond a choice of field modes or ‘‘linear
momentum" of one-particle states.

To start off let us make more clear the notion of
‘‘momentum becoming group-valued.’’ In Sec. II we saw
how the ambient space on which the momentum sector of
the phase space of a classical relativistic particle is built is
the Lie algebra t� dual to the algebra of translation gen-
erators t. When we say that the momentum becomes
group-valued we mean that the Lie algebra t� acquires
nontrivial Lie brackets, i.e. it becomes non-Abelian (unlike
the case of a particle in ordinary Minkowski space). This is
to say that the dual group T� is now a non-Abelian group
and thus momenta, as labels of plane waves, will obey a
non-Abelian composition rule. Let us first see what con-
sequences this has in general and then discuss a particular
four-dimensional example.

First of all according to the discussion in Sec. II and
Eq. (1) a nontrivial Lie bracket on t� will correspond to a
nontrivial Poisson-Lie structure on its dual algebra, i.e.
coordinate functions x� on t will now have nontrivial
Poisson brackets

½�; ��t� � 0 ! f�; �gt � 0: (33)

The second consequence is that a nontrivial Lie bracket on
t� induces a new structure on t, a ‘‘nontrivial cocommuta-
tor,’’ i.e. a function �: t ! t 	 t (which, as we will see in
the next section, will give the leading order deviation from
the Leibniz rule [coproduct] for a basis of the algebra of
polynomials of the translation generators) defined by

�ðYÞð�1; �2Þ � hY; ½�1; �2�i; ½�; ��t� � 0 ! �ð�Þt � 0:

(34)

For more details about the interplay between Poisson-Lie
structures and Lie-bialgebra structures we refer the reader
to [26]. Notice how even when the new structures are
introduced the algebra of translation generators t is still
Abelian and thus at the Lie algebra level the Poincaré
algebra is unchanged. This means that the adjoint orbits
of the Poincaré group on its Lie algebra are the same as in
the classical case and consequently, under the dual pairing
(which at the Lie algebra level does not involve any prod-
uct or coproduct structures) the coadjoint orbits are the
same. This means that the classical phase space is unaf-
fected by the introduction of a nontrivial Lie bracket on t�.
For the case of interest to us, the �-Poincaré algebra [27],
the most important new ingredient is that the dual algebra
of translations gets equipped with the following bracket:

½P�
�; P

�
	� ¼ � 1

�
ðP�

��
0
	 � P�

	�
0
�Þ: (35)

The algebra generated by P�
� is isomorphic to the quotient

Lie algebra b � soð4; 1Þ=soð3; 1Þ (see e.g. [28]). The non-
trivial cocommutators on t are then given by

�ðP0Þ ¼ 0; �ðPiÞ ¼ 1

�
Pi ^ P0: (36)

The Lie algebra structure of t� ¼ b will correspond to a
Poisson structure on t given by

fxi; xjg ¼ 0; fx0; xjg ¼ 1

�
xj: (37)

Such Poisson brackets bear the same structure of the
commutation relations of the so-called �-Minkowski non-
commutative space-time [29] but we should be careful in
identifying such coordinates with positions of a classical
relativistic particle. Indeed as discussed in detail in Sec. II
when building phase space from the coadjoint orbit posi-
tion variables should be constructed from the dual algebra.
As in the undeformed case we have here a choice of
canonical coordinates on the coadjoint orbit given by
fpi; xig as discussed in Sec. II. In other words the classical
phase space of a �-particle is built from orbits of the
undeformed Poincaré algebra on its dual. Even if the latter
has nontrivial Lie brackets the orbits are still orbits on a
linear (flat) space and thus there is no ambiguity in the
choice of canonical coordinates (for more details on this
conclusion drawn from an alternative approach, see [30]).

V. QUANTUM FIELDS
AND VACUUM STRUCTURE:

A NEW QUANTIZATION AMBIGUITY

As in the undeformed case plane waves will be the key
ingredient in the construction the one-particle Hilbert
space of the theory. In the deformed phase space setting,
as remarked in the previous section, the translation group T
is still an Abelian group and thus we can define the dual
group T� as the set of plane waves (characters). As unitary
irreducible representations of T we can denote plane waves
as ex ¼ expðix�P�Þ and as elements of the non-Abelian

group T� ¼ B, obtained by exponentiating the Lie algebra
b above we write ep ¼ expðip�P�

�Þ. What is important to

notice is that, unlike the undeformed case, such plane
waves will have composition law with respect to T and
T� which are, respectively, Abelian and non-Abelian

epeq � ep�q � eq�p � eqep; (38)

and

exey � exþy ¼ eyþx � eyex: (39)

Likewise we will have different behaviors under group
inversion

ðepÞ�1 � e�p; ðexÞ�1 � e�x: (40)

The non-Abelian composition rule for the T� labels can be
derived in terms of the Baker-Campbell-Hausdorff formula

MICHELE ARZANO PHYSICAL REVIEW D 83, 025025 (2011)

025025-6



using the Lie brackets of b (see e.g. [31]). Notice however
that the explicit form of such a composition rule will
depend on the choice of coordinates on the group manifold
T� ¼ B. Some of these coordinate systems will correspond
to group decompositions of B which reflect in a splitting of
the plane wave ep in purely spatial and purely temporal

components. As an example we will consider the following
one-parameter family of decompositions of B parame-
trized by 0 
 j
j 
 1:

ep � e�iðð1�
Þ=2Þp0P�
0eip

jP�
j e�iðð1þ
Þ=2Þp0P�

0 : (41)

Such parametrization will correspond to the different
momentum composition rules

p �
 q ¼ ðp0 þ q0;pjeðð1�
Þ=2�Þq0 þ qje�ðð1þ
Þ=2�Þp0Þ;
(42)

and ‘‘antipodes’’

�
 p ¼ ð�p0;�eð�
=�Þp0
piÞ: (43)

The nontrivial behaviors of the deformed plane waves
above can be understood in terms of coordinate choices
on the group manifold B. In order to see that, let us first
note that as a group manifold B is represented by a

submanifold of de Sitter space. If we describe the latter
as a four-dimensional hypersurface embedded in five-
dimensional Minkowski space

� z20 þ z21 þ z22 þ z23 þ z24 ¼ �2; (44)

it can be shown [28] that the momentum space B is given
by the submanifold2 defined by the inequality z0 � z4 > 0.
Each choice of group splitting will correspond to a par-
ticular choice of coordinates on B [these are obtained from
acting with a matrix representation of the group element on
the stability point ð0; . . . ; �Þ 2 R4;1 seen as a column vec-
tor]. For example to the ordering 
 ¼ 1 will correspond to
‘‘flat slicing’’ coordinates p� given by

z0ðp0;pÞ ¼ � sinhp0=�þ p2

2�
ep0=�;

ziðp0;pÞ ¼ �pie
p0=�;

z4ðp0;pÞ ¼ �� coshp0=�þ p2

2�
ep0=�:

(45)

With a straightforward but tedious calculation one can
easily obtain a general expression for coordinate systems
associated to each value of the parameter 


z0ðp0;pÞ ¼ �ðsinhþ½p0�cosh�½p0� þ coshþ½p0�sinh�½p0�Þ þ
�
p2

2�

�
ðsinhþ½p0�cosh�½p0� þ coshþ½p0�cosh�½p0�

� sinhþ½p0�sinh�½p0� � coshþ½p0�cosh�½p0�Þ;
ziðp0;pÞ ¼ �piexpþ½p0�;

z4ðp0;pÞ ¼ ��ðsinhþ½p0�cosh�½p0� þ coshþ½p0�sinh�½p0�Þ þ
�
p2

2�

�
ðsinhþ½p0�cosh�½p0� þ coshþ½p0�cosh�½p0�

� sinhþ½p0�sinh�½p0� � coshþ½p0�cosh�½p0�Þ; (46)

where we used the compact notation h
½p0� � hð1


2� p0Þ

for the exponential and hyperbolic functions appearing
above.

From a mathematical point of view the different com-
position laws and choices of coordinates reflect the differ-
ent choices of bases of the universal enveloping algebra
(UEA) UðbÞ which we use to label the elements of B.
Recall here that roughly speaking the UEA of t, UðtÞ, is
the associative algebra of polynomials of the translation
generators (see [34] for a pedagogical introduction). The
very important aspect of UEA of Lie algebras is that they
can be endowed with an additional ‘‘coalgebra’’ structure
which encodes the way their representations extend to
tensor product spaces. In particular this rule of extending
representations to tensor product spaces is defined by
a map �: UðtÞ ! UðtÞ 	UðtÞ called the ‘‘coproduct’’
which for ordinary UEA is nothing but the analogous to
the familiar Leibniz rule for derivatives acting on products
of two elements. In mathematical language a UEA

equipped with the additional coalgebra structure (and ap-
propriate compatibility axioms) becomes a Hopf algebra.
The important thing to note is that the algebra of functions
on C1ðT�Þ also has a natural Hopf algebra structure.
Indeed it turns out that UðtÞ is dual as a Hopf algebra to
C1ðT�Þ and a choice of basis in UðtÞ will correspond to a
choice of basis of coordinate functions on C1ðT�Þ. To each
composition rule related to the different group splittings
described above one can associate a specific coproduct for
the basis elements given by

2In [32] it was argued that the action of Lorentz boosts on
negative frequency plane waves could take their momentum out
of the submanifold describing the Lie group B thus breaking
Lorentz symmetry. It was later observed by one of the authors of
[32], myself, and a collaborator [33] that the correct way of
handling the action of Lorentz generators on such antiparticle
states is via their ‘‘antipode’’ [see (48) below]. In this way the
particle/antiparticle structures and Lorentz symmetry are fully
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�ðP0Þ ¼ P0 	 1þ 1 	 P0

�ðPiÞ ¼ Pi 	 eðð1�
Þ=2�ÞP0 þ e�ðð1þ
Þ=2�ÞP0 	 Pi;
(47)

and the corresponding antipodes, which reflect the group
inversion law of B on UðbÞ, given by

SðP0Þ ¼ �P0 SðPiÞ ¼ �eð
=�ÞP0Pi: (48)

From these basic ingredients, under certain compatibility
requirements for the action of the Lorentz group on the
deformed momentum space, one can reconstruct the struc-
ture of the whole deformed �-Poincaré algebra (see [29] for
details of the construction and [35] for a condensed review
of the �-Poincaré algebra). Notice that the 1=� term of the
antisymmetric part of the different coproducts which repro-
duces the cocommutator (36) does not depend on the choice
of coordinates and thus all the structures at the level of Lie
algebra are uniquely defined, which means that there is no
ambiguity in describing the phase space of a classical rela-
tivistic particle even when the deformations are introduced.

After this digression on the structure of the dual group
T� ¼ B, we turn back to our main task which is the
definition of a one-particle Hilbert space from the classical
phase space described in the previous section. Now that we
have identified the (deformed) space of characters, in
analogy with the undeformed case, we will consider the
orbits under the action of the Lorentz group. Indeed on
elements of T� ¼ B one can define a natural action3 which
is induced from the action of the Lorentz group on the five-
dimensional Minkowski space, in which the de Sitter hy-
perboloid is embedded, keeping the z4 coordinate fixed.
This will lead to an action of the usual Lorentz group
SOð3; 1Þ leaving invariant the hyperboloid [33]

� z20 þ z21 þ z22 þ z23 ¼ �2 � ~m2; (49)

which describes the deformed mass-shell given by

M�
m � f�ep:ep 2 B; � 2 SOð3; 1Þg: (50)

As for the undeformed mass-shell described in Sec. II, the
space M�

m as the orbit of a symmetry group will have a
natural geometrical interpretation as a homogenous space.
The deformed one-particle Hilbert space will be built from
the space of functions on such homogenous space
C1ðM�

mÞ. As discussed above a choice of coordinates on
B is associated to a choice of basis of UðbÞ and to the
hyperboloid above will correspond with an invariant mass
Casimir operator C1ðPÞ 2 UðbÞ. Functions on the mass-
shell � 2 C1ðM�

mÞ will thus satisfy the ‘‘wave equation’’

C1ðPÞ� ¼ m2�; (51)

wherem2 ¼ ~m2 � �2. In particular (51) will hold for plane
waves themselves. Notice that for any Lie group G the

space of complex-valued functions square integrable with
respect to the inner product defined using the Haar measure
d�ðgÞ

ðf1; f2Þ ¼
Z
G
d�ðgÞ �f1ðgÞf2ðgÞ (52)

defines a Hilbert space. In our case, as functions on a
homogeneous space we can define a natural invariant
measure and an inner product on C1ðM�

mÞ (see discussion
in Sec. II) with the latter given by

ð�1; �2Þ� ¼
Z
B
d�ðpÞ�ðC1ðpÞÞ ��1ðpÞ�2ðpÞ: (53)

Here d�ðpÞ is the left-invariant Haar measure on T� ¼ B
[32] which in Cartesian and flat-slicing coordinates reads
respectively

d� � 1

ð2�Þ4z4
dz0d

3z ¼ e3p0=�

ð2�Þ4 dp0d
3p: (54)

To define a Hilbert space from C1ðMmÞ we need to find a
criterion which ensures that the inner product (53) is
positive definite. As discussed at length in Sec. III this
entails the introduction of a complex structure on C1ðMmÞ.
Roughly speaking this corresponds to a choice of a
‘‘timelike’’ element of P0 2 UðbÞ such that

P0�ðpÞ
 ¼ !
ðpÞ�ðpÞ
; (55)

i.e. the equivalent of an energy coordinate function on the
homogenous space M�

m. The complex structure will be, as
usual, given by

J ¼ i
P0

jP0j ; (56)

(properly speaking such element is not in the UEA but in
the ‘‘enveloping field’’ [19]) and, as in the undeformed
case, can be used to define positive and negative energy
projection operators. Now we come to our main point. In
order to choose the energy operator P0 from which we
define the complex structure we need to make an explicit
choice of basis in the commutative UEA UðtÞ with which
we decompose the element C1ðPÞ. In ordinary local quan-
tum field theory (QFT) the requirement of ‘‘local action’’
of a symmetry generator singles out a unique choice of
basis of translation generators P0, Pi for which C1ðPÞ ¼
P2
0 � P2

i . Indeed in this case a choice of Cartesian coor-

dinates on C1ðR3;1Þ will correspond to the set of basis
elements P0, Pi of UðR3;1Þ for which

�P� ¼ P� 	 1þ 1 	 P�: (57)

Elements of a UEA for which the coproduct has such form
are called ‘‘primitive.’’ In everyday language the trivial
form of the coproduct above is telling us that primitive
elements act according to the Leibniz rule, i.e. additively
and thus are ‘‘local symmetry generators’’ (see [36] for a
detailed discussion).
In our deformed setting the peculiarity of UðbÞ is that

now there is no choice of a commuting set of primitive

3Recall even if the action of the Lorentz group on B is not a
representation, the action on the space of functions on B does
provide a representation.
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elements with which we decompose the Casimir. Indeed
since the dual Hopf algebra of UðbÞ is, loosely speaking,
the algebra of functions on the non-Abelian group B the
coproduct of UðbÞ no matter which basis we choose
will be noncocommutative, namely � �� � � [where
�ða 	 bÞ ¼ b 	 a]. In other words the action of translation
generators will be non-Leibniz and nonsymmetric for any
choice of basis ofUðbÞ. This is the most profound and truly
‘‘basis independent’’ statement in the context of deformed
relativistic symmetries. We thus conclude that there is no
preferred choice of translation symmetry generators from
which we can define an energy coordinate function on M�

m

and thus no preferred choice of complex structure in con-
structing the one-particle Hilbert space of a relativistic
particle with curved momentum space.

Note that in QFT in curved space one faces an analogous
situation: in this case the ambiguity in the definition of the
complex structure J comes from the fact that there is no
global timelike Killing vector that can be used to define
such an object. In the most optimistic cases one has a
preferred notion of the time-translation only in certain
regions of space-time and this ultimately leads to particle
production when one evolves from a region to another.
Notice that while for us to allow for a generalization of the
quantization formalism to curved momentum space we had
to start with a phase space described in terms of coadjoint
orbits, in QFT in curved space the starting point is the
phase space of the field described as solutions of the
equation of motion which is well defined on any global
hyperbolic manifold (which can have no global symme-
tries at all).

VI. FIELDMODES ANDVACUUM FLUCTUATIONS

We now give a concrete realization of the deformed
one-particle Hilbert space and introduce tools to describe
the behavior of deformed field modes. Let us focus on the
choice of basis P0, Pi in UðbÞ related to the flat-slicing
coordinates (45), i.e. to the group splitting parameter

 ¼ 1. The wave equation defining the mass-shell is given
by the mass Casimir which for such choice of basis reads

C �ðPÞ ¼
�
2� sinh

�
P0

2�

��
2 � P2eP0=�: (58)

For simplicity we focus on the massless case. For on-shell
plane waves ep � fep: C�ðPÞep ¼ 0g, and in general of

any function on M�
m, the generator P0 will read off the

energy coordinate

P0ep ¼ !

� ðpÞep; (59)

with

!

� ðpÞ ¼ �� log

�
1� jpj

�

�
: (60)

We can now use P0 to define the complex structure (56)
and the operator Pþ ¼ 1=2ð1� iJÞ to project a generic

element of C1ðM�
mÞ on the positive energy subspace

C1ðM�þ
m Þ.

The inner product on such space given by

ð�1; �2Þ� ¼
Z
M�þ

m

d�ðpÞ
2!�ðpÞ

��1ðpÞ�2ðpÞ; (61)

(we omitted the þ superscripts for notational clarity),
which can be written in covariant form as [6]

ð�1; �2Þ� ¼
Z
B
d�ðpÞ�ðC1ðpÞÞ�ðp0Þ �~�1ðpÞ ~�2ðpÞ; (62)

is indeed positive definite and thus turns C1ðM�þ
m Þ into our

deformed one-particle Hilbert space H �. Using the group
Fourier transform discussed in Sec. II we can write the
space-time counterpart of �ðpÞ 2 C1ðM�þ

m Þ
�ðxÞ ¼

Z
B
d�ðpÞ�ðC1ðpÞÞ�ðp0Þ ~�ðpÞepðxÞ

¼
Z
M�þ

m

d�ðpÞ
2!�ðpÞ�ðpÞepðxÞ; (63)

which shows how, due to the group nature of the plane
waves epðxÞ, the fields �ðxÞ form a noncommutative alge-

bra and thus the Fourier transformed version of elements of
H � describe the one-particle Hilbert space of a noncom-
mutative quantum field theory.
For a practical description of the states H � we can

introduce a normalized basis of delta functions4 which
correspond to the ‘‘modes’’ of the on-shell plane waves ep

epðkÞ � 2!�ðkÞ�3ðp � ð�kÞÞ; (64)

where � and � denote, respectively, the (non-Abelian)
composition and antipode for spatial momenta which can
be read off (42) and (43) and are explicitly given by

p � q ¼ pþ e�p0=�q; �p ¼ �ep
0=�p: (65)

Introducing a bra-ket notation ep � jpi we have for the

inner product of one-particle states [6]

hk1jk2i � ðek1
; ek2

Þ� ¼ 2!�ðk1Þ�3ðk1 � ð�k2ÞÞ: (66)

Of course the same construction above can be repeated
for any other choice of the group splitting parameter 
. In
this case the Hilbert space H �


 will be spanned by basis

vectors jki
 bearing a different relation between energy

and linear momentum through !

� ðkÞ and a different

composition rule for the eigenvalues of the deformed

4Recall that the Dirac delta for functions on a group G is such
that

Z
G
d�ðgÞ�ðgÞfðgÞ ¼ fðeÞ;

Z
G
d�ðgÞ�ðgh�1ÞfðgÞ ¼ fðhÞ;

where g, h 2 G, and e is the unit element which in the notation
used in the preceding sections readsZ

B
d�ðpÞ�ðpÞfðpÞ¼fð0Þ;

Z
B
d�ðpÞ�ðp�ð�qÞÞfðpÞ¼fðqÞ:
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translation generators P

�. Notice also that unlike the case

of quantum fields in curved space the different Hilbert
space constructions share the same vacuum state.

Within the context of one-particle quantization we can
proceed a step further and study the basic observables of
the theory in order to get some insight on the vacuum
structure and quantum fluctuations of the theory.
One-particle observables will be given by the quantized
counterpart of classical observables, i.e. functions on
phase space. The latter can be written in terms of the
symplectic structure as O� � !ð�; �Þ with � 2
C1ðM�

mÞ. Quantization of such observable gives the most

general expression of the field operator Ô� � �ð�Þwhich
for specific choices of � reduces to the familiar field
operator (see [21] for a nice discussion). The one-particle
creation and annihilation operator will be obtained upon
quantization of the following functions on phase space:

að�Þð�Þ � 1

2
ð!ðJ�; �Þ � i!ð�; �ÞÞ ¼ h�; �i; (67)

a�ð�Þð�Þ � 1

2
ð!ðJ�; �Þ þ i!ð�; �ÞÞ ¼ h�; �i: (68)

In terms of the delta function basis written abovewe denote
the quantized counterparts of such functions by

að �ekÞ � aðkÞ; ayðekÞ � ayðkÞ; (69)

so that

að�Þ ¼
Z d�ðkÞ

2!�ðkÞ�ðkÞaðkÞ; (70)

and

ayð�Þ ¼
Z d�ðkÞ

2!�ðkÞ�ð�kÞayðkÞ; (71)

where the antipode in the last expression comes from the
reality condition on the classical phase space element� 2
C1ðM�

mÞ. The ‘‘generalized’’ field operator can be written
in terms of such creation and annihilation operators5 as

�ð�Þ ¼ iðað�Þ � ayð�ÞÞ; (72)

and from�ð�Þ we can write down the field mode operator
or the quantum equivalent of the classical oscillator coor-
dinate. Indeed using the expansions (70) and (71)

�ð�Þ ¼ i
Z d�ðkÞ

2!�ðkÞ
~�ðkÞðaðkÞ þ J �ðkÞayð�kÞÞ; (73)

with J �ðkÞ defined by d�ð�kÞ ¼ J �ðkÞd�ðkÞ. We have
for the Schroedinger picture field mode operator

’̂ �ðkÞ � 1

2!�ðkÞ ðaðkÞ þ J �ðkÞayð�kÞÞ: (74)

We can evolve ’̂�ðkÞ in time using the translation genera-
tor P0 obtaining the field mode operator in the Heisenberg
representation

’̂ �ðk; tÞ � 1

2!�ðkÞ ðaðkÞ expð�i!�ðkÞtÞ

þ J �ðkÞayð�kÞ expði!�ðkÞtÞÞ: (75)

We can now take the expectation value of the product of
two mode-field operators above in the vacuum state j0i
such that ayðkÞj0i � jki and aðkÞj0i � 0 8 k. Thus we
obtain the deformed equivalent of the spatial Fourier trans-
form of the two-point function

Gþðk1; t;k2;sÞ� h0j’̂�ðk1; tÞ’̂�ðk2;sÞj0i

¼�3ðk1�k2Þ
2!�ðk1Þ J �ðk1Þexpð�i!�ðk1Þðt�sÞÞ:

(76)

This provides us with the fundamental building block for
�-deformed field theory and for all the applications in
which the two-mode point function plays a fundamental
role.
As an immediate application of the formalism intro-

duced we can calculate the vacuum fluctuations of the field
modes ’̂�ðkÞ which will be given by

�’̂�ðkÞ ¼ ðh0j’̂�ðkÞ’̂y
�ðkÞj0iÞ1=2 � J �ðkÞ

2!�ðkÞ : (77)

For the illustrative case of 
 ¼ 1 we have that J �ðkÞ ¼
expð�3!�ðkÞ=�Þ and thus

�’̂�ðkÞ ! 0; jkj ! �; (78)

i.e. quantum fluctuations freeze when the modulus of the
linear momentum of the field mode approaches the value of
the deformation parameter �. Notice how this result heav-
ily relies on the definition of linear modes for the field one
is choosing. From this point of view the study of mode
fluctuations seems to be a good candidate to establish, via
some physical requirement, whether or not a ‘‘preferred’’
notion of field mode exists in the quantization procedure

5Let us remark here that, as widely discussed in the literature
[6,37–40], the extension of the creation and annihilation opera-
tors defined above to the multiparticle sector of the theory is
highly nontrivial. In fact in the construction of a deformed Fock
space the nonsymmetric nature of the coproduct requires a ‘‘-
momentum-shifting’’ symmetrization [6,41]. The existence of a
covariant deformed symmetrization procedure depends on the
availability of an operator known as quantum R-matrix (see
[37,40] for an extended discussion) whose explicit construction
for the �-Poincaré algebra has been a topic of various studies
without a commonly agreed outcome. We should notice however
that our analysis goes beyond the illustrative example of
�-deformation and, for example, would also apply to the case
of deformed relativistic symmetries described by the so-called
Lorentz double [42]. For such models one has a rather straight-
forward definition of R-matrix and thus, in principle, no ob-
stacles in the construction of a consistent Fock space.
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we outlined. This question will be addressed in future
work.

VII. SUMMARY

We presented a detailed account of the quantization of a
relativistic particle with momentum space given by a group
manifold. This was done starting from a description of the
phase space of the particle as a coadjoint orbit of the
relativistic symmetry group. The reason for adopting this
formulation was twofold: on one side it is naturally con-
nected with the description of the corresponding classical
and quantum field theory spaces of states; on the other
hand, it allows for generalizations to models of relativistic
particles with group-valued momenta for which a notion of
configuration space is less straightforward. We discussed
how, in general, at the phase space level ‘‘curving’’ mo-
mentum space boils down to the introduction of a nontrivial
Lie bracket on the dual Lie algebra of translations. In
particular we considered the ‘‘group’’ momentum space
associated with �-deformations of the Poincaré algebra
which is obtained by exponentiating the �-Minkowski Lie
brackets and which, as a manifold, is given by a submani-
fold of de Sitter space. Our analysis shows that, at least at
the kinematical level, there is no effect of such deforma-
tions on the classical phase space of a single relativistic
particle, a result which confirms what is suggested in [30].

Effects of the deformation do indeed appear, and quite
dramatically, at the quantum level. We recalled how a
necessary step in the construction of a quantum Hilbert
space from a classical field’s phase space is the introduc-
tion of a complex structure which defines the notion of
positive and negative energy states. We showed that, for a
deformed field theory related to a relativistic particle with
curved momentum space, this step is nontrivial since it
involves a choice of basis in the algebra of polynomials of
the generators of deformed translations. As for field quan-
tization in curved space-time, in a deformed setting one
does not have a criterion to pick a preferred notion of
energy (and linear momentum). This is to contrast with

ordinary local quantum field theory in which such criterion
exists and consists of picking a basis of translation gen-
erators which act according to the Leibniz rule on tensor
product states, i.e. whose momenta combine according to
usual addition. Even though our discussion was limited to
the example of �-deformed momentum space, the conclu-
sion we reach applies to any field theory with group-valued
momenta and, in particular, to the ‘‘quantum double’’ of
the Lorentz group, a deformation of the Poincaré algebra
relevant for relativistic particles coupled to three-
dimensional gravity [42].
The tools introduced in the discussion of the quantiza-

tion of the �-deformed field theory were used in the last
section to provide a concrete realization of a �-one-particle
Hilbert space. We defined the basic field observable of the
theory and were able to explicitly derive the quantized
mode operators. These were used to write down the de-
formed two-point function in the linear momentum repre-
sentation and the vacuum fluctuations of the modes, which,
as expected, exhibit a nontrivial behavior when their modu-
lus gets closer to the (UV) deformation scale �. This
further step in understanding the quantum properties of
�-deformed field theories finally opens the window to what
we think are most promising applications of these models,
namely, their use for investigating trans-Planckian issues
[43–45] in semiclassical gravity from cosmology to black
hole radiance.
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