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We make a QCD light-cone sum rule assessment of BðsÞ semileptonic decays to a light scalar meson,

BðsÞ ! Sl ��l, Sl�lðl ¼ e;�; �Þ. Chiral current correlators are used and calculations are performed at leading

order in �s. Having little knowledge of the ingredients of the scalar mesons, we confine ourself to the two-

quark picture for them and work with the two possible scenarios. The resulting sum rules for the form

factors receive no contributions from the twist-3 distribution amplitudes, in comparison with the

calculation of the conventional light-cone sum rule approach where the twist-3 parts usually play an

important role. We specify the range of the squared momentum transfer q2, in which the operator product

expansion for the correlators remains valid approximately. It is found that the form factors satisfy a

relation consistent with the prediction of soft collinear effective theory. In the effective range we

investigate behaviors of the form factors and differential decay widths and compare our calculations

with the observations from other approaches.
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I. INTRODUCTION

With numerous scalar meson states being discovered
experimentally, most of the effort has been devoted to
studying their inner structure and how they are classified.
However, much controversy persists regarding their under-
lying components. Currently, one of our main concerns is
whether or not these scalar particles can be described
consistently in a quark picture. Recently, from a survey
of the accumulated experimental data two possible scenar-
ios are suggested [1,2], where the scalar mesons below and
above 1 GeVare assumed to enter their respective nonets in
two different ways. In scenario 1, there are the two scalar
nonets formed by the two-quark bound states. One con-
tains, as the lowest lying scalar states, the isoscalars�ð600Þ
and f0ð980Þ, isodoublets ð�þð800Þ; �0ð800ÞÞ and ð ��0ð800Þ;
��ð800ÞÞ, and isovector ðaþ0 ð980Þ; a00ð980Þ; a�0 ð980ÞÞ. The
other is made up of the corresponding first excited states:
the isoscalars fð1370Þ and f0ð1500Þ, isodoublets
ðK�þ

0 ð1430Þ; K�0
0 ð1430ÞÞ and ð �K�0

0 ð1430Þ; �K��
0 ð1430ÞÞ, and

isovector ðaþ0 ð1450Þ; a00ð1450Þ; a�0 ð1450ÞÞ. In scenario 2,

those scalar states below 1 GeV are taken to be the mem-
bers of a four-quark nonet, while fð1370Þ, f0ð1500Þ,
a0ð1450Þ, and K�

0ð1430Þ are treated as the lowest lying

two-quark resonances and arranged into another nonet,
with the corresponding first excited states between
2:0� 2:3 GeV.

Although now we are not able to discriminate among all
the existing schemes for the scalar mesons, the above two

are intriguing in that they can provide us with a ground
to make a systematic study on the scalar mesons. In such
assignment scenarios, an investigation has been made into
the related decay constants and light-cone distribution
amplitudes (DA’s) [1]. More importantly, to gain insight
into the scalar mesons some of the B decays involving
them have been explored in the same context. In
Refs. [1,2], the hadronic decays with a scalar final state
are discussed in detail in the framework of QCD factoriza-
tion, with important implications being drawn for the
properties of the scalar particles. More attention is paid
to the semileptonic decays with a potential interest in
BðsÞ ! Sl ��l; Sl�l. Especially, scientists are interested in

the knowledge of their differential rates, since it is critical
for acquiring valuable information on the ingredients of the
scalar particles, as confronted with upcoming experimental
observations. Unfortunately, among the existing ap-
proaches no one can afford the task of understanding the
underlying form factors in the whole regions of q2, with q
being the momentum transfers. An effective range of q2, in
which the calculations are believable, has not even been
specified in the literature, the computations being carried
out in just a small or intermediate kinematical region
arbitrarily selected. So the results are less persuasive.
Superior to the three-point QCD sum rules in evaluating

heavy-to-light meson transitions, the light-cone sum rule
(LCSR) approach, which starts with a two-point correla-
tion function, adopts the operator product expansion (OPE)
near the light cone x2 ¼ 0 in terms of nonlocal operators,
whose matrix elements are parameterized as the hadronic
DA’s of increasing twist. Such that the resulting LCSR for
form factors, in addition to having an estimable effective
region of q2, can embody as many long-distance effects as
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possible involved in the decay processes. However, a better
understanding of these DA’s is critical to make the calcu-
lation more reliable. Together with the leading twist-2 DA,
in general, the twist-3 ones enter and play an important role
in a LCSR calculation on the form factors. In the case of
the scalar mesons, the probe into the twist-2 and -3 DA’s
has been conducted in the framework of QCD sum rules,
and a DA model, in an expansion form in the Gegenbauer
polynomials, has been formulated, but with a sizable error
in some of the model parameters. To try our best to reduce
the uncertainty in the LCSR calculation from the long-
distance parameters, a practical improvement scenario has
been worked out with its validity examined and confirmed,
in which a chiral correlator is so chosen that the twist-3
DA’s make no contribution [3]. In the present work, we
intend to apply the same trick to revaluate the semileptonic
transitions BðsÞ ! Sl ��l; Sl�l, in the two-quark picture for

the scalar mesons. We will work in the effective regions
required by the OPE validity and with the two aforemen-
tioned different scenarios, and calculation is to be per-
formed at leading order in �s.

The paper is organized as follows: In the following
section, we present the correlation functions with a chiral
current and use them to derive the LCSR for the form
factors for the BðsÞ ! S transitions. The discussion and

comments are made on the important inputs—the DA’s
and decay constants of the scalar mesons, in Sec. III.
Section IV is devoted to a detailed numerical discussion
about the form factors and differential widths for BðsÞ !
Sl ��l; Sl�l, including a numerical comparison with the esti-
mates of some other approaches. The final section is re-
served for a summary.

II. THE LCSR FOR THE BðsÞ ! S
FORM FACTORS

In the standard model, the semileptonic decays
BðsÞ ! Sl ��l; Sl�l are induced by the following effective

Hamiltonian:

H eff ¼ GFffiffiffi
2

p Vub �u��ð1� �5Þb �‘��ð1� �5Þ�‘

þGF�V
�
tbVtsffiffiffi

2
p

�

�
Ceff
9 �s��ð1� �5Þb �‘��‘

þ C10 �s��ð1� �5Þb �‘���5‘

� 2mbC
eff
7 ðmbÞ
q2

�si���q
�ð1þ �5Þb �‘��‘

�
: (1)

Here Vij are the Cabibbo-Kobayashi-Maskawa matrix

elements, and CðeffÞ
i the Wilson coefficients, among which

Ceff
9 and C10 are scale independent for the corresponding

operators have a vanishing anomalous dimension. Ceff
7 and

Ceff
9 are expressed as

Ceff
7 ð�Þ ¼ C7ð�Þ þ Cb!s�ð�Þ; (2)

Ceff
9 ¼ C9ð�Þ þ Ypertðs0Þ þ YLDðs0Þ; (3)

where Cb!s�ð�Þ stems from the absorptive part of b !
sc �c ! s� rescattering which will be neglected here, Ypert

and YLD stand for, respectively, the short- and long-
distance contributions from the four-quark operators [4],
with

Ypertðs0Þ¼hðz;s0ÞC0� 1
2hð1;s0Þð4C3þ4C4þ3C5þC6Þ

� 1
2hð0;s0ÞðC3þ3C4Þþ 2

9ð3C3þC4þ3C5þC6Þ;
(4)

C0 ¼ 3C1 þ C2 þ 3C3 þ C4 þ 3C5 þ C6, and

hðz; s0Þ ¼ � 8

9
lnzþ 8

27
þ 4

9
x� 2

9
ð2þ xÞj1

� xj1=2
� ln��������

ffiffiffiffiffiffiffi
1�x

p þ1ffiffiffiffiffiffiffi
1�x

p �1

���������i� for x � 4z2=s0 < 1

2 arctan 1ffiffiffiffiffiffiffi
x�1

p for x � 4z2=s0 > 1

;

hð0; s0Þ ¼ 8

27
� 8

9
ln
mb

�
� 4

9
lns0 þ 4

9
i�; (5)

where z ¼ mc=mb and s0 ¼ q2=m2
b. The Wilson coeffi-

cients CiðmbÞ, listed in Table I, are given in the leading
logarithmic accuracy.
Aiming at an evaluation of the semileptonic decays

BðsÞ ! Sl ��l; Sl�l, we need to confront the hadronic matrix

elements hSðpÞj �q2���5bjBðsÞðpþ qÞi and hSðpÞj �q2���

�5q
�bjBðsÞðpþ qÞi. They can be parameterized, in terms

of the form factors fþðq2Þ, f�ðq2Þ and fTðq2Þ, as
hSðpÞj �q2���5bjBðpþ qÞi

¼ �2ip�fþðq2Þ � i½fþðq2Þ þ f�ðq2Þ�q�; (6)

hSðpÞj �q2����5q
�bjBðpþ qÞi

¼ ½2p�q
2 � 2q�ðq � pÞ� �fTðq2Þ

mB þmS

; (7)

TABLE I. The values of Wilson coefficients CiðmbÞ in the leading logarithmic approximation
in the standard model, with mW ¼ 80:4 GeV, mt ¼ 173:8 GeV, mb ¼ 4:8 GeV [5].

C1 C2 C3 C4 C5 C6 C7 C9 C10

1.119 �0:270 0.013 �0:027 0.009 �0:033 �0:322 4.344 �4:669
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where the BðsÞ mesons are signified by B for short. The

relative form factors could be calculated in the LCSR.
Instead of the correlation functions used in Ref. [6], we
would like to consider the following two correlators, with
the T product of chiral current operators sandwiched be-
tween the vacuum and one on-shell scalar meson state [7]:

��ðp; qÞ ¼ i
Z

d4xeiqxhSðpÞjTf �q2ðxÞ��ð1� �5ÞbðxÞ;
� �bð0Þið1� �5Þq1ð0Þgj0i; (8)

~��ðp; qÞ ¼ i
Z

d4xeiqxhSðpÞjTf �q2ðxÞ���ð1þ �5Þq�bðxÞ;
� �bð0Þið1� �5Þq1ð0Þgj0i; (9)

where q1, q2 denotes the light quark field.
The hadronic representations for them are easy to

achieve, by inserting between the currents a complete set
of resonance states with the same quantum numbers as the
operator �bð0Þið1� �5Þq1ð0Þ. On the desired pole contribu-
tions due to the lowest pseudoscalar Bmeson are insolated,
and we obtain the hadronic representations:

�h
�ðp; qÞ ¼

hSðpÞj �q2���5bjBðpþ qÞihBðpþ qÞj �bi�5q1j0i
m2

B � ðpþ qÞ2

þX
h

hSðpÞj �q2��ð1� �5ÞbjBhðpþ qÞihBhðpþ qÞj �bið1� �5Þq1j0i
m2

B � ðpþ qÞ2 ; (10)

~� h
�ðp; qÞ ¼ � hSðpÞj �q2���ð1þ �5Þq�bjBðpþ qÞihBðpþ qÞj �bi�5q1j0i

m2
B � ðpþ qÞ2

þX
h

hSðpÞj �q2���ð1þ �5Þq�bjBhðpþ qÞihBhðpþ qÞj �bið1� �5Þq1j0i
m2

B � ðpþ qÞ2 : (11)

It should be stressed that the correlation functions receive
contributions from the scalar resonances included in
the intermediate states Bh [7], in addition to the higher
pseudoscalar ones, and the ground-state scalar meson is a
bit lighter than the pseudoscalar resonance lying in the first
excited state.

With the definitions of B-meson decay constant

hBj �bi�5q1j0i ¼ m2
BfB

mq1
þmb

and Eqs. (6) and (7), the phenome-

nological representations of the correlation functions read

�h
�ðp; qÞ ¼ �i

m2
B � ðpþ qÞ2

m2
BfB

mq1 þmb

� ½2fþðq2Þp� þ ðfþðq2Þ þ f�ðq2ÞÞq��

� 1

�

Z 1

s0

ds
2	hþðsÞp� þ ð	hþðsÞ þ 	h�ðsÞÞq�

s� ðpþ qÞ2 ;

(12)

~�h
�ðp;qÞ ¼ 1

m2
B � ðpþ qÞ2

m2
BfB

mq1 þmb

� fT
mB þmS

½2p�q
2 � 2q�ðq �pÞ�

� 1

�

Z 1

s0

ds
	h
TðsÞ½2p�q

2 � 2q�ðq �pÞ�
s� ðpþ qÞ2 : (13)

Here we have replaced the summations in (10) and (11)
with the dispersion integrations starting with the threshold

s0 near the squared mass of the lowest scalar B meson [7].
The spectral densities can be approximated as, by invoking
the quark-hadron duality ansatz

	hþ;�;TðsÞ ¼ 	QCD
þ;�;TðsÞ
ðs� s0Þ: (14)

The QCD spectral densities 	QCD
þ;�;TðsÞ can be derived by

calculating the correctors in QCD theory. To this end,
we work in the large spacelike momentum regions
ðpþ qÞ2 � m2

b for the b �q1 channel and a larger recoil

region of the decaying B meson as given later, which
correspond to the small light-cone distance x2 	 0 and
are required by the validity of the OPE [8]. Considering
the effect of the background gluon field, we can write down
a full b-quark propagator

h0jTbðxÞ �bð0Þj0i ¼ iS0ðx; 0Þ � igs
Z d4k

ð2�Þ4 e
�ikx

�
Z

dv

�
kþmb

ðm2
b � k2Þ2 G

��ðvxÞ���

þ 1

m2
b � k2

vx�G
��ðvxÞ��

�
: (15)

Here G�� is the gluonic field strength, gs denotes the

strong coupling constant and S0ðx; 0Þ expresses a free
b-quark propagator

iS0ðx; 0Þ ¼ �i
Z d4k

ð2�Þ4 e
�ikx kþmb

m2
b � k2

: (16)
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The large virtuality of the underlying heavy quarks makes
it sound to neglect the contributions of soft gluon emission
from the heavy quarks, which, in fact, is just a twist-4
effect. In this accuracy and leading order in�s, we find that
as contrasted with the results of the traditional LCSR [6],
only the nonlocal matrix element hSðpÞj �q2ðxÞ��q1ð0Þj0i
remains, while those concerning the nonlocal operators
�q2ðxÞq1ð0Þ and �q2ðxÞ���q1ð0Þ cancel out. As usual, apply-
ing the light-cone OPE to the matrix element hSðpÞj �q2ðxÞ
��q1ð0Þj0i, we could be led to the leading twist-2 DA’s of

the scalar mesons�Sðu;�Þ as defined in [1]. We are going
to return to this point in the following section. Now the
light-cone OPE forms for the correlators can be written
as follows:

�QCD
� ðp; qÞ ¼ 2ip�mb

Z 1

0
du

�SðuÞ
m2

b � ðqþ upÞ2 ; (17)

~�QCD
� ðp;qÞ¼�2ðp�q

2�q�ðq �pÞÞ
Z 1

0
du

�SðuÞ
m2

b�ðqþupÞ2 :

(18)

We would like to convert them into a form of dispersion
integration in order to facilitate the ensuing subtraction of
the effect of the higher resonances and continuum states
in the phenomenological representations (12) and (13).
To this end, invoking the relation m2

b � ðqþ upÞ2 ¼
uðs� ðpþ qÞ2Þ we make a replacement of u with s.
Matching both the forms of the correlators, subtracting
continuum contributions and making Borel transformation
[9] with respect to the variable ðpþ qÞ2,

BM2

1

m2
B � ðqþ pÞ2 ¼

1

M2
e�ðm2

B=M
2Þ;

BM2

1

m2
b � ðqþ upÞ2 ¼

1

uM2
eð�1=uM2Þ½m2

b
þuð1�uÞp2�ð1�uÞq2�;

(19)

with M2 being the Borel parameter and mS the scalar
meson mass, we get the sum rules for the form factors:

fþðq2Þ ¼ �mq1 þmb

m2
BfB

mb

Z 1

�
du

�SðuÞ
u

e�; (20)

f�ðq2Þ ¼
mq1 þmb

m2
BfB

mb

Z 1

�
du

�SðuÞ
u

e�; (21)

fTðq2Þ ¼ �mq1 þmb

m2
BfB

ðmB þmSÞ
Z 1

�
du

�SðuÞ
u

e�; (22)

where

�¼ 1

2m2
S

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0�m2

S�q2Þ2þ4ðm2
b�q2Þm2

S

q
�ðs0�m2

S�q2Þ�;

�¼� 1

uM2
½m2

bþuð1�uÞm2
S�ð1�uÞq2�þm2

B

M2
: (23)

We find, as a by-product, that the form factors in question
respect the following LCSR relations:

fþðq2Þ ¼ �f�ðq2Þ; (24)

fTðq2Þ ¼ ðmB þmSÞ
mb

fþðq2Þ: (25)

Actually, apart from that the same is observed in the
LCSR involving a pseudoscalar meson, a simple relation is
obtained also for the form factors in the vector meson
case [10]. All these observations, up to the hard-exchange
corrections, are consistent with the results of soft collinear
effective theory [11]. Having these relations at hand, in
the numerical discussion we will focus on the form
factor fþðq2Þ.

III. DECAY CONSTANTS AND DISTRIBUTION
AMPLITUDES OF SCALAR MESONS

In this section, we give a brief review and discussion on
the decay constants and DA’s of the related scalar mesons,
which are the basic inputs for the LCSR calculation.
For a light scalar meson in the two-quark picture, it

could couple to the corresponding vector and scalar quark
current operators; thus, we can define its decay constants
as [1],

hSðpÞj �q2ð0Þ��q1ð0Þj0i ¼ p�fS; (26)

hSðpÞj �q2ð0Þq1ð0Þj0i ¼ mS
�fS: (27)

It is readily observed that the decay constants fS and �fS are
scale independent and dependent, respectively. The neutral
scalar mesons like a00 and f0 (if considered purely a s�s
bound state) cannot couple with a vector current operator
owing to the charge conjugation invariance or conservation
of the vector current, and thus we have

ff0 ¼ fa0
0
¼ 0: (28)

For the other scalar mesons, the decay constants fS and �fS
are connected by the equation of motion

�f S ¼ �SfS; (29)

where

�S ¼ mS

m2ð�Þ �m1ð�Þ ; (30)

the running quark masses mið�Þ respect the renormaliza-
tion group equation (RGE):
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mið�Þ ¼ mið�0Þ
�
�sð�0Þ
�sð�Þ

��4=b
; (31)

with b ¼ ð33� 2nfÞ=3, nf being the number of active

quark flavors. The decay constants fS hence are either
zero or small of order m2 �m1.

Similar to the case of pseudoscalar mesons, the twist-2
DA �Sðu;�Þ of the scalar meson is defined as [1]

hSðpÞj �q2ðxÞ��q1ðyÞj0i ¼ p�

Z 1

0
dueiup�xþ �up�y�Sðu;�Þ;

(32)

with u being the fraction of the light-cone momentum of
the scalar meson carried by q2 and �u ¼ 1� u, and obeys
the normalization Z 1

0
du�Sðu;�Þ ¼ fS: (33)

With reference to the DA’s of scalar mesons, a few words
should be given. From the definition of �Sðu;�Þ, the
corresponding scalar mesons have to carry a large light-
cone momentum p0 þ p3. Along with the requirement of
the OPE validity, such a constrain condition demands that
we work in a region assigned as

0 
 q2 < ðmb �mSÞ2 � 2ðmb �mSÞ�QCD; (34)

which, to be specific, is 0 
 q2 < 11 GeV2 for a scalar
meson below 1 GeV and 0 
 q2 < 8 GeV2 for one above
1 GeV. Also, it is important to realize that the DA’s of
scalar meson, strictly speaking, become meaningful just at
a scale of� � mS, since the constituent quark of the scalar
meson is in essence off shell and, in particular, it is far from
its mass shell by the virtuality of m2

S as carrying the total

momentum of the scalar meson. Considering the DA’s at
a scale below mS means that we are dealing with the

situation that these off-shell modes are in part or in full
integrated out, however, which is meaningless.
Based on the conformal symmetry hidden in the QCD

Lagrangian, �Sðu;�Þ can be expanded in a series of

Gegenbauer polynomials C3=2
m ðxÞ with increasing confor-

mal spin as

�Sðu;�Þ ¼ �fSð�Þ6u �u
�
B0ð�Þ þ X

m¼1

Bmð�ÞC3=2
m ð2u� 1Þ

�
;

where Gegenbauer moments Bmð�Þ, which are scale de-
pendent, are given as

Bmð�Þ ¼ 1
�fs

2ð2mþ 1Þ
3ðmþ 1Þðmþ 2Þ

Z 1

0
C3=2
m ð2u� 1Þ�Sðu;�Þdu:

(35)

The scale evolutions of �Sðu;�Þ are determined using the
following RGE:

�fSð�Þ ¼ �fSð�0Þ
�
�sð�0Þ
�sð�Þ

�
4=b

;

Bmð�Þ ¼ Bmð�0Þ
�
�sð�0Þ
�sð�Þ

��ð�ðmÞþ4Þ=b
;

(36)

where the one-loop anomalous dimensions is [12]

�ðmÞ ¼ CF

0
@1� 2

ðmþ 1Þðmþ 2Þ þ 4
Xmþ1

j¼2

1

j

1
A;

with CF ¼ 4=3. The conservation of charge parity de-
mands an antisymmetric �Sðu;�Þ under the interchange
u $ 1� u, namely, �Sðu;�Þ ¼ ��Sð1� u;�Þ, for the
neutral scalar mesons of a q �q content. Accordingly, for the
scalar mesons a00 and f0 we could write down their leading
twist DA’s as

TABLE III. Decay constants �fs and Gegenbauer moments B1;3 of the twist-2 DA’s �S at the
scales � ¼ 1 GeV [1] and 2.4 GeV (shown in parentheses) in scenario 2.

State �f ðGeVÞ B1 B3

a0ð1450Þ 0.460(0.586) �0:58 0:12ð�0:37� 0:08Þ �0:49 0:15ð�0:25� 0:09Þ
f0ð1500Þ 0.490(0.625) �0:48 0:11ð�0:30� 0:08Þ �0:37 0:20ð�0:19� 0:12Þ
K�

0ð1430Þ 0.445(0.567) �0:57 0:13ð�0:36� 0:09Þ �0:420:22ð�0:216� 0:13Þ

TABLE II. Decay constants �fs and Gegenbauer moments B1;3 of the twist-2 DA’s �S at the
scales � ¼ 1 GeV [1] and 2.4 GeV (shown in parentheses) in scenario 1.

State �f ðGeVÞ B1 B3

a0ð980Þ 0.365(0.465) �0:93� 0:10ð�0:59� 0:07Þ 0:14� 0:08ð0:07� 0:04Þ
a0ð1450Þ �0:280ð�0:357Þ 0:89 0:20ð0:56� 0:14Þ �1:38 0:18ð�0:71� 0:11Þ
f0ð980Þ 0.370(0.472) �0:78 0:08ð�0:49� 0:06Þ 0:02 0:07ð0:01� 0:04Þ
f0ð1500Þ �0:255ð�0:325Þ 0:80 0:40ð0:51� 0:28Þ �1:32 0:14ð�0:68� 0:08Þ
�ð800Þ 0.340(0.433) �0:92 0:11ð�0:58� 0:08Þ 0:15 0:09ð0:08� 0:05Þ
K�

0ð1430Þ �0:300ð�0:382Þ 0:58 0:07ð0:37� 0:05Þ �1:20 0:08ð�0:62� 0:05Þ
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�Sðu;�Þ ¼ �fSð�Þ6u �u X
m¼0

B2mþ1ð�ÞC3=2
2mþ1ð2u� 1Þ: (37)

In the two-quark picture, it is concluded that the twist-2
DA’s of all the light scalar mesons are antisymmetric under
the interchange u $ 1� u in the flavor SUð3Þ limit; thus,
the odd Gegenbauer moments dominate in the DA’s, form-
ing a striking contrast to the corresponding situations of
the pseudoscalar mesons where the leading DA of the pion,
for instance, covers no odd Gegenbauer moments and
so is symmetric. Indeed, the zeroth Gegenbauer moment
B0, which is equal to ��1

S , vanishes in the SUð3Þ limit. In

the following, we will neglect the contributions of the
even Gegenbauer moments and take only into account
the first two odd moments.

To proceed, we must add that the LCSR for the form
factor fþðq2Þ would have a distinct scale dependence, due
to the absence of the QCD radiative corrections. In such
a case, it should be in order that we work at the scale

�b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Bs
�m2

b

q
, which denotes the typical virtuality of

the underlying b quark. At this scale, the related parame-
ters can be evaluated making use of the RGE (36) with an
initial scale �0 � mS. As the initial conditions we prefer
using the QCD sum rule estimates at � ¼ 1 GeV [1],
which though is a bit inadequate for the situation involving
the scalar mesons above 1 GeV. The numerical results
for �fSð�Þ and B1;3 are collected in Tables II and III, and

the shapes of the DA’s in the two scenarios are illustrated
in Fig. 1.

IV. NUMERICAL CALCULATION
AND DISCUSSION

We proceed to do the LCSR calculation in the two
scenarios with the scalar mesons in the two-quark picture.

For illustrative purpose it is sufficient to take, as a case
study, the processes: �B0 ! aþ0 ð980Þ=aþ0 ð1450Þl ��l, �B0

s !
�þð800Þ=K�þ

0 ð1430Þl ��l, �B0 ! ��0ð800Þ= �K�
0ð1430Þl�l, and

�B0
s ! f0ð980Þ=f0ð1500Þl�l.
The following inputs [6,13,14] will be taken in the

numerical analysis:

GF ¼ 1:166� 10�2 GeV�2; jVubj ¼ 3:96þ0:09
�0:09 � 10�3;

jVtbj ¼ 0:9991; jVtsj ¼ 41:61þ0:10
�0:80 � 10�3;

muð1 GeVÞ ¼ 2:8 MeV; mdð1 GeVÞ ¼ 6:8 MeV;

msð1 GeVÞ ¼ 142 MeV; mb ¼ ð4:8� 0:1Þ GeV;
me;� ¼ 0 MeV; m� ¼ 1776:82 MeV;

mB0
¼ 5:279 GeV; mBs

¼ 5:368 GeV;

fB0
¼ ð0:19� 0:02Þ GeV; fBs

¼ ð0:23� 0:02Þ GeV:
(38)

In the first place, let us make investigation in the context
of scenario 1. The numerical discussions of the form
factors fþðq2Þ can proceed in terms of the standard proce-
dure for sum rule calculations. The threshold parameters
s0, which correspond to the masses mB

S of the lowest scalar

BðsÞ mesons [7], need to be estimated in a certain non-

perturbative approach. Using the QCD sum rule result [15]
for the binding energy difference between the scalar and
pseudoscalar Bmesons in the heavy quark effective theory,

we could reasonably give s
�B0

0 ¼ s
�B0
s

0 ¼ 33� 1 GeV2,

which is smaller than the threshold values in the corre-
sponding conventional sum rule calculations, with the
experimental values of the pseudoscalar B mesons. Also,
it is possible to determine the threshold parameters in other
approaches, among which the scenario suggested in [16]
is more effective. The range of the Borel parameter M2,

FIG. 1 (color online). Leading twist distribution amplitudes �S of the scalar mesons in scenario 1 and scenario 2 at the scale
� ¼ 2:4 GeV. It can be seen that �S is antisymmetric under the replacement of u $ 1� u in the SUð3Þ limit owing to the
conservation of C parity.
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which is shared by all the sum rules in question, is deter-
mined as 10 GeV2 
 M2 
 15 GeV2. In this interval, the
higher states and continuum contribute less than 30%, and
the sum rule results vary by 13� 30% around the central
values, depending on the decay modes.

To elucidate our findings for the form factors, we can
consider typically the case of the B ! a0ð980Þ and Bs !
f0ð1500Þ transitions. The LCSR for form factors,

f
�B0!aþ

0
ð980Þ

þ ð0Þ and f
�B0
s!f0ð1500Þþ ð0Þ, are of a good stability

against M2 varying, as shown in Fig. 2. For simplicity,
throughout the numerical investigation we give only
the central values of the sum rule results, corresponding

to M2 ¼ 12 GeV2 and s
�B0

0 ¼ s
�B0
s

0 ¼ 33 GeV2. Then

we have the observations f
�B0!aþ

0
ð980Þ

þ ð0Þ ¼ 0:56 and

f
�B0
s!f0ð1500Þþ ð0Þ ¼ 0:14. Furthermore, use of the

relations (24) and (25) leads to f
�B0!aþ

0
ð980Þ

� ð0Þ ¼ �0:56,

f
�B0
s!f0ð1500Þ� ð0Þ ¼ �0:14 and f

�B0
s!f0ð1500Þ

T ð0Þ ¼ 0:20.
Within the LCSR allowed kinematical regions,

f
�B0!aþ0 ð980Þþ ðq2Þ and f

�B0
s!f0ð1500Þþ ðq2Þ as a function of q2

are depicted in Fig. 3, along with those corresponding
to the other modes. The behaviors of fB!S� ðq2Þ and
fB!S
T ðq2Þ are understandable likewise with the relations

(24) and (25). Additionally, for a complete understanding
of the dynamical behaviors of the B ! S transitions at the
largest recoils, one can be referred to Tables IV and V,

FIG. 3 (color online). Dependence of BðsÞ ! S form factors on the transfer momentum q2 in scenario 1 within the LCSR approach
with the scale � ¼ 2:4 GeV, threshold parameter s0 ¼ 33 GeV2 and Borel parameter M2 ¼ 12 GeV2.

FIG. 2 (color online). Dependence of form factors fþðq2 ¼ 0Þ for �B0 ! aþ0 ð980Þ and �B0
s ! f0ð1500Þ on the Borel parameter M2 in

scenario 1 within the LCSR approach at the scale � ¼ 2:4 GeV. We take the threshold s0 ¼ 32, 33, 34 GeV2 [7] and b quark mass
mb ¼ 4:8 GeV.
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where we collect the present LCSR results for the form
factors fB!Sþ;�;Tð0Þ in all the cases and the predictions of

other approaches for comparison.
It is manifest that there is a sizable numerical difference

in the form factors between the transitions to the ground
states and to the excited ones. To make it clear, we go back
to the LCSR expressions for the form factors. We observe
that the DA’s�Sðu;�Þmake contribution only in a smaller
region of the momentum fraction u ranging approximately
from 0:8� 1 at q2 ¼ 0. The light quark from the heavy
quark decays prefers transferring to the region close to
its kinematical end point to build a bound state with the
spectator quark of the decaying heavy meson, which is
the so-called Feynman mechanism, that is, soft exchanges
predominate over hard ones in the decay process. Referring
to Fig. 1, one finds that in that subregion the DA’s behave
quite differently between the scalar objects below and
above 1 GeV. For the scalar mesons below 1 GeV, in the
whole subregion their DA’s turn out to be negative and
hence make a constructive contribution to the sum rules.
A different situation manifests itself as the scalar mesons
involved are heavier ones: the DA’s contribute construc-

tively in one part of the subrange but do destructively in the
other. That the two effects cancel out to a large degree
leads to a form factor in magnitude much smaller than
those for the ground states. Physically, this indicates that
for a given q2, as with the former situation the decaying B
mesons have a larger energy release in the latter one.
In the same picture the B ! S transitions have been

explored in the several approaches, such as the perturbative
QCD (pQCD) [18], QCD sum rules [17,20,21], and LCSR
[6,19]. It is interesting to compare our results with some of
the previous studies. In what follows, wherever a result of
any other approach is referred to, it should be understood
that we have, if necessary and possible, converted it into
that in the present convention. Application of the LCSR
is enforced to B decays to a scalar final state by taking
the Bs ! f0ð980Þ semileptonic processes as a study case
in Ref. [19]. The sum rules for the form factors, with
the asymptotic forms used for twist-3 DA’s, give

f
�B0
s!f0ð980Þþ ð0Þ ¼ 0:19 and f

�B0
s!f0ð980Þ

T ð0Þ ¼ 0:23 subject to
an uncertainty estimate omitted here. Counting QCD next-
to-leading corrections, which is estimated roughly based
on the observation of the LCSR calculation for the B ! �

TABLE IV. Form factors fþ and f� at zero momentum transfer q2 ¼ 0 GeV2 in scenario 1
(S1) and scenario 2 (S2) for semileptonic decays BðsÞ ! Sl� ��l with LCSR [6], sum rules (SR)

[17] and pQCD [18] approaches.

�B0
s ! K�þ

0 ð1430Þ �B0 ! aþ0 ð1450Þ �B0
s ! �þð800Þ �B0 ! aþ0 ð980Þ

Methods fþ f� fþ f� fþ f� fþ f�
This work (S1) þ0:10 �0:10 þ0:26 �0:26 þ0:53 �0:53 þ0:56 �0:56
This work (S2) þ0:44 �0:44 þ0:53 �0:53 . . . . . . . . . . . .
SR [17] þ0:24 . . . . . . . . . . . . . . . . . . . . .
LCSR (S2) [6] þ0:42 �0:34 þ0:52 �0:44 . . . . . . . . . . . .
pQCD (S1) [18] �0:32 . . . �0:31 . . . þ0:29 . . . þ0:39 . . .
pQCD (S2) [18] þ0:56 . . . þ0:68 . . . . . . . . . . . . . . .

TABLE V. Form factors fþ, f� and fT for rare decays BðsÞ ! Sl�l at q2 ¼ 0 GeV2 in S1 and S2, with LCSR [6,19], SR [20,21],
light-front quark model (LFQM) [22], minimal supersymmetric standard model (MSSM) [23], covariant light-front (CLF) [24],
covariant quark model (CQM) [25], and pQCD [18] approaches.

�B0 ! �K�
0ð1430Þ �B0

s ! f0ð1500Þ �B0 ! ��0ð800Þ �B0
s ! f0ð980Þ

Methods fþ f� fT fþ f� fT fþ f� fT fþ f� fT

This work (S1) þ0:17 �0:17 þ0:24 þ0:14 �0:14 þ0:20 þ0:46 �0:46 þ0:58 þ0:44 �0:44 þ0:58
This work (S2) þ0:49 �0:49 þ0:69 þ0:41 �0:41 þ0:59 . . . . . . . . . . . . . . . . . .
LFQM [22] �0:26 þ0:21 �0:34 . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLF [24] þ0:26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SR (S2) [20] þ0:31 �0:31 �0:26 . . . . . . . . . . . . . . . . . . . . . . . . . . .
SR [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . þ0:12 �0:17 �0:08
LCSR (S2) [6] þ0:49 �0:41 þ0:60 þ0:43 �0:37 þ0:56 . . . . . . . . . . . . . . . . . .
LCSR [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . þ0:19 . . . þ0:23
pQCD (S1) [18] �0:34 . . . �0:44 �0:26 . . . �0:34 þ0:27 . . . þ0:29 þ0:35 . . . þ0:40
pQCD (S2)[18] þ0:60 . . . þ0:78 þ0:60 . . . þ0:82 . . . . . . . . . . . . . . . . . .
CQM [25] . . . . . . . . . . . . . . . . . . þ0:40 . . . . . . . . . . . . . . .
MSSM [23] þ0:49 �0:41 þ0:60 . . . . . . . . . . . . . . . . . . . . . . . . . . .
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transitions, the above results are modified to fþBs!f0
ð0Þ ¼

0:24 and fTBs!f0
ð0Þ ¼ 0:31, about 45% less than our cal-

culations. The reason for the sizable differences is mainly
use of the different inputs for the decay constant �ff0ð980Þ.
The different scales are taken for the leading and the
subleading twist DA’s as important inputs, which would
have, of course, an impact on the accuracy of the result.
Using the same inputs, the two evaluations are found to be
consistent with each other and that of QCD sum rules. The
pQCD approach predicts, for the decay modes to the scalar
ground states, that the form factors are a bit smaller in
magnitude but within an error comparable with the present
calculations, and have the approximately same value as
in the case of the first excited states, a result quite other
than our predictions. It is not difficult to understand for
heavy-to-light transitions, because the pQCD approach
accords with the hard-exchanges mechanism, and the
resulting form factors rely on the behaviors of the DA of
light meson in the whole momentum region accessible
for the constitute quarks.

All the approaches mentioned above are no doubt appli-
cable in the kinematical region near the largest recoil for
calculation of the form factors. Nevertheless, no decisive
region of q2, in which these approaches work well, has
been provided in the existing applications to the B ! S
transitions. In the LCSR calculation [6], the form factors

are artificially limited to the range 0< q2 < 15 GeV2,
which seem somewhat large against our estimate, and
then the results are fitted to a dipole model for having an
understanding of the behaviors of the form factors in the
whole kinematically accessible region. The same way is
adopted in the pQCD calculation [18] to extrapolate the
results for the form factors from the small q2 range to the
large one. Although such an extrapolation manner is phe-
nomenologically extensively assumed, caution should be
taken when one applies it to the present case. First of all,
we have no theoretical justification for doing so. The pole
models are believed to be suitable merely for description of
those form factors corresponding to q2 near the squared
pole masses m2

pole; however, for the present B ! S transi-

tions the m2
pole are far away from their kinematical regions.

On the other hand, if the work region for an approach
cannot be assigned effectively, choosing different fitting
regions would lead to different results. Hence, it is ques-
tionable to use a pole description to get an all-around
understanding of q2 dependence of the form factors for
B ! S transitions. Taking this into account, we prefer
calculating in the effective regions rather than in the whole
kinematical range.
Now, we are in a position to look into the differential

decay rates for the B ! S semileptonic decays, which
are expressed as

d�

dq2
ðBðsÞ ! Sl ��lÞ ¼ G2

FjVubj2
192�3m3

B

q2 �m2
l

ðq2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2 �m2

l Þ2
q2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

B �m2
S � q2Þ2

4q2
�m2

S

s �
ðm2

l þ 2q2Þðq2 � ðmB �mSÞ2Þ

� ðq2 � ðmB þmSÞ2Þf2þðq2Þ þ 3m2
l ðm2

B �m2
SÞ2

�
fþðq2Þ þ q2

m2
B �m2

S

f�ðq2Þ
�
2
�
; (39)

d�

dq2
ðBðsÞ ! Sl�lÞ ¼ G2

FjVtbVtsj2m3
B�

2
em

1536�5

�
1� 4rl

s

�
1=2

��
1þ 2rl

s

�
’3=2

S �S þ ’1=2
S rl�S

�
; (40)

where ml denotes the mass of a final state lepton, and

s ¼ q2=m2
B; rl ¼ m2

l =m
2
B; rS ¼ m2

S=m
2
B;

’S ¼ ð1� rSÞ2 � 2sð1þ rSÞ þ s2;

�S ¼
��������Ceff

9 fþðq2Þ � 2
C7fTðq2Þ
1þ ffiffiffiffiffi

rS
p

��������2þjC10fþðq2Þj2;

�S ¼ 6jC10j2f½2ð1þ rSÞ � s�jfþðq2Þj2
þ ð1� rSÞ2Re½fþðq2Þf��ðq2Þ� þ sjf�ðq2Þj2g:

In the respective effective regions m2
l 
 q2 


ðmB �mSÞ2 and 4m2
l 
 q2 
 ðmB �mSÞ2, we assess the

distributions of the differential rates for the BðsÞ ! Sl ��l

and BðsÞ ! Sl�l, with the results displayed in Figs. 4 and 5,

where we have setme ¼ m� ¼ 0. In the case of BðsÞ ! Sl�l

there appears a discontinuity at q2 ¼ 4m2
c stemming

from the function hðz; s0Þ. The differential decay rates
for the BðsÞ ! S�þ�� are incalculable in the present

approach, for the dilepton threshold 4m2
� is beyond our

work regions. It is shown that our calculations and the
predictions of pQCD [18] are comparable with each other,
although they are based on two different dynamical
schemes.
As scenario 2 is adopted, an analogous LCSR analysis

can be made in principle; however, a complete discussion
is not practicable at present, due to little knowledge of the
4-quark scalar states below 1 GeV. Along the same line as
above, we can assess the semileptonic decays of BðsÞ to a

scalar above 1 GeV, which is viewed as a two-quark ground
state. The sum rules show the same Borel interval as in
the case of scenario 1. The variations of the form factors
fþðq2Þ with q2 are exhibited in Fig. 6, and at the largest
recoil, a summary of the numerical results for the form
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FIG. 5 (color online). Differential decay widths of the rare BðsÞ ! Sl�l (l ¼ e, �) decays as functions of q2 in scenario 1.

FIG. 4 (color online). Differential decay widths of the semileptonic B ! Sl ��l decays as functions of q
2 in scenario 1. Here l ¼ e, �

in the left diagram.
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factors involved, including some of the previous estimates,
is given in Tables IV and V. Comparing the sum rule
calculations between scenarios 1 and 2, we see that in the
latter case the form factors fþðq2Þ have a central value
between 0:40� 0:70 in the effective regions, depending on
the decay modes, and hence are less sensitive to q2 than in
the former case in which there is a large numerical range
from 0:10� 0:60. The present evaluations of fþð0Þ, which
show a better agreement with the conventional LCSR
calculation [6,19], are a bit smaller than the numerical
observation in pQCD [18], and meanwhile are large nu-
merically in comparison with the calculation of QCD
sum rules in both the B ! K� and Bs ! K� situations,
especially our result turning out to be about twice as large
as that of QCD sum rules in the latter case.

The resulting differential decay rates, as exhibited in
Fig. 7 and 8, have a behavior other significantly from what
is observed in scenario 1, with the remarkably different
QCD dynamics embedded in the form factors between the
two scenarios. Once these scalar mesons above 1 GeV are
clearly identified to be, purely or mainly, the two-quark
bound state, this result might help to distinguish between
both the pictures for them, as the future experiments be-
come accessible. In addition, the distribution shapes, which
are demonstrated by the differential rates for BðsÞ ! Sl ��l in

Fig. 7, are compatible with the LCSR calculation.
The decays to the scalar meson below 1 GeV, despite

theoretically little accessible for the moment, could be
discussed qualitatively. In the four-quark final states there
is a quark-antiquark component from the annihilations of
emitted gluons in the decaying processes, which gets the

FIG. 7 (color online). Differential decay widths of the semileptonic B ! Sl ��l decays as functions of q
2 in scenario 2. Here l ¼ e, �

in the left diagram.

FIG. 6 (color online). Dependence of BðsÞ ! S form factors on
the transfer momentum q2 in scenario 2 within the LCSR
approach with the scale � ¼ 2:4 GeV, threshold parameter
s0 ¼ 33 GeV2 and Borel parameter M2 ¼ 12 GeV2.

FIG. 8 (color online). Differential decay widths of the rare
BðsÞ ! Sl�l (l ¼ e, �) decays as functions of q2 in scenario 2.
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transitions highly suppressed. Consequently, we may de-
duce that in scenario 2 the related form factors are of a
small numerical value with respect to the results in the
two-quark picture.

Finally, we should point out that all the above discus-
sions can not be generalized to DðsÞ decays to a scalar

meson, because of the fact that the decaying mesons
have a recoil energy not large enough to make LCSR
applicable, in their decaying processes.

V. SUMMARY

We have presented a LCSR computation on BðsÞ !
Sl ��l; Sl�l at leading order in �s, in the two-quark picture
for the scalar mesons with the two different scenarios. A
correlation function with a chiral current operator is chosen
such that the resulting LCSR the form factors can avoid
the pollution with the twist-3 DA’s of the scalar mesons.
Applicable regions of the LCSR approach are discussed
and are assigned reasonably as 0 
 q2 < 11 GeV2 and 0 

q2 < 8 GeV2, for the scalar final states below and above
1 GeV, respectively. Also, we investigate the properties of
the DA’s of the scalar mesons, obtaining an observable
difference from the case of the pseudoscalar mesons. In
the effective regions, the form factors and differential decay

rates are estimated, with the main findings summarized as
follows: (1) There exist relations among the form factors
for the B ! S transitions, which are in accordance with the
prediction of soft collinear effective theory. (2) For the
decays to a scalar ground state, in the case of scenario 1
the form factors at q2 ¼ 0 show the numerical result as
much larger than those for the first excited states, and as
confronted with the corresponding observations in sce-
nario 2, the former seem large in magnitude, but the latter
are predicted to be small. (3) For the semileptonic processes
with the scalar final state above 1 GeV2, the resulting
differential decay rates have a significantly different behav-
ior for the different scenarios. Some of them might be
beneficial to experimentally identify the physical natures
of the scalar mesons. The present results might be improved
as the QCD radiative corrections are taken into account;
however, they are not expected to change too much from
the LCSR calculation on the B ! � transition [26].

ACKNOWLEDGMENTS

Y. J. Sun would like to thank Y.-M.Wang for helpful
discussions. This work is supported by Natural Science
Foundation of China under Grant Nos. 10735080,
10805082, and 10735080.

[1] H. Y. Cheng, C. K. Chua, and K. C. Yang, Phys. Rev. D 73,
014017 (2006).

[2] C. D. Lu, Y.M. Wang, and H. Zou, Phys. Rev. D 75,
056001 (2007).

[3] T. Huang, Z. H. Li, and X.Y. Wu, Phys. Rev. D 63, 094001
(2001); T. Huang and Z.H. Li, Phys. Rev. D 57, 1993
(1998).

[4] A. J. Buras and M. Munz, Phys. Rev. D 52, 186 (1995).
[5] H. Hatanaka and K. C. Yang, Phys. Rev. D 78, 074007

(2008).
[6] Y.M. Wang, M. J. Aslam, and C.D. Lu, Phys. Rev. D 78,

014006 (2008).
[7] V. L. Chernyak and I. R. Zhitnitsky, Nucl. Phys. B345, 137

(1990).
[8] P. Colangelo and A. Khodjamirian, arXiv:hep-ph/

0010175.
[9] M.A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.

Phys. B147, 385 (1979).
[10] T. Huang, Z. H. Li, and F. Zuo, Eur. Phys. J. C 60, 63

(2009).
[11] C.W. Bauer, S. Fleming, D. Pirjol, and I.W. Stewart,

Phys. Rev. D 63, 114020 (2001).
[12] D. J. Gross and F. Wilczek, Phys. Rev. D 9, 980 (1974);

M.A. Shifman and M. I. Vysotsky, Nucl. Phys. B186, 475
(1981).

[13] A. Khodjamirian and R. Ruckl, Adv. Ser. Dir. High
Energy Phys. 15, 345 (1998); A. Gray et al. (HPQCD
Collaboration), Phys. Rev. Lett. 95, 212001 (2005); A. A.

Penin and M. Steinhauser, Phys. Rev. D 65, 054006
(2002); M. Jamin and B.O. Lange, Phys. Rev. D 65,
056005 (2002).

[14] K. Nakamura (Particle Data Group), J. Phys. G 37, 075021
(2010).

[15] T. Huang and Z.H. Li, Phys. Lett. B 438, 159 (1998).
[16] W. Lucha, D. Melikhov, and S. Simula, Phys. Rev. D 79,

096011 (2009).
[17] M. Z. Yang, Phys. Rev. D 73, 034027 (2006); 73, 079901

(E) (2006).
[18] R. H. Li, C.D. Lu, W. Wang, and X.X. Wang, Phys. Rev.

D 79, 014013 (2009).
[19] P. Colangelo, F. De Fazio, and W. Wang, Phys. Rev. D 81,

074001 (2010).
[20] T.M. Aliev, K. Azizi, and M. Savci, Phys. Rev. D 76,

074017 (2007).
[21] N. Ghahramany and R. Khosravi, Phys. Rev. D 80, 016009

(2009).
[22] C. H. Chen, C.Q. Geng, C. C. Lih, and C. C. Liu, Phys.

Rev. D 75, 074010 (2007).
[23] M. J. Aslam, C.D. Lu, and Y.M. Wang, Phys. Rev. D 79,

074007 (2009).
[24] H. Y. Cheng, C. K. Chua, and C.W. Hwang, Phys. Rev. D

69, 074025 (2004).
[25] B. El-Bennich, O. Leitner, J. P. Dedonder, and B. Loiseau,

Phys. Rev. D 79, 076004 (2009).
[26] Z. G. Wan, M. Z. Zhou, and T. Huang, Phys. Rev. D 67,

094006 (2003).

YAN-JUN SUN, ZUO-HONG LI, AND TAO HUANG PHYSICAL REVIEW D 83, 025024 (2011)

025024-12

http://dx.doi.org/10.1103/PhysRevD.73.014017
http://dx.doi.org/10.1103/PhysRevD.73.014017
http://dx.doi.org/10.1103/PhysRevD.75.056001
http://dx.doi.org/10.1103/PhysRevD.75.056001
http://dx.doi.org/10.1103/PhysRevD.63.094001
http://dx.doi.org/10.1103/PhysRevD.63.094001
http://dx.doi.org/10.1103/PhysRevD.57.1993
http://dx.doi.org/10.1103/PhysRevD.57.1993
http://dx.doi.org/10.1103/PhysRevD.52.186
http://dx.doi.org/10.1103/PhysRevD.78.074007
http://dx.doi.org/10.1103/PhysRevD.78.074007
http://dx.doi.org/10.1103/PhysRevD.78.014006
http://dx.doi.org/10.1103/PhysRevD.78.014006
http://dx.doi.org/10.1016/0550-3213(90)90612-H
http://dx.doi.org/10.1016/0550-3213(90)90612-H
http://arXiv.org/abs/hep-ph/0010175
http://arXiv.org/abs/hep-ph/0010175
http://dx.doi.org/10.1016/0550-3213(79)90022-1
http://dx.doi.org/10.1016/0550-3213(79)90022-1
http://dx.doi.org/10.1140/epjc/s10052-008-0855-4
http://dx.doi.org/10.1140/epjc/s10052-008-0855-4
http://dx.doi.org/10.1103/PhysRevD.63.114020
http://dx.doi.org/10.1103/PhysRevD.9.980
http://dx.doi.org/10.1016/0550-3213(81)90023-7
http://dx.doi.org/10.1016/0550-3213(81)90023-7
http://dx.doi.org/10.1142/9789812812667_0005
http://dx.doi.org/10.1142/9789812812667_0005
http://dx.doi.org/10.1103/PhysRevLett.95.212001
http://dx.doi.org/10.1103/PhysRevD.65.054006
http://dx.doi.org/10.1103/PhysRevD.65.054006
http://dx.doi.org/10.1103/PhysRevD.65.056005
http://dx.doi.org/10.1103/PhysRevD.65.056005
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1016/S0370-2693(98)00952-6
http://dx.doi.org/10.1103/PhysRevD.79.096011
http://dx.doi.org/10.1103/PhysRevD.79.096011
http://dx.doi.org/10.1103/PhysRevD.73.034027
http://dx.doi.org/10.1103/PhysRevD.73.079901
http://dx.doi.org/10.1103/PhysRevD.73.079901
http://dx.doi.org/10.1103/PhysRevD.79.014013
http://dx.doi.org/10.1103/PhysRevD.79.014013
http://dx.doi.org/10.1103/PhysRevD.81.074001
http://dx.doi.org/10.1103/PhysRevD.81.074001
http://dx.doi.org/10.1103/PhysRevD.76.074017
http://dx.doi.org/10.1103/PhysRevD.76.074017
http://dx.doi.org/10.1103/PhysRevD.80.016009
http://dx.doi.org/10.1103/PhysRevD.80.016009
http://dx.doi.org/10.1103/PhysRevD.75.074010
http://dx.doi.org/10.1103/PhysRevD.75.074010
http://dx.doi.org/10.1103/PhysRevD.79.074007
http://dx.doi.org/10.1103/PhysRevD.79.074007
http://dx.doi.org/10.1103/PhysRevD.69.074025
http://dx.doi.org/10.1103/PhysRevD.69.074025
http://dx.doi.org/10.1103/PhysRevD.79.076004
http://dx.doi.org/10.1103/PhysRevD.67.094006
http://dx.doi.org/10.1103/PhysRevD.67.094006

